
5th International Computer
Programming Education
Conference

ICPEC 2024, June 27–28, 2024, Lisbon, Portugal

Edited by

André L. Santos
Maria Pinto-Albuquerque

OASIcs – Vo l . 122 – ICPEC 2024 www.dagstuh l .de/oas i c s

Editors

André L. Santos
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal
Andre.Santos@iscte-iul.pt

Maria Pinto-Albuquerque
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal
Maria.Albuquerque@iscte-iul.pt

ACM Classification 2012
Applied computing → Education; Applied computing → Interactive learning environments; Applied
computing → Computer-assisted instruction

ISBN 978-3-95977-347-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-347-8.

Publication date
September, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICPEC.2024.0

ISBN 978-3-95977-347-8 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-8247-7413
mailto:Andre.Santos@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:Maria.Albuquerque@iscte-iul.pt
https://www.dagstuhl.de/dagpub/978-3-95977-347-8
https://www.dagstuhl.de/dagpub/978-3-95977-347-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ICPEC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-347-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ICPEC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
André L. Santos and Maria Pinto-Albuquerque . 0:vii

Program Committee
. 0:ix

List of Authors
. 0:xi

Invited Talk

Hedy: An Inclusive, Multi-Lingual, and Gradual Programming Language
Felienne Hermans . 1:1–1:1

Automated Assessment

A Domain-Specific Language for Dynamic White-Box Evaluation of Java
Assignments

Afonso B. Caniço and André L. Santos . 2:1–2:13

Seven Years Later: Lessons Learned in Automated Assessment
Bruno Pereira Cipriano and Pedro Alves . 3:1–3:14

Adaptation of Automated Assessment System for Large Programming Courses
Marek Horváth, Tomáš Kormaník, and Jaroslav Porubän . 4:1–4:11

Teaching Approaches

Kumon-Inspired Approach to Teaching Programming Fundamentals
Ivone Amorim, Pedro Baltazar Vasconcelos, and João Pedro Pedroso 5:1–5:13

An Experience with Adaptive Formative Assessment for Motivating Novices in
Introductory Programming Learning

Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan 6:1–6:12

Promoting Deep Learning Through a Concept Map-Building Collaborative
Activity in an Introductory Programming Course

João Paulo Barros . 7:1–7:12

Scientific Whispers: Mapping Innovative Pedagogies in STEAM and
Programming Education

Margarida Antunes and António Trigo . 8:1–8:12

Teaching Programming Courses with Digital Educational Escape Rooms
(DEER): A Conceptual Proposal Conducive to Learning by Trial and Error

Antonio Trigo and Margarida Antunes . 9:1–9:8

Educational Program Visualizations Using Synthetized Execution Information
Rodrigo Mourato and André L. Santos . 10:1–10:8

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Games and Gamification

Client-Side Gamification Engine for Enhanced Programming Learning
Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha . . 11:1–11:12

Game Development: Enhancing Creativity and Independent Creation in
University Course

Lenka Bubenkova and Emilia Pietrikova . 12:1–12:13

Learning Paths: A New Teaching Strategy with Gamification
Filipe Portela . 13:1–13:12

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics
Andrei-Cristian Iosif, Ulrike Lechner, Maria Pinto-Albuquerque, and
Tiago Espinha Gasiba . 14:1–14:11

Implementing a Digital Twin for a Robotic Platform to Support Large-Scale
Coding Classes

Michael Heeney, Kelly Androutsopoulos, and Franco Raimondi 15:1–15:12

Software Security

To Kill a Mocking Bug: Open Source Repo Mining of Security Patches for
Programming Education

Andrei-Cristian Iosif, Tiago Espinha Gasiba, Ulrike Lechner, and
Maria Pinto-Albuquerque . 16:1–16:12

Improving Industrial Cybersecurity Training: Insights into Code Reviews Using
Eye-Tracking

Samuel Riegel Correia, Maria Pinto-Albuquerque, Tiago Espinha Gasiba, and
Andrei-Cristian Iosif . 17:1–17:9

Generative Artificial Intelligence

Using ChatGPT During Implementation of Programs in Education
Norbert Baláž, Jaroslav Porubän, Marek Horváth, and Tomáš Kormaník 18:1–18:9

Exercisify: An AI-Powered Statement Evaluator
Ricardo Queirós . 19:1–19:6

Use of Programming Aids in Undergraduate Courses
Ana Rita Peixoto, André Glória, José Luís Silva, Maria Pinto-Albuquerque,
Tomás Brandão, and Luís Nunes . 20:1–20:9

Authoring Programming Exercises for Automated Assessment Assisted by
Generative AI

Yannik Bauer, José Paulo Leal, and Ricardo Queirós . 21:1–21:8

Preface

ICPEC 2024, the 5th International Computer Programming Education Conference took place
on 27 and 28 of June in Lisbon, Portugal. Continuing the already established tradition of a
warm and collaborative community promoting the exchange of perspectives and advances in
computer science education challenges, we attracted more internationally diverse participants
than in previous editions.

We were honored to have Professor Felienne Hermans delivering the invited talk “Hedy:
an Inclusive, Multi-lingual, and Gradual Programming Language.” Felienne opened the
conference by highlighting the importance of promoting computational thinking and program-
ming for everyone, regardless of gender, language, or culture. These matters were discussed
in the context of developing Hedy (https://hedy.org), a programming environment that
she developed over the recent years.

The conference featured twenty accepted and presented papers, comprising thirteen
full papers and seven short papers (ongoing work). These papers were organized into
five thematic sections in the context of programming education: Automated Assessment,
Teaching Approaches, Games and Gamification, Software Security, and Generative Artificial
Intelligence.

We thank the Program Committee members for their effort in reviewing the papers with
care and quality, and all the participants for contributing to lively discussions.

Lisboa, 31 July 2024
André Leal Santos and Maria Pinto-Albuquerque

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://hedy.org
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Program Committee

Alberto Simões, 2Ai Lab – IPCA

Anabela Gomes, Instituto Politécnico de Coimbra

André L. Santos, Iscte (Instituto Universitário de Lisboa)

António José Mendes, University of Coimbra

Bárbara Cleto, ESMAD/uniMAD

Bertil Marques, GILT/ISEP/IPP

Cristiana Araújo, University of Minho

Filipe Portela, University of Minho

Filomena Lopes, Universidade Portucalense

J. Angel Velasquez-Iturbide, Universidad Rey Juan Carlos

Jakub Swacha, University of Szczecin

José Paiva, University of Porto

José Paulo Leal, University of Porto

Leonel Morgado, INESC TEC / Universidade Aberta

Marco Temeperini, Sapienza University of Rome

Maria José Marcelino, University of Coimbra

Maria Pinto-Albuquerque, Iscte (Instituto Universitário de Lisboa)

Mário Pinto, ESMAD, Polytechnic of Porto

Martinha Piteira, IPS – ESTSetúbal

Paula Tavares, ISEP (Instituto Superior de Engenharia do Porto)

Pedro Baltazar Vasconcelos, University of Porto

Pedro Rangel Henriques, University of Minho

Ricardo Queirós, ESMAD, Polytechnic of Porto & CRACS – INESC TEC

Rytis Maskeliunas, Kaunas University of Technology

Sergio Ilarri, University of Zaragoza

Teresa Terroso, ESMAD, Polytechnic of Porto

Tiago Gasiba, Siemens AG

Vítor Sá, Universidade Católica Portuguesa

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

List of Authors

Pedro Alves (3)
COPELABS, Lusófona University,
Lisbon, Portugal

Ivone Amorim (5)
PORTIC - Porto Research, Technology &
Innovation Center, Polytechnic of Porto (IPP),
Portugal

Kelly Androutsopoulos (15)
Department of Computer Science,
Middlesex University, London, UK

Margarida Antunes (8, 9)
Polytechnic University of Coimbra, Portugal

Afonso B. Caniço (2)
Instituto Universitário de Lisboa (ISCTE-IUL),
Portugal

Norbert Baláž (18)
Department of Computers and Informatics,
Technical University of Košice, Slovakia

João Paulo Barros (7)
Polytechnic Institute of Beja, Portugal;
Center of Technology and Systems
(UNINOVA-CTS) and Associated Lab of
Intelligent Systems (LASI), Caparica, Portugal

Yannik Bauer (21)
DCC – FCUP, Porto, Portugal

Tomás Brandão (20)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR, Portugal

Lenka Bubenkova (12)
Department of Computers and Informatics,
FEI TU of Košice, Slovakia

Bruno Pereira Cipriano (3)
COPELABS, Lusófona University, Lisbon,
Portugal

Robertas Damaševičius (11)
Department of Applied Informatics, Vytautas
Magnus University, Vilnius, Lithuania

Tiago Espinha Gasiba (14, 16, 17)
Siemens AG, München, Germany

André Glória (20)
Instituto Universitário de Lisboa (ISCTE-IUL),
Instituto de Telecomunicações, Portugal

Michael Heeney (15)
Department of Computer Science,
Middlesex University, London, UK

Felienne Hermans (1)
Vrije Universiteit Amsterdam, The Netherlands

Marek Horváth (4, 18)
Department of Computers and Informatics,
FEI TU of Košice, Slovakia

Andrei-Cristian Iosif (14, 16, 17)
Universität der Bundeswehr München, Germany;
Siemens AG, München, Germany

Tomáš Kormaník (4, 18)
Department of Computers and Informatics,
FEI TU of Košice, Slovakia

José Paulo Leal (21)
CRACS – INESC TEC, Porto, Portugal;
DCC – FCUP, Porto, Portugal

Ulrike Lechner (14, 16)
Universität der Bundeswehr München, Germany

Rytis Maskeliūnas (11)
Centre of Real Time Computer Systems,
Kaunas University of Technology, Lithuania

Rodrigo Mourato (10)
Instituto Universitário de Lisboa (ISCTE-IUL),
Portugal

Luís Nunes (20)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR, Portugal

Fiona O’Riordan (6)
CCT College, Dublin, Ireland

João Pedro Pedroso (5)
CMUP & Department of Computer Science,
Faculty of Sciences, University of Porto,
Portugal

Ana Rita Peixoto (20)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR, Portugal

Emilia Pietrikova (12)
Department of Computers and Informatics,
FEI TU of Košice, Slovakia

Maria Pinto-Albuquerque (14, 16, 17, 20)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR, Portugal

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4054-0792
https://doi.org/10.4230/OASIcs.ICPEC.2024.3
https://orcid.org/0000-0001-6102-6165
https://doi.org/10.4230/OASIcs.ICPEC.2024.5
https://orcid.org/0000-0001-8257-1867
https://doi.org/10.4230/OASIcs.ICPEC.2024.15
https://orcid.org/0009-0006-3960-0304
https://doi.org/10.4230/OASIcs.ICPEC.2024.8
https://doi.org/10.4230/OASIcs.ICPEC.2024.9
https://orcid.org/0009-0009-9334-717X
https://doi.org/10.4230/OASIcs.ICPEC.2024.2
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://orcid.org/0000-0002-0097-9883
https://doi.org/10.4230/OASIcs.ICPEC.2024.7
https://orcid.org/0000-0001-8987-2419
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://orcid.org/0000-0002-8603-9795
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://doi.org/10.4230/OASIcs.ICPEC.2024.12
https://orcid.org/0000-0002-2017-7511
https://doi.org/10.4230/OASIcs.ICPEC.2024.3
https://orcid.org/0000-0001-9990-1084
https://doi.org/10.4230/OASIcs.ICPEC.2024.11
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://orcid.org/0000-0002-5245-4392
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://orcid.org/0009-0000-9394-4294
https://doi.org/10.4230/OASIcs.ICPEC.2024.15
https://orcid.org/0000-0003-0722-0156
https://doi.org/10.4230/OASIcs.ICPEC.2024.1
https://orcid.org/0009-0005-4649-2308
https://doi.org/10.4230/OASIcs.ICPEC.2024.4
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://orcid.org/0000-0003-1867-1542
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://orcid.org/0009-0002-6622-8027
https://doi.org/10.4230/OASIcs.ICPEC.2024.4
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://orcid.org/0000-0002-4286-3184
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://orcid.org/0000-0002-2809-2213
https://doi.org/10.4230/OASIcs.ICPEC.2024.11
https://orcid.org/0009-0008-7652-6558
https://doi.org/10.4230/OASIcs.ICPEC.2024.10
https://orcid.org/0000-0001-7072-0925
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2024.6
https://orcid.org/0000-0003-1298-7191
https://doi.org/10.4230/OASIcs.ICPEC.2024.5
https://orcid.org/0000-0001-7618-5994
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://orcid.org/0000-0002-9790-6874
https://doi.org/10.4230/OASIcs.ICPEC.2024.12
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii Authors

Filipe Portela (13)
Algoritmi Centre, University of Minho,
Guimarães, Portugal

Jaroslav Porubän (4, 18)
Department of Computers and Informatics,
FEI TU of Košice, Slovakia

Ricardo Queirós (11, 19, 21)
School of Media Arts and Design & CRACS –
INESC TEC, Polytechnic of Porto, Portugal

Franco Raimondi (15)
Gran Sasso Science Institute, L’Aquila, Italy

Samuel Riegel Correia (17)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTA, Portugal

André L. Santos (2, 10)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR-IUL, Portugal

José Luís Silva (20)
ITI/LARSyS, Instituto Universitário de Lisboa
(ISCTE-IUL), Portugal

Jakub Swacha (11)
Department of IT in Management,
University of Szczecin, Poland

Jagadeeswaran Thangaraj (6)
School of Computing, Dublin City University,
Ireland

Antonio Trigo (9)
Polytechnic University of Coimbra, Portugal;
CEOS.PP, ISCAP, Polytechnic of Porto,
Portugal

António Trigo (8)
Polytechnic University of Coimbra, Portugal;
CEOS.PP, ISCAP, Polytechnic of Porto,
Portugal

Pedro Baltazar Vasconcelos (5)
LIACC & Department of Computer Science,
Faculty of Sciences, University of Porto,
Portugal

Monica Ward (6)
School of Computing, Dublin City University,
Ireland

https://orcid.org/0000-0003-2181-6837
https://doi.org/10.4230/OASIcs.ICPEC.2024.13
https://orcid.org/0000-0001-9706-2897
https://doi.org/10.4230/OASIcs.ICPEC.2024.4
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2024.11
https://doi.org/10.4230/OASIcs.ICPEC.2024.19
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://orcid.org/0000-0002-9508-7713
https://doi.org/10.4230/OASIcs.ICPEC.2024.15
https://orcid.org/0009-0005-3925-3421
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2024.2
https://doi.org/10.4230/OASIcs.ICPEC.2024.10
https://orcid.org/0000-0002-1226-9002
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://orcid.org/0000-0002-2214-6989
https://doi.org/10.4230/OASIcs.ICPEC.2024.11
https://orcid.org/0000-0002-2721-0898
https://doi.org/10.4230/OASIcs.ICPEC.2024.6
https://orcid.org/0000-0003-0506-4284
https://doi.org/10.4230/OASIcs.ICPEC.2024.9
https://orcid.org/0000-0003-0506-4284
https://doi.org/10.4230/OASIcs.ICPEC.2024.8
https://orcid.org/0000-0002-8387-9772
https://doi.org/10.4230/OASIcs.ICPEC.2024.5
https://orcid.org/0000-0001-7327-1395
https://doi.org/10.4230/OASIcs.ICPEC.2024.6

Hedy: An Inclusive, Multi-Lingual, and Gradual
Programming Language
Felienne Hermans # Ñ

Vrije Universiteit Amsterdam, The Netherlands

Abstract
Software is playing an increasing role in everyone’s lives, and therefore it is important (and fun!)
for kids to become creators in the digital world. However, existing programming languages are
not necessarily designed for learnability, with cryptic error messages and a lack of easily accessible
resources. In this talk, Felienne will outline what issues existing tools have, and how these issues
disproportionally affect underrepresented minorities in programming including girls, kids with
disabilities and non-English learners. She will then outline her story of inventing and creating Hedy,
an inclusive, multi-lingual and gradual programming language for learners. Hedy is open source,
runs in the browser, is free to use, and is available in 54 different languages (Including English,
Spanish, Chinese, Arabic and Hindi). Hedy was launched in early 2020 and now serves about 500,000
monthly users.

2012 ACM Subject Classification Applied computing → Education; Social and professional topics
→ User characteristics

Keywords and phrases programming education, gradual programming, outreach, Hedy

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.1

Category Invited Talk

© Felienne Hermans;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 1; pp. 1:1–1:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.f.j.hermans@vu.nl
https://www.felienne.com
https://orcid.org/0000-0003-0722-0156
https://doi.org/10.4230/OASIcs.ICPEC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

A Domain-Specific Language for Dynamic
White-Box Evaluation of Java Assignments
Afonso B. Caniço #

Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

André L. Santos #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal

Abstract
Programming exercises involving algorithms typically involve time and spatial constraints. Automated
assessments for such implementations are often carried out in a black-box manner or through static
analysis of the code, without considering the internal execution properties, which could lead to
falsely positive evaluations of students’ solutions. We present Witter, a domain-specific language
for defining white-box test cases for the Java language. We evaluated programming assignment
submissions from a Data Structures and Algorithms course against Witter’s test cases to determine if
our approach could offer additional insight regarding incomplete algorithmic behaviour requirements.
We found that a significant amount of student solutions fail to meet the desired algorithmic behavior
(approx. 21%), despite passing black-box tests. Hence, we conclude that white-box tests are useful
to achieve a thorough automated evaluation of this kind of exercises.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging;
Software and its engineering → Domain specific languages; Social and professional topics → Student
assessment

Keywords and phrases White-box assessment, student assessment, programming education

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.2

1 Introduction

Students of introductory-level programming courses, such as Algorithms and Data Structures,
are expected to develop implementations that conform to specific algorithm behaviour to
ensure the correct application of the algorithms under study. As a standard example, students
might be tasked with implementing a specific sorting algorithm. Ideally, formative assessment
of this kind of exercises should verify algorithmic behaviour – the essence of the subject
– by measuring white-box aspects such as the number of operations executed or memory
allocation. Automated constructive feedback that allows students to understand any possible
mistakes and deepen their understanding is valuable [18, 13], saving time on human feedback
and fostering autonomous learning.

While assessment tools providing feedback about the correctness of the outputs of a
solution (i.e. black-box testing) are generally available, assessment tools that check internal
algorithmic behavior are not (i.e. white-box testing) [9, 14, 12]. We believe that a technique
for deeper evaluation of exercises could serve as the backbone for more elaborated automated
assessment systems with richer feedback.

In this paper, we present an evolution of our previous work on Witter [3]1, a library for
white-box testing of Java code. We augmented the library with an internal domain-specific
language (DSL) written in Kotlin, allowing instructors to define white-box test cases for Java
source code that with stateful execution – a limitation of the initial approach. This kind of
tests are appropriate to test data structures implemented with classes.

1 https://github.com/ambco-iscte/witter

© Afonso B. Caniço and André L. Santos;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ambco@iscte-iul.pt
https://orcid.org/0009-0009-9334-717X
mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2024.2
https://github.com/ambco-iscte/witter
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 A DSL for Dynamic White-Box Evaluation of Java Assignments

We tested the DSL against a set of real student programming assignment submissions
from the Algorithms and Data Structures course offered at our institution. We observe that
students can effectively be misled if only the outputs produced by their implementations
are considered in their assessment, and thus conclude that programming assignments where
the internal algorithmic behaviour is relevant could benefit from a tool providing execution
information.

This paper proceeds as follows. Section 2 discusses related work on automated assessment.
Section 3 presents background on our previous work on Witter. Section 4 describes our
DSL for test specification. Section 5 describes the evaluation of our approach with student
submissions. Section 6 discusses conclusions and outlines future work.

2 Related Work

Recent surveys [9, 14, 12, 5] show that research and development on automated white-
box programming assessment systems focus primarily on well-known white-box assessment
methods like static analysis or bytecode instrumentation, with our literature review yielding
scarce mentions of assessment through the dynamic collection of details of a program’s
execution – the main novelty of our approach.

Programming languages or libraries such as AspectJ [10]2, Javassist [4]3, ASM [2]4, and
ByteBuddy5, require specilized knowledge on code instrumentation, allow existing systems
to be augmented with deeper assessment functionalities, but are limited in that they do not
allow for the collection of information regarding the code’s execution out-of-the-box. The
analyses have to be programmed and tailored to specific needs. Similarly, Valgrind6 is a
code instrumentation toolkit that enables detection of memory management and threading
bugs, along with program profiling. While these tools lay the groundwork upon which an
automated assessment system may feature white-box analysis, we consider the requirement of
specialised knowledge to be a negative factor when it comes to the tools’ general accessibility.
Additionally, significant analysis or instrumentation is required to accurately collect a relevant
amount of information during a program’s execution, negatively impacting the applicability
of these tools.

Lizard7 is a multi-language static analysis tool supporting the Java language, focusing
on determining the cyclomatic complexity of implemented functions, among other forms of
static code analysis. While cyclomatic complexity is a useful tool for measuring and therefore
managing the complexity of a program, it does not provide detailed algorithmic behaviour of
a solution. Similar tools, like Cppcheck8 for C and C++, focus on bug detection through
static code analysis, providing no dynamic analysis functionalities for a program’s execution.

ConGu [6] is a runtime verification tool that enables the assessment of Java classes against
formal algebraic specifications. Its main goal is to test abstract data types against function
domain restrictions and algebraic conditions or axioms that functions must verify.

2 https://www.eclipse.org/aspectj
3 https://www.javassist.org
4 https://asm.ow2.io
5 https://bytebuddy.net/
6 https://valgrind.org/
7 https://github.com/terryyin/lizard
8 https://cppcheck.sourceforge.io/

https://www.eclipse.org/aspectj
https://www.javassist.org
https://asm.ow2.io
https://bytebuddy.net/
https://valgrind.org/
https://github.com/terryyin/lizard
https://cppcheck.sourceforge.io/

A. B. Caniço and A. L. Santos 2:3

Jeed9 is a toolkit for Java and Kotlin in-memory execution with a focus on safety and
performance. While Jeed’s goals align with those of our proposed library by enabling code
execution in a sandboxed environment providing access to code evaluation metrics, its
assessment is focused on source code analysis rather than dynamic runtime events. Namely,
Jeed supports linting, cyclomatic complexity analysis, and a listing of which language features
are present in a given program.

Mooshak [11] is a programming assessment tool that checks whether a submitted program
functions correctly. To this effect, Mooshak analyses the programs for their returned or
printed outputs, and if any compilation or runtime errors were produced [17]. Mooshak’s
goal is broad, aiming to be a full online programming context judge for several programming
languages [11, 17], and as such, enables third-party extensions to execute custom static and
dynamic analysers, which might perform white-box analyses. This aligns with our goal of
providing Witter as a library which is easily integrable into existing assessment systems.

JavAssess [8] is a Java library used to integrate deeper code analysis capabilities into
existing automated assessment tools. This approach relies on combining traditional black-
box unit testing with code instrumentation and meta-programming functionalities, yet
does not offer a way to dynamically collect white-box execution metrics. Nonetheless, the
goals of JavAssess are considerably similar to Witter’s, aiming to be a library that can
be integrated into existing automated assessment systems to facilitate a deeper analysis
of student code, and the two libraries could work in tandem to provide a comprehensive
assessment toolkit. AutoGrader [7] is a similar assessment library, leveraging on the meta-
programming functionalities of the Java language along with typical unit testing for code
assessment.

3 Background: Witter Library

In previous work we developed Witter, a library for specifying white-box test cases for Java
source code [3]. The core functionality of Witter relies on Strudel10, a library providing an
interpreter allowing clients to perform fine-grained observation of code execution events.

In the first version of Witter, test cases were defined by annotating reference solutions
with header comments containing different directives that specified each test case and which
runtime metrics should be considered. Figure 1 presents an example of using Witter to
specify a test for the insertion sort algorithm. We can see two test cases and directives to
measure the number of array reads/writes and to check if the desired side-effects are met.
The white-box testing is based on comparing the measurements of the reference solution with
those of a students’ solution. For example, one may implement selection sort and end up with
a sorted array, but the array read/writes will not match, implying that the implementation
is not as intended.

While the initial version of Witter was suitable to evaluate algorithms that could be
implemented as standalone methods (e.g., involving arrays), it lacked support for assessing
stateful or object-oriented solutions. Furthermore, the limited Java support of Strudel at
the time also constrained the scope of code solutions we are able to analyze. Meanwhile, we
further developed Strudel to support a larger subset of Java’s language features and therefore
broaden the scope of programs that Witter is able to evaluate.

9 https://github.com/cs125-illinois/jeed
10 https://github.com/andre-santos-pt/strudel

ICPEC 2024

https://github.com/cs125-illinois/jeed
https://github.com/andre-santos-pt/strudel

2:4 A DSL for Dynamic White-Box Evaluation of Java Assignments

/*
@Test ({5, 4, 3, 2, 1})
@Test ({3, 2, 5, 3, 1})
@CountArrayReads (2)
@CountArrayWrites (1)
@CheckSideEffects
*/
static void insertionSort (int [] a) {

for (int i = 1; i < a. length ; i++) {
for (int j = i; j > 0; j--) {

if (a[j] >= a[j - 1]) break ;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

}

Figure 1 Reference solution of insertion sort annotated with Witter tests (initial version).

Table 1 Runtime metrics and corresponding values measured.

Metric Usage Measure
Loop Iterations CountLoopIterations([margin]) Number of loop iterations
Array Reads CountArrayReadAccesses([margin]) Number of array read accesses
Array Writes CountArrayWriteAccesses([margin]) Number of array write accesses
Recursive Calls CountRecursiveCalls([margin]) Number of recursive calls
Object Allocations CheckObjectAllocations Object allocations per type
Array Allocations CheckArrayAllocations Array allocations per type
Side Effects CheckSideEffects Side effects on arguments

4 Approach: DSL for White-Box Tests

In order to tackle the inherent difficulty of supporting the assessment of object-oriented
implementations through annotated code solutions, we implemented an internal DSL in
Kotlin providing a programmatic way for defining stateful test cases. We argue that the DSL
requires less effort from instructors for defining test cases when compared to the required
knowledge on specialised topics like code instrumentation or meta-programming, since there
are only a few DSL directives to be used in a declarative, high-level style.

Figure 2 illustrates Witter’s DSL with a test suite for list data structures, containing two
test cases. These test cases can be configured to use any number of white-box metrics either
throughout the test or within a bounded scope (using directive). As in the initial version of
Witter, evaluation metrics (summarised in Table 1) can be optionally instantiated with a
margin parameter that specifies an acceptable deviation interval from the reference value, in
order not to constrain students’ code to a single, rigid solution.

An object can be created using the new directive by passing the name of the class to
instantiate followed by a list of arguments to one of the class constructors. References to
the created objects can be stored using ref. Class methods can be invoked by using the call
directive on a previously declared reference. A sequence of these directives defines a stateful
test case.

A. B. Caniço and A. L. Santos 2:5

val tests = TestSuite (referencePath = "path/ reference /List.java") {
Case(" testContains ") {

// Create new object and store a reference to it
val list = ref { new("List") }

// Executed without white -box metrics (black -box only)
list.call("size") // 0
list.call("add", "hello")
list.call("size") // 1
list.call("add", "world")
list.call("size") // 2

using (CountLoopIterations () + CountArrayReadAccesses ()) {
// These calls compare loop iterations
list.call(" contains ", "hello") // true
list.call(" contains ", " algorithm ") // false

}
}

// All the calls within this case compare loop iterations
Case(CountLoopIterations (), " testIsEmpty ") {

val list = ref { new("List") }
list.call(" isEmpty ", expected = true)
list.call("add", "hello")
list.call(" isEmpty ", expected = false)

}
}

Figure 2 Witter’s DSL syntax. Example Test Suite for a list data structure comprising the
operations add, contains and isEmpty.

The call directive is used by specifying the name of the method to be invoked and a list
of arguments. We may use the “dot notation” to perform calls on instance methods given
its reference (ref.call(...)). For every call, the return values of the evaluated method are
compared to the reference solution, allowing for regular black-box testing. Additionally, if the
optional expected argument is passed, Witter will assert that both the reference solution and
the solution under evaluation produce the expected result. This verification allows educators
to assert that their solution works as expected, preventing the accidental usage of a faulty
reference solution as the ground truth for evaluating students’ implementations.

Consider an assignment where a student must implement a function for calculating the
average of an array of double values. We wish to assess not only the correctness of the
produced result, but also that of the algorithm behaviour by checking that the number of
loop iterations matches that of the reference solution. Figure 3 illustrates an evaluation
scenario for this assignment using Witter’s API, composed of: reference solution (3a), test
suite (3b), a solution to check against the tests (3c), a snippet of using Witter as a library
(3d), and the output of executing the tests (3e).

Educators design an exercise by providing a pair of artifacts consisting of a reference
solution and a corresponding test suite. Different solutions to the exercise (submitted
by students) may be checked against the test suite through Witter’s API. The example
submission (Figure 3c) has a defect, given that the array iteration starts at index 1 (rather
than 0). Witter runs the tests simultaneously for the reference solution and for the solution

ICPEC 2024

2:6 A DSL for Dynamic White-Box Evaluation of Java Assignments

(a) Reference solution (Average.java).

static double average (double [] a) {
double sum = 0.0;
for (int i = 0; i < a. length ; i++) sum += a[i];
return sum / a. length ;

}

(b) DSL test suite.

val tests = TestSuite ("path/to/ reference / Average .java") {
Case(CountLoopIterations ()) {

call(" average ", listOf (1,2,3,4,5), expected = 3.0)
call(" average ", listOf (0,2,3,5,7), expected = 3.4)

}
}

(c) Solution under testing (Solution.java) – with a defect, starting at index 1.

static double average (double [] a) {
double sum = 0.0;
for (int i = 1; i < a. length ; i++) sum += a[i];
return sum / a. length ;

}

(d) Invoking the execution of a test suite to a solution under evaluation.

val results : List < ITestResult > = tests.apply(
subjectPath = "path/to/ Solution .java"

)
results . forEach { println ("$it\n") }

(e) Output of the test results.

[fail] average ([1, 2, 3, 4, 5])
Expected : 3.0
Found: 2.8

[fail] average ([1, 2, 3, 4, 5])
Expected loop iterations : 5
Found: 4

[pass] average ([0, 2, 3, 5, 7])
Expected : 3.4

[fail] average ([0, 2, 3, 5, 7])
Expected loop iterations : 5
Found: 4

Figure 3 Exercise evaluation scenario using Witter’s API.

A. B. Caniço and A. L. Santos 2:7

under testing, comparing the two to evaluate the latter’s execution. In this case, a mismatch
of iterations is detected, given that the solution under testing perform always performs one
less iteration in contrast to the reference solution. Notice that in the output of the test
results (Figure 3e) this is being reported as a failure, while it succeeds in one of the test
inputs.

An automated assessment system may import Witter as a third-party library. In this
example we are merely displaying the objects of the test results to the console, but these can
be inspected for custom reporting, depending on the assessment system.

5 Evaluation

In order to evaluate the feasibility and usefulness of the approach, we carried out an experiment
using the proposed DSL to evaluate student assignments.

5.1 Context

We collected a set of 2,389 student assignment submissions spanning two offerings of the
Algorithms and Data Structures course taken by first year undergraduate students of Com-
puter Science and Engineering and related bachelor’s degrees. The submission process
was independent from our approach, hence no constraints were posed regarding Witter’s
limitations. For this reason, some submissions could not be handled. We analyzed five
distinct assignments with the following guidelines:
1. Implement three different classes, each solving the dynamic connectivity (union-find)

problem using different approaches: Quick-Find, Quick-Union, and Weighted Quick-Union
with Path Compression.

2. Implement a Queue data structure supporting the String data type. Use a circular resizing
array implementation to store the data internally without needing to limit the queue’s
memory capacity a priori.

3. Implement an optimised version of the Insertion Sort algorithm which executes fewer
array access operations by avoiding swap operations and instead shifting elements directly
one position to the right as needed.

4. Implement a generic List data structure utilising a dynamic sequence of simply-linked
nodes internally to store elements.

5. The implementation of the Heap Sort algorithm seen in the lectures assumes the array
indices begin at 1. Modify the algorithm’s implementation to support sorting arrays
starting at index 0.

Each assignment was given to students in this order throughout the semester. The
guidelines were translated from Portuguese, which included more API details that have been
truncated for presentation in this paper.

Table 2 presents the number of valid submissions used for evaluating the DSL for each
assignment. We consider a submission to be valid if the submitted file matches the name
and extension indicated in an assignment’s guidelines, and if Java can successfully compile
the source code. The inconsistent number of submissions is explained by two factors:
our observations of a growing rate of absenteeism as the semester progresses; and, every
assignment being present in the two course offerings considered except assignment A3, which
was only present in a single offering.

ICPEC 2024

2:8 A DSL for Dynamic White-Box Evaluation of Java Assignments

Table 2 Number of student submissions used for evaluating Witter’s DSL.

Assignment Description Total Valid
A1 Dynamic Connectivity 584 424 (72.6%)
A2 Resizing Array Queue of Strings 573 490 (85.5%)
A3 Improved Insertion Sort 212 120 (56.6%)
A4 Generic Linked List 550 476 (86.5%)
A5 Heap Sort 470 266 (56.6%)

2389 1776 (74.3%)

5.2 Method
Figure 4 presents the test specifications for each assignment using Witter’s DSL. Each student
submission was evaluated using Witter through the corresponding test specification, and the
results of the evaluation were processed to find cases where the student’s implementation
passed black-box tests but failed white-box tests. Given the nature of the chosen assignments,
the evaluation focused on the metrics for counting loop iterations, array read and write access
operations, allocated memory (for resizing array operations), and argument side effects (for
checking whether sorting algorithms effectively sorted the input array).

In order to assess Witter’s suitability for large-scale assessment processes, we measure
the average execution time for the evaluation of each submission. The execution took place
in a laptop system with a 12-core 2.6GHz Intel i7-9750H CPU and 16GB of RAM. While a
completely isolated simulation is impossible in a standard system, care was taken to minimise
the impact of other operating system processes on the performance of Witter’s execution.

It is usually the case that computer engineering students have a general propensity
to cheat in programming assignments [1]. We took this factor into consideration during
Witter’s evaluation by running plagiarism analysis on all student submissions using JPlag11,
a plagiarism checking tool resistant to a broad range of obfuscation techniques and which
provides easily-interpretable results of its analysis [15, 16]. While a connection between
plagiarism checking and white-box assessment has not been observed, we include this analysis
as a means to safeguard our evaluation against possible accidental biases stemming from
students having plagiarised the same incorrect sources (e.g. copying from a fellow classmate
who made mistakes).

5.3 Results
Table 3 summarizes the evaluation results. Witter successfully loaded a total of 1,526 student
submissions from the 1,776 valid submissions described in Table 2, constituting approximately
86% of all valid submissions. For these, all the assignments had a black-box tests pass rate
greater than 90%. However, the white-box tests failure rate ranged approximately between
9% and 45%, with assignment A4 exhibiting the largest failure rate.

Figure 5 presents the distribution of white-box metrics that produced failures in each
assignment. Approximately 50% of failed assertions for assignment A1 were caused by an
incorrect number of array write operations, with the majority of the remaining errors relating
to an incorrect number of array write operations. Out of the considered metrics, assignments
A2, A3, and A5 contained white-box errors relating to the number of loop iterations and array

11 https://github.com/jplag/JPlag

https://github.com/jplag/JPlag

A. B. Caniço and A. L. Santos 2:9

(a) Test specification for assignment A1.

Case(CountLoopIterations (1) + CountArrayWriteAccesses (1) +
CountArrayReadAccesses (1)) {

val uf = ref { new(" QuickFindUF ", 100) }
val connected = mutableListOf <Pair <Int , Int >>()
(1 .. 100). forEach { _ ->

val p = (100 * random ()). toInt ()
val q = (100 * random ()). toInt ()
uf.call("union", p, q)
connected .add(Pair(p, q))

}
connected . forEach { uf.call(" connected ", it.first , it. second) }

}

(b) Test specification for assignment A2 (excerpt).

Case(CountLoopIterations (1), " testDequeue ") {
val queue = ref { new("Queue") }
queue.call(" enqueue ", " witter ")
queue.call(" enqueue ", "is")
queue.call(" enqueue ", "cool")
queue.call(" dequeue ")
queue.call(" dequeue ")
queue.call(" dequeue ")

}
Case(CountLoopIterations (1) + CountMemoryUsage ()) {

val queue = ref { new("Queue") }
(1..100). forEach { queue.call(" enqueue ", it. toString ()) }

}

(c) Test specification for assignment A4 (excerpt).

Case(CountLoopIterations (2) + CheckObjectAllocations , " testSize ") {
val list = ref { new("List") }
list.call("size")
list.call("add", "hello")
list.call("size")
list.call("add", "world")
list.call("size")

}

(d) Test specification for assignments A3 and A5.

Case(CheckSideEffects + CountLoopIterations (1) +
CountArrayWriteAccesses (1) + CountArrayReadAccesses (1)) {

call("sort", listOf (1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
call("sort", listOf (7, 3, 2, 1, 5, 6, 10, 8, 9, 4))
call("sort", listOf (7.32 , 3.14 , 2.14 , 1.93 , 5.99 , 6.74 , 10.21 ,

8.84 , 9.26 , 4.56))
call("sort", listOf (" sorting ", " algorithms ", "are", " really ",

"very", "cool"))
call("sort", listOf (10, 9, 8, 7, 6, 5, 4, 3, 2, 1))

}

Figure 4 Test specifications for the evaluated assignments (A1–5).

ICPEC 2024

2:10 A DSL for Dynamic White-Box Evaluation of Java Assignments

Table 3 Number of black-box and white-box passes and failures for loaded submissions. Loaded
submissions are given as a % of valid submissions. Submission pass/fails are given as a % of loaded
submissions. Execution time is the average over all submissions of the corresponding assignment.

Assignment Valid Loaded Blackbox Pass Whitebox Fail Avg. Time
A1 424 413 (97.4%) 407 (98.5%) 79 (19.1%) 850 ms
A2 490 433 (88.4%) 391 (90.3%) 98 (22.6%) 300 ms
A3 120 110 (91.7%) 107 (97.3%) 49 (44.5%) 20 ms
A4 476 347 (72.9%) 347 (100%) 32 (9.22%) 100 ms
A5 266 233 (83.8%) 221 (99.1%) 58 (26.0%) 30 ms

1776 1526 (85.9%) 1473 (96.5%) 316 (20.7%)

Figure 5 Ratio of each white-box metric failure per assignment.

read and write operations, the proportion of which are approximately equal, each constituting
approximately one third of each assignment’s detected errors. Assignment A4 produced the
simplest results, with all failed assertions relating to the number of loop iterations.

Finally, our suspicion regarding code similarity was confirmed by JPlag’s analysis, with
the average similarity between submissions ranging approximately from 20% to 64%, as
summarised in Table 4.

6 Discussion

The results of our evaluation show that a considerable number of students produce faulty
implementations when it comes to algorithmic behaviour, which would go unnoticed by an
evaluation process focusing only on the results produced by the students’ code. Even in
the assignment which contained the least faulty implementations (A4) 32 students could be
misled by a black-box-only assessment process, a number which we argue is not negligible.
Furthermore, in assignment A3 (lowest submission similarity), which required arguably
the most originality in developing an alternative version of a standard algorithm, we saw
a 44.5% failure rate, which constitutes nearly half of all considered submissions. We can

A. B. Caniço and A. L. Santos 2:11

Table 4 Average submission code similarity per assignment.

Assignment Average ± Std. Dev.
A1 64.2 ± 20.0%
A2 25.7 ± 17.5%
A3 19.8 ± 17.6%
A4 22.6 ± 14.0%
A5 44.1 ± 24.0%

thus conclude that the usage of an assessment tool which provides information about the
execution of students’ implementations is useful, not only from the perspective of instructors
aiming at accurate grading, but also to prevent misleading students by informing them of the
correctness of their implementation’s results regardless of how those results were produced.

The current version of Witter successfully tackles the main limitations of our previous
work [3], with the internal development of Strudel broadening the scope of supported language
features and therefore that of supported assignments, coupled with the development of a
DSL for test specification, allowing the specification of stateful tests for assignments using
objects (e.g., for implementing data structures).

Our current work on Witter and Strudel allowed an acceptable coverage of standard
Java constructs and language features, as seen by the overall 85.9% successful file loading
rate seen during the evaluation phase. Nevertheless, further work should be carried out to
extend the scope of supported functionalities and therefore enable the usage of more diverse
assignments for a more detailed evaluation.

The average time taken to execute the evaluation of each submission reveals an acceptable
performance for using Witter in educational contexts, with each submission taking from a few
milliseconds to no more than one second to be evaluated. The execution time is dependent on
the complexity of the specified tests, with longer or more comprehensive tests corresponding
to a longer execution time.

Care should be taken in future work to tackle the limitations introduced by the char-
acteristics of the dataset chosen for evaluation. For instance, taking Strudel’s supported
functionalities into account during the submission process could provide a larger usable
dataset, enabling a more significant evaluation. Furthermore, a more unbiased evaluation
could be carried out by utilising an external, publicly-available dataset of programming
student submissions, guaranteeing the usage of code produced by students outside of our
institution. Additionally, this could tackle possible issues of cheating or plagiarism, whose
presence was made evident by our evaluation process and, as hypothesised, could skew the
results by introducing a bias relating to students unknowingly plagiarising from incorrect
sources. While an average code similarity between submissions of approximately 20%, as
for assignment A3, can fall within reasonable expectations for an assignment of this scope,
values of 44% or 61% average similarity, as seen for assignments A5 and A1, respectively,
begin to raise concerns of considerable plagiarism and how it can affect the results of our
analysis.

We continue to envision Witter as a tool not only aiming to be integrated into existing
automated assessment systems as a way to extend the scope of their assessment functionalities,
but also as courseware to be used by introductory programming students in a classroom
environment, providing a learning process augmented through instant feedback on their
attempts to solve programming exercises. To this effect, we envision the implementation
of more high-level metrics, such as counting the number of array swap or move operations,
which are standard when analysing programs from an algorithm complexity standpoint, and
thus relevant for introductory programming classes focusing on algorithms.

ICPEC 2024

2:12 A DSL for Dynamic White-Box Evaluation of Java Assignments

While we have not yet been able to conduct a user study with programming students
or instructors, this is likely to be our main focus in the future as the scope and stability
of both Witter and Strudel’s functionalities increase. Namely, a study with introductory
programming students is necessary to gauge whether Witter is useful for its envisioned
context, and a study with programming instructors can offer insight into the effort required
to develop assignments adopting Witter’s DSL. Finally, given a longer time frame, a study
could be conducted in the context of an introductory programming course to analyse the
long-term effect on the usage of Witter or similar assessment tools in students’ learning
outcomes.

References
1 C.L. Aasheim, Paige Rutner, L. Li, and S.R. Williams. Plagiarism and programming: A survey

of student attitudes. Journal of Information Systems Education, 23:297–314, January 2012.
2 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to

implement adaptable systems. In In Adaptable and extensible component systems, 2002. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769.

3 Afonso B. Caniço and André L. Santos. Witter: A library for white-box testing of introductory
programming algorithms. In Proceedings of the 2023 ACM SIGPLAN International Symposium
on SPLASH-E, SPLASH-E 2023, pages 69–74, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3622780.3623650.

4 Shigeru Chiba. Load-time structural reflection in java. In Elisa Bertino, editor, ECOOP
2000 — Object-Oriented Programming, pages 313–336, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

5 Sébastien Combéfis. Automated code assessment for education: Review, classification and per-
spectives on techniques and tools. Software, 1(1):3–30, 2022. doi:10.3390/software1010002.

6 Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos. Runtime verification for generic
classes with congu2. In Proceedings of the 13th Brazilian Conference on Formal Methods:
Foundations and Applications, SBMF’10, pages 33–48, Berlin, Heidelberg, 2010. Springer-
Verlag.

7 Michael T. Helmick. Interface-based programming assignments and automatic grading of java
programs. SIGCSE Bull., 39(3):63–67, June 2007. doi:10.1145/1269900.1268805.

8 David Insa and Josep Silva. Automatic assessment of java code. Computer Languages, Systems
& Structures, 53:59–72, 2018. doi:10.1016/j.cl.2018.01.004.

9 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic literature review of
automated feedback generation for programming exercises. ACM Trans. Comput. Educ., 19(1),
September 2018. doi:10.1145/3231711.

10 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. In Jørgen Lindskov Knudsen, editor, ECOOP 2001

— Object-Oriented Programming, pages 327–354, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

11 José Paulo Leal and Fernando Silva. Mooshak: a web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003. doi:10.1002/spe.522.

12 Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. Automated grading
and feedback tools for programming education: A systematic review. ACM Trans. Comput.
Educ., December 2023. Just Accepted. doi:10.1145/3636515.

13 Samim Mirhosseini, Austin Z. Henley, and Chris Parnin. What is your biggest pain point?
an investigation of cs instructor obstacles, workarounds, and desires. In Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2023,
pages 291–297, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3545945.3569816.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
https://doi.org/10.1145/3622780.3623650
https://doi.org/10.3390/software1010002
https://doi.org/10.1145/1269900.1268805
https://doi.org/10.1016/j.cl.2018.01.004
https://doi.org/10.1145/3231711
https://doi.org/10.1002/spe.522
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3545945.3569816
https://doi.org/10.1145/3545945.3569816

A. B. Caniço and A. L. Santos 2:13

14 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Trans. Comput. Educ., 22(3), June 2022.
doi:10.1145/3513140.

15 Timur Sağlam, Moritz Brödel, Larissa Schmid, and Sebastian Hahner. Detecting automatic
software plagiarism via token sequence normalization. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3597503.3639192.

16 Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik Burger. Obfuscation-resilient
software plagiarism detection with jplag. In 46th IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE-Companion. Institute of Electrical and
Electronics Engineers (IEEE), 2024. doi:10.1145/3639478.3643074.

17 Manuel Sánchez, Päivi Kinnunen, Cristóbal Flores, and J. Ángel Velázquez-Iturbide. Student
perception and usage of an automated programming assessment tool. Computers in Human
Behavior, 31:453–460, February 2014. doi:10.1016/j.chb.2013.04.001.

18 Anne Venables and Liz Haywood. Programming students need instant feedback! In Proceedings
of the Fifth Australasian Conference on Computing Education - Volume 20, ACE ’03, pages
267–272, AUS, 2003. Australian Computer Society, Inc.

ICPEC 2024

https://doi.org/10.1145/3513140
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3639478.3643074
https://doi.org/10.1016/j.chb.2013.04.001

Seven Years Later: Lessons Learned in Automated
Assessment
Bruno Pereira Cipriano1 #

COPELABS, Lusófona University, Lisbon, Portugal

Pedro Alves #

COPELABS, Lusófona University, Lisbon, Portugal

Abstract
Automatic assessment tools (AATs) are software systems used in teaching environments to automat-
ically evaluate code written by students. We have been using such a system since 2017, in multiple
courses and across multiple evaluation types. This paper presents a set of lessons learned from our
experience of using said system. These recommendations should help other teachers and instructors
who wish to use or already use AATs in creating assessments which give students useful feedback in
terms of improving their work and reduce the likelihood of unfair evaluations.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction

Keywords and phrases learning to program, automatic assessment tools, unit testing, feedback,
large language models

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.3

Funding This research was funded by the Fundação para a Ciência e a Tecnologia under Grant No.:
UIDB/04111/2020 (COPELABS).

1 Introduction

Automated assessment tools (AATs) are software tools used to automatically grade students’
software solutions. These tools allow students to check if their code respects the assignment’s
requirements in terms of functional and/or code quality requirements, leading to increased
student autonomy and reduced teacher workload [9, 13].

We have been using such a system since 2017 for multiple types of assessment, from
small formative exercises to larger scale projects which have a large weight on the students’
grades. Furthermore, we have employed automatic assessment in multiple courses, ranging
from Introduction to Programming, Data-Structures and Algorithms, and Object-Oriented
Programming (OOP).

Our team employs a common practice in terms of automatic assessment. The starting
point of the process is a text-based description of the exercise(s) or project to solve. This
description is sometimes complemented with auxiliary diagrams containing mathematical
formulas, UML diagrams, and so on. Besides presenting the description, the assignment
also informs students about any mandatory files, classes and/or functions, thus defining an
Application Programming Interface (API). Finally, when students submit a solution2, their
code is validated by a set of teacher-defined unit tests. For example, here’s the assignment
text for a typical exercise used in introductory programming courses: Implement the function
static long sum(int n1, int n2) which should return the sum of its two arguments.
Listing 1 shows an unit test which could be used to validate this assignment.

1 corresponding author
2 Assignments allow multiple submissions, promoting that students improve their work and learning

outcomes.

© Bruno Pereira Cipriano and Pedro Alves;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 3; pp. 3:1–3:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bcipriano@ulusofona.pt
https://orcid.org/0000-0002-2017-7511
mailto:pedro.alves@ulusofona.pt
https://orcid.org/0000-0003-4054-0792
https://doi.org/10.4230/OASIcs.ICPEC.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Seven Years Later: Lessons Learned in Automated Assessment

Listing 1 An example JUnit test for an exercise where students must implement a function which
sums two integers. The feedback messages are only displayed when the respective assertion fails.

1 @Test
2 public void testSum() {
3 String feedback = "returned the wrong value";
4 assertEquals(5, Main.sum(1, 4), "sum(1, 4) " + feedback);
5 assertEquals(10, Main.sum(8, 2), "sum(8, 2) " + feedback);
6 }

A more complex OOP exercise could be the following: (...) The GameManager class
must have a static List<Player> getPlayers() function which returns a list with the
players that are participating in the current game. Listing 2 presents an example of an unit
test for validating that requirement.

Listing 2 An example JUnit test for an OOP project where students must implement a board
game. The messages are only displayed when the respective assertion fails.

1 @Test
2 public void testGetPlayers01() {
3 GameManager manager = new GameManager("game-board-with-2-players.txt");
4 List<Player> players = manager.getPlayers();
5 assertNotNull(players, "getPlayers() should not return null");
6 String feedback = "getPlayers() returned a list of the wrong size";
7 assertEquals(2, players.size(), feedback);
8 }

We opted for this unit-tests-based approach because it is a more robust way of testing than
the alternative of using “output matching”. Also, it is closer to current industry practices,
with the added benefit of familiarising students with the types of tools that they will more
likely use in their future careers.

Our experience over these last 7 years showed us that certain testing practices or inad-
equate feedback can lead students to request extra support from the teaching staff, meaning
that their autonomy is reduced and that valuable teacher time is consumed. Consequently,
this undermines two key benefits of employing AATs: fostering student autonomy and
optimizing teacher resource allocation. Furthermore, certain testing patterns can result in
assessments which are too strict and even unfair, either by letting students receive better
grades than they should – for example, by considering hardcoded solutions as correct – or by
penalizing them too much – for example, by not informing students when their code fails
due to minor formatting issues.

From our experience, we have derived a set of recommendations which we share with new
teaching assistants who join our courses and have to prepare new auto-graded assignments.

In this paper, we share those lessons with the Computer Science Education (CSE)
community. We believe this information might be useful to other teachers and instructors
who wish to use start using or already use AATs.

Finally, the recent advent of Large Language Models (LLMs) – artificial intelligence
tools with capacity to generate computer code from natural language descriptions – such as
OpenAI’s GPT and Google’s Bard has generated some controversy in the CSE community,
due to the risk of producing graduates who are weak in fundamental computing skills such
as computational thinking and program design [11]. While LLMs pose certain risks, they
also offer new opportunities for the CSE community. We explore how integrating AATs with
LLMs can generate beneficial possibilities.

B. P. Cipriano and P. Alves 3:3

This paper makes the following contributions:
Presents a list of recommendations for defining unit tests for automatic assessment, aimed
at enhancing student autonomy and grading fairness;
Presents adaptations of those recommendations for specific assessment types;
Discusses how Large Language Models can play a role in the future development of AATs.

This paper is organized as follows: first, in Section 2, we review relevant papers related
with automatic assessment, feedback and LLMs. In Section 3 we present 1) a categoriza-
tion of assessment types typically found in computer programming courses, 2) some AAT
concepts, and, 3) some Unit Testing concepts. Section 4, presents our main contribution:
recommendations for test-case creation and feedback definition. Section 5, discusses the
future of AATs in light of the recent advent of LLMs. In Section 6 we address some threats
to the validity of this paper. Finally, in Section 7, we finish our paper by drawing some
conclusions.

2 Related work

Automated Assessment. AATs have been used since at least 1960 [13]. These tools evaluate
students’ code solutions to determine if they satisfy the requirements of the assignment,
giving students more autonomy and reducing teacher workload [13]. This is usually done by
automating the execution of students’ code in a restricted environment and validating its
correctness by executing unit tests, performing output matching, or by other techniques [9].

Research on this area is varied, with many studies presenting tools, their advantages,
limitations and impact on students’ learning [5], amongst other topics [9, 13]. Some of these
tools attempt to simulate professional software development work environments promoting
that students work using Integrated Development Environments ([3, 2]) and even comple-
mentary tools such as Git (e.g. [8, 3]), while others introduce more virtual work environments
which are usually implemented using web-based solutions (e.g. [4, 16]).

AAT cheating patterns. Research has also delved into students’ ability to work around
automatically graded assessments and get successful scores without performing the assignment
as prescribed by the teachers. The authors of [10] analysed students’ code submissions in 2
AAT-based courses, identifying and categorizing cheating attempts into 4 distinct patterns:

Overfitting: Students’ code is hardcoded to match expected output; ineffective beyond
the specific assignment’s tests. Overfitting corresponded to 63% of the cheating attempts.
Problem evasion: Students’ code fails to meet non-functional requirements (e.g. the
use of recursion). It accounted for 30% of the cheating attempts.
Redirection: Students call the reference solution from their own code. Redirection
corresponded to 6% of the cheating attempts;
Injection: Malicious code is injected to change the assignment’s validation process. This
pattern corresponded to 1% of the cheating attempts.

Some of these issues, particularly Redirection and Injection, are highly dependent on the
AAT’s architecture. For instance, AATs that isolate the reference solution from the students’
code, such as [3], indirectly prevent Redirection. However, both Overfitting and Problem
evasion are cheating patterns which do not directly exploit AATs’ weaknesses.

ICPEC 2024

3:4 Seven Years Later: Lessons Learned in Automated Assessment

Feedback. Feedback is considered a facilitator of learning and performance [15]. In a
literature review focused on feedback, Shute defined formative feedback as information
communicated to the learner that is intended to modify his or her thinking or behaviour to
improve learning [15]. Formative feedback can be presented to the learner using information
(e.g. verification of response accuracy, explanation of the correct answer, hints) and can be
administered at various times during the learning process (e.g. immediately following an
answer, after some time has elapsed) [15]. This research also offered guidelines for creating
formative feedback. In a recent literature review focused on formative feedback for computer
science students [17], the authors concluded that, to better assist novice programmers
in learning programming, formative assessments must improve the presentation of error
messages. Finally, in a study evaluating the use of GPT-3.5 for generating hints for problems
detected by an AAT [14], students were divided into two groups – one receiving GPT-based
hints and the other only receiving regular AAT feedback. The usefulness of the GPT hints
was assessed using a 5-point Likert scale; 46% of students rated them highly (4 or 5), while
19% gave low ratings (1 or 2). The study found that students with access to GPT-based
hints tended to use the AAT’s default feedback less. However, the findings also suggest some
potential over-reliance on the GPT-generated feedback.

In summary, despite extensive research in this field, we are not aware of any published studies
providing guidelines or recommendations for creating test functions/cases and determining
the appropriate level of feedback to support programming students in their learning.

3 Definitions

3.1 Assessment types
Our experience with automated assessment has led us to conclude that different assessment
(or evaluation) types require different approaches, due to their specificities (e.g. whether the
evaluation is time-bound or not).

This section presents the 4 evaluation types for which we recommend that different levels
of feedback are considered and provided. These definitions should help teachers bridge our
evaluation types with their own, and thus be able to more effectively apply our lessons and
recommendations.
In-class/homework exercises: These are usually small exercises in which students have to

implement code to solve small problems (e.g. 20-100 LOC) using specific techniques (e.g.
iteration, recursion, etc). These are usually formative, although they might have some
contribution to the students’ grades. During said exercises, students can get support
from both teachers as well as their colleagues.

Mini-test: Small exercises to be done individually and independently (e.g. without support).
These exercises are time-bound (e.g. maximum one hour) and count towards the students’
final grade.

Project: Mid-to-large scale exercises which take weeks or even months to solve. These usually
have a larger weight in the students’ final grades.

Defense: A proctored evaluation where students must make changes to their assignment’s
code, in order to demonstrate knowledge of it. This is usually done for projects and other
evaluations with significant impact in the students’ grades, in order for teachers to have
more confidence that students actually authored the delivered code instead of copying or
plagiarising. For group projects, it has the added benefit of adjusting the grades given to
different group elements.

B. P. Cipriano and P. Alves 3:5

3.2 Test function types
Usually AATs inform students about their results. However, some AATs allow the definition
of hidden tests, which are tests whose existence and result is not disclosed.
Public tests: Test functions whose results are reported to the student (e.g. correct or

incorrect) who possibly also receives messages with extra feedback.
Private or hidden tests: Test functions which are executed without the student receiving

any feedback. Hidden tests are a common strategy to counter the usage of overfitted
solutions: teachers prepare a public test for a function and then prepare a private test for
the same function, but with different test cases. Since students will not even know that
the test exists, they will not be able to derive an overfitted solution that passes both the
public and the hidden tests. Hidden tests also have the potential for better distinguishing
between students’ grades, since students who test their code locally with more cases than
the ones made available in the public test function might end up also passing the hidden
tests. However, this will probably depend on the cases which are actually been tested
and whether they are corner and/or otherwise complex cases.

3.3 Unit Testing frameworks
Unit Testing frameworks typically supply programmers with assertions: functions which
verify if a certain condition is being respected. Some notable examples are: “assertEquals()”,
“assertTrue()”, and “assertFalse()”. They also typically have a “fail()” function, which can
be used when the programmer wants to test a condition without using one of the default
assertion functions.

These assertion functions usually receive an optional “message” parameter, which can
be used to customize the message that is displayed when the assertion fails. In professional
software development practice, this parameter is usually not very relevant, because program-
mers have access to the test code and can observe the assertion’s implementation details.
However, it gains importance when developing tests for AATs, since students will usually not
have access to the assignment’s test code.

Several Unit Unit Testing frameworks exist for a variety of programming languages. The
most well-known example for Java is JUnit [6]. Another example is Python’s unittest3 library.

4 Lessons Learned: recommendations

This section presents our recommendations. The examples are given in Java, using JUnit 5,
but they can easily be adapted to other languages and frameworks, such as Python.

4.1 Generic recommendations
4.1.1 Tackling problem evasion
In order to detect cases where students try to evade the prescribed problem (e.g. recursion),
we recommend that static analysis tools are employed in the assessment process. An example
tool which can be used to do this for Java code is the Checkstyle plugin4 which, among
other functionality, allows teachers to define forbidden keywords (e.g. “for”, “while”) and
signals their usage. This enables teachers to inspect and/or penalize solutions which use
those keywords.

3 https://docs.python.org/3/library/unittest.html
4 https://checkstyle.org/

ICPEC 2024

https://docs.python.org/3/library/unittest.html
https://checkstyle.org/

3:6 Seven Years Later: Lessons Learned in Automated Assessment

Another useful technique is Reflection [12]. This technique allows certain non-functional
requirements, such as the need for a class to be abstract, to be validated using unit tests.

4.1.2 Test construction

Before we delve into our recommendations for test case construction, it should be noted that,
in some scenarios, it might be necessary for the exercises to be changed in order for them
to be properly evaluated in an automatic fashion using unit tests. This means that test
functions influence API design, similarly to what happens in test driven development. In
order to apply some of our recommendations, the tested functions should always receive at
least one parameter, and the more parameters, the easier it will be to create rich test-cases.
Consider this when evaluating our first 2 recommendations: they might seem somewhat
contradictory, but they are achievable by adjusting the exercises’ APIs.

At least 2 independent test functions for each API function

We recommend creating at least two independent test functions for each of the exercise’s API.
As an example, consider this exercise: Implement a recursive function that compares two char
arrays through an extra argument representing the initial position (assume a1 and a2 have
equal length): static boolean equalArrays(char[] a1, char[] a2, int initialPos)

You can break this problem down into different test functions, considering different input
cases, such as 1) empty or null arrays, 2) initial position greater than the length of the array,
3) arrays with just one element, and, 4) arrays with 2 or more elements. By having multiple
small test methods for each function, you allow gradual exercise completion with tests of
increasing difficulty (an essential ingredient of gamification). Not only does this increase the
student’s motivation, but it also allows for more fine-grained grading (i.e. a student who is
able to implement the base case but not the recursive case doesn’t have zero). Also note
that each of these test-methods can further help the student by having a name which hints
at the case being tested (e.g. testEqualArraysSingleElement()).

At least 2 sub-cases in each test function

Each test should have at least 2 sub-cases for the same function, with different expected
return types, in order to prevent hardcoded/overfitted solutions from being considered correct,
even if only partially. This should be implemented by having 2 different assertions with
different return values. The most obvious example for this appears when evaluating boolean
functions: if the test function only has cases for when the expected value is “true” (as in
Listing 3), then a solution which always returns “true” is going to pass that test.

Listing 3 Test function which validates a boolean function using a single assertion. This test will
pass if the student’s isOpen() function returns an hardcoded “true”.

1 @Test
2 public void testDoorOpening() {
3 Door door = new Door();
4 door.open();
5 assertTrue(door.isOpen(), "isOpen() incorrectly returned false");
6 }

B. P. Cipriano and P. Alves 3:7

On Feedback

Since we want to help students to solve the exercises, assertions without a specific message
should be avoided (consistent with previous recommendations on feedback generation [15]).
As such, the minimum feedback should, at least, indicate the name of the function returning
the incorrect result (e.g. “getSalary() returned the wrong value” or, at least, “getSalary()”).
This recommendation might be slightly relaxed if we are testing a function with a very specific
return format which will make it obvious for the students which is the tested function. For
example, when assessing an object’s “toString()” method, if its output format significantly
differs from that of other objects, this approach may be appropriate.

However, just mentioning the function name might not be sufficiently helpful. For example,
consider the assertion in Listing 4:

Listing 4 In certain cases, just refering the function name is insufficient and might cause confusion.
1 List<String> movieTitles = Main.getTitles();
2 boolean found = movieTitles.contains("The Matrix");
3 assertTrue(found, "getTitles()");

If the title “The Matrix” is not included in the list, the respective assertion will simply yield
“AssertionFailedError: getTitles() => Expected: true Actual: false”. This
will let the student know that something is wrong with the function “getTitles()”, but,
unless the problem is very obvious, debugging will be hard since due to lack of clues. Also,
we have seen situations where this pattern has led some students to confusion, due to the
expected/actual result indicating “true” and “false” when the “getTitles()” function is not
supposed to return a boolean. It would be more helpful to let students know which value is
missing so that they can direct their debugging efforts. Refer to Listing 5 for an alternative
implementation which contains more actionable feedback:

Listing 5 A test with more actionable feedback than the one in Listing 4.
1 List<String> movieTitles = Main.getTitles();
2 String title = "The Matrix";
3 boolean found = movieTitles.contains(title);
4 assertTrue(found, "getTitles() missing title: " + title);

Of course, giving students this extra piece of information could lead to partial or full
overfitting, since the student could insert the “The Matrix” String in the returned list to
circumvent their original error. In fact, students’ ability to produce overfitted solutions is
highly dependent on the information which is available to them, both via the assignment’s
description as well as via the employed test cases. To better understand this idea, consider
the example unit test presented in Listing 1. That test can be easily bypassed using the
solution shown in Listing 6:

Listing 6 Overfitted solution that passes the test defined in Listing 1. It would be easy for a
student to hardcode a solution for that test after seeing its feedback.

1 static long sum(int n1, int 2) {
2 if(n1 == 1) {
3 return 5; // first assertion indicates 1 + 4
4 }
5 else if(n1 == 8) {
6 return 10; // second assertion indicates 8 + 2
7 }
8 return 0;
9 }

ICPEC 2024

3:8 Seven Years Later: Lessons Learned in Automated Assessment

As such, it is necessary to find a balance between the level of feedback which is given
to students: on one hand, too much feedback might lead to overfitted solutions, since, if
students know all expected input/output pairs, then they can prepare a function which
returns the correct result but is not generic. On the other hand, too little feedback will leave
students lost and unable to progress. This is particularly important when dealing with API
functions such as JUnit’s “assertTrue()” and “assertFalse()”, which provide no clue other
than “AssertionFailedError: Expected: true Actual: false”. This problem is
made even worse in courses where the tests might be calling multiple functions, which
commonly happens in OOP exercises. In those cases, such reduced feedback will likely make
students wonder which of their functions has the problem.

However, with a varied number of test cases per test function (as previously recommended),
it will be hard for students to implement an overfitted version which passes all the sub-cases.
Furthermore, teachers can make testing functions which give a lot of detail in the first few
cases, and little to no detail in the final cases ([15]). See Listing 7 for an example.

Listing 7 Test function with a progressive reduction of feedback level.
1 @Test
2 public void testSumArray() {
3 String suffix = "returned an incorrect value.";
4

5 // feedback includes the arguments (vulnerable to overfitting)
6 int[] array1 = new int[]{1, 4};
7 assertEquals(5, Main.sum(array1), "sum({1, 4}) " + suffix);
8

9 // feedback includes the arguments (vulnerable to overfitting)
10 int[] array2 = new int[]{2, 2, 2};
11 assertEquals(6, Main.sum(array2), "sum({2, 2, 2}) " + suffix);
12

13 // feedback doesn’t include the arguments, only a hint
14 String suffix2 = suffix + "Consider arrays w/ negative numbers.";
15 int[] array3 = new int[]{-1, -2, -3};
16 assertEquals(-6, Main.sum(array3), "sum(...) " + suffix2);
17

18 // feedback only includes the function name
19 int[] array4 = new int[]{1, 2, 3, 4, -1};
20 assertEquals(9, Main.sum(array4), "sum(...) " + suffix);
21 }

In some situations, besides the name of the function and some hints ([15]) with regards
to the expected values, the minimum feedback should also indicate relevant particularities
of what is being tested. For example, imagine that we are testing a function called “int[]
getStatistics()” which returns an integer array where each element has a different se-
mantics: the first element is the input array’s minimum value, while the second element is
the input array’s maximum value. If we provide students with simply:

assertEquals(42, Main.getStatistics()[1], “getStatistics()");
debugging will be hard due to lack of information. It can also cause interpretation issues, since
the student might be confused when seeing a message similar to “getStatistics() expected: 42
but was: 99” since “getStatistics()” returns an “int[]” and not a single “int”. In this example,
it would be preferable to define the test’s feedback in order to let the student know which of
the array’s positions has the wrong value, as follows:

assertEquals(42, Main.getStatistics()[1], "getStatistics()[1]");

B. P. Cipriano and P. Alves 3:9

This will give the student extra clues with regards to where to start analysing the bug.
Finally, the amount of feedback also depends on the exercise type. This will be further

expanded later in this paper.

On hidden tests

Avoid using hidden tests to validate things such as String contents. It is easy for students
to make minor mistakes, such as having an incorrect capitalization or spelling mistake.
Validating such behaviours only in a hidden test might be too penalizing. Furthermore,
although hidden tests can be an interesting tool, they can also be the source of problems:
since their results are not visible to the students, eventual errors are likely to go unnoticed.
An option to mitigate this issue is to use an AAT which is able to indicate how many students
are passing each test [3], and, if no student passes a test or only a small minority of students
pass it, then maybe the teaching staff should review it, since it might be incorrect.

Assert-early and often

Consider performing one or more assertions after each action in the test, instead of performing
multiple assertions after executing a number of actions. This is particularly helpful when
validating OOP assignments, where an object’s state changes with each action, meaning that
an error on the first action might cause problems in the following actions. If the first assert is
done after multiple actions, the resulting feedback might induce the student in error. Listing
8 presents an example of this strategy.

Listing 8 Example of the assert-early and often strategy. After each action, a number of assertions
is performed, in order to point to the bug as early as possible.

1 Door door = new Door();
2

3 // perform an action
4 door.open();
5 // assert that the object’s state is ‘open’ after the first action
6 assertTrue(door.isOpen(), "isOpen() incorrectly returned false");
7 // also validate the object’s toString()
8 assertEquals("This door is open!", door.toString());
9

10 // perform another action
11 door.close();
12 // assert that the object’s state is ‘closed’ after the second action
13 assertFalse(door.isOpen(), "isOpen() incorrectly returned true");
14 // also validate the object’s toString()
15 assertEquals("This door is closed!", door.toString());

Null references

Be careful when creating test cases which might result in hard to debug errors such as
“NullPointerException”. Consider using “assertNotNull()” to let students know where their
code is returning unexpected null references. See Listing 9 for an example.

ICPEC 2024

3:10 Seven Years Later: Lessons Learned in Automated Assessment

Listing 9 Gracefully handling potential null references to provide useful feedback.
1 // unprotected approach, which will result in a hard to debug
2 // NullPointerException
3 Actor actor1 = Main.getActorByID(1000);
4 assertEquals("Keanu Reeves", actor1.getName(), "Actor getName()");
5

6 // protected approach, which will let the student know that
7 // an unexpected null reference was returned
8 Actor actor2 = Main.getActorByID(1000);
9 assertNotNull(actor2, "getObject(1000) returned null");

10 assertEquals("Keanu Reeves", actor2.getName(), "Actor getName()");

Test-function names

Although the industry norms and conventions for test code do not recommend prefixing
test functions with “test_” nor having a number for each test, we believe that these two
practices are actually helpful in educational contexts. Including said prefix has the advantage
of facilitating the interpretation of the tests’ stack-traces (when available) since it makes
it obvious which of the functions in the stack is the test. Furthermore, numbering the test
makes it somewhat easier to communicate with the student.

The order of the tests matters

Even though, according to the best practices, the tests should be independent of each other,
students tend to tackle each failed test by the order it shows up in the report provided by
the AAT. As such, consider ordering the tests by difficulty level.

Progressive disclosure

Consider activating certain advanced tests only after students pass simpler tests. This is not
directly accomplishable by JUnit (since it goes against the philosophy of independent tests)
but it is easily implemented using static variables (see Listing 10). Important: Students
should know that these tests exist and what is needed to “unlock” them (e.g. “This test will
only be executed after you pass the tests based on the small input files”). This rule also
interacts with the previous one: the feedback for more complex tests should appear after the
feedback for the simpler tests.

Listing 10 Progressive disclosure: this test is only executed after the student passes at least 4
simple tests.

1 @Test
2 public void advancedTest() {
3 if (SimpleTests.testsOK < 4) {
4 fail("This test will be unlocked after passing 4+ simple tests");
5 }
6 // ... actual test
7 }

Tests involving collections

Be careful with “OutOfBounds” runtime errors: check the length of the collection before
accessing individual elements. However, don’t just check the total length of the collection
upfront, since it will be difficult for students to understand the problem when they have
insufficient or excessive data. Instead, first validate a few elements in order to allow students
to debug missing values. See Listing 11 for examples of both approaches.

B. P. Cipriano and P. Alves 3:11

Listing 11 Testing collections’ contents: its better to validate a few examples before asserting
the full list size.

1 List ids = Main.calculateIds();
2

3 // this is difficult to debug
4 assertEquals(347, ids.size(), "calculateIds() returned wrong number of elements");
5

6 // this is better
7 int size = ids.size();
8 assertTrue(size >= 2, "calculateIds() should have returned at least 2 elements, but

returned " + size);
9 assertEquals(3, ids[0], "calculateIds()[0]");

10 assertEquals(5, ids[1], "calculateIds()[1]");
11 assertTrue(size >= 5, "calculateIds() should have returned at least 5 elements");
12 assertEquals(6, ids[4], "calculateIds()[4]");

Include a timeout on each test

In order to detect infinite loops and/or implementations with inappropriate time complexity
(i.e. big-O), teachers should consider defining timeouts for some or all of the test functions.

4.2 Specific recommendations per assessment type
As we’ve seen before, in order to allow students to act and solve a problem reported by the
AAT, the respective tests should supply the student with some level of information. We
argue that the ideal level of information will be different depending on the assessment type.

In-class/Homework exercises

Due to the formative goals of these exercises, we consider it important to provide students
with feedback which allows them to fully master the material. As such, all test functions
should be public and all, or at least the majority, of assertions should have significant
feedback.

Mini-tests

In such assignments, we recommend that some feedback is given, but at least one of the
asserts should give very little feedback, in order to reduce the likelihood of overfitted solutions.
For example, at least the last assertion of each test function should not give any hints in
terms of input and expected output. All test functions should be public, since it is important
for students to have a real notion of how they are doing.

Projects

Use hidden tests to make it harder for overfitted solutions to get good grades. Define a
subset of the public tests as “mandatory”. These tests will define the minimum mandatory
functionality which a student must implement in order to get a passing grade, also promoting
that the approved projects have a minimum level of quality. Furthermore, if you employ
project defenses, having mandatory tests will aid in avoiding certain issues (refer to the next
paragraph for details). Hidden tests should not be mandatory, as students are unaware of
their existence and cannot take action to address or rectify any related issues.

ICPEC 2024

3:12 Seven Years Later: Lessons Learned in Automated Assessment

Defenses

The rules presented for mini-tests also apply to project defenses, since both are time-
bound evaluations where students tend to become stressed. However, a few additional
recommendations make sense when defining tests for project defenses. If possible, build
the defenses around the project’s “mandatory functionality” in order to prevent penalizing
students whose projects have bugs that were not detected originally. If “mandatory” tests
were not defined, teachers should avoid testing scenarios which were only tested in the
project’s hidden tests. These two recommendations aim at reducing the chance of penalizing
students whose projects have pre-existing bugs that might condition their performance in
the defense. Furthermore, for similar reasons, we recommend using adapted versions of
the project’s public tests in the defense’s tests (e.g. same input file, similar actions, and
so on). Teachers should also be careful with interdependence between the test cases. For
example, if the defense’s assignment asks students to change the “toString()” function, then
it might be dangerous to use the “toString()” as a criteria to determine the correctness of
other defense tests. Finally, common pitfalls should be identified and avoided. For example,
in projects involving people’s names, some students only support two-named individuals and
overlook those with multiple names, like “Samuel L. Jackson” versus “Samuel Jackson.” It’s
important to recognize and steer clear of these issues in project defenses, as students often
fail to address them despite detailed feedback.

4.3 Other recommendations
Sometimes students complain that a test is incorrectly failing, justifying their position with
something along the lines of “in my computer, it works”. As such, we find it important to
educate students on how their code will be tested.

One way of doing this is to teach them how to programmatically test their own code.
Even so, some students might still struggle with transferring this skill to the interpretation
of teachers’ tests, due to lack of testing experience and/or other issues. To help with this,
consider giving students access to the code of one of the assignment’s tests, in order to allow
them to reflect on how testing is being performed. This might have the added benefit of
students making their own adaptations of the sample test, thus better testing their code.

Finally, we also suggest a strategy of promoting that students write their own tests when
they ask for help. In response to help requests, we often prompt students to demonstrate
a unit test that evaluates a specific aspect, akin to our AAT’s test. Although this usually
requires some interactions until the student produces a test which mimics the actual problem,
it has the advantage of forcing students to enter a testing-oriented mindset.

5 The Future of Automatic Assessment

Although LLMs have been received somewhat controversially by the CSE community [11],
we expect CS educators to adopt these technologies in their teaching practices sooner or
later. More concretely, we believe LLMs will be used to improve AATs and/or assessment
practices [1].

Some possible research avenues are: 1) using LLMs to automate the generation of
tests ([11]) that respect the recommendations presented in this paper; 2) integrating LLMs
and AATs to simplify the process of providing hints for failed tests, similarly to [14], but
with guardrail mechanisms to prevent LLM over-reliance; 3) employing LLMs to generate
customized feedback that considers both the student’s code we well as the issues identified

B. P. Cipriano and P. Alves 3:13

by the AAT; 4) integrating LLMs into AAT’s evaluation schemes ([7]) to detect issues
such as overfitting and problem evasion; 5) replacing AATs with LLMs entirely. Note that
developments in terms of improving and/or complementing AAT feedback (i.e. #2 and #3)
might reduce the need for educators to follow recommendations such as the ones presented in
this paper. With regards to #5, we find it unlikely, at least in the near future, since current
state-of-the-art LLMs have limitations (namely, hallucinations5), and still require human
supervision [7]. The need for said supervision would potentially negate one of the biggest
advantages of automated assessment: reduction of teacher workload.

6 Limitations

The recommendations in this paper are based on our multi-year experience across various
courses but have not been statistically validated. As such, it is possible that they are somewhat
biased. To mitigate this issue, we have reviewed our recommendations in relation to earlier
studies on feedback, such as [15], and confirmed their alignment with prior recommendations.

7 Conclusion

This paper presented a set of recommendations for the definition of unit tests to automatically
verify students’ work and provide students with formative feedback which allows them to
learn and/or act on their mistakes. We believe that following these recommendations has
helped us help our students in their learning processes. They also helped us avoid certain
mistakes which would have otherwise consumed our time or penalized students excessively.

References
1 Bruno Pereira Cipriano. Towards the Integration of Large Language Models in an Object-

Oriented Programming Course. In Proceedings of the 2024 on Innovation and Technology in
Computer Science Education V. 2, ITiCSE 2024, pages 832–833, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3649405.3659473.

2 Bruno Pereira Cipriano, Bernardo Baltazar, Nuno Fachada, Athanasios Vourvopoulos, and
Pedro Alves. Bridging the Gap between Project-Oriented and Exercise-Oriented Automatic
Assessment Tools. Computers, 13(7), 2024. doi:10.3390/computers13070162.

3 Bruno Pereira Cipriano, Nuno Fachada, and Pedro Alves. Drop project: An automatic
assessment tool for programming assignments. SoftwareX, 18:101079, 2022.

4 Stephen H Edwards and Krishnan Panamalai Murali. CodeWorkout: Short Programming
E xercises with Built-in Data Collection. In Proceedings of the 2017 ACM conference on
innovation and technology in computer science education, pages 188–193, 2017.

5 Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and Viggo Kann. Five
Years with Kattis — Using an Automated Assessment System in Teaching. In 2011 Frontiers
in education conference (FIE), pages T3J–1. IEEE, 2011.

6 Boni Garcia. Mastering Software Testing with JUnit 5: Comprehensive guide to develop high
quality Java applications. Packt Publishing Ltd, 2017.

7 Sklyer Grandel, Douglas C Schmidt, and Kevin Leach. Applying Large Language Models to
Enhance the Assessment of Parallel Functional Programming Assignments. In Proceedings of
the 2024 International Workshop on Large Language Models for Code, pages 1–9, 2024.

5 Occasions in which LLMs produce outputs which are factually incorrect.

ICPEC 2024

https://doi.org/10.1145/3649405.3659473
https://doi.org/10.3390/computers13070162

3:14 Seven Years Later: Lessons Learned in Automated Assessment

8 Sarah Heckman and Jason King. Developing Software Engineering Skills using Real Tools
for Automated Grading. In Proceedings of the 49th ACM technical symposium on computer
science education, pages 794–799, 2018.

9 Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of Recent
Systems for Automatic Assessment of Programming Assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, pages 86–93, 2010.

10 Nane Kratzke. Smart Like a Fox: How Clever Students Trick Dumb Automated Programming
Assignment Assessment Systems. In CSEDU (2), pages 15–26, 2019.

11 Sam Lau and Philip Guo. From “Ban it till we understand it” to “Resistance is futile”: How
university programming instructors plan to adapt as more students use AI code generation
and explanation tools such as ChatGPT and GitHub Copilot. In Proceedings of the 2023 ACM
Conference on International Computing Education Research-Volume 1, pages 106–121, 2023.

12 Yue Li, Tian Tan, and Jingling Xue. Understanding and Analyzing Java Reflection. ACM
Transactions on Software Engineering and Methodology (TOSEM), 28(2):1–50, 2019.

13 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Transactions on Computing Education
(TOCE), 22(3):1–40, 2022.

14 Maciej Pankiewicz and Ryan S Baker. Large Language Models (GPT) for automating feedback
on programming assignments. arXiv preprint, 2023. arXiv:2307.00150.

15 Valerie J Shute. Focus on Formative Feedback. Review of educational research, 78(1):153–189,
2008.

16 Igor Škorić, Tihomir Orehovački, and Marina Ivašić-Kos. Exploring the Acceptance of
the Web-based Coding Tool in an Introductory Programming course: A pilot Study. In
Human Interaction, Emerging Technologies and Future Applications III: Proceedings of the
3rd International Conference on Human Interaction and Emerging Technologies: Future
Applications (IHIET 2020), August 27-29, 2020, Paris, France, pages 42–48. Springer, 2021.

17 Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan. A Systematic Review
of Formative Assessment to Support Students Learning Computer Programming. In 4th
International Computer Programming Education Conference (ICPEC 2023). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2023.

https://arxiv.org/abs/2307.00150

Adaptation of Automated Assessment System for
Large Programming Courses
Marek Horváth #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Tomáš Kormaník #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Jaroslav Porubän #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Abstract
This paper presents a new automated assessment system tailored for programming courses, addressing
the challenge of evaluating a large number of students in extensive courses at the Technical University
of Košice. The primary issue with current systems is their inability to handle massive course loads
while ensuring objective evaluation and timely feedback. Our proposed system enhances the
scalability of the assessment process, allowing for the simultaneous handling of a greater volume of
assignments. It is designed to provide regular and systematic feedback to students, supporting their
continuous learning and improvement. To ensure the objectivity of evaluations, the system utilizes
a variety of unit test suites, selecting them randomly in each assessment to discourage students
from hardcoding solutions. This approach not only supports fair and precise assessments but also
significantly reduces the administrative burden on educators, enabling them to meet a wide range of
educational demands.

2012 ACM Subject Classification Applied computing → Interactive learning environments; Applied
computing → Computer-assisted instruction; Software and its engineering → Software creation and
management

Keywords and phrases Automated Assessment, Informatics Education, Programming Feedback
Systems, Continuous Integration in Education, Code Quality Analysis, Educational Technology,
Computer Science Education

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.4

Funding This work was supported by project VEGA No. 1/0630/22 “Lowering Programmers’
Cognitive Load Using Context-Dependent Dialogs”.

1 Introduction

The expansion of programming courses across educational institutions poses significant
challenges in managing the assessment of a broad spectrum of students. Traditional manual
grading methods are increasingly proving to be overwhelming due to their demanding nature
and potential for human error and bias.

In response, we have developed an automated assessment system tailored to manage the
complexities of modern programming education, which was heavily influenced by previous
findings from development of similar system [22]. This system is structured to provide
continuous, regular feedback, similar to the iterative processes seen in professional software
development environments where code is continuously tested and refined. This approach not
only helps in the gradual enhancement of coding skills but also meets the evolving standards
of industry practices.

Security and privacy in automated systems are critical, as they manage sensitive student
data and are exposed to potential breaches, including threats from malicious code submissions.
Therefore, our system implements essential security protocols and modules [2] to protect
against these risks while maintaining high operational standards.

© Marek Horváth, Tomáš Kormaník, and Jaroslav Porubän;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 4; pp. 4:1–4:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marek.horvath@tuke.sk
https://orcid.org/0009-0005-4649-2308
mailto:tomas.kormanik@tuke.sk
https://orcid.org/0009-0002-6622-8027
mailto:jaroslav.poruban@tuke.sk
https://orcid.org/0000-0001-9706-2897
https://doi.org/10.4230/OASIcs.ICPEC.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Adaptation of Automated Assessment System for Large Programming Courses

This paper outlines the updates to our automated assessment system, now supporting
a broader spectrum of programming languages and course requirements – from basic C
programming to more advanced topics such as cybersecurity in Python, along with object-
oriented programming in Java. We discuss the system’s scalability and flexibility, which are
crucial for adapting to new testing methods and managing an increasing number of student
submissions efficiently.

By detailing the system’s architecture and functionality, we aim to provide insights into
how to build an automated assessment system that enhances educational practices, making
them more effective and responsive to the needs of both educators and students.

2 Related work

Automated assessment systems enable constant feedback for students, enhancing their learning
beyond traditional methods [29][23]. These systems provide iterative feedback that helps
students progressively refine their coding skills. However, the effectiveness of this feedback
depends on student engagement [18].

System Arena employs parallel evaluation using Docker containers, providing detailed,
data-driven insights and ensuring thorough assessments by stopping evaluations if errors are
detected [19].

Code quality is crucial, preparing students for professional settings. Academic assessments
often focus primarily on problem-solving rather than coding practices. Automated tools now
offer context-sensitive feedback to bridge this gap [17].

Automatic evaluation advantages include speed, fairness, and objectivity, significantly
improving reliability [23]. For example, JUnit tests provide specific feedback, aiding students
in identifying and correcting errors [11].

Grading techniques in automated systems use formulas like:

Final score = (0.4 × LOC) + (0.3 × WMC) + (0.3 × DIT)

to ensure fair evaluations [1]. Threshold-based methods set clear performance standards for
improvements. Automated assessments must be transparent and well-managed, ensuring
a reliable framework that can adapt to the demands of programming education [9] while
maintaining reasonable amount of safety [28].

Existing Tools and Technologies Used in Automated Assessment
Version control systems like Git, GitHub, and GitLab are crucial in modern programming edu-
cation, facilitating functions essential for collaborative learning [27]. GitHub’s management
capabilities notably enhance learning outcomes and classroom efficiency [29]. Additionally,
our system integrates GitLab to manage and retrieve student code submissions effectively.
This integration ensures seamless communication between the assessment system and Git-
Lab repositories, allowing for automatic synchronization and real-time feedback on student
assignments.

Assessment Tools for Immediate Feedback
Advanced tools facilitate prompt and precise feedback to students, which we extensively
tested during education in our department:

2TSW and PAAA, PCQL and DANTE: These tools utilize both static and dynamic
analysis to evaluate student submissions in real time [24, 26, 6, 7].

M. Horváth, T. Kormaník, and J. Porubän 4:3

JavaBrat and Web-CAT: Specifically designed to automate grading processes by
analyzing both the structure and the output of code [14, 8].
JThreadSpy and BOSS: These tools not only provide execution traces but also enhance
the efficiency of online assignment submissions [10, 15].

These tools provide a solid foundation for effective programming education by offering
feedback that is both specific and timely, thus helping students improve their coding skills.
They also streamline the grading process, reducing the workload on instructors and allowing
them to focus more on teaching rather than administrative tasks. Each of these tools has
different approach in terms of evaluating results and similarities, which creates differences in
their accuracy, performance and reliability.

3 Assessment Techniques

This section discusses the main methods used in our assessment system, explaining how
static and dynamic analysis techniques help evaluate programming assignments. These
methods improve the accuracy of assessments and address the needs of various programming
environments.

Analysis Techniques
In programming assessment, Static Analysis and Dynamic Analysis are essential methods
that work together to effectively evaluate code submissions [27]. Figure 1 shows a flowchart
of these analysis techniques.

Dynamic Analysis
Dynamic analysis evaluates the actual running of programs to check their functionality
against different test cases. It includes:

Black-box testing – The internal structure of the program is unknown to the tester; the
focus is solely on the inputs and outputs [3, 25, 12, 20].
Grey-box testing – This method examines the results of each function within the program
and combines these findings to assess overall performance.

Dynamic analysis is user-friendly, allowing testers to evaluate programs by comparing
the actual outcomes with expected results. It can test applications without needing source
code access. However, it poses risks such as security vulnerabilities, including buffer over-
flows that can crash servers. Dynamic analysis also relies solely on feedback from output
matches and cannot assess non-compiling programs or verify compliance with specific coding
instructions [16].

Static Analysis
Static analysis looks at code without running it to find potential errors and check compliance
with coding standards. It includes:

Style analysis – Evaluates the readability of code using meaningful variable names,
appropriate comments, and correct indentation [1].
Error detection – Identifies errors that might not appear during compilation but could
cause runtime issues, such as infinite loops or divisions by zero.
Metric analysis – Assesses various aspects of the program to evaluate its complexity and
reliability.

ICPEC 2024

4:4 Adaptation of Automated Assessment System for Large Programming Courses

Keyword analysis – Checks for the presence of specific keywords required by the assessment
criteria.
Structural analysis – Compares the structure of the assessed program against expected
solutions to judge its correctness.

Static analysis is thorough, considering all potential execution paths to identify issues.
It can evaluate code with compilation errors, enhancing the depth of assessment. However,
its application to complex programs is challenging due to the variety of possible solutions,
which can result in misjudgments, as is proven by previously conducted research [21].

Figure 1 Flowchart illustrating analysis techniques in programming assessment.

4 Challenges and Enhancements in System Architecture for
Programming Education

In the foundational course on the “Fundamentals of Programming and Algorithmization”,
we currently serve approximately 1500 first-year students. Many of these students have no
prior experience in programming, emphasizing the need for a system capable of providing
regular feedback to facilitate learning. The course, which primarily teaches the basics of
the C language, requires students to complete seven assignments throughout the semester.
Given the volume of students and frequency of assignments, manually evaluating their work
repeatedly is not feasible.

M. Horváth, T. Kormaník, and J. Porubän 4:5

The complexity is further increased as these students are simultaneously enrolled in more
advanced courses, such as “Object-Oriented Programming in Java”, which not only involve
more complex assignments but also require significantly more system resources for evaluation.

Previously, our system relied on outdated and inflexible technologies such as SFTP for
assignment submissions, which slowed down performance and hindered our ability to further
improve this system. Multiple modules were affected by bad coding practices, and their
versions were incompatible with currently desired technologies. Additionally, the absence of
a user-friendly interface for instructors made it challenging to implement and manage new
tests effectively.

To overcome these challenges, our plan includes upgrading our system to increase perform-
ance and extend its capabilities to additional programming courses such as “Data Structures”,
“Operating Systems in C”, and “Cybersecurity in Python”. This enhancement will involve
moving away from dependency on older systems and introducing a more interactive and man-
ageable interface for teachers, enabling easier integration of new tests and better adaptation
to evolving educational needs. This strategic upgrade is aimed at creating a more dynamic
and responsive educational environment that supports both students and instructors more
effectively.

In order to facilitate the development of new versions of our system, we often create
either a closed group of student testers or we test results on all students while not interfering
with evaluation processes in a specified subject. When the effectiveness of our system is
proven and necessary issues and bugs are addressed, the system can be slowly pushed into
production.

The architecture of our assessment system has been updated to better handle the increasing
needs of educational environments today. This updated architecture includes high availability,
automatic scaling, continuous integration and continuous deployment. Figure 2 shows how
the different modules of the system interact. We’ve named each module with a callsign
inspired by Roman history to make communication within our development team clearer.
This distribution of systems into services is quite new since it allows us to distribute system
loads across multiple physical machines. Each node in our physical machine cluster will
be labeled with its specifications, and services will have their requirements defined in their
manifests. This allows us to distribute tasks that require more computing power to higher-end
devices or tasks that utilize CUDA to machines that are fitted with compatible GPUs.

Caesar
The Caesar module serves as the web application and is the primary interface for both
students and teachers. It displays test results and feedback designed to help students correct
their solutions. The feedback includes points awarded for various test types such as structure,
static code analysis checks, error handling, and edge cases. This detailed feedback illustrates
the differences between expected outputs and student submissions, aiding in identifying
specific mistakes (Figure 3). For teachers, Caesar also offers functionalities to create new
assignments and manage scoring, ensuring the system can handle peak access times efficiently.

Oracle
The Oracle module employs Python to perform data analytics on the testing and evaluation
processes. It gathers statistics such as peak usage times, average success rates, code issues in
individual sub-tasks and most common programming malpractices across different parts of
assignments [5]. This data helps reevaluate assignment complexity and provides anonymized
advice to students on effective problem-solving strategies based on the performance of the
most successful peers.

ICPEC 2024

4:6 Adaptation of Automated Assessment System for Large Programming Courses

Figure 2 A simplified diagram of the assessment evaluation system architecture.

Figure 3 Interface of Caesar showing detailed test feedback.

M. Horváth, T. Kormaník, and J. Porubän 4:7

Spartan
Spartan is a complementary web application to Caesar but focuses on real-time evaluation.
It provides a web-based code editor where students can write and submit code snippets for
immediate feedback during class sessions. This module is particularly useful for simulating
pressure-filled exam conditions and monitoring for unethical practices utilizing IP address
detection and analysis of select, copy, and paste usage. We plan to further expand the
features of this module in the future.

Praetor
Praetor is dedicated to plagiarism detection, employing tools like JPlag, Moss, and Sherlock,
along with custom extensions for analyzing lines of code, regex patterns, and variable usage.
This module is critical for maintaining academic integrity and is being developed to include
a new web interface that allows teachers to actively monitor and review the plagiarism
evaluation process. Previously developed experimental versions of this tool [13] have proven
its effectiveness and usability while also providing valuable information for its development.

Additional Components
The Arena module acts as the central hub, using the Django framework and a Mongo
database to facilitate communication between all modules via a RESTful API. Gladiator
manages task distribution and system checks, utilizing FastAPI and RabbitMQ for efficient
operation. Equites, the worker module, runs on Debian Linux and handles Docker-contained
assessment processes, ensuring scalability and security. The Censor module, supported by
Elastic and Kibana, tracks metrics and system health, aiding in predictive maintenance and
machine learning applications.

This updated system architecture is designed as a robust, scalable, and secure assessment
environment that adapts to the needs of both students and educators, enhancing the
educational experience through technology.

5 Enhancements in Assessment Methodologies

Our recent changes and improvements have significantly enhanced the accuracy of evaluations,
accelerated the assessment processes and reduced the number of false positives in plagiarism
detection. On the contrary, these enhancements have led to increased consumption of system
resources.

The most notable improvement has been in the infrastructure of the system. Critical
updates can now be tested, organized, and deployed to production in an average of two
minutes (time until the pushed update is reflected on the side of users). Optimization of used
base images, elimination of unnecessary nested virtualization and cleanup of host systems
have reduced resource consumption by 21% (based on normalized average statistics collected
over a 30 day period).

Code quality of our system has also improved, making the code more readable and easier
to maintain. Implementation of multiple linting tools and coding standards has decreased the
amount of LOC by approximately 14%. We have adopted a policy for capturing all possible
data processed, which could be utilized to train language models or perform predictions.
During testing, we noted a visible reduction in system load (Fig. 4), particularly when
adjusting the compression algorithm at the beginning and end of tests. The reduction in
load during test runs is modest but could be more apparent in larger projects that use
asynchronous calls and multithreading more extensively than our test samples.

ICPEC 2024

4:8 Adaptation of Automated Assessment System for Large Programming Courses

Figure 4 Comparison of container metrics based on an average of 20 runs.

We initially experimented with artificially generated scenarios for assignments. After
analysis of the results, we have chosen to move away from this approach as it often produced
scenarios that were too generic or oddly phrased. Qualified staff now handles the design and
evaluation of each test scenario. While this approach may not be groundbreaking, it preserves
the human element, addresses ethical considerations, and avoids the pitfalls associated with
fully automated systems. Previously created web services [4] were already tailored for such
use cases and were easily adapted to suit our needs.

The current architecture readily accommodates the evaluation of commonly used pro-
gramming languages. The standard method of testing via result value comparison proved
insufficiently detailed since, in some courses, not only the output of programs is considered
in evaluation. A multitude of courses with more specific topics, such as “Web Technologies”
or “Intelligent Systems” (a machine learning-oriented subject), require evaluation of the
usability, reliability, or performance of the provided solution.

Typically, we evaluate submissions in C, Java, Python, JavaScript, and Shell. Evaluating
other languages is possible but requires additional time to design appropriate tests. We plan
to standardize the evaluation of Assembly source code, particularly for courses specifically
focused on this language. Besides standard testing, we have also integrated basic semantic
analysis of source code and are looking to expand this analysis to more effectively determine
if the code was written by a human. Evaluation of non-programming assignments is possible,
however we are currently focusing mainly on mentioned programming languages.

6 Future Directions

As we continue to develop our automated assessment system for programming assignments, our
primary objectives include enhancing system scalability, improving usability, and expanding
the range of supported programming languages. We are also exploring the integration of
machine learning techniques to refine the feedback provided to students. These advancements
will include analyzing code quality, identifying common programming errors, and offering
customized feedback to help students enhance their coding proficiency. Major changes are also
considered, for example, a change in the programming language used for heavy computing
loads; Rust is a strong candidate due to its excellent performance.

M. Horváth, T. Kormaník, and J. Porubän 4:9

Another significant area of development is expanding the system’s capability to assess
assignments written in various programming languages. This will not only broaden the
system’s applicability but also ensure its adaptability to diverse educational requirements. To
further support this goal, we will incorporate advanced static analysis tools. These tools will
help provide clearer feedback on code quality, helping students grasp the details of efficient
coding practices. By analyzing the structural and syntactic elements of code submissions,
these tools will improve the learning experience by identifying specific areas for improvement.

Finally, we plan to test the system in a production environment to evaluate its stability
and performance under real-world conditions. This will include thorough usability tests
with educators to ensure that the system is not only robust but also user-friendly, allowing
teachers to modify assessments according to their pedagogical needs.

These enhancements are aimed at creating a more effective and responsive educational
tool that supports the continuous development of both students and educators in the field of
programming.

7 Conclusion

In this paper, we have presented updates to an automated assessment system designed to
support programming education effectively. The system has been adjusted to manage a
broader array of courses, including basics of programming, object-oriented programming,
and more complex areas like cybersecurity.

Our discussions highlighted the practical applications of static and dynamic analysis in
improving the accuracy of student assessments and simplifying the grading process. We
have also outlined how enhancements to the system’s architecture help it handle increasing
student numbers and a diversity of programming courses more efficiently.

As we continue to refine this system, we are focused on making incremental improvements
that support the day-to-day needs of educators and students. By sharing our experiences and
the specific updates we have made, we hope to provide useful insights that can assist others
in developing or enhancing their own automated assessment systems [5]. This straightforward
approach aims to ensure that the system not only meets current educational demands but is
also prepared to adapt to future changes in the programming education landscape.

References

1 Burcu Alper, Selma Nazlioglu, and Hurevren Kilic. Ace-pe: An automated code evaluation
software tool for programming education. In 2023 11th International Symposium on Digital
Forensics and Security (ISDFS), pages 1–5, 2023. doi:10.1109/ISDFS58141.2023.10131776.

2 Anton Balaz, Norbert Adam, Emilia Pietrikova, and Branislav Mados. Modsecurity idmef
module. In 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics
(SAMI 2018): Dedicated to the Memory of Pioneer of Robotics Antal (Tony) K. Bejczy, pages
43–48. IEEE, 2018. IEEE 16th World Symposium on Applied Machine Intelligence and
Informatics (SAMI) Dedicated to the Memory of Pioneer of Robotics Antal (Tony) K. Bejczy,
Kosice, SLOVAKIA, FEB 07-10, 2018.

3 S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A. M. Zin. Experiences with the ceilidh
system. In Proceedings of the International Conference in Computer Based Learning in Science,
1993.

4 M. Binas. Identifying web services for automatic assessments of programming assignments. In
12th IEEE International Conference on emerging E-learning Technologies and Applications
(ICETA 2014), pages 45–50. IEEE, 2014. 12th IEEE International Conference on Emerging
eLearning Technologies and Applications (ICETA), Slovakia, Dec 04-05, 2014.

ICPEC 2024

https://doi.org/10.1109/ISDFS58141.2023.10131776

4:10 Adaptation of Automated Assessment System for Large Programming Courses

5 Miroslav Biňas and Emília Pietriková. Impact of virtual assistant on programming novices’
performance, behavior and motivation. Acta Electrotechnica et Informatica, 22(1):30–36, 2022.
doi:10.2478/aei-2022-0005.

6 Skanda V. C, S. S. Prasad, and G. R. Dheemanth. Assessment of quality of program
based on static analysis. In IEEE Transactions on Learning Technologies, 2019. 2019 IEEE.
doi:10.1109/T4E.2019.00072.

7 P. Duch and T. Jowrki. Dante, automated assessment of programming assignments. In IEEE
Transactions on Learning Technologies, 2018. 2018 IEEE.

8 S. H. Edwards and M. A. Perez-Quinones. Web-cat: automatically grading programming
assignments. In Proc. Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE), pages 328–328, 2008.

9 M. Fabijanic, G. Dambic, B. Skracic, and M. Kolaric. Automatic evaluation of student software
solutions in a virtualized environment. In 2023 46th MIPRO ICT and Electronics Convention
(MIPRO), pages 642–647, 2023. doi:10.23919/MIPRO57284.2023.10159927.

10 Xiang Fu, Kai Qian, Lixin Tao, and J. Liu. Apogee – automated project grading and instant
feedback system for web based computing. In SIGCSE’08, March 12–15, 2008, Portland,
Oregon, USA, 2008. Copyright 2008 ACM.

11 Sebastian Geiss, Tim Jentzsch, Nils Wild, and Christian Plewnia. Automatic programming
assessment system for a computer science bridge course - an experience report. In 2022
29th Asia-Pacific Software Engineering Conference (APSEC), pages 527–536, 2022. doi:
10.1109/APSEC57359.2022.00074.

12 J. B. Hext and J. W. Winings. An automatic grading scheme for simple programming exercises.
Commun. ACM, 12(5):272–275, May 1969.

13 Marek Horváth and Emília Pietriková. An experimental comparison of three code similarity
tools on over 1,000 student projects. In 2024 IEEE 22nd World Symposium on Applied Machine
Intelligence and Informatics (SAMI), pages 000423–000428, 2024. doi:10.1109/SAMI60510.
2024.10432863.

14 S. Imam and V. Sarkar. Habanero-java library: a java 8 framework for multicore programming.
In Proceedings of the 2014 International Conference on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages, and Tools, pages 75–86, 2014. ACM DL.

15 Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission and assessment
system. J. Educ. Resour. Comput., 5(3):Article 2, September 2005.

16 Jan Juhar and Liberios Vokorokos. Separation of concerns and concern granularity in source
code. In V Novitzka, S Korecko, and A Szakal, editors, 2015 IEEE 13th International Scientific
Conference on Informatics, pages 139–144. i’15; SSAKI KPI; KPI; Technicka University –
Vkosiciach; ISVTS; IEEE, 2015. IEEE 13th International Scientific Conference on Informatics,
Poprad, Slovakia, Nov 18-20, 2015.

17 Oscar Karnalim and Simon. Promoting code quality via automated feedback on student
submissions. In 2021 IEEE Frontiers in Education Conference (FIE), pages 1–5, 2021.
doi:10.1109/FIE49875.2021.9637193.

18 Christian Kaufmann, Joao Pavão, and Harald Wahl. Is there a need for automated code review
to be used in teaching? : From the perspective of students. In 2022 17th Iberian Conference on
Information Systems and Technologies (CISTI), pages 1–6, 2022. doi:10.23919/CISTI54924.
2022.9820030.

19 Matej Madeja, Miroslav Biňas, and Lukáš Prokein. Continuous analysis of assignment
evaluation results from automated testing platform in iterative-style programming courses.
In 2019 17th International Conference on Emerging eLearning Technologies and Applications
(ICETA), pages 486–492, 2019. doi:10.1109/ICETA48886.2019.9040122.

20 Urs Von Matt. Kassandra: the automatic grading system. SIGCUE Outlook, 22(1):26–40,
January 1994.

https://doi.org/10.2478/aei-2022-0005
https://doi.org/10.1109/T4E.2019.00072
https://doi.org/10.23919/MIPRO57284.2023.10159927
https://doi.org/10.1109/APSEC57359.2022.00074
https://doi.org/10.1109/APSEC57359.2022.00074
https://doi.org/10.1109/SAMI60510.2024.10432863
https://doi.org/10.1109/SAMI60510.2024.10432863
https://doi.org/10.1109/FIE49875.2021.9637193
https://doi.org/10.23919/CISTI54924.2022.9820030
https://doi.org/10.23919/CISTI54924.2022.9820030
https://doi.org/10.1109/ICETA48886.2019.9040122

M. Horváth, T. Kormaník, and J. Porubän 4:11

21 Emilia Pietrikova and Sergej Chodarev. Profile-driven source code exploration. In M Ganzha,
L Maciaszek, and M Paprzycki, editors, Proceedings of the 2015 Federated Conference on
Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science
and Information Systems, pages 929–934. IEEE Comp Soc; Polish Informat Proc Soc; IEEE
Reg 8; IEEE Poland Sect Comp Soc Chapter; IEEE Poland Gdansk Sect Comp Soc Chapter;
IEEE CIS Poland Sect Chapter; ACM Special Interest Grp Applied Comp; ACM Lodz Chapter;
European Alliance Innovat; Polish Acad Sci, Comm Comp Sci; Polish Operat & Syst Res Soc;
Eastern Cluster ICT Poland; Mazovia Cluster ICT, 2015. 3rd International Conference on
Innovative Network Systems and Applications (iNetSApp) held in conjunction with Federated
Conference on Computer Science and Information Systems (FedCSIS), Technical Univ Lodz,
Lodz, Poland, SEP 13-16, 2015. doi:10.15439/2015F238.

22 Emilia Pietrikova, Jan Juhar, and Jana Stastna. Towards automated assessment in game-
creative programming courses. In 2015 13th International Conference on emerging E-learning
Technologies and Applications (ICETA), pages 307–312. The Amer Chamber of Commerce in
the Slovak Republic; Elfa; TU; IEEE; Stu Fiit; Sanet; CTF atm; PPP; It Asociacia Slovenska;
It News; EurActiv; PC revue; Education.sk; Infoware, 2015. 13th International Conference on
Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, NOV
26-27, 2015.

23 Adam Pinter and Sandor Szenasi. Automatic analysis and evaluation of student source codes.
In 2020 IEEE 20th International Symposium on Computational Intelligence and Informatics
(CINTI), pages 000161–000166, 2020. doi:10.1109/CINTI51262.2020.9305819.

24 G. Polito and M. Temperini. 2tsw: Automated assessment of computer programming assign-
ments, in a gamified web-based system. In IEEE Transactions on Learning Technologies, 2019.
2019 IEEE.

25 Kenneth A. Reek. The TRY system – or how to avoid testing student programs. In Proceedings
of the twentieth SIGCSE technical symposium on Computer science education, SIGCSE ’89,
pages 112–116, New York, NY, USA, 1989. ACM.

26 Shao Tianyi, Kuang Yulin, Huang Yihong, and Quan Yujuan. Paaa: An implementation of
programming assignments automatic assessing system. In ICDEL 2019, May 24–27, 2019,
Shanghai, China, 2019. 2019 Association for Computing Machinery.

27 Erika Baksane Varga and Antal Kristof Fekete. Applications for automatic c code assessment.
In 2023 24th International Carpathian Control Conference (ICCC), pages 21–26, 2023. doi:
10.1109/ICCC57093.2023.10178987.

28 Liberios Vokorokos, Anton Balaz, and Branislav Mados. Application security through sandbox
virtualization. Acta Polytechnica Hungarica, 12(1):83–101, 2015.

29 Soundous Zougari, Mariam Tanana, and Abdelouahid Lyhyaoui. Towards an automatic
assessment system in introductory programming courses. In 2016 International Conference on
Electrical and Information Technologies (ICEIT), pages 496–499, 2016. doi:10.1109/EITech.
2016.7519649.

ICPEC 2024

https://doi.org/10.15439/2015F238
https://doi.org/10.1109/CINTI51262.2020.9305819
https://doi.org/10.1109/ICCC57093.2023.10178987
https://doi.org/10.1109/ICCC57093.2023.10178987
https://doi.org/10.1109/EITech.2016.7519649
https://doi.org/10.1109/EITech.2016.7519649

Kumon-Inspired Approach to Teaching
Programming Fundamentals
Ivone Amorim #

PORTIC – Porto Research, Technology & Innovation Center
Polytechnic of Porto (IPP), Portugal

Pedro Baltazar Vasconcelos #

LIACC & Department of Computer Science
Faculty of Sciences, University of Porto, Portugal

João Pedro Pedroso #

CMUP & Department of Computer Science
Faculty of Sciences, University of Porto, Portugal

Abstract
Integration of introductory programming into higher education programs beyond computer science
has lead to an increase in the failure and drop out rates of programming courses. In this context,
programming instructors have explored new methodologies by introducing dynamic elements in
the teaching-learning process, such as automatic code evaluation systems and gamification. Even
though these methods have shown to be successful in improving students’ engagement, they do not
address all the existing problems and new strategies should be explored. In this work, we propose
a new approach that combines the strengths of the Kumon method for personalized learning and
progressive skill acquisition with the ability of online judge systems to provide automated assessment
and immediate feedback. This approach has been used in teaching Programming I to students in
several bachelor degrees and led to a 10% increase in exam approval rates compared to the baseline
editions in which our Kumon-inspired methodology was not implemented.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Interactive learning environments

Keywords and phrases Programming teaching, Programming education, Kumon method, Progressive
learning, Online judge system

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.5

Funding Ivone Amorim: Partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.
Pedro Baltazar Vasconcelos: Partially supported by: Base Funding – UIDB/00027/2020 of the
Artificial Intelligence and Computer Science Laboratory – LIACC – funded by national funds through
the FCT/MCTES (PIDDAC).
João Pedro Pedroso: Partially supported by CMUP, which is financed by national funds through FCT
– Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020.

1 Introduction

Over the past decade, information technology has suffered a remarkable growth, with its
evolution and application having significant impacts on our society, namely in education.
Today, for graduates to easily integrate the labour market they need not only to acquire
specific skills, but also to develop the agility to rapidly acquire new knowledge and address
new challenges with creativity and critical thinking [12].

In the past, programming skills were associated mostly with computer science and
engineering fields. However, today, Programming is seen as a fundamental area for the
development of characteristics and skills such as creativity, problem-solving, persistence,

© Ivone Amorim, Pedro Baltazar Vasconcelos, and João Pedro Pedroso;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivone.amorim@sc.ipp.pt
https://orcid.org/0000-0001-6102-6165
mailto:pbvascon@fc.up.pt
https://orcid.org/0000-0002-8387-9772
mailto:jpp@fc.up.pt
https://orcid.org/0000-0003-1298-7191
https://doi.org/10.4230/OASIcs.ICPEC.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Kumon-Inspired Approach to Teaching Programming Fundamentals

logical and critical thinking [17, 7]. Additionally, professionals from different areas can benefit
from the ability to write codes for different applications. For instance, in biology or chemistry,
analysing large datasets is often necessary, and this task can be facilitated by programming
skills.

As a result, many diverse fields of knowledge now incorporate programming courses into
their curricula [7]. Therefore, several students with different backgrounds and characteristics
are involved in introductory programming [12]. For example, an instructor may have students
in the same class who have no prior knowledge about programming, as well as students
who have already learned different programming languages. This leads to difficulties in
aligning classes with the students’ interests and motivations. Other challenges include the
lack of resources, such as computational labs, for practical classes. On the students’ side,
the already well-known difficulties they face are exacerbated by the different backgrounds
students may have, which may lead them not to perceive programming as an important skill
or competence. According to Gomes and Mendes [8], some of the main difficulties students
may encounter while learning programming include inadequate teaching approaches, which
sometimes prioritize theoretical concepts over improving students’ problem-solving abilities;
a lack of problem-solving skills necessary to understand the logic behind programming; the
use of inappropriate self-learning methods to enhance academic programming success; and
psychological factors.

Consequently, significant failure and dropout rates, as well as a lack of motivation, have
been observed in programming courses [4, 16]. This has raised concerns among programming
instructors, leading them to develop and utilize novel teaching and learning approaches to
enhance students’ learning experiences and ultimately increase success rates. The most
used strategies include the introduction of dynamic elements in leaning strategies such as
automatic code evaluation systems [18, 11], namely online judge systems, gamification [15, 14],
and systems that use visual representations of algorithms, such as Python Tutor1. These
strategies have shown to reduce some of the challenges instructors and students face when
teaching and learning programming, respectively. However, they still do not offer a complete
solution to address all the existing challenges.

In this work, we explore a new approach that combines the strengths of the Kumon
method [21] for personalized learning and progressive skill acquisition with the ability of
online judge systems to provide automated assessment and immediate feedback.

The rest of this paper is organized as follows. Section 2 provides an explanation on some
key concepts regarding online judge systems and the Kumon method, and discusses some
related work. Section 3 presents the course to which our methodology was designed, details
the online judge system used and explains our Kumon-inspired approach. Section 4 presents
the case study methodology employed to assess the effectiveness of our approach. Section 5
presents and discusses the results obtained. Finally, Section 6 presents the conclusions of our
work and proposes future directions to further explore and validate this approach.

2 Background and Related Work

2.1 Online judge systems
The assessment of students by instructors can be done for several reasons: to provide
feedback to students on their learning path, to assess previous knowledge in a specific subject,
to evaluate teaching methodologies, to identify at-risk students, among other reasons [5].

1 https://pythontutor.com/

https://pythontutor.com/

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:3

However, due to the increasing number of students with diverse backgrounds that instructors
have to assess and support in introductory programming courses, a wide range of assessments
is required. This demand may lead to instructors being overloaded with work and reduces the
time they have for other tasks. Online judges are automated assessment tools [2] designed
for the reliable evaluation of algorithm source code submitted by users. These tools may be
a crucial help for instructors in these assessment processes. Online judges are now popular
in various applications, including in programming contests and education. The use of online
judges in the classical educational system has advantages for both instructors and students.
For instructors, they allow the assessment of students’ assignments automatically, increasing
assessment accuracy and significantly reducing the time needed for evaluation. Consequently,
many more exercises can be prepared and assigned to students [24]. On the other hand,
students receive almost instant feedback on their answers, which motivates them to perform
more exercises, promotes active learning by helping them to easily understand the main
difficulties they should address, and fosters independence.

There are several factors that may limit the accessibility of existing online judges for
use in introductory programming courses. According to Asuncion et al. [2], one of the
problems is that most existing online judges were not designed for introductory programming
classes. Therefore, the exercises they provide may not align with the curricular units of these
courses. For example, the well-known online judge Codeforces2 was primarily designed for
programming contests. Consequently, some of their problems considered “easy” may not
be suitable for introductory programming courses, as they may require concepts typically
covered in a data structures and algorithms course rather than in introductory programming
classes. Additionally, the same authors claim that creating and uploading new exercises for
many online judges is not easy, if possible at all.

Fortunately, several reviews of existing online judge systems and their application in
education have been conducted over the years, helping instructors in finding the right tool
for their purpose [1, 9]. Recently, Wasik et al. [24] provided a comprehensive review of the
state of the art for these systems. They classified them according to their principal objectives
into categories which include “Development platforms.” This refers to systems that are often
provided as open source projects or binary archives that can be downloaded and installed
locally, providing full administrative privileges to the user. They can be used to host a
programming competition or a course using the user’s own infrastructure. Moreover, most
can be adapted to user needs and integrated with external services. Well known platforms to
prepare and perform programming contests are DOMjudge3, Mooshak4, and SIO25. There
are other development platforms which are dedicated to support the educational process,
such as CloudCoder [19], BOSS [10], and Web-CAT [6]. Unfortunately, some of these latter
systems are not open-source, and others have been updated for the last time more than 15
years ago. In this work, we use an online judge system named Codex that falls into the
category of “Development platform”. This system was developed at the Faculty of Sciences
of the University of Porto, and its source-code is publicly available through the GitHub
platform6. Further details on this system are presented in Section 3.2.

2 https://codeforces.com/
3 https://www.domjudge.org/
4 https://mooshak.dcc.fc.up.pt/
5 https://github.com/sio2project
6 https://github.com/pbv/codex

ICPEC 2024

https://codeforces.com/
https://www.domjudge.org/
https://mooshak.dcc.fc.up.pt/
https://github.com/sio2project
https://github.com/pbv/codex

5:4 Kumon-Inspired Approach to Teaching Programming Fundamentals

2.2 Kumon-inspired methods and potential benefits
The Kumon Method is a pedagogical method that emerged in 1954 in Osaka, Japan, by the
hand of Toru Kumon, a Mathematics teacher of a high school, who developed this to help
his son’s mathematical education. This method has been extended to other subjects, such as
“Reading” and “English as a foreign language”. Initially popularized in Japan and subsequently
in the United States of America [21], the method has gained global recognition and is now
implemented in learning centres all around the world, mainly for teaching Mathematics and
English7.

The main objective of the Kumon Method is to maximize the learning potential of each
individual. To achieve this, a series of habits and abilities have to be acquired, namely:

Self-learning; the students learn how to learn by themselves, without depending on
another person.
Study habits; students are encouraged to divide the study effort into smaller, more regular
steps.
To foster concentration: if students are not able to focus on a specific task, it will be
difficult for them to learn effectively.
Self-confidence, that allows students to face any educational challenge.
Motivation to learn, to perceive learning as something enjoyable that will help them to
grow as persons.

Several research studies have assessed the effectiveness of this method, primarily focusing on
improving mathematical skills [13, 22]. However, there is no known study on the application
of this method in teaching programming. Although some works propose similar strategies,
such as intensive training [3], none have directly applied the principles of the Kumon method
to foster the development of the aforementioned habits and abilities in programming students.

3 Progressive Method for Teaching Programming

In this section, we begin by introducing the course for which our Kumon-inspired approach
was designed. Following that, we provide an overview of Codex, the online judge system
utilized in our methodology. Lastly, we present our novel progressive method for teaching
programming fundamentals.

3.1 The Course – Programming I
Programming I is a first year course for several bachelor degrees at the Faculty of Sciences
from the University of Porto. It is mandatory for the bachelor degrees of Agricultural
Engineering, Engineering Physics, Geospatial Engineering, Bioinformatics, and Physics.
Besides, it is an optional course for the bachelor degrees of Biology, Geology, and Chemistry.

The main objectives of this course are: Get acquainted with personal computers in the
GNU/Linux operating system and their usage; Learn how to write computer programs using
Python and execute them in a terminal; Acquire competence in the implementation of simple
algorithms; Acquire good code structuring and programming style; Learn some basic data
structures and algorithms; Get acquainted with program debugging and testing.

The main learning outcomes and competences expected from students who successfully
perform this course are: understanding the role of programming for solving problems in their
degree, acquaintance with the basic components of a recent programming language, ability

7 https://kao.kumonglobal.com/our-global-network/

https://kao.kumonglobal.com/our-global-network/

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:5

to write programs that allow accomplishing useful goals, and confidence in the usage of the
Python language and its standard library. The students have 2 hours per week of face-to-face
theoretical classes and 2 hours per week of laboratory classes, for 14 weeks, resulting in a
total of 56 contact hours.

3.2 The online judge system: Codex
Codex8 is a web system for setting up programming exercises with automatic assessment,
which is intended for leaning environments, similar to a judge system. It was developed and
is currently being used at the Faculty of Sciences of the University of Porto for introductory
courses on Python, Haskell and C programming [23]. Its main features are:
Simple exercise authoring. Exercise descriptions are written in a human-readable Markdown

format that can easily be copied, mailed, kept in a version repository, compared for
changes, etc.

Allows assessing program units. Exercises can assess single functions, classes or methods
as well as complete programs.

Provides automatic feedback. Rather than report just an accept/reject result, Codex can
report the failed examples to students.

Multiple types of exercises. Besides code testing, Codex also allows multiple-choice and
fill-in questionnaires.

In Codex, student’s submissions are classified as follows:
CompileError : rejected attempt due to a compile-time error or warning; for an interpreted
language such as Python, this is typically a syntax error;
RuntimeError , TimeLimitExceeded or MemoryLimitExceeded : the execution was aborted
due to a runtime error or resource exhaustion;
WrongAnswer : testing failed in at least one case;
Accepted: all tests passed.

For the Programming I course we used input-output and unit testing with the Doctest
Python library [20]. The Doctest files were generated semi-automatically and comprise
a large number of test cases (typically, about one thousand); this not only allows testing
the student’s attempts more thoroughly, but also prevents over-fitting solutions to a small
number test cases.

For beginner exercises that are typically not computationally intensive, the turn-around
for student feedback is quick (typically 2-4 seconds).

Another important advantage of Codex is that it allows instructors to get real-time
insights regarding the performance of students in laboratory assignments. Therefore, it helps
to identify students who are struggling early on, allowing for timely intervention and support.

3.3 Our Kumon-based approach
Our approach for teaching and assessing programming fundamentals in Python is inspired in
the Kumon method that emphasizes self-learning through repetitive practice of progressively
challenging exercises. Instructors have developed three different types of assignments that
allow students to progressively develop their Python skills and which are fully aligned with
the course syllabus. The way these exercises are provided to students and the methodology

8 https://github.com/pbv/codex

ICPEC 2024

https://github.com/pbv/codex

5:6 Kumon-Inspired Approach to Teaching Programming Fundamentals

employed for course evaluation were designed to encourage self-learning, build the habit
of studying, increase self-confidence, and ultimately motivate students to learn. These are
all key objectives of the Kumon method. Additionally, our approach allows students to
have some control over their own progress through individualized learning, and immediate
feedback.

The three types of assignments developed are the following:
Theoretical assignments: Following every theoretical class, students were given theor-
etical assignments in the form of quizzes to encourage them to actively participate in those
classes and solidify their understanding of the presented concepts. These assignments were
intended to be completed outside the classroom within a limited time frame. Students
were allowed to consult any resources to help them in providing correct answers.
Worksheet assignment: These are weekly worksheet assignments with problems
provided to students approximately a week before the corresponding laboratory class.
Students are encouraged to attempt to solve these problems outside the classroom, and
any doubts can be clarified with instructors during laboratory sessions. Its main goal is
to encourage frequent study and self-learning among students.
Laboratory assignments: These assignments are sets of coding problems made available
to students through the Codex system and are fundamental elements of our approach. A
total of 10 assignments, each corresponding to a different level of difficulty, are provided
over a 14-week period. Students can only access these assignments in the classroom and
must successfully complete the current level to unlock the next one. The success in one
level means that the student was able to submit a correct answer to all questions in one
of the three possible attempts. If a student is not able to submit a correct answer in
any of the three attempts, he or she has to attempt another problem set of the same
level in the following label class. Hence, in a given lab class, different students may be
attempting problems at distinct levels according to their own progress. This strategy
was designed to ensure that students only proceed a new level when the knowledge from
the previous one has been assimilated. Additionally, students must complete at least the
first five levels to qualify for the final exam. The number of questions in these weekly
assignments varies between 6 and 8 depending on the topics assessed.

The assessment strategy for determining students’ final grades was also designed to
align with the principles of Kumon’s method. This involved considering grades obtained
from both the Theoretical and Laboratory assignments as key components contributing to
the final grade. Additionally, a final exam covering all the course topics is conducted in a
codex-based environment under the same conditions of laboratory assignments: maximum of
three attempts per exercise and no access to external resources.

The final grade is determined using the following formula:

Final Grade = 0.2t + 0.2l + 0.6e, (1)

where t represents the grade obtained from theoretical assignments, l denotes the grade from
laboratory assignments, and e denotes the grade from the final exam.

4 Case Study Methodology

To evaluate the effectiveness of our novel methodology, we compared the learning results
of students enrolled in the Programming I course, as outlined in Section 3.1, over a period
of four school years. Our Kumon-inspired approach was implemented in two of these years,
while in the other two years, we did not utilize this method. Below, we outline the teaching
methodology employed in each school year considered in our study.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:7

2019: In this school year, the students’s had three different types of assignments: weakly
laboratory assignments (different from the ones described in Section 3.3), intermediate
test and final exam. The final grade was computed using

Final Grade = 0.2l + 0.2i + 0.6e,

where l, i, e denote the grade from laboratory, intermediate test, and final exam assign-
ments, respectively. Students were considered eligible to take the final exam only if at
least one of the following conditions was met: having a non-null grade in the intermediate
test or correctly answering at least 50% of the laboratory assignments. For a student
to be approved, they needed to achieve a grade of at least 40% on the final exam. The
laboratory assignments were provided through Codex, with each assignment consisting of
only one question and without including levels and progressive learning. The intermediate
test and the final exam were also conducted through Codex.
2020: This was the first school year in which our Kumon-inspired approach was im-
plemented, and the final grade was determined using Equation (1). The students were
eligible to go to the final exam only if they had answered correctly to at least 50% of the
laboratory assignments. For a student to be approved, it had to have a grade on the final
exam not less than 45%. It is important to note that in this year our Kumon-inspired
approach was still being adjusted.
2021: In this year, our Kumon-inspired approach was also utilized, albeit with more
stringent conditions for a student to qualify for the final exam. More specifically, a
student was eligible for the final examination only if they had successfully completed at
least 50% of both theoretical and laboratory assignments. To be approved, a student
needed to achieve a grade of at least 50% on the final exam.
2023: In the school year 2023, technical issues resulting from renovation works in the
Computer Science building caused difficulties with the network infrastructure. Despite
being provided with worksheets and laboratory assignments through Codex, as described
in Section 3.3, the students did not have the appropriate conditions to ensure fair
assessment process using our Kumon-inspired approach. As a result, we decided to assess
students only though a final examination, which was conducted in Codex. For a student
to be approved, they had to have an exam grade of at least 50%.

The school years 2019 and 2023 serve as the baseline against which we compare the
effectiveness of our Kumon-inspired approach in the other years (2020 and 2021). In the
school year 2022, the team of professors in charge of teaching Programming I was different,
as well as the methodological approach applied. Therefore, this year was not considered in
our study.

It is important to add that in the 2021 and 2023 school years, students were allowed to
seek help from their more advanced peers in laboratory classes. However, students assisting
their colleagues were prohibited from writing code for them. In 2019 and 2020, students were
not incentivized to seek help from other students.

A total of 937 students from different bachelor’s degrees were part of our study, with
most of them coming from Physics, Engineering Physics, and Geospatial Engineering.

5 Results and Discussion

To analyse the potential impact of our Kumon-inspired approach on teaching and learning
Programming fundamentals, we began by calculating statistics on the number of approved
students. More specifically, we computed the percentage of students who obtained approval

ICPEC 2024

5:8 Kumon-Inspired Approach to Teaching Programming Fundamentals

among both those enrolled and those effectively assessed. Table 1 provides an overview of the
number of students enrolled in the course, the number of students assessed, and the grade
statistics by school year.

Table 1 Overview of student enrolment, assessment, and grades statistics by school year.

Baseline Kumon approach
2019 2023 2020 2021

Nº of enrolled students 223 207 259 248
Nº of students assessed 159 173 210 201
Nº of approved students 92 110 134 143
Grades mean 62.52 51.45 52.95 59.95
% approved/enrolled 41.26 53.14 51.74 57.67
% approved/assessed 57.86 63.58 63.81 71.14

In Table 1, we can observe that 2021 was the school year with the highest percentage of
approved students among those assessed, with an approval rate of around 71%. Moreover,
this year was the one with the highest percentage of approved students among the enrolled
ones, reaching approximately 58%. When comparing the results of the school year 2021 with
the baseline years, it becomes clear that the percentage of approved students is significantly
higher when the Kumon-inspired approach is applied. Furthermore, when comparing this
year with 2020, a much higher approval rate is observed. These results suggest a positive
correlation between the grades obtained and the level of engagement required from students.
For instance, in 2021, students had to complete at least half of both their theoretical and
laboratory assignments, which led to better final grades compared to 2020, where they only
needed to complete half of their laboratory assignments. It is important noting that these
results may also have been affected by the fact that in 2021, struggling students were allowed
to get assistance from more advanced peers, as detailed in Section 4. Interestingly, comparing
the results between 2020 and 2023, we notice a slight overall improvement in the latter year.
This suggests that allowing students to request help from their peers has a positive impact
on their learning achievements. Another interesting point to observe in Table 1 is that years
in which the Kumon-inspired approach was (even partially) applied had a higher rate of
assessed students among those enrolled.

To evaluate the potential impact of our Kumon-inspired methodology on students’
performance, we conducted an additional analysis. We divided the grades into four intervals:
[0, 50[(indicating insufficient performance), [50, 70[(indicating satisfactory performance),
[70, 90[(indicating good performance), and [90, 100] (indicating excellent performance), and
calculated the percentage of students falling within each interval. Figure 1 displays the
results obtained by school year. The grading system in 2019 was different from the rest of
the years, so we could not include it in this analysis.

As can be observed from Figure 1, the 2021 school year was the one that has the highest
percentage of students with an excellent performance. More specifically, 25% of students
scored within the interval [90, 100], compared to 14% in 2020 and 16% in 2023. In terms of
students with insufficient performance, 2021 recorded the lowest percentage (29%), further
suggesting a significant improvement in overall student performance due to our approach.
When comparing 2020 and 2023, both school years showed the same percentage of students
with insufficient performance. However, in 2023, a higher percentage of students demonstrated
performance above the level of sufficiency. This strengthens the hypothesis that the peer
assistance provided during lab classes positively impacts students’ performance.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:9

Figure 1 Percentage of students with final grades within each grade interval and grouped by
school year.

Finally, to assess the impact of our progressive learning methodology on the knowledge
acquired by students during the course, we analysed their exam grades. Since the exam covers
all taught subjects and is conducted at the end of the course, the grades obtained provide a
good indicator of the knowledge acquired and skills developed. As such, we computed the
average exam grades among students with a lab level of 5 or higher during the 2020 and 2021
school years. We also calculated the percentage of those students that scored 50% or higher
on their exams. The results obtained are shown in Figure 2. For the school year 2023, the
exam grade corresponds to the course grade, since no theoretical or laboratory assignments
were requested.

(a) Exam grade average. (b) Percentage of students with an exam grade ≥ 50.

Figure 2 Overview of exam grade statistics for students which achieved level of 5 or higher in
the 2020 and 2021 school years, and for all assessed students in 2023.

The statistics presented in Figure 2 demonstrate the impact of implementing the Kumon-
inspired progressive learning approach on exam grades, particularly among students with a
lab level of 5 or higher during the 2020 and 2021 school years. Those who had access to this
approach showed notably higher exam grades compared to those who did not. Moreover,
among these students, those who were requested to complete at least 50% of the theoretical
assignments saw even more significant improvements, as evidenced by the data from the 2021
school year. More specifically, in 2021, students with a lab level of 5 or higher achieved an
average exam grade of 61. Approximately 75% of these students attained an exam grade
of 50% or higher, indicating a high success rate for those who followed this approach. In

ICPEC 2024

5:10 Kumon-Inspired Approach to Teaching Programming Fundamentals

contrast, when the progressive learning approach was not applied, students achieved an
average exam grade of 51%, with 64% of them reaching an exam grade of 50% or higher. This
translates to an increase of more than 10% in exam approval rates between the school year
when the Kumon-inspired methodology was employed and the theoretical assignments were
required, and the year when students did not have access to the progressive learning method.
These findings strongly suggest that our new methodology enhances the teaching-learning
process and improves students performance in final examinations. When comparing the exam
grades between the 2020 and 2023 school years, it becomes evident how the implementation of
progressive learning positively influenced student performance in final examinations. Notably,
in 2020, students were required to complete the first five laboratory assignments successfully,
whereas no such prerequisite was imposed in 2023. This observation substantiates the positive
impact of the progressive learning approach on students’ achievement.

5.1 Threats to validity

Testing and validating new teaching methodologies in a school environment has its own
challenges, due mainly to ethical considerations, since all students should be given the same
opportunities and conditions to learn but also because of all external factors which can not
be controlled and may impact the students’ success (e.g. socio-economic context).

Considering this, we have identified the following main factors that may have had an
impact in the results obtained:

COVID-19 pandemic: During the school years in which the Kumon-inspired approach
was applied (2020 and 2021), some lockdowns were imposed in Portugal. However,
Programming I is a course taught in the first semester, which was not directly affected by
those lockdowns. Moreover, in those schools years, the theoretical classes of Programming
I were delivered online synchronously, and the laboratory classes were conducted face-to-
face. This allowed to fully implement our Kumon-based approach despite the imposed
restrictions. Therefore, the results obtained are considered robust, and we believe they
were not significantly affected by external pandemic-related factors.
Socio-economic context: It is well known that the socio-economic background can signi-
ficantly impact students’ success. In the specific case of our Kumon-inspired approach,
students are required to actively participate in their learning process by practising labor-
atory assignments outside of classrooms and completing theoretical assignments outside of
class as well. Students from different socio-economic backgrounds may have varying levels
of access to resources such as computers and internet connectivity, which can negatively
impact their learning outcomes. However, at our faculty, students have 24-hour access
to computer laboratories and can also work anywhere within the faculty premises using
their personal computers with free internet connection. Although this does not guarantee
equal conditions for all students, it does help to minimize disparities. Additionally, our
study benefited from the participation of a total of 937 students, which enhances its
validity and reliability.
Variability in exams difficulty levels: The difference in the levels of difficulty among exams
across different school years may have influenced the outcomes observed in our study.
Specifically, we acknowledge that exams administered after 2020 were generally more
challenging compared to those in 2019. However, this reinforces the advantages of our
Kumon-inspired approach, as students were able to achieve better overall results despite
having more difficult exams.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:11

6 Conclusion

This study demonstrates the potential of combining the strengths of the Kumon method with
the automatic assessment abilities of online judge systems. Our approach encompasses three
different types of assignments aligned with the principles of Kumon. Theoretical assignments
encourage active participation in theoretical classes and solidify newly acquired knowledge.
Worksheet assignments promote frequent study and foster self-learning skills. Finally,
laboratory assignments provide progressive learning opportunities to increase self-confidence.
An online judge system facilitates the implementation of our strategy, providing automated
assessment and immediate feedback. Together, these strategies enable the achievement of
most of the objectives of the Kumon method, fostering a successful teaching-learning process.

In addition to outlining the methodology, results from school years with our approach
implemented showed significant improvements in student performance and engagement. More
specifically, the 2021 school year stands out as the most successful, with the highest percentage
of approved students among the ones assessed and enrolled. This success can be attributed to
our progressive approach and the requirements set forth by our methodology, including the
completion of theoretical and laboratory assignments, which encouraged active participation
and self-learning. Furthermore, analysis of students’ performances revealed a notable increase
in the percentage of students achieving excellent grades in the 2021 school year compared to
other years. Conversely, the percentage of students with insufficient performance decreased
significantly, indicating an overall improvement in student outcomes. Moreover, our analysis
of exam grades suggests a significant impact of our progressive learning methodology on
students’ performance. Students who participated in the Kumon-inspired approach exhibited
higher exam grades.

In the future, it would be interesting to investigate students’ perceptions of this new
methodology, for example, through interviews. Students who have experienced more tra-
ditional programming approaches would provide valuable insights in this context. Their
feedback may help to further understand the effectiveness of our methodology and guide
the design of new approaches. It would also be important to assess the developed skills,
habits, and abilities, particularly in the areas of self-learning, self-regulation, study habits,
self-confidence, and motivation levels. Additionally, studying the impact of peer-assisted
learning could help to understand collaborative learning dynamics and their influence on
academic achievement. Conducting such research could help to refine educational practices
and promote effective learning environments for programming fundamentals courses.

References

1 Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assign-
ments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/08993400500150747.

2 Aldrich Ellis Asuncion, Brian Christopher Guadalupe, and Gerard Francis Ortega. The abc
workbook: Adapting online judge systems for introductory programming classes. In Proceedings
of the 30th International Conference on Computers in Education, volume 2, pages 395–400.
IEEE, 2022. URL: https://icce2022.apsce.net/uploads/P2_W05_052.pdf.

3 Yorah Bosse, David Redmiles, and Marco A. Gerosa. Pedagogical content for professors of
introductory programming courses. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’19, pages 429–435, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3304221.3319776.

4 Chin-Soon Cheah. Factors contributing to the difficulties in teaching and learning of computer
programming: A literature review. Contemporary Educational Technology, 2020.

ICPEC 2024

https://doi.org/10.1080/08993400500150747
https://icce2022.apsce.net/uploads/P2_W05_052.pdf
https://doi.org/10.1145/3304221.3319776

5:12 Kumon-Inspired Approach to Teaching Programming Fundamentals

5 Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. Exploring the value
of student self-evaluation in introductory programming. In Proceedings of the 2019 ACM
Conference on International Computing Education Research, ICER ’19, pages 121–130, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3291279.3339407.

6 Stephen H. Edwards and Manuel A. Perez-Quinones. Web-cat: automatically grading pro-
gramming assignments. In Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’08, page 328, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1384271.1384371.

7 José Figueiredo and Francisco José García-Peñalvo. Strategies to increase success in learning
programming. 2022 International Symposium on Computers in Education (SIIE), pages 1–6,
2022. URL: https://api.semanticscholar.org/CorpusID:254911096.

8 Anabela Gomes and Antonio Mendes. Learning to program - difficulties and solutions. In
Proceedings of the International Conference on Engineering Education – ICEE 2007, pages
283–287, January 2007.

9 Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, Koli Calling ’10, pages 86–93, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1930464.1930480.

10 Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission and assessment sys-
tem. J. Educ. Resour. Comput., 5(3):2–es, September 2005. doi:10.1145/1163405.1163407.

11 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of automated
feedback generation for programming exercises. In Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’16, pages 41–46, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2899415.2899422.

12 Alain Kabo Mbiada, Bassey Isong, Francis Lugayizi, and Adnan Abu-Mahfouz. Introductory
computer programming teaching and learning approaches: Review. In 2022 International
Conference on Electrical, Computer and Energy Technologies (ICECET), pages 1–8, 2022.
doi:10.1109/ICECET55527.2022.9873427.

13 L. Orcos, R. M. Hernández-Carrera, M. J. Espigares, and Á. Alberto Magreñán. The kumon
method: Its importance in the improvement on the teaching and learning of mathematics
from the first levels of early childhood and primary education. Mathematics, 7(1), 2019.
doi:10.3390/math7010109.

14 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Authoring game-based programming
challenges to improve students’ motivation. In Michael E. Auer and Thrasyvoulos Tsiatsos,
editors, The Challenges of the Digital Transformation in Education, pages 602–613, Cham,
2020. Springer International Publishing.

15 Mário Pinto and Teresa Terroso. Learning Computer Programming: A Gamified Approach.
In Alberto Simões and João Carlos Silva, editors, Third International Computer Programming
Education Conference (ICPEC 2022), volume 102 of Open Access Series in Informatics
(OASIcs), pages 11:1–11:8, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/OASIcs.ICPEC.2022.11.

16 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

17 Atajan Rovshenov and Fırat Sarsar. Research trends in programming education: A systematic
review of the articles published between 2012-2020. Journal of Educational Technology and
Online Learning, 6(1):48–81, 2023. doi:10.31681/jetol.1201010.

18 Ján Skalka, Martin Drlík, and Juraj Obonya. Automated assessment in learning and teaching
programming languages using virtual learning environment. In 2019 IEEE Global Engineering
Education Conference (EDUCON), pages 689–697, 2019. doi:10.1109/EDUCON.2019.8725127.

https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/1384271.1384371
https://api.semanticscholar.org/CorpusID:254911096
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1109/ICECET55527.2022.9873427
https://doi.org/10.3390/math7010109
https://doi.org/10.4230/OASIcs.ICPEC.2022.11
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.31681/jetol.1201010
https://doi.org/10.1109/EDUCON.2019.8725127

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:13

19 Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer, James Moscola,
and Robert Duvall. Analyzing student work patterns using programming exercise data.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 18–23, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2676723.2677297.

20 Python standard library. Doctest library documentation. URL: https://docs.python.org/
3/library/doctest.html.

21 Nancy Ukai. The kumon approach to teaching and learning. Journal of Japanese Studies,
20:87, 1994. URL: https://api.semanticscholar.org/CorpusID:150129343.

22 Usmadi, Amelia Agita, and Ergusni. The effect of application kumon learning method in
learning mathematics of ability troubleshooting mathematics of students. Journal of Physics:
Conference Series, 1429(1):012005, 2020. doi:10.1088/1742-6596/1429/1/012005.

23 Pedro Vasconcelos and Rita P. Ribeiro. Using Property-Based Testing to Generate Feedback
for C Programming Exercises. In Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto
Simões, editors, First International Computer Programming Education Conference (ICPEC
2020), volume 81 of Open Access Series in Informatics (OASIcs), pages 28:1–28:10, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ICPEC.2020.28.

24 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. A survey
on online judge systems and their applications. ACM Comput. Surv., 51(1), January 2018.
doi:10.1145/3143560.

ICPEC 2024

https://doi.org/10.1145/2676723.2677297
https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html
https://api.semanticscholar.org/CorpusID:150129343
https://doi.org/10.1088/1742-6596/1429/1/012005
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://doi.org/10.1145/3143560

An Experience with Adaptive Formative
Assessment for Motivating Novices in Introductory
Programming Learning
Jagadeeswaran Thangaraj #

School of Computing, Dublin City University, Ireland

Monica Ward #

School of Computing, Dublin City University, Ireland

Fiona O’Riordan #

CCT College, Dublin, Ireland

Abstract
This study presents empirical research that uses adaptive formative assessment framework in addition
to traditional lectures to motivate novice students in an introductory programming course. The
primary goal of this work is to provide guidance for the creation of adaptive formative assessments
in Python programming language to inspire novice students. The experiment is based on lessons
learned from the literature and pedagogical theories that support learning through assessment and
scaffolding. This study investigates how the experiment helped the novices, whether it increased
their confidence, whether it assisted in identifying and correcting common errors, and whether it
covered the material on learning modular programming components. It report on extensive survey
results of over 265 attempts of 90 students taking CS1 (introductory programming) that included
five quizzes covering fundamental concepts. The students responded favorably to the experiment,
and results are also included.

2012 ACM Subject Classification Applied computing → Education; Social and professional topics
→ Computing education; Social and professional topics → Student assessment

Keywords and phrases Assessment and feedback, Computer programming, CS1, Formative assess-
ment, Introductory programming, Novice students

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.6

Funding I want to thank the research committee of School of Computing at Dublin City University
(DCU) for funding this research project.

1 Introduction

Any course in a higher education institution worldwide that is concerned with software
development requires programming modules. By introducing syntax and semantics, these
modules aim to impart fundamental knowledge of programming languages. These modules
are crucial for students to feel confident in their study in Computer Science (CS). Students
who are learning their introductory programming must also become familiar with the often-
hard syntax of the language, numerous data types and its operations, the effects of various
statements on variables, and control flow. Novice programmers are those taking their first
computer programming courses or those with no prior programming experience. E.g. First
year computer science degree students, second level students such as junior or senior cycle
years. Independent components of programming will increase the difficulties of novices in
learning programming [23]. There are a number of activities introduced to motivate novice
students in programming modules in addition to traditional lecture and practical sessions.
The recommended pedagogical activities are pair programming, peer instructions, live coding,
collaborative learning and assessment and feedback systems [7, 30].

© Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 6; pp. 6:1–6:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jagadeeswaran.Thangaraj2@mail.dcu.ie
https://orcid.org/0000-0002-2721-0898
mailto:Monica.Ward@dcu.ie
https://orcid.org/0000-0001-7327-1395
mailto:fiona@cct.ie
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 An Experience with Adaptive Formative Assessment

Every lecture in the classroom is given by a lecturer and includes exposition lectures, live
coding to solve practical problems in real time and practical exercises using programming
languages in lab sessions. The traditional lecture session occupied the majority of the practice.
Also, students felt frustrated that they had to repeatedly go over concepts in lab session
from they had already learned in lecture [4]. Furthermore, it does not help students to grasp
fundamental ideas. Conversely, they found the live coding and practical portion especially
enjoyable since it allowed the students to witness the theories and concepts being used to
build a program [25]. However, novice students are unable to interpret program code and
have a lack of understanding of individual elements of programming due to their lack of
programming experience [24]. The assessment system of programming helps in this scenario
as it is an essential component of education that promotes learning [26]. Formative assessment
is one of the approaches for effective programming learning that aims to increase student
understanding and learning by providing feedback on students’ submissions [23]. Taking
this into consideration, this research created a formative assessment framework that aims at
increasing students’ confidence by familiarising novice students with independent components
of programming. As an expansion of our earlier research [32], this paper explores the
development of a formative assessment framework for this purpose, describes the experiment,
and offers insights into its performance and future directions.

2 Exploring Formative Assessments’ Potential to Improve
Programming Learning

One strategy for efficient programming learning is formative assessment including feedback
[31]. Formative feedback is information provided to a learner with the intention of altering
their behavior or way of thinking to improve learning [27]. Formative feedback gives
teachers the chance to personalize their responses, motivate student interest, gather data on
each student’s progress, encourage reflective thought, and encourage self-directed learning
[33, 21]. Therefore, formative assessment refers to routine, interactive evaluations of student
development and comprehension that are used in educational settings to identify learning
needs and adapt training [15].

2.1 Enhancing Programming skills through Learning from Errors

When writing programs, both novice and experienced programmers make errors – just not
to the same extent. Different kinds of errors demotivate novices to engage in learning to
program. Error detection and correction play a central role in programming learning: it is
an essential cognitive and pedagogical component of learning to program [20]. Programming
errors can appear in a variety of forms such as syntax and logical errors [6, 3, 2]. A program
error that breaks language conventions and stops execution is known as a syntax error [3].
When a syntax error occurs in a compiled language, the compiler will usually produce an
error message that points to the incorrect program lines. Most of the time, program compilers
provide information on the kind and location of syntax errors. Compiler error messages
can also be used to identify and fix syntax and semantic errors during program compilation
or execution. However, for novice programmers, these error messages can occasionally be
difficult to understand and make them confused [5]. Therefore, some research suggested
improving error messages to make them easier to interpret and understand [10, 8]. They
demonstrated that these enhancement messages were more useful than compiler messages for
figuring out common syntax and semantic errors [5, 8].

J. Thangaraj, M. Ward, and F. O’Riordan 6:3

In addition, students suffer more with logical errors than syntax errors [3]. There are
three possible explanations for these logical mistakes: Algorithm, misunderstanding, and false
information [12]. Another factor, called “Programmer misconception”, contributes to the
misunderstanding of control flow in logic that led to the erroneous code [18]. As a result, the
code can deliver inaccurate results. It is also quite challenging to identify and correct logical
errors. Various studies have identified common logical errors that people make frequently and
offered suggestions for how to avoid them [3, 12]. Thus, helping students understand their
programming errors is another effective technique to teach them programming, as mistakes
are an incredible means of instruction for programming courses [14, 36]. Therefore, our
goal is to familiarise students with these types of errors ahead to make it easier for them to
understand. It enables students to comprehend the common code errors they make as well
as compiler error messages.

2.2 Enhancing Formative assessment with adaptive strategy
Assessments that are customized to each student individually based on their responses to
previous test items are referred to as adaptive assessments [22]. Students who complete
adaptive assessments have their ability level determined by the answers they provide; the
most illuminating problems are then shown to the students to measure their abilities more
accurately [13]. When taking an adaptive assessment, every student will experience it
differently from another [34]. In a traditional assessment, every student works on the same
set of tasks with varying degrees of difficulty. Students can work on the predetermined
tasks in any sequence because they are predetermined. On the other hand, in an adaptive
assessment, every student works on a customised set of tasks since the questions are chosen
by an algorithm that considers the answers that each student has previously provided.
Therefore, it varies from traditional assessment in that each participant is asked a separate
set of questions rather than all the same ones [34]. As a result, students work on different
questions that take different amounts of time to complete [13]. The system chooses the next
test from a pool of available tests based on the the students’ performance [35].

2.3 Encouraging Learning and Proficiency in programming through
Adaptive Formative assessment

The process of learning programming involves starting from beginning and using a completion
method, such as changing or finishing program code [4]. When it comes to cognitive skills,
programming is more advanced than rote memorisation; to complete programming activities,
students must grasp particular concepts and understand how to apply them together [35].
Self-efficacy of students can be used to adaptively generate assessments that are customised
to each student in terms of question difficulty, assessment length, and question types (e.g.,
multiple choice, fill-in-the-blank, or short response) [35]. An answer key and a number of
choices make up the two components of a multiple-choice question (MCQ) [1]. A query or a
remark is typically made by the stem. To proceed with the stem, the learner must choose the
best or accurate option. MCQs are insufficient for evaluating a student’s coding proficiency
in programming modules since they do not encourage learners to write their own code, even
when they are at an advanced level. The ability to retain programming concepts and increase
engagement, however, can be useful. The assessment length and question difficulty can also
be modified. Using adaptive assessment, which organizes a collection of questions into three
cognitive levels according to complexity (easy, moderate, and difficult), adaptive formative
assessment evaluates students’ knowledge in programming courses [9]. Consequently, rather
than supplying resources that are universally applicable, adaptive assessment systems could
customize instruction and evaluation by considering each student’s uniqueness.

ICPEC 2024

6:4 An Experience with Adaptive Formative Assessment

Table 1 An example question with answer choices and accompanying feedback.

Question Choices Feedback
What will be the output
of following code?

var = “computer”
print(var[5::1])

computer Incorrect! It prints a range of items starting from
index 5 with step 1. [ter]

ter Correct! print(var[5 :: 1]) - it prints a range
of items starting from index 5 with step 1. [ter]

compu Incorrect! if the index is “0” print(var[0::1]),
then it prints compu.

u Incorrect! if the index is “5” print(var[5]) ,
then it prints u.

2.4 Research Questions
This study intends to investigate the scaffolding and support that formative assessment
quizzes might provide for students learning to program. Using the adaptive formative
assessment quizzes, this study will particularly investigate the following research questions.
RQ-1: Does formative assessment help to build self-confidence in novice programmers in

learning basic concepts of programming?
RQ-2: Does formative assessment help to understand and correct the errors in order to

improve their programming skills?
RQ-3: Does formative assessment help novices effectively learn the independent components

of programming concepts?

3 Development of Adaptive Formative Assessment Framework

This study has led us to create formative assessment quizzes to introduce common pro-
gramming errors. These quizzes are an excellent method to increase student confidence and
introduce more frequent errors while programming. We have a list of questions with various
answers in these quizzes. As they offer feedback for each selection, these quizzes assist in
fostering their learning. While the wrong answer feedback helps them locate the appropriate
response, the right answer feedback acknowledges their responses. Students can learn from
their incorrect responses and determine the correct response. As a result, it is a system
that progresses and aids in their ability to learn from mistakes. This study examines if the
formative assessment increases participants’ confidence in their capacity to understand the
fundamental ideas behind programming. They assist students in comprehending the common
code errors they make as well as compiler error messages.

3.1 Quiz Implementation
Google Forms is utilized to implement the quizzes because, according to [11], it can be
an effective tool for formative assessment and for promoting active learning. Furthermore,
integration with all learning management systems is possible. Each quiz aims to educate
students about common code errors they made when studying the assigned topics. A sample
question is shown in Table 1. Feedback will be given to students for each potential response,
which will help them better comprehend the errors and help them to understand easily as
shown in Table 1. Feedback are customised messages that are similar to enhanced error
messages [5]. Every incorrect reaction offers advice on how to respond. Students can select
the best alternative based on the feedback.

J. Thangaraj, M. Ward, and F. O’Riordan 6:5

3.2 Adaptive Approach

Difficulty levels have been added to learning objects in the model. These learning objects
could be topics, questions, a variety of errors. The goals relate to questions with varying
degrees of difficulty. Difficulties in programming are classified as Bloom’s taxonomy of
programming [29]. In this model, we classified a list of questions in three cognitive levels
based on the complexity (like easy, moderate, and difficult) [17]. Here easy questions assess
the basic concepts, moderate questions assess comprehensive knowledge and difficult questions
do the applications of the knowledge [34]. If a student successfully responds to a moderate
question on this assessment, the subsequent question is hard. If not, the easy questions will
be asked as indicated in Figure 1. It goes on until the system forecasts the competency level
of the students [28]. A sample classification is described as Table 2.

Figure 1 Adaptive approach.

Table 2 Summary of print statement question in adaptive model.

Purpose Difficulty low Difficulty moder-
ate

Difficulty high Summary

String notation
and character
traverse

var = ’Amazon’
print(var[4])

var = ’Computer’
print(var[5 :: 1])

var = ’Python’
print(var[4 :: -1])

var = ’James
Bond’ print(var)
print(var[3])
print(var[5 :: 1])
print(var[5 :: -1])

ICPEC 2024

6:6 An Experience with Adaptive Formative Assessment

3.3 Questions Development
Python is an established programming language that is utilized in introductory programming
courses due to its convenience and syntactical simplicity [16]. Variables, operators, condition-
als, loops, and functions were all covered in the introductory programming course. We created
quizzes corresponding with these topics that familiarise modular parts of programming. Each
question intends to introduce some of the most common errors made by novices [3, 36].
Details of the questions are shown in Table 3. Quiz topics included syntax errors, logical
errors, and common misconceptions among novice students [2, 12, 18]. Every quiz has at
least five questions of a moderate difficulty. Depending on the responses, the question moves
automatically from a moderate level to a high level or low level as shown in Figure 1. It goes
to a summary question that describes the relevant concept to provide proficiency level if they
are unable to respond to all of the questions. With the help of the lecturer, we conducted
these quizzes periodically during teaching sessions to build novice’s confidence as well as to
capture their barriers in programming.

Table 3 Summary of questions of each quiz.

Quiz
no

Topic Modular parts Objectives

1 Print &
operators

Print statement Familiarising syntax errors in print statement
Arithmetic operators Familiarising syntax errors in arithmetic expres-

sions
Assignment operator Familiarising syntax errors in assignment

2
Variables,
input &
operations

Input function Familiarising variables and type conversion when
read a value from keyboard

Operators & precedence Familiarising operators & precedence in expres-
sions

Higher arithmetic operator Familiarising higher precedence arithmetic operat-
ors (%, //, **)

3 If/Else
statements

The if/elif/else structure
with comparative operators

Familiarising if/else process & comparative oper-
ators

Operators & precedence Familiarising comparative expression using AND,
OR, NOT

Errors in If/else Familiarising syntax error & indentation error in
assignment

4 While
loop

While loop process Introducing while loop elements, process before or
after increment or decrement

Introducing multiple while
loops & infinitive executions

Familiarising multiple loops and syntax errors &
Non-terminating loops

Mixed loops Familiarising multiple loops (while & if/else) &
Syntax or logical errors

5 Strings &
Functions

String representation Familiarising different string array representations
Functions Familiarising values passing to parameters & syn-

tax errors
Global & Local variables in
function

Familiarising logical errors in assignment of global
or local variables

4 Research Methodological paradigm

This research combines both qualitative and quantitative elements. This instance is con-
strained by the CS1 module during the academic year 2023-24, and different student cohorts
of first year undergraduate Computer Science students. In quantitative research, the interven-

J. Thangaraj, M. Ward, and F. O’Riordan 6:7

tion technique is used to address reliability and validity. A brief, voluntary, anonymous survey
is used in conjunction with formative assessment to gain insight of students perceptions on
how they perceived and experienced it. It also includes qualitative elements and makes use
of a range of data sources and data collection methods. It was conducted via an anonymous
“Google forms” questionnaire.

4.1 The Population

The University’s Introductory programming modules provided the data for this investigation.
The data includes 267 students’ programming quiz attempts that they submitted at the end
of each quiz session. Some students attempted many surveys, in relation to the total number
of quiz attempts. These participants were from non-CS major course.

4.2 Data collection strategies

Data was gathered using a survey consisting of both closed-ended and open-ended questions
to obtain both qualitative and quantitative data [19]. In addition to traditional teaching and
practical sessions, regular quizzes were provided during the study periods. This gave the
chance to take quizzes and consider what they had learned. For this study, a short optional
and anonymous survey was employed to get an idea of how learners viewed and experienced
the quizzes for introductory programming at the end of each quiz. At the end of each quiz,
we conducted a survey about how it effectively helped them to learn programming. The
respondents were questioned about how they felt about formative assessment quizzes of each
programming topic. Open-ended questions for qualitative data and closed-ended Likert scale
questions for quantitative data were both used in the survey form. The Likert scale had five
possible scores: strongly disagree, disagree, neutral, agree, and strongly agree. The surveys
provide both quantitative and qualitative information about the effects of this intervention
and perceptions about the use of formative assessment in learning programming. The student
questionnaires and their reflective writing assignments provide the qualitative data. Every
piece of qualitative data is anonymous.

5 Results & Discussion

In order to collect more thorough data for analysis, this study gave students quizzes at
regular intervals. Each quiz contained survey questions in addition to other quiz questions.
Following an intervention survey, all analysis was completed.

Table 4 Post Survey Likert Questions 1 and 2 (N=265).

Question Strongly
Dis-
agree:1

Disagree:2 Neutral:3 Agree:4 Strongly
Agree:5

Mean SD

Do these quizzes increase
your self-confidence in
learning programming?

17 31 72 86 59 3.52 1.14

Do these quizzes help to
understand and correct
errors in Python?

16 29 58 94 68 3.64 1.15

ICPEC 2024

6:8 An Experience with Adaptive Formative Assessment

Figure 2 Overall feedback on self-confidence. Figure 3 Overall feedback on understanding
& correcting errors.

5.1 RQ-1: Increasing self-confidence
To answer the RQ-1, it included a Likert question, “Do these quizzes increase your self-
confidence in learning programming?”, at the end of the quizzes. The responses ranged
from ’Strongly disagree’ to ’Strongly agree’. The whole survey data results are presented
in Table 4. It offers a thorough understanding of the students’ feelings regarding their
level of self-confidence in handling these quizzes. Responses for ’Strongly agree’ and ’Agree’
(≈55%) were higher than ‘Disagree’ part (≈18%) as shown in Figure 2. As a result, this
study discovered that the adaptive formative assessment quizzes helped them increase their
self-confidence.

5.2 RQ-2: Understand & Correct the errors
This study asked, “Do these quizzes help to understand and correct errors in Python?”. The
responses ranged from ’Strongly disagree’ to ’Strongly agree’. The whole survey data results
are presented in Table 4. Huge responses (≈61%) were received as ’Agree’ as a result as in
Figure 3. Their responses for these two questions show a clear shift from their post-quizzes
average of 3.52 to an average of 3.64 (with less volatility) as shown in Table 4. These
results indicate that the adaptive formative assessment quizzes helped them comprehend the
common programming errors.

5.3 RQ-3: Students’ perception on learning modular parts
This study asked, “Do these quizzes help to better understand basic concepts of Python
language?”. The responses were ’Yes’, ’May be’ and ’No’. The result is presented in Table 5.
Huge responses (≈68%) were received as ’Yes’ as a result as shown in Figure 4. Based on
the surveys, it demonstrates that the novice students believe the quizzes assisted in grasping
fundamental programming principles and significantly increased students’ confidence in
learning programming after attending. This study also asked, “Is the feedback you receive
for each question helpful in finding the correct answers and understanding errors?”. The
responses were ’Yes’, ’May be’ and ’No’. These responses were also highly positive as shown
in Table 5.

Quantitative data alone does not provide the full picture of the learning experience. Find-
ing out what students think and feel about formative assessment as a computer programming
learning activity is critical. According to sentimental analysis, they delighted in gaining
knowledge by taking quizzes in various models and they also valued these quizzes for various
reasons as stated in the comments below.

J. Thangaraj, M. Ward, and F. O’Riordan 6:9

Table 5 Post Survey Likert Question 3 (N=267).

Question No: 1 May be: 2 Yes: 3 Mean SD
Do these quizzes help to better un-
derstand basic concepts of Python
language?

40 45 182 2.53 0.74

Is the feedback you receive for each
question helpful in finding the cor-
rect answers and understanding er-
rors?

43 39 185 2.52 0.76

Figure 4 Overall feedback on understanding
basic concepts.

Figure 5 The correct answer frequency (in %)
of difficult levels during the quiz attempts.

...It introduced me to new elements of python...made me realise what i didn’t know...was
good to refresh my brain...very helpful exercises...I think they are much better than the way
the lectures are being taught...It helped to recall... Maybe do the quizzes in the lectures to
fully understand what is being taught...

Responses for understanding modular concepts (M = 2.53, SD = 0.74) out of four
questions were given a higher weight than other responses with a small effect size as shown
in Table 5. It is evident from their feedback that these quizzes enabled them to review their
programming expertise and make necessary revisions. Some students claimed that taking
the quizzes had taught them some new material.

5.4 Low vs Moderate vs High – Difficulty levels
The frequency of correct responses to questions at varying degrees of difficulty is shown by the
outcome chart that we have plotted in Figure 5. It demonstrates that the majority (≈81%)
of students correctly answer questions at a moderate difficulty level. On the other hand,
students who attempt questions with low difficulty levels tend to give less (≈70%) correct
answers. Additionally, students who tackle highly difficult questions give more (≈80%) correct
answers. Eventually, students get more detailed feedback to their summary questions, which
helps them understand the modular parts of programming better. Moreover, it demonstrates
that adaptive formative assessments helped them understand the basic concepts better.

6 Conclusion and Future Work

The experience presented in this paper describes the use of adaptive formative assessment in
introductory programming to help novice students overcome the challenges of learning to
program, particularly in identifying and understanding more frequent errors. The results

ICPEC 2024

6:10 An Experience with Adaptive Formative Assessment

are clearly confirming that this approach helped novice students become more confident in
programming and dispel some of the misconceptions surrounding it. As a conclusion, we
argue that adaptive formative assessment quizzes motivate students to evaluate and learn
from their mistakes, which in turn encourages them to learn computer programming. It can
be a viable teaching and learning tool for computer programming. The reflection makes it
easier to comprehend the basic concepts. The students claim that learning through formative
assessment quizzes has improved their comprehension and increased their confidence in
learning programming. They also claim to be satisfied and indicate that they would repeat
this teaching technique again, as evidenced by their high level of loyalty. This study will
further investigate whether the adaptive formative assessment quizzes could help novice
students learn more effectively in other programming languages. Consequently, we intend to
incorporate this technique into other languages like Irish, Portuguese and Spanish.

References
1 Pedro Henriques Abreu, Daniel Castro Silva, and Anabela Gomes. Multiple-choice questions

in programming courses: Can we use them and are students motivated by them? ACM
Transactions on Computing Education (TOCE), 19(1):1–16, 2018.

2 Alireza Ahadi, Raymond Lister, Shahil Lal, and Arto Hellas. Learning programming, syntax
errors and institution-specific factors. In Proceedings of the 20th Australasian Computing
Education Conference, ACE ’18, pages 90–96, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3160489.3160490.

3 Nabeel Alzahrani and Frank Vahid. Common logic errors for programming learners: A three-
decade literature survey. In 2021 ASEE Virtual Annual Conference Content Access, Virtual
Conference, July 2021. ASEE Conferences. URL: https://peer.asee.org/36814.

4 Zahra Atiq and Michael Loui. A qualitative study of emotions experienced by first-year
engineering students during programming tasks. ACM Transactions on Computing Education,
22, March 2022. doi:10.1145/3507696.

5 Brett Becker, Graham Glanville, Ricardo Iwashima, Claire Mcdonnell, Kyle Goslin, and
Catherine Mooney. Effective compiler error message enhancement for novice programming
students. Computer Science Education, pages 1–28, September 2016. doi:10.1080/08993408.
2016.1225464.

6 Anat Ben-Yaacov and Arnon Hershkovitz. Types of errors in block programming: Driven by
learner, learning environment. Journal of Educational Computing Research, 61(1):178–207,
2023. doi:10.1177/07356331221102312.

7 Neil C. C. Brown and Greg Wilson. Ten quick tips for teaching programming. PLOS
Computational Biology, 14(4):1–8, April 2018. doi:10.1371/journal.pcbi.1006023.

8 Tessa Charles and Carl Gwilliam. The effect of automated error message feedback on
undergraduate physics students learning python: Reducing anxiety and building confid-
ence. Journal for STEM Education Research, 6(2):326–357, August 2023. doi:10.1007/
s41979-022-00084-4.

9 Dimitra Chatzopoulou and Anastasios Economides. Adaptive assessment of student’s knowledge
in programming courses. J. Comp. Assisted Learning, 26:258–269, August 2010. doi:10.1111/
j.1365-2729.2010.00363.x.

10 Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C
Albrecht, and Garrett B. Powell. On designing programming error messages for novices:
Readability and its constituent factors. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3411764.3445696.

11 Mireille Djenno, Glenda M. Insua, and Annie Pho. From paper to pixels: using google
forms for collaboration and assessment. Library Hi Tech News, 32(4):9–13, 2022. doi:
10.1108/LHTN-12-2014-0105.

https://doi.org/10.1145/3160489.3160490
https://peer.asee.org/36814
https://doi.org/10.1145/3507696
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1177/07356331221102312
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1007/s41979-022-00084-4
https://doi.org/10.1007/s41979-022-00084-4
https://doi.org/10.1111/j.1365-2729.2010.00363.x
https://doi.org/10.1111/j.1365-2729.2010.00363.x
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1108/LHTN-12-2014-0105
https://doi.org/10.1108/LHTN-12-2014-0105

J. Thangaraj, M. Ward, and F. O’Riordan 6:11

12 Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. Common logic errors made by novice
programmers. In Proceedings of the 20th Australasian Computing Education Conference,
ACE ’18, pages 83–89, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3160489.3160493.

13 Takayuki Goto, Kei Kano, and Takayuki Shiose. Students’ acceptance on computer-adaptive
testing for achievement assessment in japanese elementary and secondary school. Frontiers in
Education, 8, 2023. doi:10.3389/feduc.2023.1107341.

14 Heather J. Hoffman and Angelo F. Elmi. Do students learn more from erroneous code?
exploring student performance and satisfaction in an error-free versus an error-full sasÂ®
programming environment. Journal of Statistics and Data Science Education, 29(3):228–240,
2021. doi:10.1080/26939169.2021.1967229.

15 Seyed M. Ismail, D. R. Rahul, Indrajit Patra, and Ehsan Rezvani. Formative vs. summative
assessment: impacts on academic motivation, attitude toward learning, test anxiety, and self-
regulation skill. Language Testing in Asia, 12(1):40, 2022. doi:10.1186/s40468-022-00191-4.

16 Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. Analysis of student miscon-
ceptions using python as an introductory programming language. In Proceedings of the 4th
Conference on Computing Education Practice, CEP ’20, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3372356.3372360.

17 Fatima Ezzahraa Louhab, Ayoub Bahnasse, and Mohamed Talea. Towards an adaptive
formative assessment in context-aware mobile learning. Procedia Computer Science, 135:441–
448, 2018. The 3rd International Conference on Computer Science and Computational
Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life.
doi:10.1016/j.procs.2018.08.195.

18 Davin Mccall and Michael Kölling. Meaningful categorisation of novice programmer errors.
In Proceedings - Frontiers in Education Conference, FIE, volume 2015, October 2014. doi:
10.1109/FIE.2014.7044420.

19 Donna Mertens. Research and Evaluation in Education and Psychology: Integrating Diversity
with Quantitative, Qualitative, and Mixed Methods 5th edition. SAGE Publications, Inc, June
2019.

20 Anastasia Misirli and Vassilis Komis. Computational thinking in early childhood education:
The impact of programming a tangible robot on developing debugging knowledge. Early
Childhood Research Quarterly, 65:139–158, 2023. doi:10.1016/j.ecresq.2023.05.014.

21 Gunilla Näsström, Catarina Andersson, Carina Granberg, Torulf Palm, and Björn Palmberg.
Changes in student motivation and teacher decision making when implementing a formative
assessment practice. Frontiers in Education, 6, 2021. doi:10.3389/feduc.2021.616216.

22 Elena Papanastasiou. Adaptive Assessment, pages 1–2. Springer Netherlands, Dordrecht, 2021.
doi:10.1007/978-94-007-6165-0_3-4.

23 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

24 Sjaak Smetsers Renske Weeda and Erik Barendsen. Unraveling novices’ code composition
difficulties. Computer Science Education, 0(0):1–28, 2023. doi:10.1080/08993408.2023.
2169067.

25 Anders Schlichtkrull. An experience with and reflections on live coding with active learning.
In International Computer Programming Education Conference, 2023. URL: https://api.
semanticscholar.org/CorpusID:260777639.

26 Nicole Shanley, Florence Martin, Nicole Collins, Manuel Perez-Quinones, Lynn Ahlgrim-
Delzell, David Pugalee, and Ellen Hart. Teaching programming online: Design, facilitation
and assessment strategies and recommendations for high school teachers. TechTrends, 66,
April 2022. doi:10.1007/s11528-022-00724-x.

27 Valerie J. Shute. Focus on formative feedback. Review of Educational Research, 78(1):153–189,
2008. doi:10.3102/0034654307313795.

ICPEC 2024

https://doi.org/10.1145/3160489.3160493
https://doi.org/10.3389/feduc.2023.1107341
https://doi.org/10.1080/26939169.2021.1967229
https://doi.org/10.1186/s40468-022-00191-4
https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1016/j.procs.2018.08.195
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1016/j.ecresq.2023.05.014
https://doi.org/10.3389/feduc.2021.616216
https://doi.org/10.1007/978-94-007-6165-0_3-4
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993408.2023.2169067
https://doi.org/10.1080/08993408.2023.2169067
https://api.semanticscholar.org/CorpusID:260777639
https://api.semanticscholar.org/CorpusID:260777639
https://doi.org/10.1007/s11528-022-00724-x
https://doi.org/10.3102/0034654307313795

6:12 An Experience with Adaptive Formative Assessment

28 E’loria Simon-Campbell and Julia Phelan. Effectiveness of an adaptive quizzing system as
a self-regulated study tool to improve nursing students’ learning. International Journal of
Nursing & Clinical Practices, 5, August 2018. doi:10.15344/2394-4978/2018/290.

29 Sonia Sobral. Bloom’s taxonomy to improve teaching-learning in introduction to programming.
International Journal of Information and Education Technology, 11:148–153, March 2021.
doi:10.18178/ijiet.2021.11.3.1504.

30 Sonia Sobral. Strategies on Teaching Introducing to Programming in Higher Education, pages
133–150. Springer, Cham, March 2021. doi:10.1007/978-3-030-72660-7_14.

31 Qing Sun, Ji Wu, Wenge Rong, and Wenbo Liu. Formative assessment of programming
language learning based on peer code review: Implementation and experience report. Tsinghua
Science and Technology, 24:423–434, August 2019. doi:10.26599/TST.2018.9010109.

32 Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan. The impact of using form-
ative assessment in introductory programming on teaching and learning. 10th International
Conference on Higher Education Advances (HEAd’24), Valencia, June 2024.

33 Fabienne S. Van der Kleij and Lenore Adie. Formative assessment and feedback using
information technology. Second Handbook of Information Technology in Primary and Secondary,
pages 601–615, 2018. doi:10.1007/978-3-319-71054-9.

34 Jill-Jênn Vie, Fabrice Popineau, Éric Bruillard, and Yolaine Bourda. A Review of Recent
Advances in Adaptive Assessment, volume 94, pages 113–142. Springer International Publishing,
February 2017. doi:10.1007/978-3-319-52977-6_4.

35 Albert C.M. Yang, Brendan Flanagan, and Hiroaki Ogata. Adaptive formative assessment
system based on computerized adaptive testing and the learning memory cycle for personalized
learning. Computers and Education: Artificial Intelligence, 3:100104, 2022. doi:10.1016/j.
caeai.2022.100104.

36 Zihe Zhou, Shijuan Wang, and Yizhou Qian. Learning from errors: Exploring the effectiveness
of enhanced error messages in learning to program. Frontiers in Psychology, 12, 2021. doi:
10.3389/fpsyg.2021.768962.

https://doi.org/10.15344/2394-4978/2018/290
https://doi.org/10.18178/ijiet.2021.11.3.1504
https://doi.org/10.1007/978-3-030-72660-7_14
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.1007/978-3-319-71054-9
https://doi.org/10.1007/978-3-319-52977-6_4
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.3389/fpsyg.2021.768962
https://doi.org/10.3389/fpsyg.2021.768962

Promoting Deep Learning Through a Concept
Map-Building Collaborative Activity in an
Introductory Programming Course
João Paulo Barros #

Polytechnic Institute of Beja, Portugal
Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems
(LASI), Caparica, Portugal

Abstract
Programming courses focus heavily on problem-solving and coding practice. However, students also
face numerous interrelated concepts that should be given more attention to foster more effective
and comprehensive learning. Often, students only get an incomplete knowledge of those concepts
and their relations as no adequate reflection is promoted or even seen as necessary. The result is a
superficial surface learning about essential programming concepts and their relations. This experience
report presents a learning activity to promote deep learning of concepts and their relations. The
activity challenges students to specify relations between concepts. Students search definitions for a
given set of concepts and define relations between those concepts in textual form. To that end, they
use a freely available tool that produces a graph from textual descriptions. This tool dramatically
simplifies and speeds up the creation of readable graphical representations. Although many different
courses can take advantage of the presented activity, we present the activity’s application to an
introductory object-oriented programming course. We also present and discuss the student’s feedback,
which was highly positive. In the end, we provide recommendations, including possible variations.
These can help educators to effectively foster active learning of concepts and their relations in their
classrooms.

2012 ACM Subject Classification Social and professional topics → Computing education

Keywords and phrases active-learning, ontologies, concepts, concept maps, learning activity, object-
oriented programming, oop, pedagogy, education

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.7

Funding João Paulo Barros: This research was funded by Portuguese Agency FCT – Fundação
para a Ciência e a Tecnologia no âmbito da Unidade de Investigação CTS – Centro de Tecnologia e
Sistemas/UNINOVA/FCT/NOVA, com a referência UIDB/00066/2020.

1 Introduction

Programming courses emphasize practical problem-solving projects and coding exercises. At
the same time, students are exposed to and put to practical use a wide variety of interrelated
concepts. However, these concepts often need additional and adequate emphasis to counter
the risk of a shallow understanding of them and their mutual relations. One way is to
promote active reflection and discussion about those concepts and their connection in class.
This experience report presents a learning activity that fosters conceptual thinking to counter
surface learning and promote deep learning about concepts identified as necessary for the
course’s intended learning outcomes (e.g., [12]). To that end, the teacher identifies a set of
concepts and challenges the students to create their concept maps by establishing significant
relations between those concepts in a (graphical) concept map. Here, the concept map is
seen as a simplified ontology, as it also forces students to investigate and learn the meaning
of the concepts to describe their mutual relations, thus achieving a simultaneously specific
and holistic understanding of them. However, as formal descriptions of concepts and their

© João Paulo Barros;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 7; pp. 7:1–7:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joao.barros@ipbeja.pt
https://orcid.org/0000-0002-0097-9883
https://doi.org/10.4230/OASIcs.ICPEC.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

mutual relations, ontologies are often exhaustive, hence quite complex, and around a specific
area. Therefore, the respective reference tools are also complex (e.g., [21]) and do not
provide a quick and straightforward way to build even simple ontologies. Here, we propose a
learning activity using simple textual language to describe relations between concepts, from
which a graphical representation is automatically generated. This is very significant for the
activity’s effectiveness, as we have observed that this fact generates a subtle but effective
wow effect that promotes engagement and motivation around a topic that can easily be seen
as uninteresting, unimportant, or both.

The tool that allows the graphical representation is freely and readily available on the
web with no need to install software locally: it can be used on any machine where a browser
is available, including mobile devices [6, 4, 5]. The activity was applied in an introductory
course on object-oriented programming, a subject matter where students struggle with
numerous complex and strongly interconnected concepts. Although the tool’s nature could
probably make it more attractive to computer science students, its ease of use suggests that
it can be suitable for any topic, even outside computer science.

In the following section, we give the background and motivation for the key concepts,
namely ontologies, concept maps, and their relation to the reported activity. Section 3
presents related work, and Section 4 the context where the activity was applied. Section
5 details how the activity was conducted and includes some lessons from our experience
applying similar activities. Section 6 presents and discusses the observed outcomes based on
in-class observation and a student survey. Finally, Section 7 provides several recommendations
allowing possible activity variants and concludes.

2 Background and Motivation

An ontology is a concept with its origins in Philosophy, where it was “coined in 1613,
independently, by two philosophers, Rudolf Göckel (Goclenius) in his Lexicon philosophicum
and Jacob Lorhard (Lorhardus) in his Theatrum philosophicum” [23]. It seeks a definitive
and exhaustive classification of entities, including the types of relations that tie them.

From an engineering perspective, ontologies are design artifacts used to describe knowledge
and support knowledge-sharing activities. In this sense, their use in several areas became a
trend, as testified by the many articles citing seminal work (e.g., [7] with more than thirteen
thousand citations). Ontologies gained such widespread popularity that they are now defined
in an international standard for vocabulary in systems and software engineering: “ontology.
(1) logical structure of the terms used to describe a domain of knowledge, including both the
definitions of the applicable terms and their relationships (ISO/IEC/IEEE 24765i:2020)” [11].

The above definition includes the need to define the applicable terms. Hence, in brief, an
ontology becomes a set of defined terms and their (defined) relationships.

The term “ontology” is not as common in the education literature as “concept maps,”
“concept mapping,” or even “knowledge map”. In 2006, Nesbit and Adosope [18] estimated
that “(...) more than 500 peer-reviewed articles, most published since 1997, have made
substantial reference to the educational application of concept or knowledge maps.” This may
be related to the genesis of “concept mapping,” as it has emerged “inside” education research,
namely to study changes in students understanding of science concepts along twelve years
of schooling [19]. However, concept maps, although not so formally defined and discussed,
can be seen as a simple way to create ontologies where the “concepts” are the “terms” and
the “map” establishes the “relationships” among “concepts.” In our reported activity, the
used “concept maps” are more straightforward and shorter because the definitions for the
“concepts” are not mandatory. However, students must still know enough about each concept
to create meaningful relations among them.

J. P. Barros 7:3

More significant for our work is the fact that “conceptual mapping” is an effective learning
activity: the already cited meta-analysis by Nesbit and Adosope [18] concluded that “(...) in
comparison with activities such as reading text passages, attending lectures, and participating
in class discussions, concept mapping activities are more effective for attaining knowledge
retention and transfer.”

By promoting deep learning of concepts, our reported activity can easily allow for the
identification of students’ misconceptions, a common topic in the literature (e.g., [14],[13],[22])
and provide a basis for a new form of “misconception-driven-feedback” [8]. In [14], formal
interviews were used to identify misconceptions; in [13], the objective was to validate a
methodology for building a concept inventory dedicated to OOP; in [22], multiple-choice-based
questions were used to identify misconceptions. The activity we report in this paper allows a
quick, in-class, collaborative identification of misconceptions in any domain or subdomain
with the added anecdotal benefit of directly promoting learning and being more engaging than
a traditional assessment element such as a multiple-choice or oral exam. Additionally, the
reported activity also provides a tool for assessing and identifying incomplete and inconsistent
student mental models, another significant problem (e.g., [17]).

While promoting critical and conceptual thinking, the created concept maps also offer
an index and a structured map of the concepts students have to know and apply. Hence,
they provide a “structural view” (concepts and relations) that complements the “behavioural
view” (coding), where students spend most of their time.

Finally, students creating relations between concepts can also be seen as a direct applica-
tion of constructivism, a theory of learning that claims that students construct knowledge
rather than merely receive and store knowledge transmitted by the teacher[2].

3 Related Work

In a literature survey on the use of ontologies in education, the authors identify numerous
uses, but primarily for describing learning domains [24]. Surprisingly, the authors go to the
point of asserting that “While developing ontologies, one must use a programming language.”
Thus, they somehow impose the use of computer support for creating ontologies. They
identify several types of ontologies and the methodologies used to define them. The authors
also present an overview of existing systems that use ontologies in the education domain. In
that context, it is easy to find papers proposing ontologies for one or more domains in the
education area. In the area of programming, one focus is the languages themselves (e.g., [15]).

Also, there are numerous cases of using concept mapping and concept maps as part
of learning activities (e.g., [1]). However, it is important to stress that concept map is
a term nowadays usually associated with the work by Novak in the 70s (e.g., [25]) for a
specific method to represent knowledge by relating concepts. More specifically, “concepts
are arranged hierarchically with the most general, most inclusive concept at the top, and
the most specific, least general concepts toward the bottom.” (in [20]). Novak and Cañas
claim that “Concept mapping was invented in 1972”. However, it seems clear that concept
mapping can be seen as part of what an ontology is, as presented in the previous section:
“classification of entities including also the types of relations that tie those .”In fact, we also
used the name “concept map” to better explain to students what they were going to create:
they map concepts to other concepts to build a simple ontology. We also alert them that, in
the literature, the name “concept map” is frequently used for a specific way to map concepts.

Unlike previous works, our approach is based on a freely available tool that automatically
generates graph layouts from textual descriptions. This automation streamlines the creation
of concept maps, increasing student engagement and motivation. Additionally, automatic
graph layout generation from text is a compelling topic in itself, particularly for computer

ICPEC 2024

7:4 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

science students, some of whom have expressed interest in applying the tool across courses.
We provide detailed instructions and variations for the activity, enabling teachers to adapt it
to various contexts.

4 Context

The reported activity was applied in 2022/2023 in an introduction to object-oriented pro-
gramming course. The course is offered in the second semester of a three-year computer
science bachelor’s degree program at a small university with around three thousand students
in total, of which around two hundred are in the computer science program. It is a second
course on programming as the students already have a first course in the first semester.
However, students may have failed the first course and still try to do the second, as allowed.
The present article reports the activity conducted with the students in the 2022/2023 course
edition. This activity already integrated some lessons learned in previous applications of
similar activities in 2021/2022. These lessons are presented in Subsection 5.2.

5 Concept map creation activity

This section describes the activity as applied in the 2022/2023 course edition. As already
stated, this incorporates lessons learned in previous applications in 2021/2022, which were
briefly reported elsewhere [anonymized]. This first subsection should provide enough infor-
mation to allow educators to reproduce the activity in their courses. The second subsection
presents lessons learned from the 2021/2022 edition that motivated some changes in the
2022/2023 edition.

5.1 Application
The reported activity was designed and applied as an in-class face-to-face activity. Neverthe-
less, with minimal modifications, it can surely be applied in synchronous remote classes and,
with minor changes, even as an asynchronous remote activity. The activity steps were the
following:
1. The motivation for the activity is explained to the students, namely the importance of

learning the concepts and their relations;
2. The GraphViz online tool [6, 4, 5] is briefly presented by explaining the given base

description and how it quickly and automatically generates the respective graph; the set
of concepts related to previously studied contents are presented as nodes in the graph;
the syntax to define relations between concepts is also exemplified;

3. Each student is given 20 minutes to create a graph relating concepts that, for the sake of
simplicity, we call a “concept map”;

4. Each student gets together with another colleague to create an improved concept map;
another 20 minutes are given;

5. Each pair of students gets together with another pair to create an even better concept
map; each group is given an additional 20 minutes to create an improved concept map;

6. Each group of four publishes, in a shared document, the resulting concept map for all to
see;

7. The teacher presents and discusses with the class one or more of the shared concept maps.

In step (1), the teacher notes that students have already used and applied numerous
concepts that should be better understood. To that end, they must search for and relate the
definitions, thus creating their own concept map. In this way, they should better understand

J. P. Barros 7:5

those concepts and their mutual relations. Regarding step (2), the teacher presents a slide
with the link and the respective QR code to the start graph in the online tool (see Fig. 1).
The graph layout automatically generated is presented in the center of the slide. A giant
QR code (omitted in the figure) is presented to facilitate students accessing the start graph
in the online web tool. The concepts to be related are already presented in the context
of the tool to be used, more specifically in the listing on the left side of the slide in Fig.
1. For readability purposes, the listing is also presented after the figure. In this example,
the specified graph is directed (digraph) (arcs are “one side arrows”). Nodes are shaped
like ellipses. Those nodes are the concepts the students should relate: value, variable,
constant, ..., operator. Then, four examples of arcs are also presented. As the syntax
is straightforward, for each new relation, students only have to copy and paste one of the
lines 22 to 25 and change the node names and the parameter label to assign the intended
meaning to the relation.

Start from the graph in https://linkTostartGraph and add the relations you
find adequate between the concepts already there.

What are we going to do?

QR Code

Figure 1 Introductory slide.

1 digraph G {
2 { node [shape=ellipse]
3 value
4 variable
5 constant
6 function
7 procedure
8 method
9 class

10 object
11 parameter
12 formal parameter
13 actual parameter
14 expression
15 type
16 primitive type
17 data type
18 operand
19 operator
20 }
21 // to correct and complete
22 class -> object [label = "source_of"]
23 parameter -> class [label = "has_a"]
24 value -> value [label = "uses"]
25 procedure -> function [label = "is_a"]
26 }

ICPEC 2024

7:6 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

Fig. 2 presents the graph layout generated from the description. It shows the concepts as
graph nodes (ellipses) and the four relations as directed arcs.

Figure 2 Start graph layout.

The concepts are nodes in the dot description language, and, in the end, a set of four
relations is presented. These are guaranteed to be syntactically correct but not semantically,
as students are asked to correct and complete them. For example, in line 27 of the presented
list, a procedure is (wrongly) defined as being a function. The teacher exemplifies how
students can quickly create new relations by copying and pasting one of the relations in
the last lines of the listing and changing the names. Next, the teacher follows the link and
exemplifies some changes to the graph description so that students can see the immediate
generation of the graph layout.

In steps (3), (4), and (5), the 1-2-4-all method [16] is applied to guide students in
producing their concept maps: first individually, then in pairs, and finally in groups of four,
students create graphs that relate the given concepts, thus creating their concept maps that
are then shared with all. From our experience, it is essential to briefly explain the four
method stages, with the help of a slide (see Fig. 3), and also that students know, all the
time, the stage they are in (individual, pairs, or groups of four). For that reason, one slide
with a countdown timer is used for each stage. Fig. 4 shows the slide for the first stage (the
individual work one). It also includes a link to the shared document and the start graph.

20 minutes

Individual

Step

Group of 2 Group of 4 Publish

20 minutes 20 minutes

Figure 3 Slide for presenting the 1-2-4-all method to students.

Individually create a concept map
that relates the concepts in
linkToStartGraph (moodle). You
have 20 minutes to make your map

https://linkToStartGraph
Where to create it QR Code

QR Code

https://linkToSharedDocument

Feedback in shared document

Figure 4 First stage slide.

J. P. Barros 7:7

Next, in step (6), each group shares (anonymously if they prefer) the result with the class
in an online document. This document remains accessible as the result of the class activity
and can be consulted any time after, in, or outside class.

Finally, in step (7), the teacher chooses one or more concept maps and discusses their
contents with the class.

5.2 Lessons learned and practicalities
Preliminary versions of the presented activity were applied in the 2021/2022 academic year,
together with a closely related activity: the presentation of a ready-made concept map. From
those applications, some observations were made, and some lessons were learned:

With no rule for collaboration, most students were quite individualistic, and collaboration
was minimal;
One student complaint they had too much time alone to create the concept map;
Besides the tool’s simplicity, some students asked for a brief explanation of its functioning;
Some students asked for an exemplary concept map made by the teacher to be studied
after the activity.

The activity here reported already incorporated the following strategies to answer the
above points: regarding (1) and (2), students now start individually but then proceed in
pairs and groups of four; regarding (3), the teacher gave a brief explanation about how to
use the tool; regarding (4), the teacher provided an exemplary concept map after the activity.
The following section presents the results of the reported activity as applied in the academic
year 2022/2023.

6 Observed outcomes

This section presents the results as students’ perceptions. These were collected in two ways:
(1) in class, along the activity, students were randomly and informally asked about their
opinions, and the teacher observed their performance; (2) a post-class questionnaire was
applied to all 70 students in the activity and 42 students responded.

6.1 In-class observation
No significant difficulty was observed throughout the class, as no student felt impeded from
proceeding. There were just a few questions about what was allowed as relations, primarily
due to a lack of attention to the initial explanation and because some students wanted to
create additional types of relations, e.g., using bidirectional arcs. Most students were very
engaged, and one reason was the wow factor associated with observing the automatic graph
layout generation after each change in the textual description.

Students vocalized a few opinions along the activity execution that we list next:
For learning, it is also useful to compare the created concept maps with other concept
maps at the end of the activity; only the creation would be insufficient;
To see an exemplary solution would be very useful;
One previous solution is not so useful, but it can be helpful to better understand what
the objective is.

As students were given the possibility to create new relations (new labels in arcs), most
did it. At the end of the class, the teacher’s perception was that all students had found the
activity very positive and helpful.

ICPEC 2024

7:8 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

6.2 Student Survey
After the classes, all 70 participating students were invited to fill out a short questionnaire.
We got 42 answers: 30 were first-time students, and 12 were repeating students. In an online
questionnaire, they were asked to grade the following four assertions on a scale from 1 (totally
disagree) to 10 (totally agree):
1. “It is useful to see and discuss a concept map in class.”;
2. “It is helpful to have concept maps for studying outside class.”;
3. “Concept maps with other sets of programming concepts can help understand them

better.”;
4. “The concept map was asked to be done in three sequential steps: individually, in pairs,

and groups of four. That method is something to repeat.”.

The survey results are presented as stacked bar charts in figures 5a, 5b, 6a, and 6b.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

1
2

1

8

1 3 5 7 5
1

8

First time
Repeating

(a) Results for the assertion “It is useful to see
and discuss a concept map in class.” 1-totally
disagree to 10-totally agree.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

1 1 2 1

7

1 3 1
4 4 4 4

1

8

First time
Repeating

(b) Results for the assertion “It is helpful to
have concept maps for studying outside class.”
1-totally disagree to 10-totally agree.

Figure 5 Grading usefulness and helpfulness.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

1
1

1

9

1 3 2
6

9

1

8

First time
Repeating

(a) Results for the assertion “Concept maps
with other sets of programming concepts can
help understand them better.” 1-totally disagree
to 10-totally agree.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1
1 1

1 2

1

5

1 1 1 1
3 3

5 5
2

8

First time
Repeating

(b) Results for the assertion “The concept map
was asked to be done in three sequential steps:
individually, in pairs, and in groups of four.
That method is something to repeat.” 1-totally
disagree to 10-totally agree.

Figure 6 Other concepts and process.

In all four, the most frequent answer was “totally agree.” Also, there is a clear agreement
with all four assertions. Students’ opinions varied more regarding the usefulness outside class
but still had a very high level of agreement: only 10 in 42 graded it between 1 and 5.

J. P. Barros 7:9

Regarding the fourth assertion, about the applied method, two students answered “totally
disagree”: as made clear in their open answers, the first-time student stated a preference
for an unrestricted number of students in the groups; the repeating student mentioned a
timetable overlap with another class, a clearly unrelated motif.

In the same survey, students were also given the (optional) opportunity to leave some
free comments about the activity. Next, we list the comments:

“In my opinion, all the results obtained should be discussed to take the best possible
advantage.”;
“I think it’s a very good method, it helps a lot those who do not feel very comfortable in
the area to become more interested.”;
“Do more activities in class to encourage students to interact with each other.”;
“I think we should have more similar classes, we really lack communication in the classroom,
and group classes bring a different dynamic to the classes and to our own way of learning.”;
“It would be important for the teacher to show a map made by himself in order to be
able to compare the maps developed by the students.”;
“It’s great. We should do it more often.”.

The main suggestion by students was for the teacher to make available an exemplary
solution so that they could compare it with their own. This is probably due, at least in part,
to the fact that this is not an exercise that they can “run” and check if it is correct, as they
are used to when programming.

Next, we present some main recommendations, most of which are optional additional
steps in the activity application.

7 Limitations

The current study has several limitations that should be acknowledged. First, the sample
size was relatively small, with only 30 first-time and 12 repeating students participating in
the study. These numbers may limit the generalization of the results, as the sample may
not be representative of the broader student population. Additionally, a long-term follow-up
assessment is needed to determine the sustained impact of the proposed activity on students’
learning outcomes. Future research should replicate this study with a more extensive and
diverse sample and incorporate long-term follow-up assessments to evaluate the enduring
effects of the activity.

8 Recommendations and Conclusions

The reported activity was applied in two 100-minute classes. However, with more class
time or reducing the time for each stage, several additional sub-activities can be conducted
to boost the activity objective. Here, we list the ones we have identified as potentially
interesting. Some result from additional reflection after applying the reported activity and
listening to students’ opinions. Others were identified initially but left out due to timing
constraints. In any case, the addition of one or more of the presented sub-activities will
probably promote the activity objective. Time seems to be the only significant restriction to
their application. Next, we present the identified sub-activities grouped in three contexts: (1)
before the class where the activity will take place; (2) during the activity itself; (3) after the
presented in-class activity, but still in class; (4) as autonomous work, after the class where
the activity took place.

ICPEC 2024

7:10 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

1. Before the class where the activity will take place
Videos about concepts. Make available one or more videos about the concepts and

reward comments students make to those videos or to the colleague’s comments. A
platform like VideoAnt [9, 3], or a simple online forum for this specific task can support
this ;

Videos about GraphViz online tool. If more sophisticated relations are going to be
asked, then one or more tutorial videos about the GraphViz online tool and the
dot language may also be made available before the in-class activity;

Initial quiz. Answering some questions about the concepts before the activity can be
useful for the teacher as a diagnostic assessment and for the students as a formative
assessment;

Individual stage before class. The individually created concept map can be done as a
pre-class exercise, leaving class time for group work and thus increasing collaboration
time;

Exemplary concept maps. To better clarify the intended activity object and objective,
one or more exemplary concept maps relating different but well-known sets of concepts
can be given in advance;

2. During the activity itself
Add concepts’ definitions. Strictly speaking, each ontology should include the concepts’

definitions; here, we assumed students searched those definitions so that they could
relate them, but we did not mandate them to include those definitions; however, this
can be easily achieved by adding, in the dot description, links to webpages containing
the student’s definition of each concept;

Closed set of relations. Instead of letting students create new relation types, students
may be asked only to use the given set of relations types; this has the advantage
of allowing an easier measuring of outcomes, which can also simplify comparability
and grading; in fact, the use of distinct and closed sets of relations and concepts can
provide a useful formative assessment tool based on the observation and recording of
students doubts, difficulties, and achievements;

3. After the presented in-class activity, but still in class
Public presentation. After the groups publish their ontology in the shared space, a

speaker from each group can be asked to present the group’s work;
Comments on the presentations After each presentation, all the students and the

teacher can provide comments and discuss the merits and pitfalls of the presented
ontology, thus providing an additional opportunity for clarification and discussion;

Improvement after presentations. The groups can be allowed to improve their concept
maps based on the received comments from all students and the teacher; the comments
can be oral or written, and their quality graded by the teacher or students as a reward
and incentive;

End of activity quiz. Especially if an initial quiz was done, an end-of-activity quiz can
be useful for the teacher and for the students as a formative assessment to answer some
questions about the concepts and compare the result with those in the initial quiz;

Discussion about an exemplary concept map The teacher presents and discusses a con-
cept map of his own with the students.

4. As autonomous work, after the class where the activity took place
Commenting a concept map. After the synchronous class, the teacher makes available

a concept map of his/her authorship for the trainees to comment on; this can be
supported by a specific tool (e.g., [10]) or by an online forum.

J. P. Barros 7:11

In the reported experience, the presented activity was perceived as valuable by the
students and the teacher as a way to actively foster the deep learning of concepts and their
relations in an introductory object-oriented programming course. Using a free online tool to
automatically generate graph layouts significantly accelerated and simplified the creation of
the graphical representation and promoted engagement. Its simplicity should allow the use
of the activity in many other courses, including outside computer science.

References
1 Olusola O. Adesope and John C. Nesbit. A Systematic Review of Research on Collab-

orative Learning with Concept Maps, pages 238–255. Handbook of Research on Collab-
orative Learning Using Concept Mapping. IGI Global, Hershey, PA, USA, 2010. doi:
10.4018/978-1-59904-992-2.ch012.

2 Mordechai Ben-Ari. Constructivism in computer science education. In Proceedings of the
Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’98,
pages 257–261, New York, NY, USA, 1998. Association for Computing Machinery. doi:
10.1145/273133.274308.

3 Digital Education and Innovation, College of Education and Human Development, University
of Minnesota. Videoant, 2023. Available at https://ant.umn.edu/, accessed on 2023/08/15.

4 John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gordon Woodhull.
Graphviz— open source graph drawing tools. In Petra Mutzel, Michael Jünger, and Sebastian
Leipert, editors, Graph Drawing, pages 483–484, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

5 Emden R. Gansner and Stephen C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience, 30(11):1203–1233,
2000. doi:10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N.

6 Graphviz online, 2022. Available at https://dreampuf.github.io/GraphvizOnline/, accessed
on 2023/08/17.

7 Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing? International Journal of Human-Computer Studies, 43(5):907–928, 1995. doi:
10.1006/ijhc.1995.1081.

8 Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. Misconception-driven
feedback: Results from an experimental study. In Proceedings of the 2018 ACM Conference
on International Computing Education Research, ICER ’18, pages 160–168, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3230977.3231002.

9 Bradford Hosack. Videoant: Extending online video annotation beyond content delivery.
TechTrends, 54(3):45–49, May 2010. doi:10.1007/s11528-010-0402-7.

10 Hypothesis, Inc. Hypothesis, 2023. Available at https://web.hypothes.is/, accessed on
2023/08/15.

11 ISO/IEC/IEEE 2017. Systems and software engineering – Vocabulary. Standard
ISO/IEC/IEEE 24765, International Organization for Standardization, Geneva, CH, 2017.
URL: https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_
IEEE_24765_2017.zip.

12 Gregor Kennedy John Biggs, Catherine Tang. Teaching for Quality Learning at University.
McGraw Hill, 5 edition, 2022.

13 Henry Julie, Dumas Bruno, Heymans Patrick, and Leclercq Tony. Object-oriented programming:
Diagnosis understanding by identifying and describing novice perceptions. In 2020 IEEE
Frontiers in Education Conference (FIE), pages 1–5, 2020. doi:10.1109/FIE44824.2020.
9273990.

14 Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman. Identifying
student misconceptions of programming. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education, SIGCSE ’10, pages 107–111, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1734263.1734299.

ICPEC 2024

https://doi.org/10.4018/978-1-59904-992-2.ch012
https://doi.org/10.4018/978-1-59904-992-2.ch012
https://doi.org/10.1145/273133.274308
https://doi.org/10.1145/273133.274308
https://ant.umn.edu/
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://dreampuf.github.io/GraphvizOnline/
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1007/s11528-010-0402-7
https://web.hypothes.is/
https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip
https://doi.org/10.1109/FIE44824.2020.9273990
https://doi.org/10.1109/FIE44824.2020.9273990
https://doi.org/10.1145/1734263.1734299

7:12 Promoting Deep Learning Through a Concept Map-Building Collaborative Activity

15 Ming-Che Lee, Ding Yen Ye, and Tzone I Wang. Java learning object ontology. In Fifth IEEE
International Conference on Advanced Learning Technologies (ICALT’05), pages 538–542,
2005. doi:10.1109/ICALT.2005.185.

16 Henri Lipmanowicz and Keith McCandless. 1-2-4-all – liberating structures including
and unleashing everyone, 2023. Available at https://www.liberatingstructures.com/
1-1-2-4-all//, accessed on 2023/08/15.

17 Syeda Fatema Mazumder. Investigating the role of explanative diagrams as a representation
of notional machine on a novice programmer’s mental model. In Proceedings of the 17th ACM
Conference on International Computing Education Research, ICER 2021, pages 409–410, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3446871.3469775.

18 John C. Nesbit and Olusola O. Adesope. Learning with concept and knowledge maps:
A meta-analysis. Review of Educational Research, 76(3):413–448, 2006. doi:10.3102/
00346543076003413.

19 Joseph D. Novak. Concept mapping: A useful tool for science education. Journal of Research
in Science Teaching, 27(10):937–949, 1990. doi:10.1002/tea.3660271003.

20 Joseph D Novak and Alberto J Cañas. The origins of the concept mapping tool and the
continuing evolution of the tool. Information Visualization, 5(3):175–184, 2006. doi:10.1057/
palgrave.ivs.9500126.

21 Protégé, 2020. Available at https://protege.stanford.edu/, accessed on 2023/08/17.
22 Vijayalakshmi Ramasamy, Mourya Reddy Narasareddygari, Gursimran S. Walia, Andrew A.

Allen, Debra M. Duke, James D. Kiper, and Debra Lee Davis. A multi-institutional analysis
of cs1 students’ common misconceptions of key programming concepts. In Maria Virvou,
George A. Tsihrintzis, Nikolaos G. Bourbakis, and Lakhmi C. Jain, editors, Handbook on
Artificial Intelligence-Empowered Applied Software Engineering: VOL.2: Smart Software
Applications in Cyber-Physical Systems, pages 127–144. Springer International Publishing,
Cham, 2022. doi:10.1007/978-3-031-07650-3_8.

23 Barry Smith. Ontology, chapter 11, pages 153–166. John Wiley & Sons, Ltd, 2004. doi:
10.1002/9780470757017.ch11.

24 Kristian Stancin, Patrizia Poscic, and Danijela Jaksic. Ontologies in education – state of
the art. Education and Information Technologies, 25(6):5301–5320, November 2020. doi:
10.1007/s10639-020-10226-z.

25 Ling Xu, Ming-Wen Tong, Bin Li, Jiang Meng, and Chen-Yao Fan. Application of concept
map in the study of computational thinking training. In 2019 14th International Conference
on Computer Science & Education (ICCSE), pages 454–459, 2019. doi:10.1109/ICCSE.2019.
8845505.

https://doi.org/10.1109/ICALT.2005.185
https://www.liberatingstructures.com/1-1-2-4-all//
https://www.liberatingstructures.com/1-1-2-4-all//
https://doi.org/10.1145/3446871.3469775
https://doi.org/10.3102/00346543076003413
https://doi.org/10.3102/00346543076003413
https://doi.org/10.1002/tea.3660271003
https://doi.org/10.1057/palgrave.ivs.9500126
https://doi.org/10.1057/palgrave.ivs.9500126
https://protege.stanford.edu/
https://doi.org/10.1007/978-3-031-07650-3_8
https://doi.org/10.1002/9780470757017.ch11
https://doi.org/10.1002/9780470757017.ch11
https://doi.org/10.1007/s10639-020-10226-z
https://doi.org/10.1007/s10639-020-10226-z
https://doi.org/10.1109/ICCSE.2019.8845505
https://doi.org/10.1109/ICCSE.2019.8845505

Scientific Whispers: Mapping Innovative
Pedagogies in STEAM and Programming
Education
Margarida Antunes #

Polytechnic University of Coimbra, Portugal

António Trigo1 #

Polytechnic University of Coimbra, Portugal
CEOS.PP, ISCAP, Polytechnic of Porto, Portugal

Abstract
Traditional education, especially in STEAM and programming, faces several challenges in capturing
the attention and stimulating the new student generation. These challenges are exacerbated by
rigid teaching methods and reflect a global difficulty in the educational sector, primarily stemming
from the disconnect between traditional teaching and the contemporary needs of the modern world.
This article presents a systematic literature review with a mapping study to explore innovative
approaches currently employed in teaching, specifically focusing on STEAM and programming
education. The conclusions reached make a significant contribution to the field of education, and the
mapping conducted has identified the teaching methodologies most researched and investigated by
the scientific community. This research also presents a classifying proposal for those methodologies,
considering their characteristics and weighing up three dimensions: resources, implementation and
receptiveness. As a final reflection, some emerging methodologies were identified that are believed
to have great potential to be used for STEAM and programming education.

2012 ACM Subject Classification Applied computing → Education; Software and its engineering →
General programming languages

Keywords and phrases Education, STEAM Education, Programming Education, Teaching Method-
ologies, Innovative Approaches, Mapping, Systematic Literature Review

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.8

Acknowledgements A special acknowledgment is extended to the reviewers, for their diligent analysis,
which has greatly contributed to enhancing not only this work but also the more comprehensive
project currently under development.

1 Introduction

Traditional education has experienced several challenges over the years. With the mas-
sification of new technologies and the transition to the digital age, there have been many
challenges for the education sector to capture the attention and motivate new generations,
who are increasingly in need of digital contact and simplification of long and time-consuming
procedures. The majority of today’s university students belong to generation Z [3, 16], a
group strongly characterized by the presence of the internet and who have a greater command
of technology than previous generations, with whom they are closely linked [14]. They
are fans of practicality, independent and self-taught, digital natives [14], always connected,
a hyper-cognitive generation with the ability to experience several realities at the same
time, although their attention span is very short as they are used to get quick answers. In
the academic environment, these students are looking for an experience as similar as their

1 Corresponding author

© Margarida Antunes and António Trigo;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 8; pp. 8:1–8:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a2022159402@alumni.iscac.pt
https://orcid.org/0009-0006-3960-0304
mailto:antonio.trigo@gmail.com
https://orcid.org/0000-0003-0506-4284
https://doi.org/10.4230/OASIcs.ICPEC.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Mapping Innovative Pedagogies in STEAM and Programming Education

personal environment, with high interactivity and fluidity of processes, combined with new
technologies. They prefer to learn in a more autonomous and flexible way, where they are
allowed to experiment without there always being an associated punitive nature [19, 13].

The overall difficulty experienced in teaching is mostly related to the disconnection
between traditional teaching and the needs of the modern world. In recent decades, there
have been few real changes in teaching methodologies and approaches, which remain deeply
rooted in the educational system, which has not been able to evolve at the same vertiginous
speed as today’s world and, with it, students. Consequently, the stagnation of teaching
methodologies has caused strong demotivation and hindered the full learning of 21st century
students. Often based on unidirectional methods and the memorization of information [4],
traditional teaching thus faces the challenge of combining with new technologies to compete
for the attention of the younger generations, by seeking to simplify procedures and create
more dynamic contexts adapted to the needs of students in the modern world [7].

The new technologies have proved to be the greatest allies in the renewal of teaching,
particularly in the STEAM fields (acronym for Science, Technology, Engineering, Arts and
Mathematics), by enabling the creation of differentiated and innovative teaching strategies.
They provide greater personalization, flexibility and adaptation to the individual needs of
students. With digital platforms and educational applications, teaching can be more flexible
and will allow students to progress at their own pace and have access to additional resources
to help them deepen their knowledge [9].

Programming teaching is considered by Caspersen and Bennedsen [2] to be one of the
seven great challenges of computer education. There are various theories around the factors
considered essential in effective education, such as providing feedback, organizing tasks by
level of complexity, creating personalized content [5] or offering real-time student support
[20]. Over time, there has been a perception among students that the methodologies used
in traditional teaching were useless and boring, and teachers have tried to introduce new
pedagogical approaches to reverse this impression. Despite these initiatives, students maintain
a general feeling of demotivation [5].

In view of the challenges faced by traditional programming teaching, the main aim of
this work is to carry out a Systematic Literature Review (SLR), mapping recent studies, to
identify innovative methodologies and pedagogical approaches that have been recommended,
analyzed and developed to improve programming teaching and that allow students to be
truly involved in learning and overcome the real teaching difficulties.

This article is organized into four sections. The first section introduces the topic and
defines the study’s objectives. The second section outlines the research methodology, including
the formulation of the research question, the chosen research strategy, and the results of
the literature review, which maps both quantitative studies and catalogued data to provide
an overview of the current state of the art and scientific contributions related to innovative
educational methodologies or approaches. The third section analyzes the results and includes
a proposal for classifying the most researched methodologies based on their characteristics.
Finally, the fourth section presents the study’s conclusions and discusses future work, including
recommendations for further research.

2 Methodology

In line with the general objective described and the motivations associated with the develop-
ment of this research, a Systematic Literature Review (SLR) was conducted to identify and
evaluate scientific production relevant to the topic under analysis and to synthesize existing

M. Antunes and A. Trigo 8:3

research, providing essential information for further studies. This work follows the guidelines
of Kitchenham [10], which emphasize the importance and advantages of SLRs and establish
a clear, easily reproducible, and highly efficient procedure for conducting them [11, 21].

Research question

It is essential to understand the distinction and interconnection between different levels of
pedagogical instruments: educational approaches, teaching methodologies, techniques and
tools, and technological applications [6]. Grasping these interconnected concepts is crucial for
developing pedagogical practices that are both theoretically sound and practically effective.
However, for this research, given the common use of the term “methodology” in educational
contexts (where it encompasses any instrument related to pedagogical practices), the terms
“methodologies” and “approaches” are employed broadly, without differentiation between the
various pedagogical instruments.

The following research question (RQ) was formulated for this research:
RQ: What innovative methodologies and pedagogical approaches have been identified, tested

and developed to improve programming education?

Search strategy

Considering the scale of the subject under analysis, a different approach to defining the
search string was considered. A strategy of identifying relevant or related keywords was
chosen through a bibliometric analysis in VOSviewer. This analysis facilitated the study of
the word network associated with the main terms and allowed for the refinement of search
filters in a more rigorous way. Therefore, a broader search was conducted in the Scopus
database, with the following string:

TITLE-ABS-KEY ((programming OR stem OR steam) AND (education* OR teach*
OR learn* OR classroom OR school) AND (methodology))

The file containing the 10744 results was exported, including information on the abstracts
and keywords. Words with at least 35 occurrences were considered in VOSviewer. Upon
analyzing the word network obtained, it became evident that additional relevant or related
words needed to be included, while certain terms like “covid” and “data mining” needed to
be excluded, since they largely hidden the real results that were intended to be achieved.

The base search string was readjusted as follows:
TITLE-ABS-KEY ((new OR novel* OR innovat*) PRE/0 (method* OR approach*)

AND (programming OR stem OR steam) AND (education* OR teach* OR learn* OR
classroom OR school OR pedagog*)

This search string includes terms such as “method”, “methodology”, or “approach” because
these words are commonly used to refer to methodologies. Similarly, terms like “education”,
“teaching”, “learning”, “classroom”, “school”, or “pedagogy” were included, as any of these
can denote learning environments. The search targeted programming or STEAM disciplines.
Most terms in the search string carry the wildcard operator to encompass diverse variations
of each term (e.g., “education” or “educational” for the term “education*”). Regarding the
word “classroom”, it was decided to use the complete word instead of the broader term
(“class*”), as the latter returned too many articles related to programming classes. The
proximity operator ’PRE/0’ was employed between the terms associated with “innovative”
and those associated with “methodology” to ensure these words appeared sequentially and
in this exact order.

ICPEC 2024

8:4 Mapping Innovative Pedagogies in STEAM and Programming Education

The research exclusion criteria were directly applied to the terms intended for exclusion,
and the following condition was added to the base string:

AND NOT (“covid-19” OR “data-mining” OR “neural network*” OR “machine-learning”
OR “deep-learning” OR reinforce* OR algorithm* OR genetic OR clustering OR classification
OR optimization* OR graph* OR cybersecurity))

The research inclusion criteria were also incorporated: documents published in the last
5 years, restricted to articles and conference papers in the fields of Computer Science and
Engineering, written in English or Portuguese. These criteria were applied after the exclusion
criteria:

AND PUBYEAR > 2018 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE,
“ar”) OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO (SUBJAREA, “COMP”)
OR LIMIT-TO (SUBJAREA, “ENGI”)) AND (LIMIT-TO (LANGUAGE, “English”)
OR LIMIT-TO (LANGUAGE, “Portuguese”))

Results

The search string was used to query Scopus database in its “advanced search” mode, resulting
in 390 documents. A new analysis of the word network visualized in VOSviewer confirmed the
accuracy of our search targeting. Upon analyzing the documents retrieved from the Scopus
search, it was observed that 2023 had the highest scientific production on this topic, with 88
papers published, compared to 64 publications in 2021, indicating a noticeable upward trend
in the exploration of innovative teaching methodologies (Figure 1).

Power BI Desktop

Documents by Year

2019 2020 2021 2022 2023

81

88

64

80
77

Figure 1 Documents by year.

The three areas in which this research was most concentrated were Computer Science,
Engineering and Social Sciences. Leading contributors to scientific production in this field
included the United States, China, and Germany, with Portugal ranking eleventh based on
13 articles published in the last five years out of a total of 390 documents. Of these, 119
were scientific articles, and the remaining 271 were conference papers.

In the first analysis of the 390 documents, 9 duplicate articles were identified and excluded.
The analysis of the remaining 381 documents was based on the title, author keywords and
abstract fields, resulting in the exclusion of 124 documents deemed outside the scope of the
research. These documents covered topics such as oil well exploration, medicine, sustainability,
labor studies, and more specific topics like artificial intelligence and learning models, industrial

M. Antunes and A. Trigo 8:5

robotics, application programming interfaces (APIs), optimization and aerospace programs,
which were not considered teaching methodologies. This selection process yielded a first final
set of 257 papers.

The documents selected for a more in-depth analysis were categorized based on the follow-
ing criteria: type of research (literature review or case study), geographical scope (country
and continent; where not specified, author affiliation was used to determine geographical
context), educational setting (educational level where the study was conducted), curricular
area associated with each study, primary and additional subjects, and whether these subjects
could be considered as approaches or methodologies for teaching programming. The results
of this categorization are presented in Figures 2, 3, and 4.

Power BI Desktop

Documents by Type

238

19

Case Study

Literature

Figure 2 Documents by type.

Power BI Desktop

Documents by Geography

Europe America Asia Global/Unspecified Africa Oceania

94

66

50

35

7 5

Figure 3 Documents by geography.

It should be noted that the three countries with the highest number of studies were the
United States with 54, Spain with 14, and Germany with 10. Portugal conducted 5 studies
in this research.

ICPEC 2024

8:6 Mapping Innovative Pedagogies in STEAM and Programming Education

Power BI Desktop

Documents by Education Level

Higher Education Transversal/Unspecified Secondary Education Basic Education Professional Education

140

73

31

12

1

Figure 4 Documents by educational level.

The information regarding the school subjects is presented in Figure 5.

Power BI Desktop

Documents by School Subjects

Programming

STEAM

Engineering

Computer Science

Robotics

Transversal/Unspecified

Languages

Mathematics

Data Science/Analytics

Other

Architecture

Physical Education

85

62

44

25

9

9

7

5

4

3

2

2

Figure 5 Documents by school subjects.

Considering the main themes of the analyzed studies, while all may be relevant for
implementing significant improvements in the education system, it is significant to determine
whether each identified theme can attend as an approach or methodology in programming
teaching. Among the subjects identified in the 257 publications analyzed, 67 were deemed
unsuitable for implementation as innovative approaches to programming education and
were excluded. The five core subjects most frequently mentioned in these publications were
accessible/inclusive education, learning analytics, teacher development, ethics, and human
behavior.

M. Antunes and A. Trigo 8:7

The remaining 190 publications addressed core or additional subjects related to potential
teaching methodologies, techniques, or approaches. Figure 6 presents the most frequently
mentioned topics, based on the total number of occurrences across both core and additional
subjects.

Power BI Desktop

Top 10 Methodologies

Web-based learning

Educational robotics

Project-based learning

Problem-based learning

Integrative learning

Interactive learning

STEAM methodology

Game-based learning

Virtual laboratory-based learning

Gamification

Programming-by-demonstration

Simulation-based learning

30

24

22

15

13

12

10

9

8

7

7

7

Figure 6 Top 10 methodologies caption*.
* The figure displays twelve results, as the last three entries record the same number of occurrences.

There is a clear trend towards studying “web-based learning” pedagogical approaches,
which include the use of web-based platforms as educational resources. Some familiar terms,
such as “project-based learning” (which involves the development of projects as the basis of
learning), “problem-based learning” (where students learn by solving real-world problems), or
even the “STEAM methodology” (an integrated learning approach that requires an intentional
linking of rules, assessments, and the design and implementation of lessons between two or
more STEAM subjects to be taught, assessed in, and through each other) continue to be
investigated as pedagogical approaches that can create significant changes in teaching.

The synergy between curriculum areas is particularly noteworthy, especially with the
integration of “educational robotics” to enhance programming education. Equally significant
are methodologies related to the use of games in the educational context (“gamification” or
“game-based learning”), which are increasingly studied as innovative teaching approaches. Key
terms such as “outcome-based learning”, “augmented reality”, “block-based programming”,
“educational Internet of Things” (IoT), “intelligent tutoring systems” (ITS), “mobile-based
learning”, and “virtual reality”, along with other less frequently mentioned terms, were also
identified.

A special note on the following concepts: “agile teaching”, an educational approach that
applies agile principles widely used in industry, identified in papers [8, 18, 1]; “educational
escape rooms” (EER or DEER) [12, 17], an emerging concept linked with gamified or game-
based learning methodologies that introduces a potentially innovative teaching approach
known as “out-of-the-box learning”; and “work-integrated learning”, which incorporates
work-based training as an educational approach [15].

ICPEC 2024

8:8 Mapping Innovative Pedagogies in STEAM and Programming Education

Figure 7 illustrates the flowchart used for selecting the relevant articles for the SLR.

Results from Scopus with the given

search string

(n = 390)

Excluded by manual duplicate detection

(n = 9)

Unique results

(n = 381)

Exclusion of out of scope results based

on the title, keywords and abstract fields

(n = 124)

Unique results with relevant abstract

(n = 257)

Exclusion of articles based on the main

subject

(n = 67)

Unique results with relevant main

subject

(n = 190)

Figure 7 SLR workflow.

3 Discussion

The results obtained from literature mapping have enabled us to draw initial conclusions
regarding recent efforts focused on analyzing specific methodologies. Figure 6 illustrates the
methodologies or approaches identified most frequently in the studies analyzed.

Each methodology possesses unique characteristics, ranging from its objectives and
required resources or knowledge, to the time-frame for effective implementation, the additional
efforts educators need to invest for success, and its anticipated impact on students, among
other factors. These characteristics yield both advantages and disadvantages that must be
carefully assessed, as they significantly influence the choice of methodology to adopt.

A classification proposal of the main methodologies identified in Figure 6 is presented,
considering the characteristics that emerged from reading and analyzing the articles referring
to them. No additional studies have been conducted on specific approaches to classifying
the use of teaching methodologies. For this classification proposal, three dimensions were
considered: resources, implementation and receptiveness.

In the resources dimension, situations requiring additional infrastructures (technological
or otherwise) not typically found in standard educational settings were considered. This
dimension focuses on analyzing the potential impacts of costs (for developing or acquiring
these infrastructures) and support (such as the need for a specialized infrastructure support
team).

In the implementation dimension, which examines the actual application of the identified
methodology in real educational contexts, factors of difficulty and time were considered.
Difficulty refers to the level of challenge in implementing the methodology, such as interdis-

M. Antunes and A. Trigo 8:9

ciplinary requirements, collaborative efforts among teachers, or integration difficulties into
traditional curricula. Time indicates the expected implementation duration, whether the
methodology can be implemented immediately or requires a longer timeframe.

Lastly, the receptiveness dimension assesses the acceptance of the innovative methodology,
considering both the educator pillar (which examines additional challenges or those that
require greater efforts from teachers) and the student pillar (which reflects the motivation
with which students might embrace this methodology, particularly if it is deemed innovative,
disruptive, and aligns with their educational expectations).

For each of the six criteria mentioned, a scale of 1 to 5 was utilized, with 1 indicating
“very poor” and 5 indicating “excellent”. Figure 8 illustrates the ratings assigned to each
dimension and provides an overall score for each methodology.

Power BI Desktop

Top 10 Methodologies Classification

Resources Implementation Receptiveness Overall
ScoreMethodology Cost

Support

Difficulty

Time

Educator

Student

Web-based learning 3,00 3,00 4,00 4,00 3,00 4,00 3,50

Educational robotics 2,00 2,00 3,00 3,00 3,00 5,00 3,00

Project-based learning 4,00 4,00 3,00 4,00 3,00 4,00 3,67

Problem-based learning 5,00 5,00 3,00 5,00 4,00 3,00 4,17

Integrative learning 3,00 3,00 2,00 3,00 3,00 5,00 3,17

Interactive learning 4,00 5,00 4,00 5,00 3,00 3,00 4,00

STEAM methodology 2,00 2,00 2,00 2,00 3,00 5,00 2,67

Game-based learning 3,00 3,00 3,00 4,00 4,00 5,00 3,67

Virtual-laboratory based learning 1,00 2,00 3,00 3,00 3,00 5,00 2,83

Gamification 3,00 3,00 3,00 4,00 4,00 5,00 3,67

Programming-by-demonstration 4,00 4,00 3,00 4,00 3,00 4,00 3,67

Simulation-based learning 2,00 2,00 3,00 3,00 3,00 5,00 3,00

Figure 8 Top 10 methodologies classification.

Through the analysis of the overall classification, we can observe that “problem-based
learning” and “interactive learning” are the two methodologies with the highest scores.
It is noteworthy that these methodologies do not require additional resources in such an
indispensable manner, and their ratings in this dimension are higher compared to other
methodologies, which influenced the final score. They are also methodologies that can be
implemented in less time and do not involve excessive implementation difficulties. However,
they are the most penalized in terms of receptiveness, considering, notably, their potentially
lower attractiveness to students.

On the other hand, upon analyzing from the student’s perspective, the methodologies
identified with the highest potential receptiveness and overall score were “gamification” and
“game-based learning”, followed by “integrative learning”. The methodologies “educational
robotics”, “STEAM methodology”, “virtual-laboratory based learning”, and “simulation-
based learning”, although they also score highly in student receptiveness, are the ones with
more penalizing indicators of additional resources.

From the implementation perspective, considering difficulty and time factors, the meth-
odologies that allow for more immediate implementation are “problem-based learning”,
“web-based learning”, and “interactive learning”, contrasting with “integrative learning” and
“STEAM methodology”, which pose greater implementation challenges.

ICPEC 2024

8:10 Mapping Innovative Pedagogies in STEAM and Programming Education

The methodology identified with the lowest overall score was “STEAM methodology”,
particularly impacted by its interdisciplinary nature, which involves the integrated teaching
of two or more STEAM disciplines. It requires significant additional resources, both in terms
of cost and support, and presents increased difficulties in implementing this interdisciplinary
approach.

This concludes the main objective of this study with the answer to the RQ: “What
innovative methodologies and pedagogical approaches have been identified, tested and
developed to improve the teaching of programming?”.

While the primary objective of this research has been achieved, it is important to
reflect on certain methodologies identified in the study. These methodologies, while not
the most frequently mentioned, are considered to have significant potential for future use
in programming education as emerging approaches. Figure 9 presents these methodologies,
classified with the same parameters as the previous ones.

Power BI Desktop

Emerging Methodologies Classification

Resources Implementation Receptiveness Overall
ScoreMethodology Cost

Support

Difficulty

Time

Educator

Student

Agile teaching 4,00 3,00 3,00 4,00 3,00 4,00 3,50

Digital educational escape rooms 3,00 3,00 3,00 4,00 4,00 5,00 3,67

Work-integrated learning 5,00 4,00 3,00 4,00 4,00 5,00 4,17

Figure 9 Emerging methodologies classification.

4 Conclusion

The problems affecting traditional teaching, especially in STEM (Science, Technology, En-
gineering and Mathematics), are a worldwide reality. This article conducts a systematic
literature review and mapping study focused on innovative methodologies or approaches
applied in the field of education, particularly in programming education. It is part of a larger,
more comprehensive research project that is currently nearing completion. The primary
objective was to identify methodologies that can support future research in this area.

The conclusions derived from this research provide significant contributions to the field
of education. The mapping conducted enabled the aggregation of studies into geographic
analyses, educational strengths, curricular areas, and themes addressed. In the quantitative
analysis, the methodologies with the highest number of occurrences in the articles were
mentioned, with particular emphasis on the top three: “web-based learning”, “educational
robotics”, and “project-based learning”.

A classification proposal for these methodologies was also presented, considering their
characteristics and weighting across the dimensions of resources, implementation, and re-
ceptiveness. From the analysis and classification of each methodology, it was concluded
that “problem-based learning” and “interactive learning” are the two methodologies with
the highest overall rating. They achieved consistent scores across all considered dimensions,
highlighting the practicality of their implementation. The methodology with the lowest
overall score was the “STEAM methodology”, primarily due to the challenges associated
with implementing interdisciplinary learning across various STEAM disciplines.

This research also enabled a final reflection on emerging methodologies that, while not
the most referenced, are believed to hold significant potential for future use in programming
education. These include pedagogical approaches such as “agile teaching”, “educational

M. Antunes and A. Trigo 8:11

escape rooms” (EER) or “digital educational escape rooms” (DEER) and “work-integrated
learning”. These methodologies should be considered for inclusion in new research efforts
that incorporate practical applications.

Considering the more extensive research that is still ongoing, the aggregate analysis of
this study has enabled the compilation of a comprehensive list of all teaching methodologies
mentioned in the publications obtained through our search strategy. Each methodology will
be accompanied by a brief description, chronological origin, and its main advantages and
disadvantages. This list will be made available in due course and upon completion, both as a
shared dataset and in a new publication.

The SLR presented in this article will also continue with a thorough reading of relevant
articles to identify additional findings.

As a suggestion for future work, new dimensions could be investigated for the classification
framework proposed, such as sustainability of the analyzed methodology or other relevant
considerations. Further research could explore existing classification methodologies that
might replace the proposed framework or potentially test the accuracy and effectiveness of
the proposed classification in real-world environments.

References
1 Paulo André Pimenta Aragão and Rogéria Cristiane Gratão de Souza. Scrum xperience: A

new approach for agile teaching. In Marcelo de Almeida Maia, Fabiano A. Dorça, Rafael Dias
Araújo, Christina von Flach, Elisa Yumi Nakagawa, and Edna Dias Canedo, editors, SBES
2022: XXXVI Brazilian Symposium on Software Engineering, Virtual Event Brazil, October 5
- 7, 2022, pages 134–142, New York, NY, USA, October 2022. ACM. doi:10.1145/3555228.
3555255.

2 Michael E. Caspersen and Jens Bennedsen. Instructional design of a programming course:
a learning theoretic approach. In Richard J. Anderson, Sally Fincher, and Mark Guzdial,
editors, International Computing Education Research Workshop, ICER ’07, Atlanta, GA,
USA, September 15-16, 2007, pages 111–122, New York, NY, USA, September 2007. ACM.
doi:10.1145/1288580.1288595.

3 I Dauksevicuite. Unlocking the full potential of digital native learners. Henley Business School,
2016.

4 Edward L. Deci, Robert J. Vallerand, Luc G. Pelletier, and Richard M. Ryan. Motivation and
Education: The Self-Determination Perspective. Educational Psychologist, 26(3-4):325–346,
June 1991. doi:10.1080/00461520.1991.9653137.

5 Darina Dicheva, Christo Dichev, Gennady Agre, and Galia Angelova. Gamification in education:
A systematic mapping study. Journal of educational technology & society, 18(3):75–88, 2015.
URL: https://www.j-ets.net/ETS/journals/18_3/6.pdf.

6 D. Randy Garrison. E-Learning in the 21st Century. Routledge, March 2011. doi:10.4324/
9780203838761.

7 Re’Shanda Grace-Bridges. Generation Z Goes to College. Journal of College Orientation,
Transition, and Retention, 25(1), January 2019. doi:10.24926/jcotr.v25i1.2919.

8 Hélia Guerra, Luís Mendes Gomes, and Alberto Cardoso. Agile approach to a cs2-based course
using the jupyter notebook in lab classes. In 2019 5th Experiment International Conference
(exp.at’19), Funchal (Madeira Island), Portugal, June 12-14, 2019, pages 177–182. IEEE, June
2019. doi:10.1109/EXPAT.2019.8876536.

9 Louise Hainline, Michael Gaines, Cheryl Long Feather, Elaine Padilla, and Esther Terry.
Changing students, faculty, and institutions in the twenty-first century. Peer Review, 12(3):7–
11, 2010.

10 Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004):1–26, 2004.

ICPEC 2024

https://doi.org/10.1145/3555228.3555255
https://doi.org/10.1145/3555228.3555255
https://doi.org/10.1145/1288580.1288595
https://doi.org/10.1080/00461520.1991.9653137
https://www.j-ets.net/ETS/journals/18_3/6.pdf
https://doi.org/10.4324/9780203838761
https://doi.org/10.4324/9780203838761
https://doi.org/10.24926/jcotr.v25i1.2919
https://doi.org/10.1109/EXPAT.2019.8876536

8:12 Mapping Innovative Pedagogies in STEAM and Programming Education

11 Barbara Kitchenham, Stuart Charters, et al. Guidelines for performing systematic literature
reviews in software engineering, 2007.

12 Tilman Michaeli and Ralf Romeike. Investigating students’ preexisting debugging traits:
A real world escape room study. In Nick Falkner and Otto Seppälä, editors, Koli Calling
’20: 20th Koli Calling International Conference on Computing Education Research, Koli,
Finland, November 19-22, 2020, pages 15:1–15:10, New York, NY, USA, November 2020. ACM.
doi:10.1145/3428029.3428044.

13 Diana G. Oblinger. The Next Generation of Educational Engagement. Journal of Interactive
Media in Education, 2004(1):10, May 2004. doi:10.5334/2004-8-oblinger.

14 Marc Prensky. Digital Natives, Digital Immigrants Part 2: Do They Really Think Differently?
On the Horizon, 9(6):1–6, January 2001. doi:10.1108/10748120110424843.

15 Lisa Romkey, Daniel Munro, Virginia Hall, and Tracy Ross. Evaluation of a Work-Integrated
Learning Program for Undergraduate STEM Outreach Instructors. In 2023 ASEE Annual
Conference & Exposition Proceedings. ASEE Conferences, 2023. doi:10.18260/1-2--43464.

16 Darla Rothman. A tsunami of learners called generation z, 2016.
17 Tatjana Sidekerskienė and Robertas Damaševičius. Out-of-the-Box Learning: Digital Escape

Rooms as a Metaphor for Breaking Down Barriers in STEM Education. Sustainability,
15(9):7393, April 2023. doi:10.3390/su15097393.

18 Rainer Telesko, Maja Spahic-Bogdanovic, Knut Hinkelmann, and Charuta Pande. A new
approach for teaching programming: Model-based agile programming (MBAD). In The 8th
International Conference on Information and Education Innovations, ICIEI 2023, Manchester,
United Kingdom, April 13-15, 2023, pages 13–18, New York, NY, USA, April 2023. ACM.
doi:10.1145/3594441.3594445.

19 Jean M Twenge. iGen: Why today’s super-connected kids are growing up less rebellious, more
tolerant, less happy–and completely unprepared for adulthood–and what that means for the rest
of us. Simon and Schuster, 2017.

20 Elena Verdú, Luisa M. Regueras, María J. Verdú, José P. Leal, Juan P. de Castro, and Ricardo
Queirós. A distributed system for learning programming on-line. Computers & Education,
58(1):1–10, January 2012. doi:10.1016/j.compedu.2011.08.015.

21 Jane Webster and Richard T Watson. Analyzing the past to prepare for the future: Writing a
literature review. MIS quarterly, pages xiii–xxiii, 2002.

https://doi.org/10.1145/3428029.3428044
https://doi.org/10.5334/2004-8-oblinger
https://doi.org/10.1108/10748120110424843
https://doi.org/10.18260/1-2--43464
https://doi.org/10.3390/su15097393
https://doi.org/10.1145/3594441.3594445
https://doi.org/10.1016/j.compedu.2011.08.015

Teaching Programming Courses with Digital
Educational Escape Rooms (DEER): A Conceptual
Proposal Conducive to Learning by Trial and Error
Antonio Trigo1 #

Polytechnic University of Coimbra, Portugal
CEOS.PP, ISCAP, Polytechnic of Porto, Portugal

Margarida Antunes #

Polytechnic University of Coimbra, Portugal

Abstract
In the field of programming education, the advent of new technologies such as ChatGPT has reshaped
the landscape, challenging traditional methods and requiring new approaches to engage students
effectively. Conventional teaching techniques find it hard to compete in a world where digital
requests with instant feedback are plentiful. This shift emphasises the importance of innovative
strategies, such as educational digital escape rooms, in programming education. By taking advantage
of immersive storytelling and interactive challenges, these digital environments captivate students’
interest and facilitate active learning. Instead of passively consuming information, students have
the ability to apply programming concepts in a dynamic and gamified environment, promoting a
deeper understanding and retention of the concepts. This paper presents a first effort in a work in
progress to build an educational platform based on the digital escape room concept to be used in
the classroom (or at home) throughout the school term.

2012 ACM Subject Classification Applied computing → Interactive learning environments; Software
and its engineering → General programming languages

Keywords and phrases Education, University, Programming, Serious Games, Escape Rooms, Gami-
fication

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.9

Funding This research was funded by Portuguese national funds through FCT – Fundação para a
Ciência e Tecnologia, under the project UIDB/05422/2020.

1 Introduction

In recent years, the ability of students to concentrate in the classroom, either listening
or doing practical problems, has diminished considerably, and it has become increasingly
difficult to convey the concepts that are essential to their learning, especially in the first
years of bachelor’s programmes. From an early age, they get used to having the answers
almost immediately, thanks to electronic devices, not giving them the opportunity for real
learning (reflection and critical thinking), worrying only about the results. The emergence of
artificial intelligence (AI) tools such as ChatGPT has made the process even more difficult,
as they feel they can solve everything with such a tool and that the knowledge is all there.
Although this is partly true, they have overlooked the necessity of having someone, specifically
the teacher, to pose the questions that need answers and to develop a structured plan for
their learning. Thus, the inability to keep students engaged and focused during lessons
makes it urgent to look for innovative and motivating alternatives. In this context, gamified

1 Corresponding author

© Antonio Trigo and Margarida Antunes;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 9; pp. 9:1–9:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonio.trigo@gmail.com
https://orcid.org/0000-0003-0506-4284
mailto:a2022159402@alumni.iscac.pt
https://orcid.org/0009-0006-3960-0304
https://doi.org/10.4230/OASIcs.ICPEC.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Teaching Programming Courses with DEER: A Conceptual Proposal

or game-based teaching, with an emphasis on “digital escape rooms”, has emerged as a
promising tool for overcoming the challenges of contemporary education. This dynamic
and immersive approach offers a stimulating and engaging learning environment, capable
of capturing and maintaining the attention of students, even those with greater difficulty
concentrating. Digital educational escape rooms (DEER) simulate challenging scenarios
that require students to solve puzzles, use logical reasoning and collaborate as a team to
achieve a common goal [6, 5, 7]. Through the inclusion of gaming elements, this methodology
transforms learning into a fun and rewarding experience, awakening students’ interest in
programming in a natural and organic way. Instead of feeling pressurised by deadlines and
rigid objectives, students are encouraged to explore, experiment and make mistakes without
fear, in a safe environment conducive to learning by trial and error. This autonomy and
freedom of action contributes to the development of creativity, problem-solving and critical
thinking, essential skills for success in the digital age [4, 8]. In addition, game-oriented
methods using DEER promotes social interaction and teamwork, fundamental elements in
the formation of complete citizens prepared for the challenges of the labour market. Students
learn to collaborate with each other, communicate their ideas effectively and deal with
different perspectives, essential skills for success in any professional field.

The challenges in creating DEER are, on the one hand, to ensure that they cover the
learning and assessment of all the skills in a course unit, such as programming, and, on the
other hand, the difficulty of constantly creating challenges/inventive games for students that
don’t fall back on what they already know. In this paper we present a structuring proposal
with examples for teaching programming through DEER.

2 Literature review

Using the search expression (TITLE-ABS-KEY (escape PRE/0 room* AND (virtual OR
digital) AND education*)) AND (LIMIT-TO (SUBJAREA , ‘COMP’) OR LIMIT-TO
(SUBJAREA , ‘ENGI’)) in SCOPUS, limited to the areas of “Computer Science” and
“Engineering”, 91 articles were obtained, as shown in Figure 1, where it is possible to verify
the growing popularity of the topic in recent years.

Figure 1 Search result in scopus database relative to DEER (april 2024).

From the list of articles retrieved from the search, we selected those accessible through our
institution’s SCOPUS subscription that included concrete examples of DEER implementation,
aiming to identify methodologies and technologies useful for the design and development of
our proposal. The studies are presented in the order in which they appeared in SCOPUS,
with a summary of the most relevant aspects for our proposal at the end.

A. Trigo and M. Antunes 9:3

The first work analysed presents the concepts involved in developing an escape room for
teaching International Business [6]. The Escape Room creation involves defining learning
objectives, developing a storyline, selecting game duration and language, creating challenges,
designing clues, and testing the scenario. The authors based the development of their project
on the AIDA model (Attention, Interest, Desire, Action). With regard to the technologies
used to create the escape room, they used Genial.ly and Google Forms. According to the
authors, the students were able to complete the game, with the students emphasising the
need for teamwork in order to successfully complete the game.

As part of the German government’s “Education in the Digital World” strategy, a DEER
was created for the promotion and transmission of associated content in a playful way [4]. In
this project, a digital serious game was designed and developed in a 2D environment, where
various interactive elements, tasks and puzzles were incorporated into a digital educational
Escape Room. The tests and evaluations carried out on the students afterwards showed a
notable increase in their motivation and demonstrated their ability to solve tasks requiring
the necessary skills.

In the work [8], the authors propose the use of DEER in STEAM (science, technology,
engineering, arts and maths) education. They highlight the potential of DEER as a pedago-
gical tool to promote active learning and increase student engagement in STEAM education.
To produce DEER, they propose a seven-step methodology: 1) Identify learning objectives:
Understand what knowledge and skills students need to acquire; 2) Choose the platform:
Select a digital escape room platform that suits your objectives; 3) Create a storyline and
theme: Devise a narrative that engages the students and aligns with the objectives; 4)
Design puzzles and challenges: Develop challenges that stimulate critical thinking without
frustration; 5) Chart the learning path: Plan a sequence of puzzles that lead to achieving
the learning objectives; 6) Incorporate feedback: Provide hints or clues to keep students
engaged without giving away the solutions; 7) Test and Evaluate: Evaluate effectiveness
with a test group to refine and improve the experience. In their work, they identified the
following patterns for developing escape rooms: 1) Search and find: Players look for clues
and objects within a room to solve puzzles and advance; 2) Lock and key: Players find keys
or combinations to open doors or containers that hold essential items; 3) Observation and
deduction: Players use visual and audio clues to solve puzzles through careful observation and
deduction; 4) Sequence and order: Players must determine the correct sequence of actions or
the order in which to solve the puzzle; 5) Communication and collaboration: Players work
together, communicating effectively to solve the puzzles; and 6) Misleading clues: Misleading
clues divert players’ attention from the real solution, increasing complexity. With regard
to technologies they identified the use of Breakout EDU, Escape Classroom, EdPuzzle, and
Gdevelop. The authors found that 91.2% of students who responded to the questionnaire
indicated that it enhanced their comprehension of the subject matter.

The work of [12] examines the use of DEER for teaching calculus as part of the engineering
curriculum at a university in Spain, carried out entirely online. The Genial.ly platform was
used to develop DEER. The authors conclude that incorporating DEER into calculus teching
in engineering proves to be an effective tool in engineering education. In particular, student
satisfaction with the experience was remarkably high, with a significant demand for similar
learning opportunities in the future. Another project that used the Genial.ly platform was
[1], which designed DEER with the aim of preparing and revising the concepts and topics of
the subject before the final exam. Not many details are given about the design of DEER,
but the document does give examples of DEER. The students’ opinions on the experience
were mostly positive, so the activity can be used to motivate interaction in an online course.

ICPEC 2024

9:4 Teaching Programming Courses with DEER: A Conceptual Proposal

[7] work focuses on the development of DEER by 65 university students to be used by
first graders. Forty-one DEER were created using the Design-Based Research methodology
for different teaching areas: History, Grammar, English, Geography, Science and Maths.
Although the authors have not provided a guide for designing DEER, they are very concerned
with the learning objectives vs. the playfulness of the game (educational design vs. game
design), in other words with designing effective DEER. The authors conclude that DEER
provide innovative learning environments that cultivate thinking skills and social competences.
Maintaining a balance between game design and learning design during development is crucial
to maximising the relevance of DEER.

[3] present a platform developed with the Unity game engine for escape rooms based
on virtual reality (VR) for teaching programming, which they consider to be a promising
solution for improving students’ results and motivation, allowing them to develop skills such
as practical knowledge, creativity, and problem-solving skills. The fact that it’s multiplayer
encourages collaboration, enriching the learning experience. The platform allows the creation
of escape rooms with different types of puzzle (hort answer, multiple choice, and jigsaw
puzzles) for students to use, thus promoting problem-solving and critical thinking. The initial
findings indicate that students exhibit a markedly positive attitude towards our VR-based
DEER platform. Within the topic of VR-based DEER development, some works were
found, such as [10, 9, 11], many of them more advanced than the work of [3], also including
gamification concepts in the platforms [9, 11]. VR-based DEER are seen as the solution of
the future for implementing DEER, since they allow interaction between the different players
in the game itself and are therefore truly immersive, whereas many DEER proposals do not
allow such interaction.

The work by [5] differs from the previous ones in that the authors focus mainly on the
learning assessment process. As they point out in their own work and as we can also confirm,
most of the studies we’ve come across focus a lot on the design and implementation of
DEER but don’t delve much into the assessment of learning, mostly presenting questionnaires
answered by students about their level of satisfaction with DEER, lacking a more rigorous
assessment of learning. Based on this assumption, the authors propose using learning analytics
techniques to evaluate learning. In particular, they took advantage of new developments
in sequencemining methods to analyse the temporal and sequential patterns of the actions
performed by the students during the activity. In addition, they use clustering to identify
different player profiles according to the sequential unfolding of the students’ actions and
analyse their acquisition of knowledge. The study was carried out as part of an undergraduate
course on front-end programming at the Polytechnic University of Madrid. A DEER activity
was implemented as an optional reinforcement exercise to solidify the fundamental concepts
taught in a core segment of the course. These concepts encompassed the basics of HTML,
CSS, and JavaScript, as well as more advanced technologies like React, Redux, and React
Native. Students were paired up based on their own preferences, enabling them to benefit
from collaborative learning and the advantages of pair programming. A total of 96 students
participated in the study, organized into teams of two. When encountering difficulties with
solving the various puzzles, students were permitted to request hints from a predefined set
prepared by the instructors. However, to access these hints, students first had to earn them
by successfully completing a brief online quiz covering the theoretical content of the course.
This quiz served as a complement to the practical programming skills targeted by the escape
room activity, enhancing the overall learning experience.

A. Trigo and M. Antunes 9:5

3 DEER Conceptual Proposal

The literature review showed that there are already many experiments underway in the
use of DEER using different technologies. One of the most notable technologies is the
trend toward using virtual reality to develop more advanced DEER, enabling players to
interact with each other within the DEER environment. Many of these experiences are
presented as small experiments to be used as a complement to teaching. We didn’t find
any experiments that lasted an entire school term, i.e. in which lessons were given with
constant recourse to this type of platform, which is something we’re trying to implement,
given young people’s receptiveness to this type of solution. In the literature review, it was
possible to see the concern with defining the objectives/competences to be acquired by the
students and, in the latest work presented [5], the concern with assessing learning. Figure
2 shows our proposed workflow for the implementation of DEER lasting one school term,
which follows the traditional phases of the ADDIE model [2]: Analysis, Design, Development,
Implementation and Evaluation.

Figure 2 DEER conceptual proposal.

The model presented in Figure 2 outlines the stages for creating a DEER. The model does
not include the technologies (virtual reality, generative AI, etc.), types of escape rooms, or
how student learning control, including gamification should be implemented, as these depend
on the choices of those implementing the DEER. Nonetheless, all the necessary stages for
implementing a DEER are clearly outlined. Nonetheless, the model outlines all the stages
and requisite elements, drawn from the literature review, for implementing effective and
efficient DEER to bolster student learning. During the analysis phase, alongside delineating
objectives, it is imperative to specify the Knowledge, Skills, Attitudes, and Behaviors (KSAB)
students are expected to attain and how their acquisition will be assessed throughout the
design and implementation phases. Furthermore, apart from acquiring the KSAB, it is crucial

ICPEC 2024

9:6 Teaching Programming Courses with DEER: A Conceptual Proposal

to solicit feedback on students’ experiences by conducting a satisfaction questionnaire or
evaluation of the entire process upon its conclusion, a practice already commonplace in both
physical and virtual curricular units.

4 Examples of escape rooms

In this section we present two possible challenges that could be included in the implementation
of escape rooms, in this case for teaching Python programming.

Challenge 1: Title: “Numbers and codes”

Puzzle Description:
Look at the Python script and execute the correct sequence of actions to unlock the
door and escape the room.
To escape the room, you’ll have to go through all the stages.

Hints
Pay attention to the comments within the script. They provide clues on what to do at
each stage.
Think logically about how Python functions and code blocks work.

Listing 1 Challenge 1 Code.
def stage_one ():

print (" Stage One !")
roman_num = "MMD"
Insert code
print (" The arabic number is: 2500")
print (" Congratulations ! Proceed to stage two .")

def stage_two ():
print (" Stage Two !")
print ("You ’re presented with a sequence of numbers .")
sequence = [2, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Insert code to perform operations on the sequence
print (" The transformed sequence : [4, 2, 2, 4, 6, 10, 16, 26, 42, 68]")
print (" Congratulations ! Proceed to stage three .")

def final_three ():
print (" Stage Three !")
print (" You face a formidable challenge : the Enigma code machine .")
enigma_message = " JXHFUJ WTTR XZHHJXX ! BJQQ ITSJ !"
Insert code to decrypt the Enigma message using Python
print (" The Enigma message is decrypted :" +

" ’ESCAPE ROOM SUCCESS ! WELL DONE !’")
print (" The door unlocks , and you ’ve successfully escaped the room .")

def main ():
print (" Python Codebreaker Challenge : Decrypt the Enigma ")
Insert code to call up the different stages in order

Challenge 2: Title: “Pick a number?”

In this second example, only an image is presented because the idea is for the readers of this
article, like the students, to try to find a solution to the challenge. If you need a hint, please
contact the article’s first author.

A. Trigo and M. Antunes 9:7

Figure 3 Pick a number challenge.

5 Conclusion

The work presented in this paper endeavors to address a significant contemporary trend
in education, namely the diminishing ability of students to concentrate in the classroom.
This trend is attributed in part to the prevalent use of electronic devices and AI tools like
ChatGPT, which provide immediate answers and discourage deeper reflection and critical
thinking. Consequently, educators face increasing difficulty in effectively conveying essential
concepts, particularly in the foundational years of bachelor’s programs. In response to this
challenge, this work explores the potential of game-based teaching, with a focus on DEER, as
an innovative and engaging alternative, as can be seen from the literature carried out. DEER
offers a dynamic and immersive learning environment that captures students’ attention and
fosters essential skills such as problem-solving and teamwork.

However, the implementation of DEER poses its own set of challenges, including ensuring
comprehensive coverage of learning objectives and maintaining student engagement with
varied and inventive challenges. Despite these obstacles, the paper presents a conceptual
proposal, which needs to be tested and improved, for teaching programming through DEER
drawing on existing literature and emphasizing the importance of clearly defined learning
objectives, ongoing assessment, and feedback mechanisms.

Ultimately, the paper advocates for the integration of innovative teaching methodologies
like DEER to meet the evolving demands of contemporary education.

References
1 Angeles Carolina Aguirre Acosta and Gabriela Espinola Carballo. The use of immersive tools

in higher education: Escape rooms. In Proceedings of the 2022 6th International Conference
on Education and E-Learning, ICEEL 2022, Yamanashi, Japan, November 21-23, 2022, pages
75–80. ACM, November 2022. doi:10.1145/3578837.3578848.

2 RK Branson, GT Rayner, JL Cox, JP Furman, FJ King, and WH Hannum. Interservice
procedures for instructional systems development: Executive summary, phase i, phase ii, phase
iii, phase iv, and phase v. TRADOC pam 350–30, Ft. Monroe, VA: US Army Training and
Doctrine Command, 1975.

3 Ali Darejeh. Empowering education through eerp: A customizable educational vr escape
room platform. In IEEE International Symposium on Mixed and Augmented Reality Adjunct,
ISMAR 2023, Sydney, Australia, October 16-20, 2023, pages 764–766. IEEE, October 2023.
doi:10.1109/ISMAR-Adjunct60411.2023.00166.

ICPEC 2024

https://doi.org/10.1145/3578837.3578848
https://doi.org/10.1109/ISMAR-Adjunct60411.2023.00166

9:8 Teaching Programming Courses with DEER: A Conceptual Proposal

4 Sven Jacobs, Timo Hardebusch, Niklas Gerhard, Esther Franke, Henning Peters, and Steffen
Jaschke. Promoting competences for the digital world by an educational escape room. In
2nd IEEE German Education Conference, GECon 2023, Berlin, Germany, August 2-4, 2023,
pages 1–4. IEEE, August 2023. doi:10.1109/GECon58119.2023.10295150.

5 Sonsoles López-Pernas, Mohammed Saqr, Aldo Gordillo, and Enrique Barra. A learning
analytics perspective on educational escape rooms. Interactive Learning Environments, 31:6509–
6525, December 2023. doi:10.1080/10494820.2022.2041045.

6 Juana María Padilla Piernas, María Concepción Parra Meroño, and María del Pilar
Flores Asenjo. Escape rooms virtuales: una herramienta de gamificación para potenciar
la motivación en la educación a distancia. RIED-Revista Iberoamericana de Educación a
Distancia, 27:61–85, September 2023. doi:10.5944/ried.27.1.37685.

7 Manuela Repetto, Barbara Bruschi, and Melania Talarico. Key issues and pedagogical
implications in the design of digital educational escape rooms. Journal of e-Learning and
Knowledge Society, 19:67–74, 2023.

8 Tatjana Sidekerskienė and Robertas Damaševičius. Out-of-the-box learning: Digital escape
rooms as a metaphor for breaking down barriers in stem education. Sustainability, 15:7393,
April 2023. doi:10.3390/su15097393.

9 A. Staneva, T. Ivanova, K. Rasheva-Yordanova, and D. Borissova. Gamification in education:
Building an escape room using vr technologies. In 46th MIPRO ICT and Electronics Convention,
MIPRO 2023, Opatija, Croatia, May 22-26, 2023, pages 678–683. IEEE, May 2023. doi:
10.23919/MIPRO57284.2023.10159923.

10 Samira Yeasmin and Layla Abdulrahman Albabtain. Implementation of a virtual reality
escape room game. In 2020 IEEE Graphics and Multimedia (GAME), pages 7–12. IEEE,
November 2020. doi:10.1109/GAME50158.2020.9315039.

11 Piotr Zamojski, Norbert Barczyk, Marek Frankowski, Artur Cybulski, Konrad Nakonieczny,
Marek Makowiec, and Magdalena Igras-Cybulska. Ohm vr: solving electronics escape room
challenges on the roadmap towards gamified steam education. In 2023 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages 532–535. IEEE,
March 2023. doi:10.1109/VRW58643.2023.00117.

12 Ángel Alberto Magreñán, Cristina Jiménez, Lara Orcos, and Simón Roca. Teaching calculus
in the first year of an engineering degree using a digital escape room in an online scenario.
Computer Applications in Engineering Education, 31:676–695, May 2023. doi:10.1002/cae.
22568.

https://doi.org/10.1109/GECon58119.2023.10295150
https://doi.org/10.1080/10494820.2022.2041045
https://doi.org/10.5944/ried.27.1.37685
https://doi.org/10.3390/su15097393
https://doi.org/10.23919/MIPRO57284.2023.10159923
https://doi.org/10.23919/MIPRO57284.2023.10159923
https://doi.org/10.1109/GAME50158.2020.9315039
https://doi.org/10.1109/VRW58643.2023.00117
https://doi.org/10.1002/cae.22568
https://doi.org/10.1002/cae.22568

Educational Program Visualizations Using
Synthetized Execution Information
Rodrigo Mourato #

Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

André L. Santos #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal

Abstract
Visualization is a powerful tool for explaining, understanding, and debugging computations. Over the
years, several visualization tools have been developed for educational purposes. Most of these tools
feed visualization engines using the raw program state data available provided by the debugger API.
While this suffices in certain contexts, there are situations where additional relevant information could
aid in building up more comprehensive visualizations. This paper presents two novel visualizations
of Paddle, an educational programming environment based on synthesized program execution
information. We generate execution traces and relevant program states through static and dynamic
analysis of the execution data. The synthesized information captures program behaviors that
facilitate the creation of comprehensive and rich visualizations involving arrays that depict position
reads, writes, moves, and swaps.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Computer-assisted instruction

Keywords and phrases Introductory programming, visualization, comprehension

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.10

1 Introduction

Programming educators commonly use illustrations to explain algorithms, in different forms,
namely in their slides (possibly with animations), whiteboard explanations in the classroom,
or on paper when addressing learners individually. Hence, program visualization tools appeal
to many programming educators. However, a study [4] has shown that only about 20% of
programming courses regularly use visualization tools and that almost half do not use them
at all. The survey included responses from over 250 programming teachers and their students,
who were asked about their use of visualization. Visualization tools are more often used by
teachers working with younger students. The topics in which visualizations are most often
used are introductory programming and data structures and algorithms.

Visualization tools are often integrated with debuggers or execution animators (e.g.,
[5, 1, 12, 2, 9]), where the tool renders the program state at each step. Except for PandionJ [9],
these tools do not perform code analysis for capturing semantic aspects of the program
(e.g., variable roles [8]) towards richer visualizations. The visualizations are often a mere
alternative graphical representation of the information available in the call stack frames.
Furthermore, debuggers do not provide the execution data regarding what happened before
the program suspension at a breakpoint, making it difficult to illustrate the current program
state in context. This leads to illustrations of program states that are less expressive than
those hand-drawn by programming instructors [10], and the overall picture is lost through
the debugging process.

In this paper, we describe automated program visualizations based on execution informa-
tion synthesized from execution data, capturing traces and intents that are conventionally
unavailable, such as expression-solving steps, array moves, and array swaps. Our main goal

© Rodrigo Mourato and André L. Santos;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 10; pp. 10:1–10:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rodrigomdmourato@gmail.com
https://orcid.org/0009-0008-7652-6558
mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 Educational Program Visualizations Using Synthetized Execution Information

is to provide learners with a richer means to understand some programming basics and
principles, such as recursion and expression resolution, and facilitate detailed observation
of algorithmic behavior on arrays, including when errors occur. When using our tool, users
execute programs normally, and only if needed, may switch views to gain more execution
insights without requiring specialized tool knowledge.

We developed a web-based platform that supports a subset of Java, covering all the
fundamental primitives for writing algorithms. We present two views with novel character-
istics: (a) invocation tree with expression evaluation tracing; and (b) heap view with array
history of reads and writes (capturing moves and swaps). These views aim to automate the
hand-drawn illustrations of programming instructors using the results of a previous study
[10]. In particular, the visualizations of array manipulations are novel concerning the state of
the art, as we are unaware of any educational tool that illustrates moves and swaps explicitly
(beyond depicting the raw program state step by step).

2 Related Work

Software visualization includes two broad areas, algorithm visualization, and program
visualization, whereas the latter includes two further areas, visualization of static structures
and visualization of runtime dynamics [11]. Algorithm visualization tools operate at a level
of abstraction that is too high to be interesting for learning the basics of program execution.
Our approach is focused on experimentation and debugging at an introductory level. Here
we review tools that allow users to visualize the execution of their programs.

Jeliot [5] is a program animator supporting a subset of Java, where users play an
animation of their programs. Visualizations are fine-grained, at the level of expression
evaluation. Similarly, UUhistle [12] is a software tool to facilitate visual program simulation.
It provides graphical elements that students can manipulate to indicate what happens during
execution. The tool displays classes, functions, and operators that the program directly
uses, enabling students to receive feedback on different types of errors, verify the accuracy of
their answers, and obtain automated grading. These animation tools are useful to illustrate
execution, but not practical when solving and debugging exercises because users have to
go through the animation without traces of execution available. In our approach, we aim
at an environment where programs are executed normally, i.e. in regular settings without
any visualizations, and only if desired, behavior may be inspected in an aftermath manner
through program traces that illustrate what happened.

Visualization tools are often integrated with debuggers within Integrated Development
Environments (IDEs). JIVE is a declarative and visual debugging tool integrated with the
Eclipse IDE [3]. jGRASP [2] is an IDE for visualizations to improve software comprehensibility
through static and dynamic visualizations of programs. PandionJ [9] is an educational
debugger for Java that combines static analysis and graphical visualization towards richer
illustrations, such as depicting array iterator variables. While these tools are based on the
standard Java debugger, in our present work we rely on a custom execution engine to collect
more detailed information that is difficult to obtain otherwise (e.g., applying heavy program
instrumentation).

Code Bubbles [7] is capable of displaying the debugging history as a UML sequence graph,
the execution history of the current thread when it stops at a breakpoint, and information
about a graphical user interface, including the widget hierarchy and the routines drawing
at a selected pixel. Furthermore, it provides an interactive read-eval-print loop for the
current context and a high-level view of the execution history in terms of threads, tasks, and

R. Mourato and A. L. Santos 10:3

Figure 1 Paddle environment: executing methods.

transactions. This view is generated automatically based on data collected during previous
debugging runs. Code Bubbles targets a non-beginner audience, while our tool aims at the
first stages of programming learning.

The SRec Visualization System [13] employs graphical representations to illustrate
recursion trees. Each node corresponds to a recursive call composed of two halves: the
upper half contains the parameter values of the call, while the lower half contains the
invocation’s result. WinHIPE [6] is an integrated development environment (IDE) for
functional programming based on rewriting and visualization. It also includes a powerful
visualization and animation system that automatically generates visualizations and animations
as a side effect of program execution.

3 Paddle Environment

Paddle is an innovative educational programming environment providing visualizations that
leverage synthesized program execution information. It generates representative execution
traces and relevant program states through static and dynamic analysis of the execution data.
The synthesized information captures diverse program behaviors to facilitate the creation of
comprehensive and rich visualizations. The environment consists of a web application where
the user can write code and obtain feedback about what happened during the execution as a
trace illustration.

The user interface (UI) comprises two panels (see Figure 1): the left panel, where the
user writes code and executes programs, and the right panel, where alternative visualization
panels are presented. Figure 1 illustrates the elementary view for displaying console outputs.
When clicking the “Execute” button, a dialog prompts the user to enter the values for
each parameter, and the current code is sent to the server with the specified function and
arguments. Afterward, the code result is returned to the web application, and the user may
check the outputs and switch among the available visualization panels, which we detail next.

3.1 Invocation Tree View
Figure 2 presents a screenshot of the invocation tree view with the classic example of factorial
calculation. Each node in the illustration represents one execution of a method, the solid
edges represent invocations, and the dashed edges with the dashed nodes represent the return
values of each invocation. If desired, the user may use the playback mode to go through each
step, following the sequence of invocations. The related elements are selected in the code
editor when clicking the view. When clicking an invocation node the function declaration is
highlighted, whereas when clicking a value node the respective return expression is highlighted
instead.

ICPEC 2024

10:4 Educational Program Visualizations Using Synthetized Execution Information

Figure 2 Invocation tree view illustrating recursive calls (factorial calculation).

The main innovative feature of our view is the trace of expressions returned by the methods.
In the example, the expression 3 * factorial (3 - 1) is resolved to 3 * factorial(2)
and is finally resolved to 3 * 2, which returns the final value of 6. This enables the user to
understand the return value of each invocation and how it was calculated. This information is
synthesized from execution data, and is not available when using debuggers (both educational
and professional). For performance reasons, the total number of resolutions has a limit.
Programming instructors often use similar illustrations to explain the execution of recursive
calls [10].

3.2 Heap View
Figure 3 presents the heap view illustrating a function to check if an element is contained in
an array. This view collects any array allocations performed in user code and renders its
evolution through snapshots, from top to bottom. In this case, the array content remains the
same because there are no side effects. The green background depicts that the highlighted
position was read, whereas red denotes that a write was performed. In the illustration, we
can observe that the last accessed position was the third one. The iterator variables for
accessing array positions (i in the example) are depicted below the respective index (as in
[9]). Programming instructors often use similar illustrations to explain computations that
involve array iterations [10].

Figure 4 presents the heap view illustrating a procedure for left-shifting an array, exem-
plifying array writes. In the illustrations, a dashed arrow represents an array position move,
that is, a value at one position is copied to another. This information is determined using a
combination of static analysis and execution data.

Figure 5 presents the heap view illustrating a procedure to reverse an array. The array
was initialized with five elements and the reverse function was invoked, which internally
invokes the function to swap two array elements given their indices. Special attention is paid

R. Mourato and A. L. Santos 10:5

Figure 3 Heap view illustrating array reads (check if element exists).

Figure 4 Heap view illustrating array moves (left shift of array elements).

Figure 5 Heap view illustrating array swaps (reverse the array).

ICPEC 2024

10:6 Educational Program Visualizations Using Synthetized Execution Information

Figure 6 Heap view illustrating an illegal access to an array position.

to array swaps – information synthesized from execution data. As in array moves, a dashed
arrow represents a move. Since a swap consists of two moves that exchange the values of the
positions, the corresponding arrows are depicted simultaneously.

If an array index out-of-bounds error occurs during execution, we illustrate the error in
the view, as depicted in Figure 6. The expression that led to the invalid index is also marked
with precision in the code. Recall that conventional support for this type of error typically
consists of an error message that only includes the line number and invalid index (if multiple
array accesses are in that line, the user must figure out which is causing the problem).

4 Implementation

The implementation of our prototype is based on a REST API, where program executions are
performed, and a web-based frontend to display the results and visualizations. Ideally, the
whole application could run on the browser, but we needed unavailable JavaScript libraries
to execute the Java programs and synthesize the required information for the visualizations.

The backend was constructed using Spring Boot1, a JVM-based framework that simplifies
the development of standalone application servers. The API calls respond JSON messages
holding the execution results, outputs, traces, etc, that are necessary for building the
visualizations.

Program execution and analysis are performed using Strudel2, a programming library
comprising classes that model structured programming, providing a virtual machine capable
of interpreting those models, simulating the call stack-based execution. This enables clients
to observe every aspect of execution in detail, including errors, tracking variable values, loop
iterations, call stack, and memory allocation. We developed execution listeners to gather the

1 https://spring.io/projects/spring-boot
2 https://github.com/andre-santos-pt/strudel

https://spring.io/projects/spring-boot
https://github.com/andre-santos-pt/strudel

R. Mourato and A. L. Santos 10:7

necessary information to render the views. Regarding the resolution of expressions, EvalEx3

was employed. EvalEx is a convenient expression evaluator for Java that enables the parsing
and evaluation of expression strings.

The user interface was implemented using React4, a popular JavaScript library for user
interface development. The Redux Toolkit5 was used for store management, providing
utilities and abstractions to streamline common Redux tasks, such as creating actions,
reducers, and store configuration. The code editor is provided by Microsoft Monaco6, a
lightweight, browser-based, highly versatile code editor providing features such as syntax
highlighting, code completion, and IntelliSense. Monaco is the engine behind the Visual
Studio Code editing experience and can be embedded in Web applications to edit code directly
in the browser. Finally, the visualizations were implemented using React Flow library7, a
JavaScript library for developing interactive and visual flowcharts, diagrams, and graphs
within React applications. It offers a flexible and customizable API to develop complex
data visualization components, thereby enabling developers to incorporate drag-and-drop
functionality, node-based layouts, and connection handling with relative ease. This library
enabled the creation of custom nodes and edges, as illustrated in this paper’s figures.

5 Conclusions and Future Work

Our prototype demonstrates that rich program visualizations can be obtained in a post-
execution manner by making use of synthetized execution information. Our visualizations are
inspired by illustrations often made by programming instructors (e.g., in slides, animations,
or hand-drawn). In particular, the array manipulation illustrations are unavailable in other
visualization tools supporting arbitrary user code, and without having to execute the program
step-by-step (as when using a debugger). We argue that our views are a quick means to
illustrate the execution of simple programs involving invocations and arrays, with minimal
need to learn any particular tool features.

As future work, we plan to evaluate how programming instructors perceive the usefulness
of our visualizations. Evaluating the tool from the perspective of programming beginners
could also inform how easily and accurately they interpret the visualizations. Even if the
visualizations have no expressive effect on novices working autonomously, they may serve as
an aid to instructors when assisting learners in lab classes or remotely, sparing time that
otherwise would be spent on figuring out what went wrong with the program execution and
manually drawing illustrations for further explanations.

Regarding tool improvements, we plan to support objects in the heap view, which are
important to illustrate elementary data structures such as linked lists and trees and to
elaborate on the illustrations of errors (e.g., stack overflows). Furthermore, we believe that
more interactivity between the views and the source code could improve the user experience,
and we acknowledge that strategies to cope with large drawings are necessary for good
usability.

3 https://github.com/ezylang/EvalEx
4 https://react.dev
5 https://redux-toolkit.js.org
6 https://microsoft.github.io/monaco-editor
7 https://reactflow.dev

ICPEC 2024

https://github.com/ezylang/EvalEx
https://react.dev
https://redux-toolkit.js.org
https://microsoft.github.io/monaco-editor
https://reactflow.dev

10:8 Educational Program Visualizations Using Synthetized Execution Information

References
1 G. Cattaneo, P. Faruolo, U.F. Petrillo, and G.F. Italiano. Jive: Java interactive software

visualization environment. In 2004 IEEE Symposium on Visual Languages - Human Centric
Computing, pages 41–43, 2004. doi:10.1109/VLHCC.2004.34.

2 James Cross, Dean Hendrix, Larry Barowski, and David Umphress. Dynamic program
visualizations: An experience report. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages 609–614, New York, NY, USA, 2014. ACM.
doi:10.1145/2538862.2538958.

3 Jeffrey K. Czyz and Bharat Jayaraman. Declarative and visual debugging in Eclipse. In
Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange, eclipse ’07,
pages 31–35, New York, NY, USA, 2007. ACM. doi:10.1145/1328279.1328286.

4 Essi Isohanni and Hannu-Matti Järvinen. Are visualization tools used in programming
education?: By whom, how, why, and why not? In Proceedings of the 14th Koli Calling
International Conference on Computing Education Research, Koli Calling ’14, pages 35–40,
New York, NY, USA, 2014. ACM. doi:10.1145/2674683.2674688.

5 Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. The Jeliot 2000 program
animation system. Computers and Education, 40(1):1–15, 2003.

6 Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes, and J. Ángel Velázquez-Iturbide. WinHIPE:
an ide for functional programming based on rewriting and visualization. SIGPLAN Not.,
42(3):14–23, March 2007. doi:10.1145/1273039.1273042.

7 Steven P. Reiss. The challenge of helping the programmer during debugging. In 2014
Second IEEE Working Conference on Software Visualization, pages 112–116, 2014. doi:
10.1109/VISSOFT.2014.27.

8 Jorma Sajaniemi. An empirical analysis of roles of variables in novice-level procedural programs.
In Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and
Environments (HCC’02), HCC ’02, pages 37–, Washington, DC, USA, 2002. IEEE Computer
Society. URL: http://dl.acm.org/citation.cfm?id=795687.797809.

9 André L. Santos. Enhancing visualizations in pedagogical debuggers by leveraging on code
analysis. In Mike Joy and Petri Ihantola, editors, Proceedings of the 18th Koli Calling
International Conference on Computing Education Research, Koli, Finland, November 22-25,
2018, pages 11:1–11:9. ACM, 2018. doi:10.1145/3279720.3279732.

10 André L. Santos and Hugo Sousa. An exploratory study of how programming instructors
illustrate variables and control flow. In Proceedings of the 17th Koli Calling Conference on
Computing Education Research, Koli, Finland, November 16-19, 2017, pages 173–177, 2017.
doi:10.1145/3141880.3141892.

11 Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visualization
systems for introductory programming education. ACM Transactions on Computing Education,
13(4):15.1–15.64, 2013. doi:10.1145/2490822.

12 Juha Sorva and Teemu Sirkiä. Uuhistle: a software tool for visual program simulation.
In Proceedings of the 10th Koli Calling International Conference on Computing Education
Research, Koli Calling ’10, pages 49–54, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1930464.1930471.

13 J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco. How to use the SRec visualization
system in programming and algorithm courses. ACM Inroads, 7(3):42–49, August 2016.
doi:10.1145/2948070.

https://doi.org/10.1109/VLHCC.2004.34
https://doi.org/10.1145/2538862.2538958
https://doi.org/10.1145/1328279.1328286
https://doi.org/10.1145/2674683.2674688
https://doi.org/10.1145/1273039.1273042
https://doi.org/10.1109/VISSOFT.2014.27
https://doi.org/10.1109/VISSOFT.2014.27
http://dl.acm.org/citation.cfm?id=795687.797809
https://doi.org/10.1145/3279720.3279732
https://doi.org/10.1145/3141880.3141892
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/2948070

Client-Side Gamification Engine for Enhanced
Programming Learning
Ricardo Queirós # Ñ

School of Media Arts and Design & CRACS – INESC TEC, Polytechnic of Porto, Portugal

Robertas Damaševičius #

Department of Applied Informatics, Vytautas Magnus University, Vilnius, Lithuania

Rytis Maskeliūnas #

Centre of Real Time Computer Systems, Kaunas University of Technology, Lithuania

Jakub Swacha # Ñ

Department of IT in Management, University of Szczecin, Poland

Abstract
This study introduces the development of a client-based software layer within the FGPE project,
aimed at enhancing the usability of the FGPE programming learning environment through client-
side processing. The primary goal is to enable the evaluation of programming exercises and the
application of gamification rules directly on the client-side, thereby facilitating offline functionality.
This approach is particularly beneficial in regions with unreliable internet connectivity, as it allows
continuous student interaction and feedback without the need for a constant server connection. The
implementation promises to reduce server load significantly by shifting the evaluation workload to the
client-side. This not only improves response times but also alleviates the burden on server resources,
enhancing overall system efficiency. Two main strategies are explored: 1) caching the gamification
service interface on the client-side, and 2) implementing a complete client-side gamification service
that synchronizes with the server when online. Each approach is evaluated in terms of its impact on
user experience, system performance, and potential security concerns. The findings suggest that
while client-side processing offers considerable benefits in terms of scalability and user engagement,
it also introduces challenges such as increased system complexity and potential data synchronization
issues. The study concludes with recommendations for balancing these factors to optimize the design
and implementation of client-based systems for educational environments.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases Code generation, Computer Programming, Gamification

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.11

Funding This work is co-funded by the Erasmus+ Programme of the European Union within the
project FGPEPlusPlus, with Agreement Number 2023-1-PL01-KA220-HED-000164696.

1 Introduction

Interactive and accessible learning platforms have become crucial in providing quality
education to a geographically and economically diverse student population. Traditionally,
such platforms rely heavily on constant server connectivity to function effectively, offering
real-time feedback and interactive experiences that are central to modern pedagogical
methodologies. However, this dependence on server-side processing presents significant
challenges, particularly in areas with unstable internet access or limited server resources
[32]. The evolution of client-side technologies, such as service workers and local storage, has
introduced the potential for mitigating these issues by shifting some of the computational
responsibilities from the server to the client. This shift not only promises to enhance the
resilience of educational platforms against connectivity fluctuations but also aims to distribute
the computational load more evenly, thus improving responsiveness and scalability [12]. The

© Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 11; pp. 11:1–11:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:robertas.damasevicius@vdu.lt
https://orcid.org/0000-0001-9990-1084
mailto:rytis.maskeliunas@ktu.lt
https://orcid.org/0000-0002-2809-2213
mailto:jakub.swacha@usz.edu.pl
http://iiwz.wneiz.pl/jakubs
https://orcid.org/0000-0002-2214-6989
https://doi.org/10.4230/OASIcs.ICPEC.2024.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Client-Side Gamification Engine for Enhanced Programming Learning

advent of such technologies beckons a pivotal shift in the architecture of educational platforms,
from a predominantly server-reliant model to a more decentralized approach [27, 7]. This
transformation could revolutionize how educational services are delivered, ensuring more
reliable and accessible learning experiences regardless of external network conditions.

The Framework for Gamified Programming Education (FGPE)1 programming learning
environment, thanks to the development of the FGPE Plus project2 [21, 20], is currently
provided as a Progressive Web Application, which means, once loaded, it could be used
without sustained Internet connection. The problem is, for the students’ solution of an
exercise to be evaluated, and the relevant gamification rules triggered, there must be an
active Internet connection at the time of submission. The goal of FGPE++3 is to remove
this barrier by providing a way to assess the programming exercise solutions client-side. This
will both greatly improve the FGPE platform usability in areas in which users experience
Internet connection problems and will also reduce the load on university servers, allowing to
limit their role to batch processing of the student progress data on synchronization, instead
of running the full evaluation server-side, which with many concurrent students on university
servers having limited resources caused noticeable delays and sometimes even stalls that
ruined all user experience. Consequently, this paves the way for providing large-scale gamified
programming courses with limited technical resources, and will support the sustained growth
of the number of the FGPE ecosystem users. The envisaged client-side software layer for
the assessment of gamified programming exercises and gamification rule processing will be
capable of producing instant feedback to the users even without active connection with the
server, caching data on user progress and achievements, and synchronizing students’ progress
cached on the client with the global state stored at the server.

This study seeks to explore this transition within the context of the FGPE platform,
aiming to develop a client-based version that maintains high functionality offline while
synchronizing with the server when connectivity permits. This approach is particularly
pertinent for educational institutions with limited IT infrastructure, as it allows them to
offer a high-quality, interactive programming education with reduced dependence on robust
internet services.

The rest of the article is structured in four sections: the second section presents the base
project of all this work. The next section, depicts the most used strategies for supporting
offline features in client-server applications. The following two sections present the execution
plan for the development of the client-side evaluation engine, identifying two approaches.
Finally, the contributions of this article to the scientific community are presented as well as
the future work.

2 The FGPE environment

Framework for Gamified Programming Education (FGPE) is an open, programming-language-
agnostic set of exercise formats, exemplary exercises, and the supporting software [29]. The
framework addresses the needs of both students (for a more engaging programming education)
and teachers (for a customizable web platform for gamified teaching of programming). The
framework has been developed by a consortium of five European higher-education institutions:
University of Szczecin (Szczecin, Poland), INESC TEC (Porto, Portugal), Aalborg University

1 https://fgpe.usz.edu.pl/
2 https://fgpeplus.usz.edu.pl/
3 https://fgpeplus2.usz.edu.pl/

https://fgpe.usz.edu.pl/
https://fgpeplus.usz.edu.pl/
https://fgpeplus2.usz.edu.pl/

R. Queirós, R. Damaševičius, R. Maskeliūnas, and J. Swacha 11:3

(Copenhagen, Denmark), University of Naples Parthenope (Naples, Italy), and Kaunas
University of Technology (Kaunas, Lithuania), and financially supported from the Erasmus+
program4.

The key software components of the FGPE ecosystem include:
the editor (FGPE AuthorKit) which gives the exercise creators the capability to design and
implement both exercises and gamified scenarios with an intuitive wizard-like form-based
user interface [25],
gamification service (FGPE GS) that processes gamification rules and manages the overall
game state [24],
the interactive learning environment (FGPE PLE), which lets students access gamified
exercises, solve them, and receive graded feedback, and lets teachers organize exercise
sets, grant students access, and monitor their learning progress [21].

Figure 1 provides a comprehensive visualization of the FGPE architecture.

Figure 1 FGPE Architecture.

Recently, FGPE platform has been enriched with an LTI-compliant interface allowing
the FGPE-run exercises to be embedded in LMS-based courses, developed using any of the
popular systems (e.g., Moodle or Open edX) [17].

To evaluate the solutions of the programming exercises submitted by students, the FGPE
platform uses the reliable and secure Mooshak system [16]. As both the FGPE GS and
Mooshak are run server-side, although the students can edit their code in FGPE PLE, which
is currently provided as Progressive Web App, without the Internet access, they cannot
submit it and get feedback until the connection is restored, which can be an issue for users
traveling or staying in areas with poor Internet connectivity.

This defines the problem that the research presented in this paper aims to address.

3 Related work

This section reviews the existing literature and developments in the area of offline capabilities
for educational platforms and the broader spectrum of tools that facilitate offline functionality
in client-server applications. It sets the groundwork for understanding the technological and
conceptual frameworks that our research builds upon.

4 https://fgpeplus2.usz.edu.pl/

ICPEC 2024

https://fgpeplus2.usz.edu.pl/

11:4 Client-Side Gamification Engine for Enhanced Programming Learning

3.1 Offline Strategies
The evolution from traditional client-server setups to architectures where significant func-
tionalities are executed on the client-side has garnered considerable attention in research
circles [15]. This paradigm shift holds particular significance in educational technology
landscapes, where the necessity for continuous server interaction can pose accessibility and
usability challenges, especially in areas with limited connectivity.

One pivotal approach within this realm revolves around leveraging service workers, which
are scripts operating in the background on the client side, independent of the active web
page [10]. These workers facilitate resource caching and streamline data synchronization
processes, thus augmenting user experiences by enabling interactive engagements even in
offline scenarios. Subsequently, they efficiently synchronize data with the server upon
restoration of connectivity [23]. In addition to service workers, the adoption of local storage
mechanisms and indexed databases such as IndexedDB stands out as another prominent
strategy [2]. These technologies empower educational platforms to locally store substantial
volumes of data, ranging from user progress metrics to interactive state information. By
doing so, they alleviate the reliance on continuous data retrieval from the server, thereby
enhancing system efficiency and responsiveness [13]. Finally, the integration of differential
synchronization emerged as an interesting concept in this landscape [3]. This approach
entails transmitting only the changes or differences between the client and server, rather
than entire datasets. By minimizing data transfer requirements, it significantly contributes
to optimizing system performance and bolstering application responsiveness [33].

3.2 Other Tools
In addition to strategies tailored explicitly for offline functionality, a plethora of tools and
frameworks exist to support the development of client-heavy applications. Google’s Workbox
stands out among these, offering libraries and Node modules that streamline the management
of service workers, making it more accessible and robust. Workbox boasts extensive features
for precaching, runtime caching, and efficient data retrieval and storage strategies [1]. React,
a JavaScript library renowned for building user interfaces, plays a crucial role in creating
responsive and dynamic client-side applications. Its capability to manage state locally and
render components based on user interactions makes it a preferred choice for developing
educational platforms with minimal reliance on server-side rendering [31]. Frameworks such
as Electron broaden the horizons by enabling the creation of native applications using web
technologies. These applications can function as standalone desktop applications, eliminating
the need for an active internet connection. By harnessing Electron, web-based educational
platforms can seamlessly transition into fully functional desktop applications [28].

Collectively, these tools and strategies align with the overarching objective of bolstering
the resilience and accessibility of educational platforms [11], especially in environments
grappling with limited connectivity. Our study endeavors to leverage these advancements
to propose a novel approach to managing offline functionalities within the FGPE platform,
with the aim of delivering a seamless and uninterrupted learning experience.

4 The offline client-server optimization model

Bellow we explain optimization problem with five objective functions to maximize, represent-
ing usability, performance, server load, autonomy, and security. It defines decision variables
and constraints related to two options, each with specific criteria and thresholds.

R. Queirós, R. Damaševičius, R. Maskeliūnas, and J. Swacha 11:5

Through our objective functions, we aim to maximize the following criteria:
1. Usability (C1)
2. Performance (C2)
3. Server Load (C3)
4. Autonomy (C4)
5. Security (C5)

Let us define decision variables used in our model:
x1 represent Option 1: Cached interface for Gamification Service
x2 represent Option 2: Client-side Gamification Service

Further we will define constraints for each option xi, where i = 1, 2, related to:
Client-side Complexity (D1, D6)
Data Synchronization (D2, D7)
Control (D3, D8)
Duplication of Logic (D4, D9)
Resource Requirements (D5, D10)

We have chosen Non-dominated Sorting Genetic Algorithm II (NSGA-II [5] to explore
the solution space by maintaining a diverse population of non-dominated solutions and
iteratively evolving it towards the Pareto optimal front. It is well-suited for multi-objective
optimization problems like the FGPE approach, where multiple conflicting objectives need
to be considered simultaneously.

The objective function for NSGA-II combines the weighted sum of criteria:

Maximize f1(x) = w1 · C1(x) + w2 · C2(x) + w3 · C3(x)
+ w4 · C4(x) + w5 · C5(x)

where Ci(x) represents the value of criterion i for option x, and wi are the weights assigned
to each criterion.

The constraints ensure that each option satisfies the respective thresholds:
D1, D2, D3, D4, D5 for x1, and D6, D7, D8, D9, D10 for x2.

Below is a pseudo-code representation of a multi-objective evolutionary algorithm inspired
by NSGA-II for solving the optimization problem described:

Algorithm 1 Multi-Objective Evolutionary Algorithm.

1: Initialize population P randomly or using a heuristic method
2: Evaluate(P) // Evaluate the objective functions for each individual considering the constraints
3: repeat
4: Create an empty offspring population Q

5: while |Q| < |P | do
6: Select parents from P based on non-dominated sorting and crowding distance, considering

the constraints
7: Perform crossover and mutation to create offspring, ensuring constraints are satisfied
8: Evaluate(Q) // Evaluate the objective functions for each offspring considering the

constraints
9: Merge P and Q to form R (combined population)

10: Perform non-dominated sorting on R considering the constraints
11: Select top |P | individuals from R based on non-domination and crowding distance
12: end while
13: Replace P with the selected individuals from R

14: until termination criteria are met

ICPEC 2024

11:6 Client-Side Gamification Engine for Enhanced Programming Learning

In the pseudo-code:
Initialize function initializes the population of candidate solutions considering the decision
variables.
Evaluate function evaluates the objective function values for each individual in the
population, taking into account the constraints.
Select function selects parents for reproduction based on non-dominated sorting and
crowding distance, ensuring feasibility with constraints.
Crossover and Mutation functions create offspring from selected parents while satisfying
the constraints.
Merge function combines the parent population P and offspring population Q to form a
combined population R.
Non-dominated sorting sorts individuals in R based on non-domination, creating fronts
of non-dominated solutions, considering the constraints.
Replace function selects top individuals from R to form the next generation population
P , based on non-domination and crowding distance, while ensuring feasibility with
constraints.
The algorithm continues iterating until a termination condition is met, such as reaching
a maximum number of generations or evaluations.

5 The implementation of Client-side Evaluation Engine

In the scope of the FGPE project, two options were identified:

Client-side execution environment + cached interface for Gamification Service
Client-side execution environment + client-side Gamification Service (synchronized with
server when available)

Both are detailed in the next subsections.

5.1 Cached interface for Gamification Service
This option focuses on caching the interface for the Gamification Service on the client-side.
It means that even if there’s no active internet connection, the user can still interact with
the interface and work on their exercises. The client-side execution environment would allow
the user to submit their solution regardless of the server’s availability. The cached interface
would ensure that the user can still receive feedback and engage with gamification elements
locally, enhancing usability in areas with poor internet connectivity.

Bellow we explore the key elements behind our approach (see Figure 2 for reference).
1. First, the system must have offline functionality. The client-side application needs to

store the interface components, assets, and relevant data locally using technologies like
IndexedDB, Web Storage, or Service Workers. Progressive Web Apps (PWAs) [19] are
employed to ensure key interface elements are cached for offline use. Service Workers are
used rto intercept network requests, allowing the application to function even without an
active internet connection by serving cached resources.

2. Next we must ensure data synchronization by implementing robust synchronization
mechanisms [8] to ensure data consistency between the client and server once the internet
connection is restored. We have used differential synchronization to sync data while
minimizing bandwidth usage and conflicts. Conflict resolution strategies were employed
to handle scenarios where changes are made both locally and on the server during offline
usage.

R. Queirós, R. Damaševičius, R. Maskeliūnas, and J. Swacha 11:7

3. Third element was solving client-side complexity as caching the interface on the client-
side introduces additional complexity to the frontend codebase [18]. We have used
modularization to help manage this complexity by breaking down the application into
smaller, manageable parts.

4. Fourth element was security considerations, as with increased client-side execution,
security risks such as data tampering, injection attacks, and unauthorized access become
more pronounced [30]. We have implemented secure communication protocols, data
encryption, and input validation on both client and server sides to mitigate these risks.

5. Fifth element was server load reduction, which we solved by offloading interface rendering
and user interaction to the client-side [22], thus the server’s role shifts to primarily
handling data processing and authentication. This led to reduced server load and improved
scalability, as the server no longer needed to handle as many concurrent interface requests,
leaving our server to efficiently handle batch processing tasks and scale with increasing
user demand.

6. Final element is usability and performance. Main improvement was done by caching
the interface locally, which enhances usability in areas with poor internet connectivity,
providing users with a seamless experience [26]. Performance gains were also achieved by
reducing latency associated with fetching interface resources from the server, especially
for frequently accessed components using cache policies.

Figure 2 Cached interface for Gamification Service.

ICPEC 2024

11:8 Client-Side Gamification Engine for Enhanced Programming Learning

Following this approach can lead to two main advantages:
Seamless user experience: users can continue working on exercises without interruptions
due to server downtime or poor internet connection.
Reduced server load: by caching the interface locally, the server’s role is minimized to
batch processing, reducing the strain on resources and potentially improving overall
performance.

However, there are also disadvantages such as increased client-side complexity, data
synchronization challenges and limited server-side control. Firstly, implementing a gamifica-
tion service cached interface on the client-side adds complexity to the frontend codebase,
potentially making maintenance and debugging more challenging. Secondly, caching the
interface for the Gamification Service locally may introduce challenges in synchronizing data
between the client and server when an internet connection is available. Finally, when relying
on client-side execution, there may be limited control from the server-side, which could
potentially lead to security vulnerabilities in data management.

5.2 Client-side Gamification Service
This option involves implementing the Gamification Service entirely on the client-side,
synchronized with the server when an internet connection is available. It allows for more
autonomy on the client-side, as the gamification elements are not dependent on server
availability. However, synchronization would be necessary to update the global state and
ensure consistency across users (see Figure 3 for reference).

Figure 3 Client-side Gamification Service.

To implement efficient Gamification Service entirely on the client-side we needed an
advanced Client-side Architecture. We have chosen single page application (SPA) architecture
[14], based on React for efficient client-side rendering and seamless user experience. State
management was implemented using Redux to manage complex gamification state across
different components of the application.

R. Queirós, R. Damaševičius, R. Maskeliūnas, and J. Swacha 11:9

Offline Functionality was first assured with conflict resolution mechanisms [4] to handle
data conflicts that may arise during offline usage, ensuring data integrity when synchronizing
with the server. We have also implemented operational transformation algorithms to reconcile
concurrent edits made to the gamification data by multiple clients during offline usage,
minimizing data inconsistencies. The progressive web application (PWA) had service workers
implemented to enable offline caching and background synchronization of gamification data,
transforming the application into a full-fledged PWA. We have also considered integrating
push notification APIs to notify users of gamification updates and achievements, enhancing
user engagement and retention.

Security was assured by applying content security policy (CSP) [6] to mitigate cross-site
scripting (XSS) attacks and prevent execution of unauthorized scripts, enhancing the security
of the client-side code. Web Application Firewall (WAF) was also used to monitor and filter
HTTP traffic, detecting and blocking malicious requests targeting the client-side gamification
service.

Code optimization was done through tree shaking and code splitting to eliminate dead
code and reduce bundle size, optimizing performance and loading times of the client-side
application. We have also integrated WebAssembly modules for computationally intensive
gamification algorithms, leveraging the performance benefits of low-level bytecode execution
in modern web browsers. End-to-end testing was done using Selenium to validate the
functionality and performance of the client-side gamification service across different scenarios
and environments.

Using this approach has the following advantages:
Increased autonomy: Users can receive instant feedback and engage with gamification
elements even without an internet connection, as the service is entirely client-side.
Reduced dependency on server: By moving the gamification logic to the client-side, there’s
less reliance on server availability, potentially reducing downtime and improving user
experience.

This approach lead also to several disadvantages such as security risks, duplication of logic
and dependency on client resources. In the former, handling sensitive gamification logic and
data on the client-side could pose security risks, as client-side code is inherently less secure
and more susceptible to tampering or exploitation compared to server-side code. Other pitfall
is the duplication of logic, since moving the gamification logic entirely to the client-side may
result in duplication of code and logic, as similar functionalities may need to be implemented
both on the client and server sides. This lead to code redundancy and maintenance overhead.
Finally, relocating the gamification service to the client-side may increase the resource
requirements on the client devices, especially for complex gamification algorithms or large
datasets. This could impact performance on devices with limited processing power or memory.

6 Conclusions

The main result of this work is sketching the blueprint for the development of a client-side
software layer for the assessment of gamified programming exercises within the FGPE project.
This component will be responsible for producing instant feedback to the users even without
active connection with the server, caching data on user progress and achievements, and
synchronizing students’ progress cached on the client with the global state stored at the
server.

In order to tackle this challenge, two options were identified: 1) caching the interface for
the Gamification Service on the client-side and 2) implementing the Gamification Service
entirely on the client-side.

ICPEC 2024

11:10 Client-Side Gamification Engine for Enhanced Programming Learning

While both options offer solutions to enable client-side execution and offline capabilities,
they also come with their own set of challenges and drawbacks. The choice between the
two options should consider factors such as the specific requirements of the application, the
desired level of control and security, and the technical capabilities (and constraints) of the
client devices and server infrastructure.

The software is planned was developed using two-way communication between web
browser and web server [9]. The software will be freely distributed on the GitHub platform
in the FGPE repository5 under the GNU General Public License v3 open-source license6,
so that any educational institution can use it and, if necessary, adopt it for their specific
purposes free of charge.

References
1 Workbox: Powerful tools for your service workers, 2021.
2 Thamer Al-Rousan. An investigation of user privacy and data protection on user-side storage,

2019.
3 Wahab Kh Arabo. The web and ai influences on distributed consensus protocols in cloud

computing: A review of challenges and opportunities. Journal of Information Technology and
Informatics, 3(1), 2024.

4 Rebecca Kai Cassar, Joseph Vella, and Joshua Ellul. A conflict resolution abstraction layer
for eventually consistent databases. In 2016 International Conference on Engineering & MIS
(ICEMIS), pages 1–5. IEEE, 2016.

5 Sankhadeep Chatterjee, Sarbartha Sarkar, Nilanjan Dey, Amira S Ashour, and Soumya Sen.
Hybrid non-dominated sorting genetic algorithm: Ii-neural network approach. In Advancements
in Applied Metaheuristic Computing, pages 264–286. IGI Global, 2018.

6 Hsing-Chung Chen, Aristophane Nshimiyimana, Cahya Damarjati, and Pi-Hsien Chang.
Detection and prevention of cross-site scripting attack with combined approaches. In 2021
International Conference on Electronics, Information, and Communication (ICEIC), pages
1–4. IEEE, 2021.

7 Xiaodan Chen, Jun Lu, Mei Gong, Benjun Guo, and Yuanping Xu. Design and implementation
of decentralized online education platform. In 2020 5th International Conference on Mechanical,
Control and Computer Engineering (ICMCCE), 2020. doi:10.1109/ICMCCE51767.2020.00212.

8 Mohammad Faiz and Udai Shanker. Data synchronization in distributed client-server applica-
tions. In 2016 IEEE International Conference on Engineering and Technology (ICETECH),
pages 611–616. IEEE, 2016.

9 Ian Fette and Alexey Melnikov. The websocket protocol. Technical Report RFC 6455, IETF,
2011.

10 Joy M Field, Liana Victorino, Ryan W Buell, Michael J Dixon, Susan Meyer Goldstein,
Larry J Menor, Madeleine E Pullman, Aleda V Roth, Enrico Secchi, and Jie J Zhang. Service
operations: what’s next? Journal of Service Management, 29(1):55–97, 2018.

11 Miftachul Huda. Between accessibility and adaptability of digital platform: investigating
learners’ perspectives on digital learning infrastructure. Higher Education, Skills and Work-
Based Learning, 14(1):1–21, 2024.

12 Mayssa Jemel and A. Serhrouchni. Toward user’s devices collaboration to distribute securely
the client side storage. In 2015 International Conference on Protocol Engineering (ICPE)
and International Conference on New Technologies of Distributed Systems (NTDS), 2015.
doi:10.1109/NOTERE.2015.7293479.

5 https://github.com/FGPE-Erasmus
6 https://www.gnu.org/licenses/gpl-3.0.en.html

https://doi.org/10.1109/ICMCCE51767.2020.00212
https://doi.org/10.1109/NOTERE.2015.7293479
https://github.com/FGPE-Erasmus
https://www.gnu.org/licenses/gpl-3.0.en.html

R. Queirós, R. Damaševičius, R. Maskeliūnas, and J. Swacha 11:11

13 Young joo Shin and Kwangjo Kim. Differentially private client-side data deduplication
protocol for cloud storage services. Secur. Commun. Networks, 8:2114–2123, 2015. doi:
10.1002/sec.1159.

14 DV Kornienko, SV Mishina, and MO Melnikov. The single page application architecture when
developing secure web services. In Journal of Physics: Conference Series, volume 2091(1),
page 012065. IOP Publishing, 2021.

15 Raoni Kulesza, Marcelo Fernandes de Sousa, Matheus Lima Moura de Araújo, Claudio-
mar Pereira de Araújo, and Aguinaldo Macedo Filho. Evolution of web systems architectures:
a roadmap. Special Topics in Multimedia, IoT and Web Technologies, pages 3–21, 2020.

16 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003.

17 José Paulo Leal, Ricardo Queirós, Pedro Ferreirinha, and Jakub Swacha. A Roadmap to
Convert Educational Web Applications into LTI Tools. In Third International Computer
Programming Education Conference, ICPEC 2022, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/OASICS.ICPEC.2022.12.

18 Vittorio Maniezzo, Marco A Boschetti, Antonella Carbonaro, Moreno Marzolla, and Francesco
Strappaveccia. Client-side computational optimization. ACM Transactions on Mathematical
Software (TOMS), 45(2):1–16, 2019.

19 Rytis Maskeliunas, Robertas Damasevicius, Tomas Blazauskas, and Jakub Swacha. Evaluation
of a progressive web application for gamified programming learning. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 2, pages 1334–1334, 2022.

20 Rytis Maskeliunas, Robertas Damasevicius, Tomas Blazauskas, and Jakub Swacha. Evaluation
of a progressive web application for gamified programming learning. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education, Volume 2, SIGCSE 2023, Toronto,
ON, Canada, March 15-18, 2023, volume 2, page 1334, 2023. doi:10.1145/3545947.3576385.

21 Rytis Maskeliūnas, Robertas Damaševičius, Tomas Blažauskas, Jakub Swacha, Ricardo Queirós,
and José Carlos Paiva. FGPE+: The mobile FGPE environment and the pareto-optimized
gamified programming exercise selection model—an empirical evaluation. Computers, 12(7),
2023. doi:10.3390/computers12070144.

22 Farouk Messaoudi, Adlen Ksentini, and Philippe Bertin. Toward a mobile gaming based-
computation offloading. In 2018 IEEE International Conference on Communications (ICC),
pages 1–7. IEEE, 2018.

23 J. Moscicki and L. Mascetti. Cloud storage services for file synchronization and sharing in
science, education and research. Future Gener. Comput. Syst., 78:1052–1054, 2018. doi:
10.1016/j.future.2017.09.019.

24 José Carlos Paiva, Alicja Haraszczuk, Ricardo Queirós, José Paulo Leal, Jakub Swacha, and
Sokol Kosta. FGPE Gamification Service: A graphql service to gamify online education. In
Trends and Applications in Information Systems and Technologies: Volume 4, pages 480–489,
Cham, Switzerland, 2021. Springer.

25 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, Jakub Swacha, and Filip Miernik.
Managing gamified programming courses with the FGPE platform. Information, 13(2):45,
2022.

26 Adrian Petcu, Madalin Frunzete, and Dan Alexandru Stoichescu. Evolution of applications:
From natively installed to web and decentralized. In International Conference on Computational
Science and Its Applications, pages 253–270. Springer, 2023.

27 U. Rahardja, M. A. Ngadi, R. Budiarto, Q. Aini, Marviola Hardini, and Fitra Putri Oganda.
Education exchange storage protocol: Transformation into decentralized learning platform.
Frontiers in Education, 6, 2021. doi:10.3389/feduc.2021.782969.

28 T. Sproull and Bill Siever. Going native with your web dev skills: An introduction to react
native for mobile app development, 2020.

ICPEC 2024

https://doi.org/10.1002/sec.1159
https://doi.org/10.1002/sec.1159
https://doi.org/10.4230/OASICS.ICPEC.2022.12
https://doi.org/10.1145/3545947.3576385
https://doi.org/10.3390/computers12070144
https://doi.org/10.1016/j.future.2017.09.019
https://doi.org/10.1016/j.future.2017.09.019
https://doi.org/10.3389/feduc.2021.782969

11:12 Client-Side Gamification Engine for Enhanced Programming Learning

29 Jakub Swacha, Thomas Naprawski, Ricardo Queirós, José Carlos Paiva, José Paulo Leal,
Ciro Giuseppe De Vita, Gennaro Mellone, Raffaele Montella, Davor Ljubenkov, and Sokol
Kosta. Open Source Collection of Gamified Programming Exercises. In Proceedings of the
thirty-seventh Information Systems Education Conference, ISECON 2021, pages 120–123,
Chicago, IL, USA, 2021. Foundation for IT education.

30 Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. A survey on security challenges in cloud
computing: issues, threats, and solutions. The journal of supercomputing, 76(12):9493–9532,
2020.

31 Mohit Thakkar. Reactjs: A comprehensive analysis of its features, performance, and suitability
for modern web development, 2020.

32 B. Wang and Yimin Zhou. Research and implementation of multiple virtual management
platform in multimedia classroom based on cloud storage. In 2011 International Conference
on Multimedia Technology, 2011. doi:10.1109/ICMT.2011.6002332.

33 Tian Wang, Jiyuan Zhou, Anfeng Liu, Md Zakirul Alam Bhuiyan, Guojun Wang, and W. Jia.
Fog-based computing and storage offloading for data synchronization in iot. IEEE Internet of
Things Journal, 6:4272–4282, 2019. doi:10.1109/JIOT.2018.2875915.

https://doi.org/10.1109/ICMT.2011.6002332
https://doi.org/10.1109/JIOT.2018.2875915

Game Development: Enhancing Creativity and
Independent Creation in University Course
Lenka Bubenkova #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Emilia Pietrikova #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Abstract
In this study, we tested a novel method of teaching the Unity engine to computer game design
and development students. Our objective was to determine if a flexible assignment structure is
the most effective for students with minimal engine experience. The study demonstrated that
independent work significantly improves students’ comprehension and problem-solving skills. Key
findings include a 90% increase in students achieving more than the minimum required grade, a
significant improvement in self-reported confidence with Unity (with 66.3% of students moving
from no experience to higher skill levels), and diverse, innovative final projects that exceeded initial
expectations. These results suggest that the flexible assignment approach enhances creativity and
maintains high expectations for student work, ensuring their success in the game development
industry. The combination of student project grades, innovative project elements, and positive
feedback indicates that this method is highly beneficial and could be applied effectively in various
educational settings.

2012 ACM Subject Classification Social and professional topics → Student assessment

Keywords and phrases novice programmers, assessment, learning analytics, motivation, unity engine,
game development, problem-solving skills

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.12

Funding This work was supported by project Kega No. 015TUKE-4/2024 “Modern Methods and
Education Forms in the Cybersecurity Education”.

1 Introduction

In computer science and software engineering, it is essential to recognize the significance of
incorporating fun and creative elements alongside traditional programming and practical
tools. As computer games and other forms of digital entertainment continue to grow in
popularity, educators must integrate them into their teaching methods. To remain up-to-date
with the latest trends, universities must equip their students with the skills required for
game development. One of the aspects of supporting this tutorial is, for example, this case
study[24] of the concept of gamification used on a games development course. One practical
approach to combining education and creativity is teaching students how to craft their games
in the most imaginative way possible while leveraging gamification to deliver lessons through
gameplay. This can be used in various courses, as described in this publication [21], where
authors implemented the learning of object-oriented programming by playing computer
games. While teaching students the basics of game development and the usage of engines,
there is also a need to consider a theory that will help them create visually attractive and
exciting games. One of the ways to develop such a game is using patterns, as is written in
this publication [32], to keep players entertained and simulate and enhance reality.

Currently, there are many game engines available for creating games. Unity is a popular
choice because many job opportunities require knowledge of this engine, as written in this
article [17], and it is easy to use, even for students new to game development. Besides,

© Lenka Bubenkova and Emilia Pietrikova;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 12; pp. 12:1–12:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lenka.bubenkova@tuke.sk
mailto:emilia.pietrikova@tuke.sk
https://orcid.org/0000-0002-9790-6874
https://doi.org/10.4230/OASIcs.ICPEC.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Enhancing Creativity in University Course

Unity’s ability to create multiplatform [13] games and projects is important for today’s game
development world. In addition to these aspects, the use of Unity Engine for teaching is
also suitable from the point of view of the accessibility of various tutorials. As mentioned
in [31], from an educational perspective, it is appropriate for students to independently
find additional information about creation from professionals, programmers, and developers
dedicated to creating just such instructions. In this study [8], using Unity Engine and
Design-Based Research approach resulted in the high engagement of students, making an
introduction to this engine smoother and more attractive. To add, based on this study [9],
learning how to code by creating games promises high motivation. The aim is to teach
students how to develop Unity Engine and provide enough information to continue their
work even after this course.

Besides, not only game development uses Unity Engine, as we can see [19] or [34], but
Unity can be used for developing various types of projects. In this example, we can see
the usage of the Unity engine in the creation of the short movie “The Heretic” [10]. This
provides a strong justification for teaching Unity Engine.

However, the challenge lies in making the teaching of game development exciting and
engaging while encouraging students to be creative and imaginative. The traditional approach
to game development can be time-consuming and challenging because students need to develop
unique ideas to incorporate into their games. If students are given strict rules and guidelines
to follow, they might not develop a good understanding of the engine and how to create
games. As mentioned in [30], in addition to basic programming, advanced knowledge in
computer graphics, databases, artificial intelligence, or, for example, physics is also necessary.
Basic knowledge enables students to understand contexts better and work more effectively
on assignments within the subject. Today, it is also essential to know various techniques
and developments. Unity, for example, provides an excellent environment for developing
virtual reality and XR in general. According to [29], the focus on the interface and, thus,
the use of these XRs is extremely important for game development and projects. Each of
these approaches is usable and thus feasible in the Unity Engine. Using the Unity engine for
enhancing problem-solving skills and creativity for this course is also supported by outcomes
of this research [26]. This study provides insights that could be applied by educators across
various disciplines who wish to incorporate similar strategies to enhance engagement and
learning outcomes.

How can creative labs improve the GameDev course?

Up to this point, game development education in our courses has been implemented through
basic versions of preexisting games, where students complete brief tasks and gain an under-
standing of the environment.Teaching methods are straightforward, and there is no space for
considering one’s elements and improvements. The entire procedure consists of downloading
the game, launching it in the Unity editor, and playing it. After the game calculates their
scores, students submit their scores and receive their marks. A similar approach can be seen
in this [27] game made with the Unity engine.

The new method involves the entire project creation and setup process to develop a
functional game similar to a flying simulator. This approach consists of three tutorials and a
step-by-step guide, from creating a project to adding a user interface. The main difference
between the old and new approaches is that the old approach did not allow students to create
something independently. Instead, it strictly guided them through various tasks.

On the other hand, the new approach guides students through creating games, but it
always leaves their final work independent of the assignment form. This means that while
they must follow various steps and learn various parts, the final form is always in their

L. Bubenkova and E. Pietrikova 12:3

imagination. This ensures they create something unique, go through the tutorials, find more
exciting and engaging parts, and work on them more. Based on the experience outlined in
the article [5], the decision has been made to adopt GitLab as the submission platform for
student projects.

The remainder of this paper is organized as follows: Section 2 provides background and
related work. Section 3 describes our proposed approach and details the three iterations of the
tutorial. Section 4 outlines the experiment setup and conduction, including our conjectures.
Section 5 presents the results and discusses the findings. Finally, Section 6 concludes the
paper with interpretations of the results, challenges, limitations, and suggestions for future
work.

2 Background

With a similar course outline, this paper [14] describes the slow approach and exciting
engagement for students in creating games through the Unity engine. It encourages its
students to create 2D games, preparing them for future careers. We also considered the
importance of active learning, as seen in this example [25], where authors used active
learning based on scenarios using Unity 3D. Another engaging hands-on project experience,
as described in this article [7], is using step-by-step tutorials. This kind of tutorial provides
a compact way of learning and understanding problems to their core. Thinking about using
Blender, we also searched for existing implementations of this tool in teaching. One of the
most used approaches is the creation of educational games using Unity. This approach can
introduce students to development with the Unity engine in the form of a game. With this
form of teaching, as is written in this research [16] that discusses educational games in Unity,
we can effectively avoid limitations to traditional teaching methods and support students’
creativity.

Another approach for this tutorial is using a teacher-student model, which was optional
in the previous teaching method. With the availability of a teacher during the whole process,
we may support students’ innovative thinking and reasoning abilities. This idea of composing
into this course was supported with research [11], that analyses this Teacher-Student model.

While using the Unity engine, we were also aware of the risk of issues in students’ projects,
like bad smells. As was discussed in this article [6], bad smells are detectable and can
be divided into categories. The main target of this course was to prevent students from
developing this kind of issue. Similarly, this study [23] also discusses bad smells, and its aim
was directly onto this issue in game development. This article also discusses the negative
impact of bad smells and the risk that they are not always critical.

In conclusion, there is no need to push students back with their projects only because of
the avoidance of bad smells. Instead, the fact that the Unity engine is fully programmable in
C#, as is written in this article [33], there is a need to focus on correct and nonissue coding.
However, at all times, we should be careful to avoid strictly controlling students with sets of
rules to ensure creative and innovative thinking in their projects.

With the rise of immersive learning, we can also discuss the need for knowledge of the Unity
engine. For example, this work [3] demonstrates the usage of Unity for the implementation
of twin-screw, which is a process in the polymer. This work used Unity to implement the
simulation in an interactive educational environment. A similar approach is used in the paper
[35], where the problem of the informed purchase of toys is solved with the implementation
of augmented reality technology using Unity 3D. Immersive interaction can also be done in
full-body forms, as is described in this paper [15], where authors contributed to enabling this

ICPEC 2024

12:4 Enhancing Creativity in University Course

kind of interaction in the metaverse. To achieve this, the authors worked with Unity 3D and
other tools, successfully integrating the digital twins and immersive user experience. This
work may show that students need more than the Unity engine to prepare for the industry’s
challenges. The usage of this information and its successful implementation in the education
process is written in this article [20], where authors proved that this approach can be effective
in the student’s improvement in the learning process.

3 Proposed approach

Tutorials are created in the areas of computer game design and development. There are three
tutorials. The goal of the first tutorial is to explain the engine and cover the fundamentals of
project and game background creation. The second tutorial covers creating game effects using
VFX Graph and explains the differences between different approaches in effect creations. The
second tutorial also covers the fundamentals of the Blender[12] engine and how to create 3D
models. The third tutorial served as an addition to help students add engaging components
to their projects.

Figure 1 The Unity Engine Learning Journey outlining the structured path from basic concepts
to the final project.

Before discussusion of the detailed structure of the tutorials, Figure 1 presents a com-
prehensive mind map of the Unity Engine Exploration course. This diagram encapsulates
the learning journey from initial familiarization with the Unity interface to the final project
assembly, containing advanced topics such as VFX and Blender integration.

3.1 First iteration
In the beginning, students are led through the installation process. Then, they are shown
how to create and run the project. This part is crucial because creating and starting with
work in Unity from the total basics is fundamental for students to develop a relationship with

L. Bubenkova and E. Pietrikova 12:5

the engine. It makes it easier for them to understand every part that will come next from the
basics. After the introduction of the engine, the first tutorial covers the creation of the game
world using terrain tools. Additionally, students are encouraged to use their assets, not just
those shown in the tutorial. The essential part is introducing the Asset Store and working
with assets in the editor. In the future, they must understand how to create and work with
assets. The next important step is adding a player. They are encouraged to pick their avatar
to play their game. The exciting part of this tutorial is adding a Timeline. A Timeline
is generally used to animate movements and create exciting game moments. Students are
shown the basics of work with a timeline and are not given the detailed needs of using a
timeline for their game; instead, they use it in their way. Using a timeline is beneficial not
only for game development but also for many other fields. Short movies and ads can be
created using a timeline, so this incorporation into the curriculum may widen their abilities
in the future in various fields. Students are also introduced to scripting in Unity, using C#.
We are teaching 3rd graders, so they must have various programming skills. Because of that,
this part is mainly informative and shows them good practices in scripting in Unity. At the
end of this tutorial, students have developed their game world and the basic movement of
players in this world. The crucial part is personification and uniqueness. This tutorial has
a role in developing interest in creations and incorporating their own elements, which may
benefit their careers and development.

3.1.1 First iteration outcome
In the first iteration, students learned the basics of Unity and created a simple game world.
For instance, one student created a terrain with mountains and a river, utilizing assets from
the Unity Asset Store. In contrast, another student designed a desert landscape with custom
textures.

3.2 Second iteration
The second tutorial was expecting better skills with unity and overall orientation of students
in the engine. Firstly, there is a comparison of the two most common tools for creating
visual effects in unity: VFX Graph and Particle System. Next, students moved to work with
VFXGraph, creating an elemental explosion made of more layers. In this article, we can
see the point of teaching students the basics of VFX [18], also with a similar approach in
this article [22], as this theme is not only valid with game development but also has broad
usage in many other fields. Students are asked to develop their solution in the VFX Graph
editor and, later in the tutorial, find their usage in their game. This tutorial also covers
the basics of working with Blender. Blender is used to create a simple target for students’
games. The main reason for incorporating Blender into this course is the need for 3D models
in today’s game. Teaching students the basics of working with Blender and coworking with
Unity may benefit project uniqueness and originality. As written in the article that discusses
modeling [4], Blender was the best choice. Later in the tutorial, students get a task to create
something useful with Blender and use it in their games.

3.2.1 Second iteration outcome
In the second iteration, students learned the differences between the Particle system and
VFX Graph in the Unity engine and worked on their unique solutions. They were led to
create the effect of an explosion. Students created effects that contributed to their games.

ICPEC 2024

12:6 Enhancing Creativity in University Course

Another aspect of this iteration was the usage of Blender. This engine helped students to be
more creative with assets and learn the essentials of the work in Blender. Students created
various 3D models, such as players, donuts, trees, and various equipment for their games.
Students also worked with VFX Graph, creating explosions and other effects, like shooting
and smoke.

3.3 Third iteration

The third tutorial is optional. Creating effects in Unity or modeling 3D objects in Blender is
only interesting for some students. Primarily, these parts are required, but the extra work
on their project can be done on other developing parts. The third tutorial covers the basics
of the particle system, which can be used in various ways, not only in game development,
for example, like [2] or [28], the creation of UI using Canvas, and its elements, like sliders
or buttons. Also, students can see the creation of levels using Scene Manager. A similar
approach can be seen in this article [1], where leveling is also based on scenes in a functional
3D Unity game. A combination of UI and scene manager can create an entry screen for
players to their game, and in the final project, the game will look more professional. The
last part of the third tutorial is bug fixing. Students are encouraged to fix issues in existing
projects to enhance their problem-solving skills and general knowledge of game development,
where fixing is common and vital.

3.3.1 Third iteration outcome

In the third iteration, students explored advanced features like the particle system and UI
creation. For example, one student created a particle effect to simulate a magical spell,
adding dynamic visual flair to their game. Another student designed a custom health bar
and interactive menu, significantly improving the user experience. Additionally, one student
developed a multi-level game with a main menu, level selection screen, and in-game HUD,
demonstrating their ability to integrate UI elements with scene management.

3.4 Outcomes and Project Example

The existing project that students get to fix is available on the course page. In this project,
all three tutorials are implemented, adding some unique elements and implementations
to make students more curious and inspired. Students can create their own game in this
project but are encouraged to create their own to solve issues that may be fixed in existing
implementation and prepare them better for their future in this challenging field.

These tutorials should enhance students’ independent work and support them in developing
their games. Even if there are some mandatory steps for final grading, students still have
the chance to add their elements and additions to their games and get the desired grade on
the project. The reason is simple: game development is not a detailed, structured plan but
more of an idea-adding process.

Following the detailed description of the tutorial structure, the following section clarifies
the methodology utilized to evaluate its effectiveness. This analysis primarily focuses on
assessing student feedback and project outcomes, which serve as critical metrics for measuring
the educational impact of the implemented interventions.

L. Bubenkova and E. Pietrikova 12:7

4 Experiment setup and conduction

This study focuses on innovative and adaptable methods for teaching the fundamentals of
using the Unity engine. Students’ self-grading and individual development as project creators
are crucial to a conclusion. This study employs a combination of self-reported data collection,
enrolled students’ grades, and final projects. Data from students’ answers to questions were
valid, and students were informed of the usage of their responses.

Questionnaire – After grading, participants self-reported data to provide their perspectives
and comments on the methodology.
Evaluation – Using the results of final projects and their assignment grades; and also
monitoring the quantity of work that exceeded the assignment’s minimum.

4.1 Course Characteristics
This study was conducted during the 2023-2024 academic year. One hundred four third-year
undergraduate students enrolled in a game development class during these academic year
across both winter and summer semesters. The class included Slovak students as well as
international students, and it was conducted in English and Slovak. Students had varying
levels of prior experience with the Unity engine.

4.2 Conjectures
This paper posits several conjectures to evaluate the efficacy of a novel instructional approach
in Unity engine development. These conjectures are implanted in the conviction that
structured yet flexible learning environments can significantly enhance students’ educational
experience and outcomes, irrespective of their prior technical experience.

The research process involved three main iterations, each designed to build students’
skills and creativity progressively. The first iteration focused on fundamental Unity skills, the
second on advanced features like VFX and Blender, and the third on optional enhancements
such as UI and bug fixing.

The following hypotheses are formulated to rigorously test the effectiveness of these
educational methodologies through empirical evidence and data-driven analysis:

▶ Conjecture 1. Students do not have to have prior skills and an introduction to Unity
engine development to complete this course.

▶ Conjecture 2. If students are given more freedom in their assignments, they will be more
creative and driven to work on their projects, which will ultimately result in better grades.

▶ Conjecture 3. After working more independently, students feel secure in their knowledge.

▶ Conjecture 4. Students will include unique elements and interesting strategies of their
own.

To verify these conjectures, employmend of the various methods was used: Conjectures 1
and 2 were assessed using a structured questionnaire that studied student engagement and
learning outcomes. For Conjecture 3, an analysis of existing student performance data was
conducted to determine the impact of independence on learning security. Conjecture 4 was
evaluated through project reviews that assessed the creativity and uniqueness of student
submissions.

ICPEC 2024

12:8 Enhancing Creativity in University Course

5 Results

The examination of students’ results, final projects, and self-reported information from
questionnaires was essential to analyze the effectiveness of the teaching method. This section
presents the findings of these analyses, which help validate the conjectures proposed in this
paper. An overview of the analyzed data and a summary of the findings related to the
hypotheses are provided below.

5.1 Conjecture 1
In the following Figure Figure 5.1, it is visible that the number of students with some
experience before attending this course was much smaller than those that had not previously
worked with the Unity engine. Percentualy, only 26% worked with the engine. This section
aims to determine if these students will experience any resulting disadvantages.

Figure 2 Student’s experience with Unity Engine before tutorials.

The Pearson correlation coefficient was used to examine whether prior experience with
the Unity Engine statistically impacts the grading scores. The test yielded a coefficient of
0.12, considered a low degree of correlation. This result suggests no statistically significant
score difference between individuals with and without previous experience using the Unity
Engine. Consequently, previous knowledge of Unity only significantly influences the observed
grading outcomes.

This proved Conjecture 1, where was supposed that students do not have to have prior
knowledge to perform outstanding results in this course.

5.2 Conjecture 2
Immediately after the personal defense, students were awarded points for the developed
projects based on a predetermined evaluation on the subject page at the end of each tutorial.
The attached table Table 1 shows that the highest rating was 10 points, representing the
maximum of the possible points obtained. Completing all the necessary steps in the tutorial
could obtain the minimum number of points, which was 6. The result, which was 10 points,
means that students did extra work on this project and added many particular tasks from
all the tutorials. This point evaluation was obtained by more than half of all students. The
second highest rating belongs to students with the same score, 14 for both 8 and 9 points. At
the same time, a low assessment of the assignment occurred in only one case, in the form of
one point. Therefore, completing the instructions by the students is exceptionally successful.

L. Bubenkova and E. Pietrikova 12:9

In the questionnaire, students had to answer the question, “Do you think that your point
evaluation corresponds to the time you devoted to the assignment?” where the answer “Yes”
reached the value of 94.2%, and the answer “No, I devoted a lot of time to this assignment”
had a value of 3.5%, which can be considered as the result of a fair assessment and student
satisfaction with this aspect of the university courses as well.

Table 1 Table for students grades.

points 0p 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p
students 0 1 0 0 3 3 3 7 14 14 55

This proved Conjecture 2, where was supposed that students would be motivated to work
harder on their assignments if they were given some space for their creations. This also
proved that 90% of students did more than the required work, graded with 6 points.

5.3 Conjecture 3

Students also had the opportunity to answer questions about their skills with Unity Engine
before and after completing tutorials. As can be seen on the attached chart Figure 5.3,
self-rating skills in Unity Engine, from rating to scale from 1 to 5, where 1 represents zero
experience and five the highest level of ability properties, all students managed to move
to a higher rating. In particular, the drop in the change from 66.3% to 0% in experience
indicates excessive success. On the second side, self-assessment in the highest degree rose by
7%, assessment in the form of 4 out of 5 increased by 24.4%, and the rating on the 3 out of 5
scale increased by 37.2%.

Figure 3 Self-reported skills in Unity Engine before and after finishing tutorials.

This proved Conjecture 3, where was supposed that students would feel more secure in
their knowledge if they worked independently.

ICPEC 2024

12:10 Enhancing Creativity in University Course

5.4 Conjecture 4
The students were instructed to create and add their elements independently. After collecting
and evaluating the projects, it was evident that the students demonstrated fascinating
diversity and creativity in their work. Each student’s individuality was visible in the creation
of their assignments. One exciting element was the use of Timeline in the form of game
animation, which was used effectively in several projects. For example, a cinematic animation
of a military plane flying over the sea and observing various elements such as ships, houses,
and the sea. The manual mainly covers movement in the form of flying, but the resulting
student projects brought many new solutions, such as walking. This means that encouraging
the students to create and experiment on their own was enough, and when they were left to
their own will, various game projects were created.

This proved Conjecture 4, where was expected that students would create unique and
personal projects with various elements over the course outline.

6 Conclusion

The tutorial outcomes demonstrate considerable advancements in students’ capabilities
to produce creative outputs and solve complex problems. This section will analyze the
implications of these results, contrasting them with traditional educational methodologies in
game design and examining their potential transformative impacts on the curriculum.

6.1 Interpretation of Results
A notable aspect of the student projects was their diversity in game design approaches.
While the core tutorials were designed around constructing simulations for flight simulators
and first-person shooters, many students ventured beyond these confines. They crafted
unique game environments, where characters navigated through complex worlds or diverged
completely to create cinematic short animations. These projects not only stuck to the
foundational elements of the tutorials but also incorporated innovative modifications and
additions. For instance, Figure 6.1 illustrates a project featuring an interactive walking
character, demonstrating the practical application of the skills acquired through the course.
Positive feedback regarding the final projects was on the availability of project flying-hero,
where were implemented all three tutorials with added addins and unique elements. As
was said in the student feedback, the ability to see the existing games and their parts was
beneficial, not only for students to see how the parts of the tutorial are implemented but
also as an inspiration for their projects.

Figure 4 Example of a student-developed game showcasing an interactive character.

L. Bubenkova and E. Pietrikova 12:11

6.2 Challenges and Limitations
One primary challenge was guiding students through managing extensive projects and
utilizing comprehensive file systems within their version control repositories. Furthermore,
the affiliate’s familiarity with Unity Engine was initially low, posing a significant learning curve.
However, most issues were swiftly addressed through online resources or direct interventions
during lectures, enhancing the learning experience and problem-solving efficiency.

6.3 Future work
Future work on this course should contain more detailed explanations for problematic parts
written in student responses. Also, students asked for additional content, such as AI in the
form of enemies, more scripting in the course, or video tutorials, as they thought they would
benefit more from them while working at home without the lecturer’s presence. Detailed
explanations of problematic topics may help them better adapt to future needs. Besides this,
this course is up to date and should be sustainable for more years in the future, but after
some time, some additions and work would be needed as the game development world moves
further.

The study explores the integration of game design and development courses at the
university, highlighting the inclusion of subjects like Unity Engine and Blender, which are
popular among students and offer practical skills demanded in the industry. These courses
introduce students to complex tools like effects, animations, interfaces, and advanced features
like Timeline and VFX Graph.

The curriculum is designed not merely to engage students during lectures but to inspire
independent work and creativity in their projects. This approach has proven effective, with
students delivering highly successful projects that incorporate their unique solutions. The
addition of Blender enriches the creative potential and deepens students’ interest in game
development and game design.

Student feedback regarding satisfaction with the course and the instructions’ clarity
has been overwhelmingly positive. The results met and exceeded initial expectations, with
students developing innovative solutions promptly. Future enhancements include AI enemies,
expanded scripting options, and multimedia instructional materials, reflecting the students’
desire for more comprehensive and prolonged engagement with game development tools.

It can be considered, that using this approach in various courses can help to enhance
students’ learning and adaptability across different disciplines. This method may be integrated
into other areas to foster technical skills, critical thinking, problem-solving, and creative
design thinking. By implementing these techniques widely, educational institutions can better
prepare students for the complexities of modern professional environments while equipping
them with the necessary tools to excel in their chosen fields.

References
1 Shanmuk Srinivas Amiripalli, Mukkamala SNV Jitendra, Surendra Talari, Sannith Akkireddi,

and D Sateesh Kumar. Design and implement an artificial intelligence based zombie’s applica-
tion using unity3d, 2020.

2 Natalia Ampilova, Igor Soloviev, and Michail Syasko. Computer modeling the effect of
weak electromagnetic field on charged particles by unity engine. In 2020 International
Conference and Exposition on Electrical And Power Engineering (EPE), pages 082–086, 2020.
doi:10.1109/EPE50722.2020.9305579.

ICPEC 2024

https://doi.org/10.1109/EPE50722.2020.9305579

12:12 Enhancing Creativity in University Course

3 Pedro Santos Bartolomé, Daniel Just, Ariana Bampouli, Simon Kemmerling, Aleksandra
Buczko, and Tom Van Gerven. Immersive learning through simulation: implementing twin
screw extrusion in unity. In Antonios C. Kokossis, Michael C. Georgiadis, and Efstratios
Pistikopoulos, editors, 33rd European Symposium on Computer Aided Process Engineering,
volume 52 of Computer Aided Chemical Engineering, pages 3489–3494. Elsevier, 2023.

4 Ilsiyar Bikmullina and Enzhe Garaeva. The development of 3d object modeling techniques for
use in the unity environmen. In 2020 International Multi-Conference on Industrial Engineering
and Modern Technologies (FarEastCon), pages 1–6, 2020. doi:10.1109/FarEastCon50210.
2020.9271568.

5 Miroslav Binas. Version control system in cs1 course: Practical experience. In 2013 IEEE
11th International Conference on Emerging eLearning Technologies and Applications (ICETA),
October 2013. doi:10.1109/ICETA.2013.6674398.

6 Antonio Borrelli, Vittoria Nardone, Giuseppe A. Di Lucca, Gerardo Canfora, and Massimiliano
Di Penta. Detecting video game-specific bad smells in unity projects. In Proceedings of the
17th International Conference on Mining Software Repositories, MSR ’20, pages 198–208, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3379597.3387454.

7 Simon Bouvier-Zappa, Olivier Dionne, and David Hunt. Advanced use cases for animation
rigging in unity. In ACM SIGGRAPH 2019 Studio, SIGGRAPH ’19, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3306306.3328748.

8 Oswald Comber, Renate Motschnig, Hubert Mayer, and David Haselberger. Engaging students
in computer science education through game development with unity. In 2019 IEEE Global
Engineering Education Conference (EDUCON), pages 199–205, 2019. doi:10.1109/EDUCON.
2019.8725135.

9 Oswald Comber, Renate Motschnig, Hubert Mayer, and David Haselberger. Engaging students
in computer science education through game development with unity. In 2019 ieee global
engineering education conference (educon), pages 199–205. IEEE, 2019.

10 Veselin Efremov and Adrian Lazar. Real-time procedural vfx characters in unity’s real-time
short film "the heretic". In ACM SIGGRAPH 2019 Real-Time Live!, SIGGRAPH ’19, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3306305.3332363.

11 Hui Fang, Hongmei Shi, Jiuzhou Zhang, and Marimuthu Karuppiah. Effective college english
teaching based on teacher-student interactive model. ACM Trans. Asian Low-Resour. Lang.
Inf. Process., 22(3), March 2023. doi:10.1145/3486676.

12 Lance Flavell. Beginning Blender: Open Source 3D Modeling, Animation, and Game Design.
Apress, USA, 1st edition, 2010.

13 Maxwell Foxman. United we stand: Platforms, tools and innovation with the unity game
engine. Social Media+ Society, 5(4):2056305119880177, 2019.

14 Christopher L. Hideg and Debatosh Debnath. A programming course using video game
design with platform projects. In 2018 IEEE International Conference on Electro/Information
Technology (EIT), pages 0030–0034, 2018. doi:10.1109/EIT.2018.8500103.

15 Shimasadat Hosseini, Ali Abbasi, Luis G. Magalhaes, Jaime C. Fonseca, Nuno M.C. da Costa,
António H.J. Moreira, and João Borges. Immersive interaction in digital factory: Metaverse in
manufacturing. Procedia Computer Science, 232:2310–2320, 2024. 5th International Conference
on Industry 4.0 and Smart Manufacturing (ISM 2023). doi:10.1016/j.procs.2024.02.050.

16 Zhiyong Hu, Qing Xu, and Guang Huang. Discussion on educational games based on unity.
In Proceedings of the 2022 6th International Conference on Education and E-Learning, ICEEL
’22, pages 67–74, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3578837.3578847.

17 Afzal Hussain, Haad Shakeel, Faizan Hussain, Nasir Uddin, and Turab Latif Ghouri. Unity
game development engine: A technical survey. Univ. Sindh J. Inf. Commun. Technol, 4(2):73–
81, 2020.

https://doi.org/10.1109/FarEastCon50210.2020.9271568
https://doi.org/10.1109/FarEastCon50210.2020.9271568
https://doi.org/10.1109/ICETA.2013.6674398
https://doi.org/10.1145/3379597.3387454
https://doi.org/10.1145/3306306.3328748
https://doi.org/10.1109/EDUCON.2019.8725135
https://doi.org/10.1109/EDUCON.2019.8725135
https://doi.org/10.1145/3306305.3332363
https://doi.org/10.1145/3486676
https://doi.org/10.1109/EIT.2018.8500103
https://doi.org/10.1016/j.procs.2024.02.050
https://doi.org/10.1145/3578837.3578847
https://doi.org/10.1145/3578837.3578847

L. Bubenkova and E. Pietrikova 12:13

18 Manolya Kavakli and Cinzia Cremona. The virtual production studio concept – an emerging
game changer in filmmaking. In 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 29–37, 2022. doi:10.1109/VR51125.2022.00020.

19 Liuxian Li and Zhiyang Fang. Earthquake escape simulator: A system for disaster knowledge
popularization. In Journal of Physics: Conference Series, volume 2333, page 012002. IOP
Publishing, 2022.

20 Xiaoxiao Liu, Yiming Shen, Yukari Nagai, and Hirokazu Kato. Use of a mixed-reality creative
environment in design education. Computers & Education: X Reality, 4:100055, 2024.

21 Jakub Livovský and Jaroslav Porubän. Learning object-oriented paradigm by playing
computer games: Concepts first approach. Open Computer Science, 2014. doi:10.2478/
s13537-014-0209-2.

22 Jonathan Mortimer. How universities can better engage with the animation/vfx sector in
scotland. Animation Practice, Process & Production, 7(1):157–173, 2018.

23 Vittoria Nardone, Biruk Muse, Mouna Abidi, Foutse Khomh, and Massimiliano Di Penta.
Video game bad smells: What they are and how developers perceive them. ACM Trans. Softw.
Eng. Methodol., 32(4), May 2023. doi:10.1145/3563214.

24 Siobhan O’Donovan, James Gain, and Patrick Marais. A case study in the gamification of a
university-level games development course. In Proceedings of the South African Institute for
Computer Scientists and Information Technologists Conference, SAICSIT ’13, pages 242–251,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2513456.
2513469.

25 Hyesung Park, Sean Yang, and Hongsik Choi. Scenario based active learning programming
with unity 3d. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE ’20, page 1283, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3328778.3372582.

26 Banyapon Poolsawas and Winyu Niranatlamphong. Using a game development platform to
improve advanced programming skills. Journal of Reviews on Global Economics, 6:328–334,
2017.

27 Vincent Schiller. Enc#ypted: An educational game for programming in the unity engine. In
Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems,
CHI EA ’21, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/
3411763.3451852.

28 Jasmine Y. Shih, Kalina Borkiewicz, AJ Christensen, and Donna Cox. Interactive cinematic
scientific visualization in unity. In ACM SIGGRAPH 2019 Posters, SIGGRAPH ’19, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3306214.3338588.

29 Branislav Sobota. Computer Game Development. IntechOpen, Rijeka, August 2022. doi:
10.5772/intechopen.97983.

30 Branislav Sobota and Emília Pietriková. Computer Science for Game Development and Game
Development for Computer Science. IntechOpen, Rijeka, November 2023. doi:10.5772/
intechopen.1000364.

31 Branislav Sobota and Emília Pietriková. The role of game engines in game development and
teaching. In Branislav Sobota and Emília Pietriková, editors, Computer Science for Game
Development and Game Development for Computer Science, chapter 5. IntechOpen, Rijeka,
2023. doi:10.5772/intechopen.1002257.

32 Branislava Vranić and Valentino Vranić. Patterns of recreating reality in games. In Proceedings
of 29th Conference on Pattern Languages of Programs, PLoP, 2022.

33 Ursula Wolz, Gail Carmichael, and Chris Dunne. Learning to code in the unity 3d development
platform. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
SIGCSE ’20, page 1387, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3328778.3367010.

34 Haolong Yang, Chunqiang Hu, Guwei Li, and Jingchun Fan. A fire escape simulation system
based on the dijkstra algorithm. Comput. Syst. Sci. Eng., 39(3):365–372, 2021.

35 Lingxin Yu, Jiacheng Zhang, Xinyue Wang, Siru Chen, Xuehao Qin, Zhifei Ding, and Jiahao
Han. Constructing immersive toy trial experience in mobile augmented reality. Internet of
Things and Cyber-Physical Systems, 4:250–257, 2024. doi:10.1016/j.iotcps.2024.02.001.

ICPEC 2024

https://doi.org/10.1109/VR51125.2022.00020
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.1145/3563214
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1145/3328778.3372582
https://doi.org/10.1145/3411763.3451852
https://doi.org/10.1145/3411763.3451852
https://doi.org/10.1145/3306214.3338588
https://doi.org/10.5772/intechopen.97983
https://doi.org/10.5772/intechopen.97983
https://doi.org/10.5772/intechopen.1000364
https://doi.org/10.5772/intechopen.1000364
https://doi.org/10.5772/intechopen.1002257
https://doi.org/10.1145/3328778.3367010
https://doi.org/10.1016/j.iotcps.2024.02.001

Learning Paths: A New Teaching Strategy with
Gamification
Filipe Portela #

Algoritmi Centre, University of Minho, Guimarães, Portugal

Abstract
Education’s primary objective should be to equip students with the skills and knowledge necessary
for professional success. However, the current education system often employs a one-size-fits-all
approach, treating all students alike and expecting uniform performance. As students progress, their
strengths and weaknesses become more apparent, yet they face the same challenges.

This article addresses this issue by challenging the conventional approach in higher education,
demonstrating that it can accommodate diverse student needs and aspirations while maintaining
academic rigour and incorporating gamification strategies. Within the TechTeach paradigm, a
two-path strategy was developed and implemented with 114 students at the University of Minho.

The first path caters to students aiming for satisfactory grades, considering the subject’s minimal
relevance to their future careers. The second path is designed for aspiring experts in the subject.

The results indicate a high level of student approval, with 90% expressing satisfaction. Addition-
ally, 49.43% of students achieved final grades between 14 and 18, highlighting the effectiveness of
tailored learning pathways in meeting diverse student needs and goals.

2012 ACM Subject Classification Information systems → Information retrieval

Keywords and phrases TechTeach, Information Systems, Gamification, Higher Education, Learning
Paths, Personalized Learning

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.13

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Higher education students in Europe have significantly increased in recent years [13] - Portugal
is not an exception [7] – and professors feel powerless to keep them motivated and focused.

As a professor, I have observed that many students are in classes to do the minimum,
and typically, they are conditioning their colleagues who want to learn more about the
subject and become experts. This suspicion was easily attested by the surveys answered by
the students at the beginning of each class since 2016/17, where only 50% want to learn.
The first strategy was to add gamification to the classes, and a new paradigm was created:
TechTeach [9]. The results were promising, but professors still found a limitation. They were
“forcing” students to learn and do things they were not motivated or ready for because their
skills were more suitable to other subjects. Gamification is a strategy, but it is not enough. It
is essential to innovate the curricula and make the students learn what they like based on the
thresholds defined by the professor. Students also have many alternative knowledge sources,
usually not scientifically validated, but they consider enough to learn, moving them away
from the classes. The increase in students, verified in parallel with the decrease in professors
and the respective diminution of accompanying tasks, puts the teaching systems and future
professionals at risk. It is a real problem, and universities must find a new way to address it.

So, a new question was raised: “Why are we requesting the same for all the students if
we know that is not positive for anyone?”. Instead of creating demotivated professionals, we
must demand more from those who want to learn and ensure the minimum knowledge for
those with other skills. In the end, all (the students and the professor) win. Analysing the

© Filipe Portela;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 13; pp. 13:1–13:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cfp@dsi.uminho.pt
https://orcid.org/0000-0003-2181-6837
https://doi.org/10.4230/OASIcs.ICPEC.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Learning Paths: A New Teaching Strategy

issue stated, a new teaching strategy based on learning paths was proposed and tested for
this proposal. This strategy is part of TeachTeach and splits the students into two groups:
Traditional and Advanced. Each student must select a group, and the learning content,
projects and grades vary according to the path chosen.

After designing the strategy, a case study was conducted during the 2022/2023 academic
year at the University of Minho with Web Programming students in the Information Systems
Engineering Course. For the first time, the students could select what they desired to be/have
after the subject ended. The narrative was earlier defined and they knew from the beginning
what they needed to do to get the expected grade. The narrative was earlier defined, and
students knew from the beginning what they needed to do to get the expected grade. Two
gamification mechanisms, Cards and Pairs Evaluation, were also used during the process in
order to keep the students informed about whether their performance was suitable for the
chosen path. The experience, conducted with 140 students, represents an innovative practice
in engineering education and was revealed to be a success.

This paper describes the strategy and presents the case study and the first results. It is
split into six sections. After briefly introducing the paper, the topics and related work are
addressed in section two: background. Then, the material and methods section explains the
research process. Section four describes the strategy created, while section five presents the
case study deployed. Finally, section six remarks on the research and presents future work.

2 Background

This section presents the main topics of the work and some similar works.

2.1 Learning Paths and Outcomes
Pedagogical innovation is essential to teaching success, and learning paths are a simple way
of personalizing learning. Personalizing learning is an alternative to the “one size fits all”
learning [2] and refers to approaches that generate multiple learning paths considering the
individual differences in learning preferences, goals, abilities, knowledge background, and
others [5]. A learning path, embodying curriculum design, comprises a series of structured
learning activities aimed at helping users attain predefined learning objectives. Such paths
hold significant promise in reshaping professors’ approaches to learner support [4, 8]. The
Learning paths need to be aligned with Learning outcomes. Learning outcomes are student-
centred and describe the measurable skills, knowledge, or values that students should be able
to demonstrate after completing a course [16].

2.2 TechTeach and Similar Works
In 2020, Filipe Portela created TechTeach, a new and gamified paradigm to engage students
in the classroom [9]. This paradigm combines various digital tools and techniques (e.g.
Gamification and project-based learning) to enhance learning results. Since the start, it
has been optimized, and new approaches are being created every year, like the creation of
assessment exercises using Kahoot! [11]. Motivated by the results, the new strategy presented
in this article was improved by the gamification mechanism created at TeachTeach.

Several studies have explored the concept of learning paths. Charzyński discussed
educational paths as a form of fieldwork, stressing the necessity of meticulous design and
teacher support [3]. In 2021, Ramos [12] introduced a novel learning path model for e-learning
systems, leveraging system data to visualize paths and analyze student behaviour. Focused
on automatically creating learning paths using open educational resources, a study [15]

F. Portela 13:3

showed the techniques and algorithms essential for this process. These studies collectively
underscore the significance of meticulous design, data analysis, and practical application in
developing and utilising learning paths.

3 Material and Methods

This work is based on the case study method, which allows for exploring a specific occurrence
or phenomenon [17]. The process of conducting a case study typically unfolds through
various stages, including the development of the design, the collection of data, the analysis of
findings, and the interpretation of the results [1]. The specific phases and activities involved
in this case study are as follows:

Design:
Understand student’s motivation and goals about the subjects
Study a new way to increase students’ motivation and results
Design a new learning strategy that suits students needs
Create students’ opinion questions to evaluate opinions about the strategy designed

Implementation:
Define the rules and strategy plan
Change subject evaluation plan to include strategy designed
Choose and implement the gamification mechanism from TechTeach
Create a project and put the strategy into practice

Analysis:
Compare students’ results with their expectations
Evaluate the project results and see the strategy impact
Verify students’ opinion responses

Interpretation:
Analyse the outcomes to conclude the strategies applied.
Evaluating how these results align with the existing learning results of the subject.
Exploring the wider implications of this strategy within the context of higher education
learning.

The application of case study methodology is justified because it is necessary to study
the suitability of creating distinct learning paths while keeping a subject’s learning goals
intact. This methodology confirmed their applicability to research in real-world settings [6]
because it allowed professors to understand students’ behaviour and compare it with the
achieved results. Regarding the tools, Kahoot was used to receive students’ feedback on the
subject and their expectations at the beginning, middle, and end. Kahoot [10] was also used
for mini-tests. ioEduc [14] was used for gamification mechanisms, such as a card system,
quizzes, and peer evaluation.

4 Learning Path Model

This section presents the strategy developed to split teaching into two distinct paths.

Path 1: Basic Knowledge
1. Focus: Essential subject knowledge without diving into advanced or recent technologies.
2. Goal: Ensure the minimum subject knowledge.

ICPEC 2024

13:4 Learning Paths: A New Teaching Strategy

3. Ideal for: Students who require an understanding of the subject for general knowledge,
not for professional specialization.

4. Outcome: Students gain necessary foundational knowledge sufficient for non-specialists.

Path 2: Advanced Exploration
1. Focus: In-depth study that includes the latest technologies and trends in the field.
2. Goal: Explore the most recent technologies and do work near reality.
3. Ideal for: Students aiming to specialize in the subject and pursue it as a career.
4. Outcome: Students develop a comprehensive understanding and are well-prepared for

professional roles in the field.

In detail,
On path 1, students are faced with basic knowledge about the subject. They only need
to know the essentials and do not need to experiment with the most recent technologies
suitable to the study area. This path is usually ideal for students whose subject area is
not their professional bet but who need to know the topics.
Path 2 is advised to students who want to learn more about the subject and prepare to
be professionals in that area. These students are typically encouraged to use the most
prominent technologies and explore new trends. Ultimately, they will know more about
the subject and learn advanced topics essential to becoming a future expert in the area.

Figure 1 represents an example of the learning path, where Classes have a limited time
in weeks (100%). It represents, on average:

Six weeks – Essential Content;
Two weeks – Multi-content and path chosen;
Four weeks – Specific Content of the path chosen.

With this strategy, students can balance their efforts and excel in the areas/subjects more
suitable to their profile. It will ensure minimum experience in complementary areas and give
them time to improve their knowledge in the main area.

Figure 1 Learning Path Example.

Gamification can be used to motivate students. For example, professors can instigate
good performance through badges or points. To best understand what can be used, readers
can explore TechTeach.

F. Portela 13:5

4.1 Strategy Rules
The strategy allows students to choose one of two learning paths. In practice, it splits the
students into two groups. The process is the following:
1. Characterize the learning environment and ask students about their desires, expectations

and why they are in the classes;
2. Explain the learning paths narrative to students, their impacts and rules;
3. Show how it works and where it is applied;
4. Create a learning path and agenda for each path;
5. Prepare subject content (matter) according to the paths and ensure that the European

Credit Transfer and Accumulation System (ECTS) is kept;
6. Allows students to change the path one time;
7. create a project and add challenges for each path
8. create Gamification methods to valorize those who do more than the expected
9. Grade students according to the path chosen.

10. Ask students for feedback

Students are the only ones responsible for defining their path; professors cannot obligate
them to opt for one path or limit their knowledge. For example, if students choose Path 1,
they can keep participating in classes directed to Path 2 students. This approach ensures
equal opportunity equality following ECT guidelines (time efforts by credits).

Regarding the learning path, some rules must be taken into attention:
(a) Each learning path should be designed according to the learning outcomes.
(b) Validate the effort according to the European Credit Transfer and Accumulation System

(ECTS).
(c) Provide clear guidance and resources to support students’ progression along the learning

path.
(d) Regularly assess and evaluate student progress to ensure alignment with learning object-

ives.
(e) Offer flexibility to accommodate diverse learning styles and preferences.
(f) Encourage active engagement and participation through interactive learning activities.
(g) Foster collaboration and peer interaction to enhance learning outcomes.
Gamification can be used to achieve some of the goals above.

4.2 Gamification Mechanisms
The gamification model enhances learning, but the narrative must be highlighted initially.
Professors can use gamification to
(a) Evaluate student progress;
(b) Promote pairs assessment;
(c) Help students achieve individual goals.

To a better comprehension of how it can be done, section 5 presents the case study.

5 Case Study

This case study regards web programming subject at the University of Minho with 114 active
students:

Subject: Web Programming | Degree: Engineering and Management of Information
System.

ICPEC 2024

13:6 Learning Paths: A New Teaching Strategy

Academic degree: Bachelor | ECTS: Five.
Academic Year: Third | Semester: Second.
Weeks: Fifteen (twelve of contact).
Weekly Classes: One Theoretic (2hours) and One practice (2hours).
Main Scientific Area: Information Systems and Technologies.

5.1 Design
From the beginning (2018) and in the first class, students were asked to explain why they
were in classes and the subject relevant to their future. The questions are
1. Why are you here?

a. I was forced
b. I want to learn web programming
c. I have to be otherwise I won’t finish the course
d. I’m in tourist mode

2. Importance of PW for your future
a. None
b. Few
c. Little
d. Much

Figure 2 presents the results of the questionnaires that were answered from 2018 to 2023
by 478 students.

Figure 2 Students opinion at the subject begin.

Analysing figure 2), it is possible to observe that only one-half of students on average
want to learn (52,53%) and consider that Web Programming has much relevance to the
future (56,28%). This means that around 250 of the 487 students asked were really interested
in the classes.

So, what should we demand the same from all? The answer is “we should not”. We
must ensure the same opportunities for all students. and bring responsibility to them. Based
on these answers, the learning path was created and implemented for the first time in the
curricular year of 2022/2023. At the beginning of the second semester, professors followed
the strategy explained in section 4 and defined the following paths: 1. Traditional and 2.
expert.

F. Portela 13:7

5.2 Implementation
In terms of implementation, the strategy design brings changes to classes and projects. The
class content was split according to the path, and a project was created to consider both
developments.

Table 1 Units content overview.

ID Week Description Traditional Expert
U1 1 Web Programming Introduction ✓ ✓

1 – Web 1.0 to Web 4.0 ✓ ✓

1 – Cloud Computing ✓ ✓

2 – Client and Server ✓ ✓

2 – Services on the web (IaaS, PaaS, SaaS, FaaS) ✓ ✓

U2 2 Client and Server ✓ ✓

U3 3 Static Web Pages (HTML) ✓ ✓

U4 4 Page Layout ✓ ✓

4 – Web Templating and Design ✓ ✓

4 – Cascade Style Sheets (CSS) ✓ ✓

4 – Syntactically Awesome Style Sheets (SASS) ✓

4 – Media Queries ✓

U5 5 Frameworks and CMS (client) ✓ ✓

5 – Bootstrap ✓ ✓

11 – CMS and WordPress ✓ ✓

9,10 – Vue.js ✓

U6 6 Dynamic web pages (client) ✓ ✓

6 – JavaScript ✓ ✓

7 – DOM ✓ ✓

8 – Storage, Cookies and Sessions ✓

U7 8 Client-Server Connection ✓

8 – API and Web Services ✓

8 – Fetch ✓

U8 11 New Trends and Going Live ✓ ✓

U9 2 Web Tools ✓ ✓

2 – AI to coding ✓ ✓

2 – Project tools ✓ ✓

U10 5-15 Project ✓ ✓

In the beginning, 83 students (72.81%) chose to be specialists, and 31 selected the
traditional path. During the weeks, they could change the learning path. The number of
specialists at the end was 72 (63.16%).

5.2.1 Subject Plan
The content of the subject and theoretical classes were split into ten units. Table 1 presents
the subject organization according to each learning path.

For example, Unit 1 is directed at all students, but Unit 4 has mixed content, where
the SaaS and Media Queries content is more suitable for the expert path. Although this
organization, classes and content are available to all, independent of their choice. This option
does not block the content but clarifies what is or is not essential.

ICPEC 2024

13:8 Learning Paths: A New Teaching Strategy

In a weekly plan, U1, U2, U3, U4, U9, and partially (U5 and U6) were taught during the
first six weeks. Then, U6 (remaining) and U7 were taught parallelly to both paths. In this
period, some content was more suitable for path 2 (expert) than one, but all must participate
in the classes. Finally, the remaining U5 was available to all, as Vue.js was “obligated” to
path 2, and CMS and WordPress were advisable for path 1. U10 represented the project
that started in week five and lasted until the end of classes (week 15).

5.2.2 Assessment Methods
This subject comprises three assessment methods: participation, mini-tests and project. In
this first experiment, only participation (quiz bonus for each unit) and project differed in
each path. Mini-tests will be experimented with in the future. The final grade was calculated
using the formula: 15%*participation(quiz) + 25%*mini-tests + 60% *project

In terms of participation, classes were not obligatory, but students’ attendance was
recorded. By attending classes, students can get bonuses and unlock weekly quizzes. Quizzes
with bonuses [9] are a gamification strategy that tests the main contents of each unit, prepares
students for the mini-tests, and allows students to earn participation points.

Table 2 Project Learning Paths.

Category Traditional Expert

Technologies

HTML
CSS
JS
Storage
APIs
Vue.js

✓ ✓

✓ ✓

✓ ✓

– ✓

– ✓

– ✓

Front-office Complete Complete
Back-office 50% Complete
Maximum Grade 15 20

The project represented a real problem. The statement was: “Activities4All is an external
entity with a group of people who organise events in different areas. This company coordinates
group activities and needs a web interface to help manage events. The project includes two
aspects of development: traditional and expert. Each group must choose which path to follow.
It is important to note that the choice must be made when the group is created and may be
changed until the specifications are delivered (Week 9). Once the choice has been formalized,
it is impossible to change it, and each group will be evaluated according to their chosen path.
The groups comprised 5 (five) elements (+/–1). The functionalities of each element must be
divided between the front office (without login) and the back office (with login). Each group
must define the tasks per element and include this information in the team’s specifications.
Table 2 presents the project rules by learning path being the maximum grade truncated on
the defined rules. After selecting the path, groups/students can change it once. They must
choose it according to the expected results, as their assessment is limited by the path chosen.
A group from the traditional path cannot have more than fifteen, but an expert group can
have less than 15 if they don’t meet the guidelines.

Regarding project evaluation, there was one control point (week 9) and a final presentation.
At the control point, the professor assessed the quality of project development according to
the chosen path and proposal. He advised students about development and informed them
whether they were on the right path to the defined target. The professor also gave cards to
the highlighted students (good and bad).

F. Portela 13:9

This learning path strategy also helps students train soft skills and create personalized
learning plans. The decision on the path is made in groups; i.e., if some group students
want to get a good grade (expert path), they must convince their colleagues, or they will
need to choose another group. After creating the group and choosing the path, students
write a working contract explaining their project proposal to the professors and firm their
commitment. They explain what they will use (technologies), do (functional and non-
functional features), and the desired grade at the end. After finishing this starting process,
the practical class professor validated the group contract and started a weekly accompanying
and validation of working according to the rules (contract) proposed by the students.

5.2.3 Gamification
Gamification mechanisms were used during the classes to help students achieve their goals.
Quiz with bonus allowed students to keep the focus and train weekly content. Attendants
were randomly selected to have a weekly bonus (double points in the quiz). After the class,
they answered multiple questions about the matter taught on ioEduc. In the end, the best
performance (without bonus) had a grade of 20, and the other students with a bonus with
equal or higher results also had 20, and the remaining had a relative grade.

Professors used card systems to alert/award students to their performance and show
whether groups were doing the work expected in their path. The card system is presented in
the table 3.

Table 3 Student Evaluation Criteria.

Color Name Description
Yellow First warning The work performed is below the expected;
Orange Second warning The performance is negative, and the student’s future at the

CUnit is critical;
Red Student failed The student did not try to improve their participation. He

did not do the minimum acceptable amount, and the level
of knowledge is too low, so we cannot do the work.

White Good Work The student is working very well, and the professor recognises
some extra effort when he is compared to the class.

Blue Superb Work The Student is a good example. The commitment level with
the CUnit is high, and he deserves to be rewarded.

Each group member also evaluated the project (0-20) and carried out a self-assessment
and a hetero-assessment of the group’s members. The straight self-assessment was based on
N (overall grade) and demonstrated the student’s vision regarding their work and the work
carried out by the other members of the Group (N, N+1, N+2, N-1, N -2, . . .), ensuring
that the sum of grades is N. Regarding subject grades, Mini-tests are the only ones not
affected by the path until now because they only aim to guarantee that all students have the
minimum knowledge required. Class participation gives access to quizzes according to the
subject taught, and projects have different goals for each learning path. It also shows that
the path chosen does not ensure a grade.

Figure 3 presents an overview of the final grades. In this chart, it is possible to see the
grades requested by each group (at the project start and according to the chosen path),
the final classification and the difference between the requested and achieved grades. For
example, group 11 pointed to 19 but achieved 20 with a difference of one point. Conversely,
group 15 did not measure their knowledge/expectations very well and failed (grade <8).

ICPEC 2024

13:10 Learning Paths: A New Teaching Strategy

Figure 3 Grades by Project.

5.3 Analysis of the results

The strategy can be measured in two ways: students’ opinions about it and the groups’
final grades. Top projects showed significant improvement compared to previous ones, while
others performed similarly but with less effort (more suitable to ECTs guidelines). Thus, the
strategy effectively helped develop more skilled specialists in Web Programming. However,
accurately quantifying this difference is challenging due to changes in the credit value of
the Web Programming subject, reduced from 10 ECTS to 5 ECTS, with the introduction
of a new curriculum plan in the academic year 2022-23. The results show the relevance of
choosing the right path and being honest with the team and professors. The complexity of a
subject like web programming requires extra effort to get higher grades. After observing the
group’s grades, it was easy to see that most groups should select the traditional path.

These observations allowed professors to understand the reality and alert the students in
the new academic year(2023/24) to the strategy’s effectiveness. Based on this, students were
more realistic in the new academic year (2023/24), and the number of experts was reduced
to (10/18). However, this subject is running, and the final impact of it cannot be measured
(an extended version of the paper will be prepared showing the results).

Regarding students’ feedback, they were asked several questions, two of which related to
the strategy presented in this paper:

1. How do you evaluate the gamification mechanisms?

2. How do you assess the adequacy of strategies and methodologies adopted by the teaching
team?

Figure 4a shows the results, where it is possible to observe that the percentage of students
that do not consider the gamification mechanism or teaching strategies well-suitable (weak
or acceptable) is less than 10%. As shown in figure 4b good students on the traditional path
can achieve a final value higher than fifteen, and “expert students” can also have low grades.
Only students on the expert path had grades of excellence(higher and equal to heightening).
In conclusion, there is an evident separation between the students being 23.50% with grades
less than 14 and 25,93% with grades higher or equal to 18.

F. Portela 13:11

(a) Subject evaluation. (b) Students final grades.

Figure 4 Evaluation and Final Grades.

6 Conclusion

This article introduces a novel teaching strategy for Higher Education framed in the TechTeach
paradigm. In response to the need for enhanced teaching quality and improved student
outcomes, professors developed two distinct learning paths to provide tailored learning
experiences and avoid the one-size-fits-all approach. These paths were carefully designed to
impact various aspects of the subject program, including exercises and project development.

Each path serves specific objectives: the first path emphasizes foundational understanding,
ensuring that students know the subject’s fundamental concepts, while the second path is
tailored for students aspiring to specialize in the subject and pursue a career in the field.
This strategy suggests that 50% of the subject time has the same content for both paths,
and 15% has multiple contents (during this time, students can select/change their path).
Finally, the last 35% must have specific content according to the designed path.

To validate the effectiveness of the proposed strategy, a case study was conducted during
the academic years 2022/2023 in an Engineering course at the University of Minho. The
subject chosen for the study was Web Programming, and 114 students participated. Over
15 weeks, students learned the basics and followed their chosen path, doing exercises and
completing a project aligned with their learning objectives. Gamification played a relevant
role through the use of quiz with bonus and card systems.

Upon evaluation, 90% of the students expressed satisfaction with the strategy, highlighting
its positive impact on their learning experience. Notably, the final grades obtained by students
were aligned with their chosen paths and corresponding efforts. Students following the second
path achieved higher grades on average, reflecting their deeper engagement and commitment
to the subject. However, it was observed that students on the second path (exported) who
exerted less effort received lower grades than those on the traditional path.

Moving forward, the strategy continues to undergo refinement based on feedback from
both professors and students. The 2023/2024 academic year results will be carefully analyzed
to optimize the plan further. Additionally, future endeavours will explore implementing
this strategy across a broader range of subjects to provide tailored and compelling learning
experiences to students across various disciplines.

References

1 Pamela Baxter and Susan Jack. Qualitative case study methodology: Study design and
implementation for novice researchers. The qualitative report, 13(4):544–559, 2010.

2 Barbara Bray and Kathleen McClaskey. A step-by-step guide to personalize learning. Learning
& Leading with Technology, 40(7):12–19, 2013.

ICPEC 2024

13:12 Learning Paths: A New Teaching Strategy

3 Przemysław Charzyński, Zbigniew Podgórski, Dariusz Brykała, Aleksandra Zaparucha, and
Sylwia Barwińska. Fieldwork on selected educational paths. In the Vistula banks – fieldwork
in bilingual education, 2015.

4 Cindy De Smet, Tammy Schellens, Bram De Wever, Pascale Brandt-Pomares, and Martin
Valcke. The design and implementation of learning paths in a learning management system.
Interactive Learning Environments, 24(6):1076–1096, 2016.

5 Yuli Deng, Dijiang Huang, and Chun-Jen Chung. Thoth lab: A personalized learning framework
for cs hands-on projects. In Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education, pages 706–706, 2017.

6 Kathleen M Eisenhardt. Building theories from case study research. The Academy of
Management Review, 14(4):532–550, 1989.

7 Portugal Gov. Portugal beats records of students in higher education – por-
tugal.gov.pt. https://www.portugal.gov.pt/en/gc23/communication/news-item?i=
portugal-beats-records-of-students-in-higher-education. [Accessed 15-04-2024].

8 Amir Hossein Nabizadeh, José Paulo Leal, Hamed N Rafsanjani, and Rajiv Ratn Shah.
Learning path personalization and recommendation methods: A survey of the state-of-the-art.
Expert Systems with Applications, 159:113596, 2020.

9 Filipe Portela. Techteach – An innovative method to increase the students’ engagement at
classrooms. Information, 11(10), 2020. doi:10.3390/info11100483.

10 Filipe Portela. A New Approach to Perform Individual Assessments at Higher Education Using
Gamification Systems. In 4th International Computer Programming Education Conference
(ICPEC 2023), volume 112 of Open Access Series in Informatics (OASIcs), pages 8:1–8:12,
2023. doi:10.4230/OASIcs.ICPEC.2023.8.

11 Filipe Portela. A new approach to perform individual assessments at higher education using
gamification systems. In 4th International Computer Programming Education Conference
(ICPEC 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

12 David Brito Ramos, Ilmara Monteverde Martins Ramos, Isabela Gasparini, and Elaine
Harada Teixeira de Oliveira. A new learning path model for e-learning systems. Int. J.
Distance Educ. Technol., 19:34–54, 2021.

13 Evan Schofer, Francisco O Ramirez, and John W Meyer. The societal consequences of higher
education. Sociology of Education, 94(1):1–19, 2021.

14 Miguel Silva, Diogo Ferreira, and Filipe Portela. IoEduc – Bring Your Own Device to the
Classroom. In Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões, editors,
First International Computer Programming Education Conference (ICPEC 2020), volume 81
of Open Access Series in Informatics (OASIcs), pages 23:1–23:9, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.23.

15 Anna Sirén and Vassilios Tzerpos. Automatic learning path creation using oer: A systematic
literature mapping. IEEE Transactions on Learning Technologies, 15:493–507, 2022. URL:
https://api.semanticscholar.org/CorpusID:251077865.

16 USC. Learning Outcomes – Center for Teaching Excellence | University of South Carolina –
sc.edu. https://sc.edu/about/offices_and_divisions/cte/teaching_resources/course_
design_development_delivery/learning_outcomes/index.php. [Accessed 15-04-2024].

17 Robert K Yin. Case study research and applications: Design and methods. SAGE Publications,
2017.

https://www.portugal.gov.pt/en/gc23/communication/news-item?i=portugal-beats-records-of-students-in-higher-education
https://www.portugal.gov.pt/en/gc23/communication/news-item?i=portugal-beats-records-of-students-in-higher-education
https://doi.org/10.3390/info11100483
https://doi.org/10.4230/OASIcs.ICPEC.2023.8
https://doi.org/10.4230/OASIcs.ICPEC.2020.23
https://api.semanticscholar.org/CorpusID:251077865
https://sc.edu/about/offices_and_divisions/cte/teaching_resources/course_design_development_delivery/learning_outcomes/index.php
https://sc.edu/about/offices_and_divisions/cte/teaching_resources/course_design_development_delivery/learning_outcomes/index.php

Code Review for CyberSecurity in the Industry:
Insights from Gameplay Analytics
Andrei-Cristian Iosif #

Universität der Bundeswehr München, Germany
Siemens AG, München, Germany

Ulrike Lechner #

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Tiago Espinha Gasiba #

Siemens AG, München, Germany

Abstract
In pursuing a secure software development lifecycle, industrial developers employ a combination
of automated and manual techniques to mitigate vulnerabilities in source code. Among manual
techniques, code review is a promising approach, with growing interest within the industry around it.
However, the effectiveness of code reviews for security purposes relies on developers’ empowerment
and awareness, particularly in the domain-specific knowledge required for identifying security issues.
Our study explores the use of DuckDebugger, a serious game designed specifically to enhance industrial
practitioners’ security knowledge for code reviews. By exploring analytics data collected from game
interactions, we provide insights into player behavior and explore how the game influences their
approach to security-focused code reviews. Altogether, we explore data from 13 events conducted in
the industry together with 224 practitioners, and derive metrics such as the time it takes participants
spend to reviewing a line of code and the time required to compose a comment. We offer empirical
indicators on how serious games may effectively be utilized to empower developers, propose potential
design improvements for educational tools, and discuss broader implications for the use of Serious
Games in industrial settings. Furthermore, our discussion extends to include a discussion outlining
the next steps for our work, together with possible limitations.

2012 ACM Subject Classification Security and privacy → Software and application security; Applied
computing → Collaborative learning; Applied computing → E-learning; Security and privacy →
Software security engineering

Keywords and phrases Cybersecurity, Code Review, Developer Empowerment

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.14

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and ISTAR, for their
support. We acknowledge funding for project LIONS by dtec.bw. Andrei-Cristian Iosif and Tiago
Gasiba acknowledge the funding provided by the Bundesministerium für Bildung und Forschung
(BMBF) for the project CONTAIN (FKZ 13N16585).

1 Introduction

In recent years, the cybersecurity community has witnessed how purposefully introduced
software vulnerabilities can be weaponized into sophisticated supply chain attacks. One such
example of this is the Lazarus group [10] Advanced Persistent Threats (APT). Such attacks
abuse trust relationships and result in malicious code being injected into legitimate software.

© Andrei-Cristian Iosif, Ulrike Lechner, Maria Pinto-Albuquerque, and Tiago Espinha Gasiba;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 14; pp. 14:1–14:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

One way to combat this is through rigorous code review processes. Reviews can serve as an
additional security measure against targeted breaches, and also catch less malignant security
issues from legitimate developers, that might otherwise be accidentally overlooked.

Industrial software systems, particularly those that manage critical infrastructure, are an
area of special concern when accounting for cybersecurity - with stakes including economic
concerns and public safety. Consequently, such systems must adhere to stringent standards
and compliance regulations, such as the IEC 62433 [7].

One way to achieve security and compliance in an industrial environment is a bottom-up
approach that begins with empowering developers. Training programs focused on security
can significantly enhance developers’ ability to detect and mitigate vulnerabilities earlier in
the development process.

One innovative tool in this effort is DuckDebugger, a serious game (SG) designed specific-
ally to teach software developers to perform code reviews with a focus on cybersecurity. We
use SGs as a medium for information delivery, as the authors possess extensive knowledge
in this area. The proposed game offers an environment where developers are asked to
review snippets of vulnerable code, and are able to consult the output from security tools.
Through engaging with our game, developers can hone their skills in a practical and realistic
environment.

This paper presents the results from analyzing gameplay data from events conducted
in industrial contexts. Our objective is to understand the interactions taking place in
the DuckDebugger. By exploring player behavior, our analysis takes a first step towards
measuring how players engage in code review, in order to gauge how the game sizes towards
empowering practitioners. The insights from our study show the potential for serious games
to improve security training in software development. Furthermore, we identify design
implications for our game and optimization of the game experience for the participants.

The paper is organized as follows: Section 2 will introduce related work relevant to our
study. In Section 3, we present our work’s context and showcase the game artifact’s relevant
aspects. Section 4 presents our findings, exploring their implications and discussing potential
limitations. Lastly, Section 5 lays out the conclusions of our work, together with discussing
further steps.

2 Related Work

This section introduces related work in the two main areas of interest under which our game
falls, namely cybersecurity training through serious games, and code review.

2.1 Serious Games for Cybersecurity Education

A serious game is defined by Susi et al. as “a game designed with a primary objective other
than pure entertainment” [18]. Furthermore, indicated they are effective in disseminating
takeaways to their users, as shown in an experience report of Namin et al [17] and through a
literature review conducted by Hendrix et al [4].

Roepke et al. provide a comprehensive overview of SGs focused on cybersecurity, and
explore how many games available for end-users without prior knowledge exist, as well as
whether they teach sustainable knowledge and skills [15]. Their findings show that although
there is a growing number of SGs for cybersecurity, the content they target is often lacking
relevance, focusing rather on factual knowledge without context.

A.-C. Iosif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba 14:3

Capture The Flag (CTF) competitions, a popular form of competitive serious games in
cybersecurity, have been extensively studied for their educational value. Research by Culliane
et al. [2] and Švábenský et al. [20] provide an overview of CTFs seen through the educational
angle.

Unlike traditional CTFs and challenges thereof, which often emphasize offensive practices,
the game discussed in this work focuses on defense and patching.

Previous work done by the authors on this topic explores the requirements of defensive
cybersecurity SGs [3], defining 15 challenge requirements suitable for industrial requirements.
The game is developed using an iterative design approach based on Design Science Research
(DSR) principles, as outlined by Sein [16]. In this second iteration, we have incorporated
feedback from participants, specific to DSR guidelines, and have successfully met 11 out of
the 15 requirements. We plan to address the remaining requirements, should the participants
deem it necessary.

Švábenský et al. [19] review how cybersecurity training data can improve educational
research. Their work offers an overview on how training data can to understand and support
cybersecurity learning. However, their approach notes that it only targets academic settings
and exercises with an offensive focus.

2.2 Industrial Code Review
Regarding standardization within the industry, Moyon et al. [13] delve into the practical
challenges related to integrating security into an agile software development and explore how
the requirement for industrial compliance shapes this process.

The IEC 62443 series of standards was developed to cover the security of industrial
automation and control systems throughout their lifecycle. Relevant to our work, the IEC
62443-4-1 [7] and IEC 62443-4-2 [8] standards underscore how code review in the development
lifecycle is important for cybersecurity, and the emphasize the need for reviewers to possess
specialized knowledge on performing secure code review.

Other standards of interest to our work are: ISO/IEC 20246 [6], which provides a generic
framework for work product reviews applicable across various organizational roles, and the
ISO/IEC TR 24772-1 standard [9], which offers programming-language agnostic guidance on
avoiding coding vulnerabilities.

We seek to address the most prevalent vulnerabilities encountered in software by intro-
ducing vulnerabilities. To this end, we draw from the the CWE Top25 [12] and OWASP
Top10 [14], as these resources are well-known standards, with industry-wide acceptance.

MacLeod et al. show that code reviews often do not find critical bugs that would block a
code submission, instead highlighting issues related to long-term code maintainability [11].
They argue that effective code reviews require specific skills and that the social dynamics
within teams significantly influence the reviewing process. They suggest that the current
practices in code reviews are often inefficient and call for a more sophisticated approach to
integrating code reviews into software engineering workflows. Building on these findings,
our work seeks to address these deficiencies by employing the DuckDebugger as a means to
enhance practitioners’ skills necessary for effective code review.

Bosu et al. analyze the effectiveness of code review comments in Microsoft projects and
find that useful feedback improves both code quality and developers’ skills [1]. They show
that the usefulness of comments tends to increase with the reviewer’s experience but is
negatively correlated with the size of the review. The study provides recommendations for
increasing the effectiveness of code reviews, such as optimizing the number of files in a review
and enhancing reviewer experience through targeted training. We integrate their findings in
the design of the game, which we use for training industrial developers.

ICPEC 2024

14:4 Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

3 Methodology

In this section, we describe the methodology behind the collected data. First, we present the
industrial context in which the DuckDebugger is deployed. We proceed by introducing the
game artifact itself, highlighting the important elements of our data.

3.1 Context
Practitioners are invited to try out our serious game as part of a workshop on developer
empowerment on the topic of cybersecurity. Such workshops consist of two parts: first, a
classroom-style presentation of common attacks and mitigations (1-2 days, depending on
the event), followed by a full-day CTF-style event. On the last day, participants organize
themselves in teams, where they compete against each-other by solving various types of
security-related challenges. One of the types are the code review challenges discussed in this
work. Although we integrate the delivery of our game in a CTF setting for our events, this
is not strictly necessary, as the game is designed to be a self-standing application.

...
CTFd

... VM NVM 1

Duck

Debugger

User NUser 1

Figure 1 Architecture.

Figure 1 presents an overview of the infrastructure behind the hands-on part of the event.
Participants only require a laptop, with which they can connect to a fully provisioned virtual
machine for all the available challenges. Upon solving a challenge, players redeem points for
their team in a dashboard (CTFd). We utilize the dashboard mechanic of the CTF genre to
foster competitiveness among participants.

When the event concludes, the winning team is announced and congratulated. This is
followed by a gathering feedback from the participants (through surveys and semi-structured
interviews), and a wrap-up session which discusses challenges which the players found difficult.

At the time of writing, the DuckDebugger has been trialed across 13 industrial events,
with a total of 224 participants. An overview of these events is presented in Table 1.

Table 1 Events Overview.

Event
Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Date 05.2023 05.2023 06.2023 11.2023 11.2023 11.2023 12.2023 12.2023 01.2024 01.2024 02.2024 02.2024 02.2024

Place Online Online United
Kingdom

Germany
(Hybrid) Germany China Online China Online Germany Germany Online Germany

(Hybrid)
Number of

Participants
(Total: 224)

14 7 16 9 20 24 30 20 16 15 24 17 12

3.2 Game Artifact
The focus of this work, the DuckDebugger platform, is a self-standing web application and
is hosted as a separate server in the same cloud environment as the participants’ virtual
machines, in an AWS Virtual Private Cloud. This design choice was taken to ensure that
the game can offer flexibility in how it can be delivered.

A.-C. Iosif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba 14:5

Database

List of Challenges

...
Challenge 2

Challenge 1Challenge 1Challenge 1 1. < code > [+]

2. < code > [+]

...
N. < code > [+]

Submit Review

Challenge 1

Consult Tool Findings

Instructions

Acknowledge

Feedback

Figure 2 Artifact Overview.

Figure 2 introduces an interaction diagram for the game: The user starts by viewing
a welcome screen with platform instructions. After this, they choose from various code
review challenges categorized by programming language and application type, such as web
or embedded programming. They then receive a source code snippet with vulnerabilities and
poor practices, which they are asked to annotate with comments about security findings.

At the time of writing, participants can choose from 28 exercises that cover 4 programming
languages: Java, C#, Python, and JavaScript. The vulnerabilities in our game’s snippets
include common security malpractices, from the CWE Top25 [12] and OWASP Top10 [14].

Figure 3 shows the main game interface, organized in tabular form, with columns for
user comments, the code under review, and the intended solution (to be displayed after a
user successfully solves a challenge). Users input their comments and can reference SAST
tool findings alongside the code. The integration of SAST aims to enhance users’ skills with
real-world tools and educate them on recognizing false positives/negatives.

Figure 3 Interface.

Upon submitting their review comments, the DuckDebugger evaluates how many vulner-
abilities a player has found, and records the interactions with the platform into a database
for later analysis. If a player identifies at least 50% of the vulnerabilities, they are presented
the full solution as feedback. This benchmark is based on prior research from the authors [5],
where it was found that trainees identify , on average, about half of the vulnerabilities
detected by experts.

4 Results and Discussion

To help understand the player behavior analysis, we consider the following: Players have the
autonomy to engage with, resolve, or abandon any challenge at will, in any preferred order.

ICPEC 2024

14:6 Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

time

startN

startN+1start1

time to solve challenge

submitM-1

(solved)

submitM

cyinstr1 instr2 cx
...

 i: instructions

 c: comment

c1

Figure 4 Timeline of interactions for a (user,challenge) pair.

An example timeline of interactions is presented in Figure 4, illustrating a single user ’s
interaction sequence for a single challenge. Possible interactions for a user are: starting the
challenge (start), consulting the instructions (i), writing a comment (c), and submitting
their solution attempt (submit).

The figure has been simplified for clarity – the collected data covers the multiple users’ in-
teractions, for multiple challenges, where all entries of users and challenges are chronologically
interlaced.

The time it took a given user to solve a specific challenge is computed as the timestamp
difference between the first occurrence of a submit interaction marked as solved by the
platform, and the first start interaction which precedes it.

4.1 Player Behavior Model

Figure 5 Platform Interactions: Player behavior.

Based on the collected players’ interactions, we can construct a transition matrix between
possible actions in the game. Figure 5 models the player behavior and highlights the transition
probabilities between actions. Most notably in this figure, we can observe that:

66,1% of players re-check the instructions. This could likely be due to habitual interactions
with similar interface elements, suggesting a conditioned response to dismiss such overlays
without thorough engagement. Empirical surveys, however, indicate that the majority
find the instructions clear. Additionally, the absence of a submit −→ instructions
transition indicates that the task is well understood.

A.-C. Iosif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba 14:7

Similarly, the start −→ instructions transition occurs because users are accustomed to
dismissing pop-ups quickly. This would suggest a need for different UI choices, such as
waiting for a timer to expire before being able to click away the instructions pop-up.
18.19% of users press the submit button repeatedly (submit −→ submit). This would
indicate a need for a visual cue to confirm that the button has been activated successfully.
start −→ start interactions account for 0.58% of interactions, possibly stemming from
accidental page refreshes.
One in five comments is immediately followed by a submission attempt – 20.82% on the
comment −→ submit transition. If this percentage were lower, it would suggest that
users are overthinking their submissions. Conversely, a higher percentage might indicate
players trying to exploit the system for a competitive edge by rapidly resubmitting their
comments.

4.2 Solved Challenges Counts and Percentages

Another perspective on player behavior involves examining the number of challenges each
player successfully completes. It is useful to observe whether players abandon challenges
before finishing them.

0 5 10 15 20 25 30
Solved Challenges Count

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f P
la

ye
rs

 (%
)

(a) Count Solved.

0 10 20 30 40 50 60 70 80 90 100
Percent Solved

0

5

10

15

20

25

30

Fr
eq

ue
nc

y
(%

)

(b) Percent Solved.

Figure 6 Metrics: Solving Challenges.

Figure 6a illustrates that the majority of participants solve fewer than 10 challenges,
with a noticeable peak at just one challenge. This trend may be attributed to the specific
conditions of the event, such as time constraints and the diversity of available challenges.

Figure 6b shows that more than 30% of players solve all challenges they start, and more
than 50% solve half or more. This demonstrates a commendable level of persistence among
the players, indicating that they generally complete the challenges they begin.

4.3 Time to solve a challenge

Based on the time it takes players to solve a challenge, we derive and examine the duration
participants spend reviewing a line of code (LoC) and the time required to compose a
comment. As challenges have code snippets of varying length, the times are normalized to
each challenge’s LoC. We group our data by programming language, average it, and present
our findings in Table 2.

ICPEC 2024

14:8 Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

Table 2 Times.

Programming
Language

Avg. time to review
one Line of Code (s.)

Avg. time to write
one comment (s.)

csharp 12.56 4.87
go 3.44 1.94
java 1.57 1.67
javascript 3.47 1.95
python 12.57 9.32

In the case of Java, the lower numbers can be attributed to the language’s syntactic noise
(boilerplate code), which may result in a lower time per LoC. Additional influencing factors
include the diverse backgrounds of the participants (i.e. few proficient Python programmers
across all events), which could also play a significant role in the observed results.

The correlation coefficient between the two metrics presented in Table 2 is 0,873. This
indicates that the time participants take to comment is relatively consistent across different
programming languages. Such strong correlation could indicate that the measured times are
an indicator of the players’ proficiency levels with the programming languages, rather than
an indicator of review times being dependent on the programming language. Nonetheless,
further studies would be required to establish a definitive conclusion in this direction.

Furthermore, we can explore how the participants’ solving times evolve between consec-
utive challenges. Table 3 presents the median time it takes a player to solve a challenge. We
truncate our findings at 7 challenges, as Figure 6a shows that few players only solve more
than 7 challenges, which would challenge the statistical relevance of these findings. Although
our data is truncated, preliminary findings indicate a non-linear improvement pattern.

Table 3 Time to solve a challenge.

Number of Solved Challenges 1 2 3 4 6 7
Median Time To Solve (s.)

(normalized to challenge LoC) 7.72 18.87 3.29 7.55 6.48 3.14

We can observe that there is no steady increase or decrease in solving time, between
the number of challenges a players solves. Based on our experience in designing serious
games, this non-linear time pattern could point to multiple insights and/or reflect our design
choices: the challenges have variable difficulty, and participants have diverse problem solving
approaches as they learn and adapt to the platform. Had there been a steady increase,
this would indicate that the challenges result in tiredness or a plateau in learning efficiency.
Conversely, the lack of a steady decrease in the solve time indicates that the DuckDebugger
has a varied repertoire of code review challenges, where players cannot game the system
through recalling the solutions to the challenges they previously encountered and solved.

4.4 Knowledge Exchange
The nature of the event has players organized in teams which compete for points across
multiple challenge categories, some of which are code review challenges delivered through
the DuckDebugger. We observed during the events that most, if not all teams competitively
optimize their strategy by splitting up across challenge types. With proper intra-team
coordination, this would translate into one player per team solving the DuckDebugger
challenges at any given time.

A.-C. Iosif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba 14:9

Nonetheless, while conducting the events, we observed players of the same teams often
pause to share newfound knowledge from the challenges. We back this statement through an
observation in our aggregated data: 28.2% of players revisit a challenge after having solved it.
This indicates to us that more than a quarter of the participants likely exchange the gained
knowledge with their team-mates, to share newly gained information.

Since the dashboard interface indicates to the other players of a team that a challenge
is already solved, this would rule out most accidental revisits of a challenge. Furthermore,
there is no competitive advantage in solving a challenge again.

This finding about players’ knowledge exchange underlines the relevance of code review
as an industrial practice fostering developer empowerment, as it shows an organic tendency
towards knowledge sharing even under a competitive setting. We thus reinforce the importance
of collaborative learning and the dissemination of best practices across the workforce, and
show that code review is a good vector towards achieving this. This observation reinforces
the value of code review not only as a skill but also as a catalyst for fostering developer
empowerment and the spread of best practices across the industry.

The competitive yet collaborative environment created by the DuckDebugger game
illustrates how serious games can bridge the gap between individual learning and team-
based knowledge dissemination. This aspect is crucial in real-world applications where
cybersecurity is a collective responsibility. By integrating these insights into future game
iterations, DuckDebugger can further enhance its impact on cybersecurity training.

4.5 Discussion on Validity and Limitations
The study on the use of DuckDebugger for code review training in cybersecurity presents
potential threats to validity, particularly in the context of generalization and external validity.

First, the events are conducted in a controlled setting, which may not accurately reflect
developers’ typical working environment. This difference might influence the behavior and
performance of participants, as developers in a competitive, time-constrained event might
interact with the game differently compared to a regular work setting.

The analysis of gameplay data might overlook deeper cognitive and learning processes
involved in vulnerability identification and mitigation, focusing primarily on observable
metrics such as time spent and challenge completion rates. Furthermore, addressing the
long-term impact of the game is unfeasible in an industrial setting, as developer teams and
individual responsibilities shift with time. Learning trends, solving efficiency and proficiency
can thus only be observed within the scope of individual events. Nevertheless, preliminary
findings show neither a learning plateau nor a saturation of gained knowledge.

Furthermore, the event’s structure, which organizes individual players into teams, likely
impacted data collection in terms of sample size. We observed during our the moderation of
our event that users within the same team tend to split between challenge types, to gain
more points in total. Due to how data is anonymized, we cannot present a percentage of
players and teams that choose to follow this strategy. As we observed players dividing their
efforts across different challenge types to optimize team points, this typically resulted in not
all people from a team addressing the review challenges. Nonetheless, as the data is collected
at an individual level, and not aggregated by teams, individual performance metrics are
accurately represented, independent of team dynamics.

As a general note, although our game has been embedded in a CTF setting, though
this is not strictly necessary. The implementation of the game makes it independent of a
CTF setting. We believe our findings to be similar, had the game been introduced under a
different structure.

ICPEC 2024

14:10 Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

Nonetheless, our conclusions align with previous industrial research around serious games.
This, coupled with the typical limitations inherent to design science studies carried out in
the industry, leads us to consider that our findings should not significantly diverge, had the
event been restructured to optimize for data collection instead of learning outcome.

5 Conclusions

This study explores the DuckDebugger game as a tool for training developers in cybersecurity-
focused code review through gameplay analytics. Our results extrapolate a player behavior
model which can be used by practitioners to design similar games, and explore metrics related
to players solving challenges. Notably, the game design, which incorporates elements of
competition and immediate feedback, fosters engagement and learning among participants.

Notably, the finding that over a quarter of participants revisit challenges even after solving
them highlights an organic tendency towards knowledge sharing within teams, emphasizing
the collaborative nature of learning, even in competitive settings.

Our findings suggest that serious games like DuckDebugger can enhance cybersecurity
education among industrial developers. This aligns with the results of previous related work,
reinforcing the importance of tailored training tools in improving cybersecurity skills (i.e.
code review) and fostering collaborative learning environments. The interactive and practical
nature of our game provides a hands-on learning environment.

Our game contributes to academic research by exploring the use of use of SGs in
an industrial setting, specifically centered around empowering developers through code
review for cybersecurity. We follow DSR principles and focus on a defensive approach to
disseminating cybersecurity knowledge, by targeting mitigation techniques in our game,
instead of exploitation of vulnerabilities.

Future work aims to address the identified refinement needs, including game’s design based
on the collected feedback and interaction analytics. Additionally, we plan to test additional
scenarios and further evaluate the utility of the game as perceived by the participants.

References
1 Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of Useful Code Reviews:

An Empirical Study at Microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 146–156, Florence, Italy, 2015. IEEE. doi:10.1109/MSR.2015.21.

2 Ian Cullinane, Catherine Huang, Thomas Sharkey, and Shamsi Moussavi. Cyber security
education through gaming cybersecurity games can be interactive, fun, educational and
engaging. J. Comput. Sci. Coll., 30(6):75–81, June 2015.

3 Tiago Espinha Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the
requirements for serious games geared towards software developers in the industry. In 2019
IEEE 27th International Requirements Engineering Conference (RE), pages 286–296, 2019.
doi:10.1109/RE.2019.00038.

4 Maurice Hendrix, Ali Al-Sherbaz, and Victoria Bloom. Game based cyber security training:
are serious games suitable for cyber security training? International Journal of Serious Games,
3(1), March 2016. doi:10.17083/ijsg.v3i1.107.

5 Andrei-Cristian Iosif, Tiago Espinha Gasiba, Ulrike Lechner, and Maria-Pinto Albuquerque.
Raising awareness in the industry on secure code review practices. In CYBER 2023: The
Eighth International Conference on Cyber-Technologies and Cyber-Systems, pages 62–68.
IARIA, September 2023.

6 ISO/IEC 20246:2017. Software and systems engineering – Work product reviews. Standard,
International Organization for Standardization, Geneva, CH, 2017.

https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/RE.2019.00038
https://doi.org/10.17083/ijsg.v3i1.107

A.-C. Iosif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba 14:11

7 ISO/IEC 64223-4-1:2018-1. ISO/IEC 62443-4-1:2018 Security for industrial automation and
control systems – Part 4-1: Secure product development lifecycle requirements. Standard,
International Organization for Standardization, Geneva, CH, January 2018.

8 ISO/IEC 64223-4-2:2019-12. Security for Industrial Automation and Control Systems – Part
4-2: Technical Security Requirements for IACS Components. Standard, International Elec-
trical Commission, Geneva, CH, January 2019. ISBN 978-2-8322-6597-0.

9 ISO/IEC TR 24772-1:2019. Programming languages – Guidance to avoiding vulnerabilities in
programming languages – Part 1: Language-independent guidance. Standard, International
Organization for Standardization, Geneva, CH, 2019.

10 Peter Kálnai. Lazarus campaigns and backdoors in 2022-2023. In Proceedings of the Virus
Bulletin International Conference, London, United Kingdom, October 2023.

11 Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and Jacek Czerwonka.
Code reviewing in the trenches: Challenges & best practices. IEEE Software, 35(4):34–42,
2017.

12 MITRE Corporation. CWE Top 25 Most Dangerous Software Weaknesses. http://bit.ly/
mitre25, 2023. Online, accessed 2023.07.24.

13 Fabiola Moyon, Daniel Mendez, Kristian Beckers, and Sebastian Klepper. How to integrate
security compliance requirements with agile software engineering at scale? In Maurizio
Morisio, Marco Torchiano, and Andreas Jedlitschka, editors, Product-Focused Software Process
Improvement, pages 69–87, Cham, 2020. Springer International Publishing.

14 OWASP Foundation. OWASP Top10:2021. https://owasp.org/Top10, 2021. Online, accessed
2023.07.24.

15 Rene Roepke and Ulrik Schroeder. The problem with teaching defence against the dark arts:
A review of game-based learning applications and serious games for cyber security educa-
tion. In Proceedings of the 11th International Conference on Computer Supported Education.
SCITEPRESS – Science and Technology Publications, 2019. doi:10.5220/0007706100580066.

16 Maung K. Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren. Action
Design Research. MIS Quarterly, 35:37–56, 2011.

17 Akbar Siami Namin, Zenaida Aguirre-Muñoz, and Keith Jones. Teaching cyber security
through competition an experience report about a participatory training workshop. In 7th
Annual International Conference on Computer Science Education: Innovation & Technology
(CSEIT 2016), CSEIT. Global Science & Technology Forum (GSTF), October 2016. doi:
10.5176/2251-2195_cseit16.39.

18 Tarja Susi, Mikael Johannesson, and Per Backlund. Serious games: An overview. Technical
report, IKI Technical Reports, 2007.

19 Valdemar Švábenský, Jan Vykopal, Pavel Čeleda, and Lydia Kraus. Applications of educational
data mining and learning analytics on data from cybersecurity training. Education and
Information Technologies, 27(9):12179–12212, May 2022. doi:10.1007/s10639-022-11093-6.

20 Valdemar Švábenský, Pavel Čeleda, Jan Vykopal, and Silvia Brišáková. Cybersecurity know-
ledge and skills taught in capture the flag challenges. Computers and Security, 102:102154,
2021. doi:10.1016/j.cose.2020.102154.

ICPEC 2024

http://bit.ly/mitre25
http://bit.ly/mitre25
https://owasp.org/Top10
https://doi.org/10.5220/0007706100580066
https://doi.org/10.5176/2251-2195_cseit16.39
https://doi.org/10.5176/2251-2195_cseit16.39
https://doi.org/10.1007/s10639-022-11093-6
https://doi.org/10.1016/j.cose.2020.102154

Implementing a Digital Twin for a Robotic
Platform to Support Large-Scale Coding Classes
Michael Heeney #

Department of Computer Science, Middlesex University, London, UK

Kelly Androutsopoulos #

Department of Computer Science, Middlesex University, London, UK

Franco Raimondi #

Gran Sasso Science Institute, L’Aquila, Italy

Abstract
Constructionist learning involves learners that are actively engaged in the construction of an entity
that reflects the learning achievements. When learning to code, such a physical entity can take
the shape of a robot, or of a robotic arm, or any other hardware device that is used to manifest
the effect of the code that students are writing. Hardware devices have been used in primary and
secondary schools, and also in Higher Education. Unfortunately, the use of hardware devices is
limited as it does not scale to large cohorts and requires a physical space for face-to-face teaching.

In this paper we introduce a digital twin for a robotic platform to replicate a classroom setting
used for teaching first year undergraduate Computer Science students. We describe the architecture
of the system and its implementation.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases digital twin, introductory programming, constructionism, robotics, computer
science education

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.15

1 Introduction

According to constructionism, learning “happens especially felicitously in a context where the
learner is consciously engaged in constructing a public entity, whether it’s a sandcastle or a
theory of the universe” [24]. The case of learning to code is a special situation in which:
1) students need to learn a static syntax to encode an algorithm to achieve a desired goal,
but also
2) students need to learn how to associate a dynamical behaviour to the code they have
written, to make sure not only that the code is syntactically correct, but also that it achieves
its desired goals. Typically, the dynamical behaviour of code is often hidden and students
can only observe its final output, unless they use a debugger.

An approach based on constructionism can provide physical manifestations for code that
is easier to understand than traces from a debugger, and thus help in providing a better
strategy for students to understand the dynamical behaviour (and the consequences) of the
code they write, in that students can observe not only the final state of a program, but also
all the intermediate steps taken, if these correspond to states of a robot or any other hardware
platform. Several approaches have investigated strategies to support constructionism in the
setting of learning to code, see for instance [19] and references therein. Approaches based on
actual robots have been used in primary schools to support the development of computational
thinking and to also to support teachers’ confidence [9]. In Higher Education, robots have
been used on a range of topics, including to support teaching of functional patterns [6].

© Michael Heeney, Kelly Androutsopoulos, and Franco Raimondi;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 15; pp. 15:1–15:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:M.Heeney@mdx.ac.uk
https://orcid.org/0009-0000-9394-4294
mailto:k.androutsopoulos@mdx.ac.uk
https://orcid.org/0000-0001-8257-1867
mailto:franco.raimondi@gssi.it
https://orcid.org/0000-0002-9508-7713
https://doi.org/10.4230/OASIcs.ICPEC.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2 A Digital Twin to Support Large-Scale Coding Classes

Virtual platforms such as Scratch1 can provide a replacement for physical robots. Unfor-
tunately, these platforms have typically targeted younger users, with very few options (if
any) available for the Higher Education sector.

We have developed a digital twin for a robotic platform with the explicit goal of providing
physical manifestations of code for students in the Higher Education sector. At a high level,
a digital twin is the virtual counterpart of a physical system, implementing all its functional
properties and reproducing its physical characteristics with high accuracy. Digital twins have
been used in a range of domains, including manufacturing, avionics, architecture, etc. One
of the key differences between a digital twin and a simulation is the fact that a simulation
may remove non-relevant features, for instance a car may be depicted as a rectangle in a
2-dimensional space, while a digital twin would reproduce not only the dynamical behaviour
of a car, but also its other aspects, such as the ability to open doors etc.

In this paper we describe the details of a Digital Twin platform that we have developed
in Unity2. We present the architecture of the system, centred around the extension of an
existing approach for service-based development of microcontrollers [4].

Figure 1 The current prototype with text field for logs, information and sent/received data on
the TCP/IP network.

2 Related Work

Constructionism is rooted in Piaget’s constructivist approaches [1]. Both constructivism
and constructionism have played a key role in the past five decades in STEM education,
and advent of increasingly better connectivity has then resulted in the development e-
Learning platforms for a range of subjects [27] and across year groups, from primary school

1 https://scratch.mit.edu/
2 https://unity.com

https://scratch.mit.edu/
https://unity.com

M. Heeney, K. Androutsopoulos, and F. Raimondi 15:3

to higher education. In parallel, robots have been used to support the teaching of robotics,
electronics, manufacturing and STEM subjects in general, building on the success of the
maker movement [23].

Robots are used as a platform to teach many concepts in Computer Science. They provide
an educational tool for introducing students to embedded systems and computational thinking
for interacting with the environment around them. When hardware is introduced, students
can conceptualise a topology of the system; from the microcontroller and General Purpose
Input/Output (GPIO) functionality, to the software, libraries and interfacing/networking
involved to carry out a simple action such as driving forward. Robotics in education naturally
puts together continuous and discrete computation and provides an opportunity to reason
about error and uncertainty, an important topic of study at an undergraduate level [29].

In regards to computational thinking, other forms of technologies have been developed to
help students start to grasp the concepts of programming including augmented reality [21].

Within the task of building a robot, the layers of the system allow researchers and
educators to deploy teaching strategies and subject specificity for different target audiences.
For example, within the makers movement [23], there have been studies to understand the
benefits of robotics to teach programming, electronics, fabrication and general STEM as an
overall subject.

When creating a robot for teaching, there is an emphasis whether to buy an existing
product, or to create a bespoke product which the educators can iterate over time. Developing
a prototype in a maker movement [13] style allows open sourcing of hardware and software,
collaboration between staff and students and integration with higher education facilities.
One of the main benefits robot platforms following this tradition is the cost. Working robots
can be physically built for under £50 with a Raspberry Pi Zero board [34]. However, as
described by Correll et al [11], scalability is a factor. For example, designing complex systems
becomes a labour of maintenance, explanation of hardware, etc., which can create bottlenecks
for delivery.

When developing a simulation part of a platform, linking the virtual environment to this
platform is similar to gaming platforms, also used in educational teaching strategies. Games
are widely accepted as an engaging and motivating tool in the CS curriculum [18]. There are
many advantages including the ability to increase learning interest, enhancing confidence
in learning and also lead to long term knowledge retention. It is also noted that gaming
environments can produce effectiveness in learners due to their response time. They can
generate options to users which may not be available for the learner at the particular time.
They are flexible and allow choices without risk, exploration for the user, which stimulates
curiosity, discovering learning and perseverance [20].

With the emergence of digital twins, users are able to run counterparts to a physical
system. This could be a digital copy of a robotic system, which runs in parallel; this is a
common technology in the automotive industry [5]. These models have a plethora of uses in
a design life cycle and have many benefits including time saving of ideas, increased quality of
work, reduced risks in design and increased efficiency. Links have also been made to how
digital twins serve well as an educational tool, bringing together many aspects of different
learning theories [12]. Additionally, the manifestation of the understanding of how individual
parts of a system, including sensors and actuators work, is beneficial to students [8].

A tangible artefact, such as a robot gives the user embodiment, allowing them to express
their understanding of code through the robot e.g. movement, sensing the environment etc.
Embodiment in robotic hardware has been seen to have positive benefits over an array of year
groups [17, 22, 33]. Popular beneficial themes include engagement of material, self-efficacy,

ICPEC 2024

15:4 A Digital Twin to Support Large-Scale Coding Classes

attitudes towards the subject and improvement of grades. These benefits are continued
between different forms of platform, for example, from bespoke and custom hardware [10], to
commercial robots or for virtual environments and simulations [3, 30].

Physical feedback obtained by using mobile robots has the ability to strengthen the
concepts of programming and motivate the students. On one hand, students are able to
become motivated by the technology and at the same time, have a better relationship between
the notion of theory and how that relates to practical results [31]. By creating a realistic
counterpart, the idea is to keep the irreplaceable position in the educational process [28],
but also keep the realism of the physical feedback obtained with real hardware and show the
similarities in class.

It has been reported [14] that experiences with physical manifestations and existing
projects can bring students to be motivated into learning and be interested in the subject.
Furthermore, students developed ideas further than originally set, setting additional goals
once understanding the system and technology further.

When developing a robotic platform, or its digital counterpart, the engagement of students
will allow them to spend more time developing programs and working on solutions. With
repetition of exercises, seeing changes and working on a solution in iterations, it is has been
suggested [15] that students build better solutions overall.

MIRTO [2] is an example of a cheap, open-source, robotic platform used in face-to-face
teaching. In this paper, the learning objectives were achieved much earlier than in traditional
and theoretical models of teaching. This tool is influenced by the constructionism approach,
and it allows the students to explore the capabilities of the robot independently. For example,
before working towards the marking objectives of the module, introductory activities would
include to understand wheel rotation and navigation. This includes defining the speeds of
the motors, alignment and bump sensors. These tasks allow students to understand by trial
and error the notion of real-time system and control, reinforcing knowledge and skills from
previous work. Gamification in the classroom by means of line-following races led to further
engagement [6].

In 2020, with academic institutions going into lockdown due to the COVID-19 virus, the
ability to create virtual labs for simulating practical skills [25] was essential to continue
teaching practical skills in classes. Digital twins allow this to happen by creating a reliable
and high fidelity prototype. However, with the development of this kind of systems, the
scalability for experimentation should increase and provide feedback as close as possible to
the original physical systems [32].

Existing literature shows the benefits of mobile robotics in Computer Science education.
The robots can be virtual or tangible. However, most of the case studies are up to keystage 5
in the United Kingdom (16-18 year olds). To the best of our knowledge, there does not seem
to be an undergraduate Computer Science course using a digital twin to support teaching
programming to these students.

Testing the principles of constructionist approaches and how to measure the effect of the
learning methodology has been subject to various studies. Kafai [16] created a comparative
study, in which the classroom was split between a constructionist approach using a creation
of video games which incorporated mathematical problems requiring an understanding of
fractions to solve; with another group received traditional teaching for fraction instruction.
This study concluded a better understanding of fractions, increased engagement/motivation
of the students, better critical thinking and a development of soft skills through collaborative
learning. Benefits of Scratch as a constructionist tool have been widely shown, particularly
by Resnick and Brennan [7] in which results concluded positive improvements in the ability
to develop an iterative design cycle with experimenting and iteration of code and objects,
logical reasoning through testing and debugging, creativity and problem solving.

M. Heeney, K. Androutsopoulos, and F. Raimondi 15:5

3 The MIRTO Robotic Platform

The MIRTO robotic platform was developed to support a specific pedagogy. We take a
constructionist approach to teaching the fundamentals to first year undergraduate Computer
Science students with MIRTO. Hardware is demonstrated using digital electronic circuits
to discuss system architecture, microcontrollers and microprocessors such as Raspberry Pi.
Programming concepts are taught with Racket (a dialect of Lisp). In the last third of the
academic year, the fundamentals of these topics are brought together using a robot with the
acronym MIRTO.

Figure 2 Students programming robots in a classroom setting.

MIRTO is an open source robotic platform that contains the following components:
1. Raspberry Pi: A custom image of Raspbian extended with Racket to compile code on the

Pi. This also enables networking opportunities such as custom wifi networks, editing of a
Linux image, ssh, ethernet etc. This can be networked with an Arduino microcontroller
to control GPIO or these two boards can be swapped with a Raspberry Pi Pico.

2. Custom PCB: The top-layer of the robot has all of the GPIO options of the robot available
in one place including motorshield for controlling 2 x DC motors, an RGB LED, an
infrared array for line following, 2 tilt switches for hit detection, a speaker and a LCD for
displaying messages and connection information.

3. ASIP: Arduino Service Interface Protocol3 enables a computer to discover, configure,
read, write a microcontrollers general purpose IO pins. As standard, ASIP uses a serial
connection to the Raspberry Pi.

4. Along with ASIP, there are various libraries to work with programming languages including
Java and Python. For first year students the focus is on the Racket4 library.

3 https://github.com/michaelmargolis/asip/
4 https://github.com/fraimondi/racket-asip

ICPEC 2024

https://github.com/michaelmargolis/asip/
https://github.com/fraimondi/racket-asip

15:6 A Digital Twin to Support Large-Scale Coding Classes

To support iteration of teaching material, anonymous questionnaires are delivered to
students, in which many reported enjoyment using MIRTO and use of hardware across the
year. However, in order to scale the use of robots for large classes and for online teaching,
we developed a digital twin to serve as a real-time counterpart of the physical robots in class.
Other reasons for designing a digital twin include:
1. Sustainability of manufacturing: The robots take time to design, build and repair, which
could be labour-intensive for large cohorts.
2. Time management: Students only have a 2-hour class per week to work on the robots.
The demand was very high outside the classroom for students to test, but due to the last
point, we were unable to loan these with fairness.
3. Training: The robots need a range of expertise across various disciplines to operate and
maintain and in scale, this was proved difficult for staff availability.

Figure 3 The latest iteration of MIRTO 2024.

3.1 Software for MIRTO
Students can complete exercises independently or in groups on software problems that involve
MIRTO. They are given a selection of exercises to try various GPIO of the robot and then
given examples of code to run and understand what it is doing. The exercises consist of
moving the robot in a room at different speeds and for a certain time (understanding the
timing issues) avoiding obstacles and bumping into walls. More advanced exercises involve
following a line and improving on precision. Examples of instructions are given in Table 1.

Table 1 Instructions for the MIRTO using DrRacket.

Instruction Description

(setMotor 0 0) Set the speed for the motors. The first integer assigns the left (0) or right motor (1).
The second integer assigns the speed of the motor. Value range is from -255 to 255.

(stopMotor 0) This will stop a single motor. The integer assigns the motor as above.
(stopMotors) Stops both the motors.

(getIR 0) Prints the reflected value from a infrared sensor array. The integer is the sensor
number in the array. Currently there are 3 sensors. Value range is from 0 - 255.

(setLCDMessages “message” 0) Write a message to a five line liquid crystal display. The text in “” is what will be
printed. The integer is the line on the display.

(leftBump?) This will check the state of a bump sensor, printed as a 0 or 1 for true or false. There
are two sensors on the robot, leftBump and rightBump.

(analog-read 0) Reads the on board potentiometer on the robots PCB. This could be any analog sensor
which is assigned by the integer.

(playTone 0 0) Plays a tone on a piezo buzzer based on a particular frequency. The first integer assigns
the frequency. The second assigns the duration in seconds.

M. Heeney, K. Androutsopoulos, and F. Raimondi 15:7

With the majority of the exercises, students are given the freedom to explore a snippet of
code and guess what it will do. Then when they compile the program, they can see how the
robot will react. With the exploration of the wheels, sensors and other input/output of the
robot, students embed themselves in a creative learning process. This supports reflection
in class and discussion between peers. During observations, an array of interpretations of
solutions for the same task are created using sensors to determine movement, outputs of LCD
messages or colour of LEDs to show a state or explanation of location etc. With this notion
of creative learning intertwined with the technology, students are able to follow a creative
learning spiral [26]. Examples of the concepts taught using MIRTO include higher-order
functions, string processing and open vs closed loop systems [6].

4 Implementation of Digital Twin

We have implemented a digital twin in Unity, to replicate a classroom setting for students.
Bespoke classroom objects such as the mobile robot, robotic arms and some furniture were
all designed in Blender.

4.1 High-Level System Architecture

Figure 4 Digital Twin Architecture for the Online Provision.

The digital twin created in Unity replaces the robot described above and the overall
architecture of the system is illustrated in Figure 4. At the high level, a student will control
the client of the system. This is typically a program written in Racket. When run, the
Racket program will establish a TCP connection with Unity and begin to translate Racket
messages into instructions. These instructions are then converted to C# scripts which will
control many aspects of the scene of the digital twin including the orientation and direction
of the robot, the speed and movement of the robot, control and reading of the sensors of
the robot (bump sensors, infrared sensors, LEDs etc). In turn, in some of these instances,
Unity will send back string messages to Racket, to let the program know which sensors have

ICPEC 2024

15:8 A Digital Twin to Support Large-Scale Coding Classes

been interacted with, looking for a follow up instruction if needed. For example, students
are taught different ways to navigate with the robot. This could include driving, using bump
sensors to turn if there are objects in the way, line following etc.

In Unity, the digital twin is created on the same part list used for the physical manu-
facturing of the robot. Therefore, the parts are the same scale and the scene replicates the
classroom setting. The scene is created using a range of furniture, walls and lighting. All
these components contain physics properties and meshes so the robot (and user) is able to
have a realistic interaction in the environment.

The digital twin incorporates wheel movement by operating scripts to control wheel
colliders, which are a slip-based tyre friction model generated for wheels. Along with the
collider, there is a rotation animation, to give realism and understanding of speed for the
user.

Figure 5 The digital twin has 3 rooms for students to explore and run their programs in.

For the sensors of the robot, Unity uses raycasting for the bump sensors. With raycasting,
the bump sensors on the 3D model send out a “ray” from a camera point until it finds a
surface it collides with. The ray sent is very short, to mimic being close enough to the object
to “hitting” it. Once hit, a boolean value is triggered, sending a message back to the Racket
client. Similarly, with the infrared sensor, 3 raycasts are sent (as separate threads) to the
floor to detect colour in the flooring, this is to mimic lines on the surface for students to
complete line following exercises.

M. Heeney, K. Androutsopoulos, and F. Raimondi 15:9

The environment uses an input system with various methods. For example, as described
above, Racket will send messages via a TCP server to control the robot; Unity can also
output messages back to Racket. USB peripherals can also control the movement, alignment
and camera position of the user in the scene. Additionally, Unity actions such as the
raycasting can provide input to control the environment. Racket is also the main input for
the environment, controlling the digital twin and its movement. All of these methods of
inputs will generate the scripts written in C to control the speed, direction and friction of
the wheels, line drawing (to help with navigation) and sensor and input/output control.

4.2 Implementation
Let’s consider an example to see how the digital twin works in practice. Assume that a
student needs to write code for the following task: “drive the robot forward for two seconds
then stop”; the Racket code would be the following:

1 #lang racket
2 (require " AsipMain .rkt")
3 (open-asip)
4 (setMotors 150 150)
5 (sleep 2)
6 (stopMotors)
7 (close-asip)

This is identical for a physical robot or for the digital twin. In the case of the digital
twin, instead of these commands being sent to the serial port of the robot, ASIP5 will send a
string to the TCP server running in Unity. The above code does the following:
1: Include the AsipMain Racket library
3: We setup the connection to the robot. This will connect to the localhost at port 54010 for
a digital twin.
5: The robot is asked to move both wheels forward. The power selected is 150 (the range is
between -255 to 255).
6: There is a sleep for 2 seconds, which allows the wheels to run during this time.
7: The wheels are turned off, the speed is set to 0.
8: Close the TCP connection

For the example above, the actual strings sent over TCP would be in two parts, to turn
the motors on and then off again. Concretely, the following messages will be sent:

"M,m,0,150";"M,m,1,150";"M,m,0,0";"M,m,1,0"

When a motor command is sent, it is translated to two commands back to control each
motor separately. This allows us to also set individual motor movement for turning and
concise movements.

In Unity, once the string is received, it is split into four different variables to understand
its role in ASIP and what it should be controlling. Each string starts with a letter, which
is the header of the request; this could include M (motors), E (encoders), T (tone – for a
piezo), P (RGB LED control), L (LCD on the robot), I (port to pin mapping) etc. Each of
these strings has separators (,) and other tags and numeric values that go with it. Once the
command above is identified as a motor command, wheel colliders in Unity that control the
wheels will move using the following command:

5 https://github.com/michaelmargolis/asip/tree/master/documents

ICPEC 2024

https://github.com/michaelmargolis/asip/tree/master/documents

15:10 A Digital Twin to Support Large-Scale Coding Classes

leftWheelInput.motorTorque = asipLeftWheelInput * motorForce;
rightWheelInput.motorTorque = asipRightWheelInput * motorForce;

Within the movement calculations, there are parameters set to increase the wheel speed in
the virtual space, similar to the classroom setting. For example, 0 being the no movement,
255 being the fastest speed and -255 reversing at the maximum speed. At a later date, there
will be planned tests to ensure accurate comparisons between the virtual and physical spaces.

For reference of the user, in the Unity GUI, there is a display box to show all of the
messages received from ASIP, as well as messages sent and error messages etc. This feature
can be shown/hidden by the user as well as the ability to draw a line showing the movement
path of the digital twin to help students understand path planning and movement instructions
further, similar to designs of LOGO and turtle robots in the 1980s [24].

5 Conclusion and future work

We have presented the development of a multi-programming language digital twin platform to
replicate a classroom setting used for teaching Computer Science to undergraduate students.
The digital twin is planned to be released as an open-source platform. The digital twin
can run side-by-side with its physical counterpart. Students are able to use the physical
model in classes and once resources are not available, for example out of class, students can
login to a virtual world to continue their programming assignments and continue developing
their computational thinking. The online platform and physical platform both use Racket (a
dialect of Lisp) as its main programming language. However, our virtual environment can be
used by students across year groups and can be programmed in multiple languages including
Java, Python, as well as Racket.

While the use of the digital twin in classrooms has shown to be promising, we plan
to conduct further experiments with students to empirically evaluate its impact. Current
surveys suggest there is a strong link to engagement and computational thinking when using
the digital twin. However, more work is to be carried out to fortify these claims.

For future work, more work is needed for creating an open source and robust digital twin
for all to host, deploy and use for their teaching and training. Emphasis will be made on
the GUI, to deploy visual indicators on all sensors and actuators, so students and staff can
get visual feedback of the tools they are using, rather then printed syntax and text. Within
the GUI, students will also be able to select a lab space, to best replicate the room they
are in for size. Additional to this, menus will be designed to enable students to select the
connection type; this could include web socket connections, TCP/IP as stated previously or
how they want to connect, via simulation only or as a digital twin.

References
1 Edith Ackermann. Piaget’s constructivism, papert’s constructionism: What’s the difference?

In Constructivism: Uses and perspectives in education., pages 85–94, 2001.
2 Kelly Androutsopoulos, Leonidas Aristodemou, Jaap Boender, Michele Bottone, Edward

Currie, Inas El-Aroussi, Bob Fields, Lorenzo Gheri, Nikos Gorogiannis, Michael Heeney, et al.
Mirto: an open-source robotic platform for education. In Proceedings of the 3rd European
Conference of Software Engineering Education, pages 55–62, 2018.

3 Mikko Apiola, Matti Lattu, and Tomi A Pasanen. Creativity and intrinsic motivation in
computer science education: experimenting with robots. In Proceedings of the fifteenth annual
conference on Innovation and technology in computer science education, pages 199–203, 2010.
doi:10.1145/1822090.1822147.

https://doi.org/10.1145/1822090.1822147

M. Heeney, K. Androutsopoulos, and F. Raimondi 15:11

4 Gianluca Barbon, Michael Margolis, Filippo Palumbo, Franco Raimondi, and Nick Weldin.
Taking arduino to the internet of things: The asip programming model. Computer Commu-
nications, 89:128–140, 2016. doi:10.1016/j.comcom.2016.03.016.

5 Florian Biesinger and Michael Weyrich. The facets of digital twins in production and the
automotive industry. In 2019 23rd international conference on mechatronics technology (ICMT),
pages 1–6. IEEE, 2019.

6 Jaap Boender, Ed Currie, Martin Loomes, Franco Raimondi, and Giuseppe Primiero. Teaching
functional patterns through robotic applications. In Trends in Functional Programming in
Education 2015, June 2015.

7 Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing the develop-
ment of computational thinking. In Proceedings of the 2012 annual meeting of the American
educational research association, Vancouver, Canada, volume 1, page 25, 2012.

8 Rolando Antonio Chacón Flores, Martí Sánchez Juny, Esther Real Saladrigas, Xavier Giron-
ella Cobos, Jaume Puigagut Juárez, and Alberto Ledesma Villalba. Digital twins in civil and
environmental engineering classrooms. In EUCEET 2018: 4th International Conference on
Civil Engineering Education: Challenges for the Third Millennium, pages 1–10. International
Centre for Numerical Methods in Engineering (CIMNE), 2018.

9 Christina Chalmers. Robotics and computational thinking in primary school. International
Journal of Child-Computer Interaction, 17, July 2018. doi:10.1016/j.ijcci.2018.06.005.

10 CTE STEM Coach, David Archer, Lois Delcambre, Scott Britell, and Ananth Mohan-
Contributors. K-12 stem robotics: Stealth computer science for the masses. The Journal of
Computing Sciences in Colleges, page 152, 2011.

11 Nikolaus Correll, Rowan Wing, and David Coleman. A one-year introductory robotics
curriculum for computer science upperclassmen. IEEE Transactions on Education, 56(1):54–
60, 2012. doi:10.1109/TE.2012.2220774.

12 Joe David, Andrei Lobov, and Minna Lanz. Learning experiences involving digital twins.
In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pages
3681–3686. IEEE, 2018. doi:10.1109/IECON.2018.8591460.

13 Erica Rosenfeld Halverson and Kimberly Sheridan. The maker movement in education. Harvard
educational review, 84(4):495–504, 2014.

14 Cindy K Harnett, Thomas R Tretter, and Stephanie B Philipp. Hackerspaces and engineering
education. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–8.
IEEE, 2014.

15 Michael Jonas. Do it again: Learning complex coding through repetition. In Proceedings
of the 18th Annual Conference on Information Technology Education, pages 121–125, 2017.
doi:10.1145/3125659.3125690.

16 Yasmin B Kafai. Minds in play: Computer game design as a context for children’s learning.
Routledge, 2012.

17 Christopher Kitts and Neil Quinn. An interdisciplinary field robotics program for undergraduate
computer science and engineering education. Journal on Educational Resources in Computing
(JERIC), 4(2):3–es, 2004.

18 Stan Kurkovsky. Making computing attractive for non-majors: a course design. Journal of
Computing Sciences in Colleges, 22(3):90–97, 2007.

19 Michael Lodi, Dario Malchiodi, Mattia Monga, Anna Morpurgo, and Bernadette Spieler.
Constructionist Attempts at Supporting the Learning of Computer Programming: A Survey.
Olympiads in Informatics: An International Journal, 13:99–121, July 2019. doi:10.15388/
ioi.2019.07.

20 Ju Long. Just for fun: using programming games in software programming training and
education. Journal of Information Technology Education: Research, 6(1):279–290, 2007.

21 Luis Carlos Martins, Lázaro Vinicius Lima, and Pedro Rangel Henriques. Lcsmar, an ar based
tool to inspect imperative programs. In 4th International Computer Programming Education
Conference (ICPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

ICPEC 2024

https://doi.org/10.1016/j.comcom.2016.03.016
https://doi.org/10.1016/j.ijcci.2018.06.005
https://doi.org/10.1109/TE.2012.2220774
https://doi.org/10.1109/IECON.2018.8591460
https://doi.org/10.1145/3125659.3125690
https://doi.org/10.15388/ioi.2019.07
https://doi.org/10.15388/ioi.2019.07

15:12 A Digital Twin to Support Large-Scale Coding Classes

22 Monica M McGill. Learning to program with personal robots: Influences on student motivation.
ACM Transactions on Computing Education (TOCE), 12(1):1–32, 2012. doi:10.1145/2133797.
2133801.

23 Sofia Papavlasopoulou, Michail N. Giannakos, and Letizia Jaccheri. Empirical studies on
the maker movement, a promising approach to learning: A literature review. Entertainment
Computing, 18(C):57–78, 2017. doi:10.1016/j.entcom.2016.09.002.

24 Seymour Papert and Idit Harel. Situating constructionism. In Seymour Papert and Idit Harel,
editors, Constructionism, chapter 1. Ablex Publishing Corporation, Norwood, NJ, 1991. URL:
http://www.papert.org/articles/SituatingConstructionism.html.

25 Sandipan Ray and Sanjeeva Srivastava. Virtualization of science education: a lesson from the
covid-19 pandemic. Journal of proteins and proteomics, 11:77–80, 2020.

26 Mitchel Resnick. Lifelong kindergarten: Cultivating creativity through projects, passion, peers
and play. In “Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers
and Play”, chapter 1. The MIT Press, Cambridge, Massachusetts, 2017.

27 T. Richter, S. Rudlof, B. Adjibadji, H. Bernlöhr, C. Grüninger, C.-D. Munz, A. Stock, C. Rohde,
and R. Helmig. Viplab: a virtual programming laboratory for mathematics and engineering.
Interactive Technology and Smart Education, 9:246–262, 2012. doi:10.1109/ISM.2011.95.

28 Carlos Rodriguez, Jose L Guzman, Manuel Berenguel, and Sebastian Dormido. Teaching
real-time programming using mobile robots. IFAC-PapersOnLine, 49(6):10–15, 2016.

29 Daniela Rus. Teaching robotics everywhere. IEEE Robotics & Automation Magazine, 13(1):15–
94, 2006. doi:10.1109/MRA.2006.1598048.

30 Ashraf Saad, Travis Shuff, Gabriel Loewen, and Kyle Burton. Supporting undergraduate
computer science education using educational robots. In Proceedings of the 50th Annual
Southeast Regional Conference, pages 343–344, 2012. doi:10.1145/2184512.2184596.

31 Payman Shakouri, Olga Duran, Andrzej Ordys, and Gordana Collier. Teaching fuzzy logic
control based on a robotic implementation. IFAC Proceedings Volumes, 46(17):192–197, 2013.
doi:10.3182/20130828-3-UK-2039.00047.

32 Jaroslav Sobota, Roman PiŜl, Pavel Balda, and MiloŜ Schlegel. Raspberry pi and arduino
boards in control education. IFAC Proceedings Volumes, 46(17):7–12, 2013.

33 Eben B Witherspoon, Ross M Higashi, Christian D Schunn, Emily C Baehr, and Robin Shoop.
Developing computational thinking through a virtual robotics programming curriculum. ACM
Transactions on Computing Education (TOCE), 18(1):1–20, 2017. doi:10.1145/3104982.

34 Narasimha Saii Yamanoor and Srihari Yamanoor. High quality, low cost education with the
raspberry pi. In 2017 IEEE Global Humanitarian Technology Conference (GHTC), pages 1–5.
IEEE, 2017. doi:10.1109/GHTC.2017.8239274.

https://doi.org/10.1145/2133797.2133801
https://doi.org/10.1145/2133797.2133801
https://doi.org/10.1016/j.entcom.2016.09.002
http://www.papert.org/articles/SituatingConstructionism.html
https://doi.org/10.1109/ISM.2011.95
https://doi.org/10.1109/MRA.2006.1598048
https://doi.org/10.1145/2184512.2184596
https://doi.org/10.3182/20130828-3-UK-2039.00047
https://doi.org/10.1145/3104982
https://doi.org/10.1109/GHTC.2017.8239274

To Kill a Mocking Bug: Open Source Repo Mining
of Security Patches for Programming Education
Andrei-Cristian Iosif #

Universität der Bundeswehr München, Germany
Siemens AG, München, Germany

Tiago Espinha Gasiba #

Siemens AG, München, Germany

Ulrike Lechner #

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Abstract
The use of third-party components (TPCs) and open-source software (OSS) has become increasingly
popular in software development, and this trend has also increased the chance of detecting security
vulnerabilities. Understanding practical recurring vulnerabilities that occur in real-world applications
(TPCs and OSS) is a very important step to educate not only aspiring software developers, but
also seasoned ones. To achieve this goal, we analyze publicly available OSS software on GitHub to
identify the most common security vulnerabilities and their frequency of occurrence between 2009
and 2022. Our work looks at programming language and type of vulnerability and also analyses the
number of code lines needed to be changed to fix different vulnerabilities. Furthermore, our work
contributes to the understanding of real-world and human-made data quality required for training
machine learning algorithms by highlighting the importance of homogeneous and complete data. We
provide insights for both developers and researchers seeking to improve cybersecurity in software
education and mitigate risks associated with OSS and TPCs. Finally, our analysis contributes to
software education by shedding light on common sources of poor code quality and the effort required
to fix different vulnerabilities.

2012 ACM Subject Classification Security and privacy → Software and application security; Software
and its engineering → Collaboration in software development; Information systems → Open source
software; Security and privacy → Vulnerability management

Keywords and phrases Open-source software, Software quality, Cybersecurity, Repository Mining

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.16

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and ISTAR, for their
support. We acknowledge funding for project LIONS by dtec.bw. Andrei-Cristian Iosif and Tiago
Gasiba acknowledge the funding provided by the Bundesministerium für Bildung und Forschung
(BMBF) for the project CONTAIN (FKZ 13N16585).

Acknowledgements The authors would like to thank Kaan Oguzhan for aiding in data collection,
and also for the helpful, insightful, and constructive comments and discussions about the present
work.

1 Introduction

Having secure software has always been essential for developing any product or service.
Additionally, cybersecurity has gained more attention in recent years due to the ever-
increasing reliance on the internet. Providing secure products or services is essential to

© Andrei-Cristian Iosif, Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 16; pp. 16:1–16:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2 Open Source Repo Mining of Security Patches for Programming Education

maintain customer and user trust. Moreover, it prevents potential damages resulting from
security breaches. As such, it is important that the developers of the software be aware
of security standards and best practices, e.g. through awareness campaigns or, in general,
cybersecurity education.

Several industrial cybersecurity standards provide guidelines for the industry. One
example is the IEC 62443 standard [5], which requires a secure software development life
cycle (sSDLC) framework that covers all SDLC phases and provides detailed guidance to
ensure software security. Another widely-used cybersecurity standard in the industry is the
Common Weakness Enumeration (CWE) [12] developed by the MITRE Corporation, which is
a community-developed list of both software and hardware vulnerabilities categorized by the
type of vulnerability they introduce. The CWE also provides descriptions of the vulnerabilities
and usually includes examples of both vulnerable and non-vulnerable code associated with
the vulnerability. Apart from cybersecurity standards, there are also standards for software
quality, such as ISO 25000 [6], which provides a set of metrics for evaluating the quality of
software products and guidelines for producing high-quality software.

According to the U.S. Department of Homeland Security (DHS) [2], humans are responsible
for more than 90% of software quality issues.

As software complexity increases, the use of third-party components, including commer-
cial off-the-shelf (COTS) and open-source software (OSS), has become more widespread.
According to a survey conducted by Black Duck Software, 78 percent of respondents reported
that their companies use OSS for some or all of their operations [1]. Although OSS can benefit
developers, detecting the most critical quality violations can pose a challenge. Attackers
view the widespread use of TPCs as an opportunity for exploitation. Notably, TPCs have
been the source of significant security vulnerabilities, such as the FREAK OpenSSL vulner-
ability (CVE-2015-0204) [10], Shellshock Vulnerability (CVE-2014-6271) [9], and Log4Shell
(CVE-2021-44228) [11]. As the trend of using third-party components continues to rise, it is
important to consider security when selecting and utilizing TPCs. This paper aims to analyze
existing OSS software on GitHub and shed light on the trends of security vulnerabilities.

Security-oriented companies may prioritize their own interests when discussing software
vulnerabilities, which in turn results in fewer studies with unbiased real-world data. We
contribute to improving the understanding of cybersecurity issues in OSS software and
providing insights for developers and researchers. In this work, we highlight the difficulty of
identifying OSS software’s most frequent security issues.

In this work, by exploring GitHub repositories and commits between 2009 and 2022, we
aim to gather insight into the following Research Questions:
RQ1: What are the most common security vulnerabilities in OSS software?
RQ2: How do these vulnerabilities vary by programming language and over time?
RQ3: What is the effort required to fix these vulnerabilities in terms of code changes?

To conduct our analysis, we scraped publicly available GitHub repositories, identified
commits aimed at fixing known software vulnerabilities by looking at their commit messages,
and analyzed trends and distributions of CWE categories. Our findings can benefit devel-
opment teams and researchers seeking to improve software quality by exploring the most
common sources of poor code quality. Therefore, in this paper, we present a summary of the
most common security vulnerabilities and their frequency of occurrence in OSS software.

This paper is structured as follows: Section 2 will introduce relevant related research.
Next, we present our approach in Section 3, followed by results in Section 4. We discuss our
results in Section 5. Next, Section 6 explores the threats to validity to our study. Finally,
Section 7 reiterates through our work and explores possible next steps.

A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:3

2 Related Work

In this section, we present similar large-scale studies which explore security through repository
metadata.

Iannone et al [4] explored the effects of refactoring on security by measuring security-
related technical debt. Their large-scale investigation involved running git-blame commands
to analyze commits, providing insights into the correlation between refactoring practices and
security implications in software development.

Li and Paxson [7] performed a comprehensive empirical study of security patches, analyzing
a diverse set of repositories to generate generalizable insights about security practices. They
utilized Git commit links to identify and review security-related changes, contributing
significantly to understanding security patch dynamics.

Wang et al. [18] developed PatchDB, a large-scale security patch dataset to facilitate
the manual checking of security-related commits. Their work highlights the consistency and
challenges in identifying security-focused changes across large datasets.

Wang and Nagappan [17] characterized software developer networks by conducting a large-
scale empirical study to distinguish between security and non-security-related commits. Their
findings provide insights into the network dynamics of developers engaged in security-related
software development.

While all these approaches explore repository metadata, our work tackles a purely
quantitative analysis of security-related git commit messages across OSS repositories, where
we explore: language-specific vulnerability analysis, SAST Tool integrations, and commit
message quality.

3 Approach

In this section, we provide details about the steps taken to collect the data driving our study.
Our search space includes all public GitHub repositories created between January 1, 2009,
and December 31, 2022. This arbitrary cut-off date is motivated by recent developments in
AI-assisted programming – according to a Microsoft executive’s statement from March 2023,
40% of GitHub Copilot users check in “AI-generated and unmodified” code [8]. Hence, we
purposefully restrict our search space to include mostly human code changes.

3.1 Querying and Scraping GitHub for Repositories
To gather the necessary data for our study, we developed a scraper to query GitHub for
repositories. The scraper searched for mentions of “CWE ID” in commit messages to identify
repositories containing fixes for vulnerabilities listed in the CWE catalog.

Due to limitations on the branch type for queries, we could only search for commits
on the master/main branch. We also employed a filter to exclude commits that contained
more than a single file change, as this helped to ensure that the commit was not a general
commit that happened to include a fix for a vulnerability. Changes on non-code files such as
README.md or LICENSE were not counted towards the one file change limit.

To parallelize the scraping process, we use Terraform to deploy multiple instances of our
scraper on the cloud. We selected instances optimized for high network bandwidth, with
a reported capacity of up to 10 Gigabit1, as well as 8GB of RAM and four vCPUs. These
specifications helped ensure the instances could efficiently clone and analyze repositories with
high commit volumes.

1 Available instance bandwidth reported by Amazon AWS

ICPEC 2024

16:4 Open Source Repo Mining of Security Patches for Programming Education

We conducted our analysis by running 13 instances over approximately seven days, each
assigned to scrape a different subset of repositories. We faced challenges with GitHub API’s
query limit, which restricts results to the first 1000 entries per query. We implemented
6-hour query intervals to mitigate this, allowing us to cover most of the relevant repositories.
Despite the time windowing approach, some commits were still missed, but we deemed this
an acceptable trade-off between the number of repositories we could scrape and the time it
took to scrape them.

3.2 Data Extraction
Once our scraper finished detecting all candidate repositories within the given year range,
it began cloning the repositories and analyzing their commits. We applied strict rules
to classify a commit as a “vulnerability fixing commit.” These rules required a commit
message containing the strings “fix” and “CWE ID,” where ID is any possible number in
the CWE catalog. We also imposed a limit of 1 file change per commit, excluding changes
on non-programming-language files such as Readme.md or License. These restrictions were
implemented to keep the results as relevant as possible. For each commit detected as fixing
a CWE vulnerability, we kept small metadata about the commit, date, repository, and the
before and after versions of the file(s) that were changed.

3.3 Analysis Method
In this section, we will describe our data analysis approach. We processed the scraped data to
extract insights such as the popularity of CWE vulnerabilities across different programming
languages and the number of commits per year. Our analysis involved plotting the results
for visualization and applying data manipulation techniques such as grouping and sorting to
determine the frequency of CWE vulnerabilities by programming language and year.

We analyzed whether some vulnerabilities were more common than others, whether the
frequency of specific vulnerabilities varied over time or varied by programming language, and
whether some programming languages were more prone to certain types of vulnerabilities.
Additionally, we statistically analyzed the number of lines changed in the commits to fix
specific vulnerabilities and their variation between different CWEs.

Regarding limitations, it is worth noting that our results are based solely on the commit
messages of the commits. This approach may result in some limitations in the accuracy of
our data, as we would miss all commits that don’t mention the fix in the commit message.
However, we believe this limitation is acceptable, given the size of our dataset and the
constraints of our approach. The results of our analysis are presented in the next section.

4 Results

In this section, we present the results of our analysis of the commits aimed at fixing CWE
vulnerabilities in open-source repositories found on GitHub. By focusing on repositories
created from 2009 onwards, we were able to acquire 1934 repositories that contained at least
one commit aimed at fixing a CWE vulnerability. Overall, we observed 7093 such commits,
as shown in Table 1.

Upon analyzing public GitHub repositories, we found that some programming languages
have received more Common Weakness Enumeration (CWE) vulnerability fixes compared
to others. Notably, the languages C, Java, and C++ received the highest number of CWE
vulnerability fixes, followed by JavaScript and Python. The number of CWE vulnerability
fixes for each language is shown in Table 2.

A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:5

Table 1 Number of GitHub repositories con-
taining at least one commit aimed at addressing
CWE vulnerabilities, and the overall count of
commits dedicated to fixing CWE vulnerabilities
on the platform.

Type Count

Number of Repositories 1934
Number of Commits 7093

Table 2 A breakdown of the top program-
ming languages that were detected in the com-
mits, along with their corresponding overall per-
centages. Only the top 5 languages are shown.

Programming Language Count

C 1784
Java 772
C++ 547
JavaScript 301
Python 265

Table 3 Top-5 popular programming languages according to multiple sources for the year 2022.

Rank Octoverse [3] TIOBE [16] RedMonk [14]

1 JavaScript Python JavaScript
2 Python C Python
3 Java Java Java
4 TypeScript C++ PHP
5 C# C# C#

In 2022, JavaScript and Python were the most popular programming languages, according
to Octoverse, TIOBE, and RedMonk. Surprisingly, C, which is the top language for receiving
CWE vulnerability fixes, is not even in the Top-5 of Octoverse and RedMonk. This indicates
a significant disparity between the popularity of programming languages on GitHub and
the number of security vulnerability-fixing commits. It is possible that developers using
popular programming languages lack cybersecurity awareness or are fixing vulnerabilities
without explicitly mentioning them in their commit messages. Notably, this analysis is
limited to publicly available repositories on GitHub, and further investigation is necessary
to comprehend the correlation between the popularity of programming languages and the
number of CWE vulnerability fixes, as well as the security implications of language choice.

Additional analysis was conducted on the commits within GitHub repositories to determine
basic statistics on the number of lines changed in each commit. The results indicated that
the average number of lines changed in a commit was 112.89, while the median was 7,
demonstrating that the distribution of the number of files changed is skewed to the right.
Investigation revealed that the skew was due to several factors, including the use of XML
files with named versioning in some repositories and Notebook-style coding. To minimize the
impact of outliers on the results commits with more than 100 lines changed were excluded,
shifting the mean and median to 13.86 and 6.00, respectively. Although this exclusion may
have affected the accuracy of the analysis, it was necessary to reduce the impact of outliers.

4.1 Number of Commits with mentions of CWE per Year
Figure 1 shows the number of publicly available GitHub commits that aimed to fix software
vulnerabilities and were tagged with the associated CWE ID. From 2009 to 2022, the number
of commits steadily increased from about 20 to around 1000. This trend indicates that the
awareness of cybersecurity is on the rise, and people are taking steps to address vulnerabilities
in their code.

ICPEC 2024

16:6 Open Source Repo Mining of Security Patches for Programming Education

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

200

400

600

800

Nu
m

be
r o

f C
om

m
its

Number of commits targeted at fixing CWE Vulnerabilities per year
Trend over the Years

Figure 1 Trend in the number of commits made on publicly available repositories on GitHub,
aimed at fixing software vulnerabilities and tagged with the associated CWE ID. The figure displays
a clear upward trend in the number of commits over the years. Over the years, the number of
commits has steadily increased from around 20 in 2009 to approximately 1000 in 2022.

However, our analysis suggests that the number of commits should be higher, especially
in recent years. This may be due to two reasons: either people are fixing vulnerabilities
without mentioning them or not enough people are addressing them. Additionally, our data
collection method may have limited the number of commits we collected, which highlights
the need for further research on this critical issue.

According to GitHub, there are approximately 28 million repositories, and assuming that
all 800 commits collected are from different repositories, the percentage of repositories that
had at least one software vulnerability fixing commit is only 0.003%. This suggests that our
data collection method may not be exhaustive, and more commits may have been missed.
Nevertheless, our study emphasizes the importance of addressing software vulnerabilities and
encourages further research on this critical issue.

Alternatively, it is possible that people are indeed correcting vulnerabilities but not
mentioning it specifically in their commits. This would explain the low number of commits,
despite the increasing trend. It could be due to code analysis tools reporting vulnerabilities
and people fixing them but do not mention the related CWE ID in their commits. Overall,
the number of commits is increasing, which indicates that people are taking steps to address
software vulnerabilities.

4.2 CWE per year
We repeat the trend analysis, this time only considering the top-10 CWEs.

Figure 2 shows a clear upward trend in the number of commits, indicating increasing
cybersecurity awareness and action taken to detect, report, and fix vulnerabilities.

In 2018, a significant upward spike was observed, mainly due to a spike in CWE-772.
The exact reasons for this spike are unclear, and further research is necessary to establish
causality and determine the underlying reasons behind this observation.

A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:7

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

50

100

150

200

250

300

Co
m

m
it

Co
un

t

Cumulative Commit Count of the Top 10 CWEs over the Years

Figure 2 Number of commits between 2009 and 2022 targeted at fixing software vulnerabilities
and tagged with the associated CWE ID, filtered for the top-10 CWEs.

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
til

e

Commit Count of Top 10 CWEs Tracked Over The Years

CWE-22
CWE-79
CWE-119
CWE-120
CWE-252
CWE-404
CWE-457
CWE-476
CWE-561
CWE-772
Other

Figure 3 Percentile distribution of the Top-10 CWE categories from 2009 to 2022, along with
the ’Others’ category representing all remaining CWEs. The graph illustrates how the distribution
of the Top-10 CWEs changes over time as a percentile. The graph provides valuable insights into
whether the top-10 CWEs are decreasing or increasing over the years.

To the best of our knowledge, the spike could be due to high-profile cybersecurity incidents
like Meltdown and Spectre or data scandals like Scandal, all of which may have led developers
to review their code and fix vulnerabilities. Additionally, the General Data Protection
Regulation (GDPR), which came into effect on May 25, 2018, may have contributed to an
increase in vulnerability fixes, particularly those related to CWE-772.

We investigated whether the software development community is learning from the
vulnerabilities present in the top-10 CWEs by grouping the top-10 CWEs and the remaining
CWEs into eleven categories. Figure 3 suggests that the percentage of top-10 CWEs has
been decreasing over time, while the “Others” category has been increasing. The significant
spike observed in CWE-772 in 2018 is also visible in Figure 3.

ICPEC 2024

16:8 Open Source Repo Mining of Security Patches for Programming Education

The trends observed in Figure 3 indicate that lessons are being learned from the top-
10 CWEs over time, and the software development community is focusing on addressing
vulnerabilities other than the most common ones, which is positive. This suggests that the
community is becoming more proactive in identifying and fixing vulnerabilities beyond the
top-10 CWEs, which is crucial for improving software security.

Both Figure 2 and Figure 3 suggest that the software development community is becoming
more effective in addressing vulnerabilities beyond the top-10 CWEs. Although the spike
observed in CWE-772 in 2018 requires further investigation, the overall trends are positive
and indicate proactive measures being taken to improve software security, which is also
supported by Figure 1.

4.3 Programming Language vs CWE

C (1
05

8)

C++ (1
83

)

Jav
a (

12
6)

Jav
aS

cri
pt

(41
)

Go (
41

)

Ru
by

 (2
7)

Pyt
ho

n (
26

)

Obje
cti

ve
-C (2

5)

PH
P (

23
)

Make
file

 (8
)

CWE-22

CWE-79

CWE-119

CWE-120

CWE-252

CWE-404

CWE-457

CWE-476

CWE-561

CWE-772

1 0 25 36 10 7 12 0 16 0

59 11 1 0 0 0 0 10 0 0

114 17 0 0 0 0 2 0 0 0

115 25 2 0 0 0 0 0 0 0

81 13 8 0 0 0 0 0 0 0

83 50 0 0 0 0 0 1 0 1

227 30 16 0 3 13 4 11 0 7

63 35 0 0 1 6 0 0 0 0

314 1 0 0 0 0 2 3 0 0

1 1 74 5 27 1 6 0 7 0

Commit count per per Programming Language
Over The Top 10 CWEs

0

50

100

150

200

250

300

Figure 4 Commit count for the Top-10 CWEs across the Top-10 programming languages. The
x-axis represents the programming language, the y-axis represents the CWE, and the color of the
cells represents the number of commits.

The heatmap in Figure 4 shows commit counts for the Top-10 CWEs across the Top-
10 programming languages. The x-axis represents the programming language, the y-axis
represents the CWE, and the color of the cells indicates the number of commits. Results show
that C has significantly more vulnerability fixes compared to other programming languages.

This could be due to C’s popularity in low-level programming, which is more prone to
vulnerabilities. C is also widely used in operating systems, embedded systems, and other
low-level programming applications, contributing to its high number of vulnerability fixes.
Additionally, counting all .h files as C files has resulted in fewer C++ files, making C++ the
second-highest in number of commits for the Top-10 CWEs. This could be due to C++’s
popularity in low-level programming combined with C, resulting in a majority of the Top-10
CWEs being attributed to C and C++.

A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:9

The heatmap also highlights a noticeable trend of high counts for C and C++ for many
CWEs, but a count of zero for other programming languages. This further supports the
hypothesis that results are skewed towards C and C++ for the Top-10 CWEs. The presence
of many zeros also suggests that some programming languages may be inherently immune
to certain CWEs. For example, the common “Buffer Overflow” vulnerability (CWE-120,
CWE-121, CWE-122) is common in C/C++, but is 0 for Python, Go, Ruby, and other
languages.

4.4 Lines changed vs CWE
We analyze the number of lines changed for each of the Top-10 CWEs, to provide insight
into the effort required to fix these vulnerabilities.

CWE-2
2

CWE-7
9

CWE-1
19

CWE-1
20

CWE-2
52

CWE-4
04

CWE-4
57

CWE-4
76

CWE-5
61

CWE-7
72

0

5

10

15

20

25

30

35

Lin
es

 o
f c

ha
ng

e

Lines of change per CWE for the Top 10 CWEs

Figure 5 Number of code line that were changed to address a certain vulnerability (CWE).

Results from Figure 5 show that for 8 out of 10 CWEs, the mean lines of change is less
than 5, with the exceptions being CWE-252 and CWE-476. The interquartile range (IQR)
usually does not exceed 10. These findings indicate that addressing these CWEs can be
done efficiently and effectively with relatively small changes to the codebase. The small IQR
values suggest that the fixes are consistent across different instances of the same CWE. This
indicates that there is a clear and standardized approach to addressing these vulnerabilities.

Overall, these findings provide valuable insights into the nature of common software
vulnerabilities and how to address them effectively. However, it is important to note that
this data alone is not sufficient to draw conclusions about the effort required for vulnerability
detection and fixing. Additional research is necessary to investigate the required effort.

5 Discussion

In addressing our research questions, we explore our results to provide insights into the
common security vulnerabilities, their variations, and the effort required to fix them. Next,
we will discuss the results to provide an understanding of security vulnerabilities in OSS,
their distribution, variation by programming language, evolution across time, and the effort
required to mitigate them.

ICPEC 2024

16:10 Open Source Repo Mining of Security Patches for Programming Education

5.1 Implications for AI-Assisted Patching
Training machine learning (ML) algorithms to detect cybersecurity vulnerabilities is challen-
ging due to the lack of a large and diverse dataset classified by experts [15]. ML applications
require vast amounts of data for optimal performance, which is not always readily available.

To overcome the lack of diverse datasets, synthetically generated datasets such as Juliet
[13] can be used. However, the use of synthetic datasets poses a potential risk where ML
algorithms may learn characteristics of the dataset rather than vulnerability features, leading
to data leakage towards the test set. To address this issue, it is important to evaluate the
effectiveness of ML models on real-world examples rather than relying solely on synthetic
datasets. Investigating the results of ML training on synthetic datasets and testing on
real-world data to detect cybersecurity vulnerabilities would be interesting in the future.

5.2 Commits with CWE
The analysis shows an increase in commits with CWE over time, indicating a rise in
awareness of software vulnerabilities and more software fixes. Future research could investigate
factors contributing to this trend, such as the adoption of secure coding practices, improved
vulnerability scanning tools, and cybersecurity training for developers. Examining the
correlation between commits aimed at fixing vulnerabilities and repository numbers would
yield valuable insights into the effectiveness of current practices and policies in mitigating
software vulnerabilities.

5.3 Programming Language vs CWE
The results suggest that certain programming languages are more prone to specific CWEs
than others due to their design and nature. C and C++ are susceptible to buffer overflow
vulnerabilities because of their low-level nature and use in operating and embedded systems.
In contrast, Python is immune to buffer overflow CWE-120 vulnerability, provided third-party
libraries are not used. Developers should consider the programming language and its more
prevalent vulnerabilities when designing and developing software. By understanding the
likelihood of different vulnerabilities in different programming languages, developers can
mitigate risks and ensure the security and integrity of their software. Staying up-to-date
with the latest vulnerabilities and security trends is also important, as new vulnerabilities
can emerge and existing ones can evolve over time.

5.4 Lines changed vs CWE
Overall, the average number of changed lines is usually less than 5, implying that the fixes are
simple and can be done without introducing big changes to the codebase. Even for complex
CWEs, such as CWE-120 and CWE-252, average number of changed lines is still relatively
low. It is worth noting that some vulnerabilities may require more time to address their root
cause, but overall, when the vulnerability is detected, the fix can be done efficiently.

6 Threats to Validity

We base our results solely on commit messages, which may limit data accuracy. It is possible
that changes were collected, which should not have been accounted for due to bad comments,
or that changes in our scope were missed, due to missing commit message information.

A.-C. Iosif, T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque 16:11

Throughout the data collection, we used a strict filter that specifically checks for the
mention of CWE in the commit messages to eliminate false positives. However, this approach
also has limitations. Specifically, we may have discarded changes relevant to vulnerability
fixes that did not mention the related CWE-ID in the commit message. As a result, the
data on GitHub may contain more vulnerability-fixing commits than what we captured, but
we were not able to detect them due to the filtering process. Although we aim to increase
the quality of our data by discarding changes that do not specifically mention a CWE-ID,
this may result in a smaller sample size. Therefore, future studies could explore alternative
methods for collecting data on vulnerability fixes in software development, such as scraping
and labeling the code directly with static analysis tools.

7 Conclusions and Future Work

Software quality is crucial and must be addressed throughout the software lifecycle. The
increase in commits targeting cybersecurity flaws in OSS repositories indicates developers
are more aware of the need to address security concerns in software development. Evolving
security standards mandate the implementation of secure software development processes,
such as the secure Software Development Life Cycle (sSDLC) outlined in the IEC 62443
standard, to improve software quality. However, the increasing usage of OSS brings unknown
vulnerabilities into one’s own software. Our analysis shows that the awareness of software
vulnerabilities in OSS is increasing over the years but still low, suggesting that there is room
for improvement.

We found a correlation between the programming language and the type of vulnerabilities,
indicating that developers should consider the strengths and weaknesses of the programming
language in terms of security. By understanding the prevalent vulnerabilities in different
programming languages, developers can mitigate risks and ensure the security and integrity
of their software. Staying up-to-date with the latest vulnerabilities and security trends is
also crucial as new vulnerabilities can emerge and existing ones can phase out over time.

Once vulnerabilities are detected, our research shows that fixes can be done efficiently
without introducing significant changes or rebasing to the codebase. Our database of fixes
can be used to cross-check the results of Static Application Security Testing (SAST) tools,
to check whether software quality problems are detected by the tool and if vulnerabilities
found match the mentioned CWE-ID in the commit message.

By outlining the findings and challenges associated with our large-scale data acquisition
approach, our research also contributes to understanding the quality of data required for
training machine learning algorithms, as data quality can significantly impact algorithm
performance. Homogeneous and complete datasets are essential for training models that can
accurately detect and classify software security vulnerabilities.

In a future work, the authors would like to extend their analysis by exploring a comparative
analysis with post-2022 commits. Additionally, we would like to explore how the acquired
data can be leveraged for AI-assisted vulnerability detection and classification.

References
1 North Bridge / Blackduck. https://tinyurl.com/blackduck2k15. [Accessed: 24 Apr. 2024].
2 Department of Homeland Security, US-CERT. Software Assurance. Online, Accessed 27

September 2020. URL: https://tinyurl.com/y6pr9v42.
3 GitHub Octoverse. Top programming languages in 2022. https://tinyurl.com/

octoverse2k22, 2022. [Accessed: 4 Apr. 2024].

ICPEC 2024

https://tinyurl.com/blackduck2k15
https://tinyurl.com/y6pr9v42
https://tinyurl.com/octoverse2k22
https://tinyurl.com/octoverse2k22

16:12 Open Source Repo Mining of Security Patches for Programming Education

4 Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, Andrea De Lucia, and Fabio Pa-
lomba. Rubbing salt in the wound? a large-scale investigation into the effects of refactoring on se-
curity. Empirical Software Engineering, 28(4), May 2023. doi:10.1007/s10664-023-10287-x.

5 International Electrotechnical Commission. IEC 62443-4-1 – Security for industrial automation
and control systems – Part 4-1: Secure product development lifecycle requirements. Technical
report, International Electrotechnical Commission, Geneval Switzerland, January 2018.

6 International Organization for Standardization. ISO/IEC 25000:2014 – Systems and Software
Engineering – Systems and Software Quality Requirements and Evaluation (SQuaRE) – Guide
to SQuaRE. Technical report, International Organization for Standardization, Geneva, CH,
March 2014. URL: http://iso25000.com/index.php/en/iso-25000-standards.

7 Frank Li and Vern Paxson. A large-scale empirical study of security patches. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
pages 2201–2215, New York, NY, USA, 2017. ACM. doi:10.1145/3133956.3134072.

8 Microsoft. Morgan Stanley Technology, Media & Telecom Conference - FY2023. https:
//tinyurl.com/ynepy7jw, 2023. Accessed: 15. Apr. 2024.

9 MITRE. CVE-2014-6271. https://tinyurl.com/4dk6yfzp. [Accessed: 15 April 2024].
10 MITRE. CVE-2015-0204. https://tinyurl.com/3prfckfj. [Accessed: 15 Apr. 2024].
11 MITRE. CVE-2021-44228. https://tinyurl.com/2dejmr3e. [Accessed: 15 Apr. 2024].
12 MITRE. Common Weakness Enumeration. cwe.mitre.org, 2023. [Accessed: 22 Apr. 2024].
13 National Security Agency Center for Assured Software. Juliet Test Suite C/C++ 1.3. https:

//tinyurl.com/bdd9csvz, 2023. [Accessed: 20 Apr. 2023].
14 Stephen O’Grady. The redmonk programming language rankings: June 2022. https://

tinyurl.com/4xpdr83z, 2022. [Accessed: 20 Apr. 2024].
15 Kaan Oguzhan, Tiago Espinha Gasiba, and Akram Louati. How good is openly available code

snippets containing software vulnerabilities to train machine learning algorithms? In CYBER
2022, The Seventh International Conference on Cyber-Technologies and Cyber-Systems, volume
ISBN: 978-1-61208-996-6, pages 25–33. ThinkMind, 2022. [ISSN: 2519-8599].

16 TIOBE. Tiobe index. https://tiobe.com/tiobe-index/, 2023. [Accessed: 25 Apr. 2024].
17 Song Wang and Nachiappan Nagappan. Characterizing and understanding software developer

networks in security development. In 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), pages 534–545, 2021. doi:10.1109/ISSRE52982.2021.00061.

18 Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. Patchdb: A large-
scale security patch dataset. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 149–160, 2021. doi:10.1109/DSN48987.2021.00030.

https://doi.org/10.1007/s10664-023-10287-x
http://iso25000.com/index.php/en/iso-25000-standards
https://doi.org/10.1145/3133956.3134072
https://tinyurl.com/ynepy7jw
https://tinyurl.com/ynepy7jw
https://tinyurl.com/4dk6yfzp
https://tinyurl.com/3prfckfj
https://tinyurl.com/2dejmr3e
cwe.mitre.org
https://tinyurl.com/bdd9csvz
https://tinyurl.com/bdd9csvz
https://tinyurl.com/4xpdr83z
https://tinyurl.com/4xpdr83z
https://tiobe.com/tiobe-index/
https://doi.org/10.1109/ISSRE52982.2021.00061
https://doi.org/10.1109/DSN48987.2021.00030

Improving Industrial Cybersecurity Training:
Insights into Code Reviews Using Eye-Tracking
Samuel Riegel Correia #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTA, Portugal

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Tiago Espinha Gasiba #

Siemens AG, München, Germany

Andrei-Cristian Iosif #

Universität der Bundeswehr München, Germany
Siemens AG, München, Germany

Abstract
In industrial cybersecurity, effective mitigation of vulnerabilities is crucial. This study investigates
the importance of code reviews among cybersecurity professionals and analyses their performance in
identifying vulnerabilities using eye-tracking technology. With the insights gained from this study,
we aim to inform future tools and training in cybersecurity, particularly in the context of code
reviews. Through a survey of industry experts, we reveal what tasks industry professionals consider
the most important in mitigating cybersecurity vulnerabilities. A study was conducted to analyse
how industrial cybersecurity professionals look at code during code reviews. We determined the
types of issues our participants most easily discovered and linked our results with patterns and data
obtained from an eye-tracking device used during the study. Our findings underscore the pivotal
role of code reviews in cybersecurity and provide valuable insights for industrial professionals and
researchers alike.

2012 ACM Subject Classification Security and privacy → Software and application security; Software
and its engineering → Collaboration in software development; Information systems → Open source
software; Security and privacy → Vulnerability management

Keywords and phrases code review, cybersecurity, development lifecycle, eye-tracking

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.17

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the first and second author thank the Instituto Universitário de Lisboa and ISTAR,
for their support. Tiago Gasiba and Andrei-Christian Iosif acknowledge the funding provided by the
Bundesministerium für Bildung und Forschung (BMBF) for the project CONTAIN with the number
13N16585.

1 Introduction

The security of software applications is crucial in today’s digital landscape, in which cyber-
security threats continue to evolve in their sophistication and frequency [1]. As developers
strive to create secure programs, analysing and understanding developers’ cognitive processes
when creating secure programs becomes crucial.

Code reviewing, a key task in the software development lifecycle, plays a pivotal role in
creating secure code. It serves as a crucial measure in detecting vulnerabilities and other
issues in code, making it an important task in the development of secure programs. The
task of conducting a code review primarily involves reading code, this makes the use of
eye-tracking technologies a fitting approach when studying developers’ cognitive processes.

© Samuel Riegel Correia, Maria Pinto-Albuquerque, Tiago Espinha Gasiba, and Andrei-Cristian Iosif;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 17; pp. 17:1–17:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel0correia@gmail.com
https://orcid.org/0009-0005-3925-3421
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

17:2 Improving Industrial Cybersecurity Training

Although eye-tracking has been used in several coding and code interpretation studies, very
few studies have focused on cybersecurity. This study aims to explore this underrepresented
yet crucial subcategory of eye-tracking studies.

We have two main research questions:
RQ1 What tasks in the software development life cycle do industrial cybersecurity profes-

sionals consider to be the most crucial in mitigating cybersecurity vulnerabilities?
RQ2 How do industrial cybersecurity professionals analyse code while attempting to find

cybersecurity vulnerabilities?
a How successful are industrial cybersecurity professionals at finding cybersecurity

vulnerabilities while performing code reviews?
b Is there a relation between the patterns revealed using eye-tracking technology and

the code reviewers’ success in spotting the vulnerabilities?

By gaining insight into the thought processes of industrial cybersecurity professionals
during code reviews, we seek to determine which practices are best suited to enhancing
software security. With this information, we can suggest how to improve training, resources,
and processes to enhance development practices and make them more secure.

2 Related Work

Related work in this field includes literature reviews of objectives and techniques important
to analysing software developers’ coding behaviour (e.g., [5]). Considering the current state
of the art, we determined the following tasks to be crucial in cybersecurity and, additionally,
be suitable candidates for analysis through an eye-tracking study:
a) Code reviewing
b) Analysis of code review tool outputs
c) Reading documentation
d) Researching online resources (e.g. Stack Overflow or other community-based resources)

From these, code reviews stood out as the most promising and interesting task to study.
Code reviews are essential in detecting vulnerabilities and other issues in code. They are
commonplace in development lifecycles and have been set as requirements in industrial
standards such as ISO/IEC 62443.

Eye-tracking technology has been used in software engineering research to study various
tasks in the development lifecycle, such as code comprehension, debugging, and code reviews
[7]. This technology can record multiple aspects of participant behaviour, including visual
focus, attention, interactions, and reading patterns, making it highly useful for research
studies.

Generally, the articles related to eye-tracking use in cybersecurity are closely related to
education in some form or another. These articles are either directly related to how we can
create better pedagogical frameworks to educate individuals on cybersecurity (e.g., [4], [2]),
or how we could adapt provided learning materials such as API documentation to further
safe cybersecurity practices (e.g., [6]).

Most articles about programming are also relevant to cybersecurity, as analysing how
individuals look at code also provides insight into how they deal with specific cybersecurity
challenges.

S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:3

3 Methodology

To answer RQ1, we developed a survey in which participants were asked to evaluate the four
tasks mentioned previously: code reviewing, analysis of code review tool outputs, reading
the documentation, and researching online resources, in terms of their perceived importance
to cybersecurity using a five-point Likert scale. Besides obtaining the participants’ opinions
on the importance of these tasks, we also acquired some of their background information to
help us describe the respondents. All participants are industrial cybersecurity professionals
currently actively working in this field.

As for RQ2, we found that the best approach to answering this question lies in creating a
study in which participants are presented with several code snippets and, for each one, are
tasked with determining any vulnerabilities present in the code. The task we created was
designed to simulate a code review.

The survey and the eye-tracking experiments were conducted with the same individuals,
with the survey being conducted with participants before the code review experiment. These
two parts, on average, took ≈ 8 and ≈ 21 minutes respectively. Our study was conducted in
April 2024.

For this study, we used the Gazepoint GP3 Eye-tracking device in conjunction with the
Open Gaze and Mouse Analyzer (OGAMA)1 software which was used to create, record, and
analyse the experiments.

Participants were presented with code snippets in C++ representing the five most common
vulnerabilities according to the number of registered occurrences on CVEdetails.com2. These
vulnerabilities’ CWE IDs are CWE-79, CWE-119, CWE-89, CWE-20, and CWE-787. The
code snippets were ordered in terms of difficulty, from the least to the most complex to
analyse:
1. CWE-787 – Out-of-bounds Write
2. CWE-119 – Buffer Overflow
3. CWE-20 – Improper Input Validation
4. CWE-89 – SQL Injection
5. CWE-79 – Cross-site Scripting

4 Results

Participants

As mentioned previously, all participants in our study are industrial cybersecurity professionals
currently working in this field. Besides answering RQ1, the survey we created allowed us to
obtain some background information on the participants, which, in turn, would help us draw
some conclusions from the phenomena we observed during the experiments.

A total of 12 individuals participated in the study. All were above the age of 24, with
eight being between 25 and 34 years of age, and only one over 55. Two participants were
female, and the remaining nine were male.

Regarding education, the participants have varying degrees, including one bachelor’s
degree, four doctorates, and seven master’s degrees. Naturally, participants with higher
degrees of education also had, generally, more years of work experience in cybersecurity. The
participants with the least work experience in this field stated they had three years’ worth of
experience, and the most out of all participants was 25 years.

1 http://www.ogama.net/
2 https://www.cvedetails.com/

ICPEC 2024

http://www.ogama.net/
https://www.cvedetails.com/

17:4 Improving Industrial Cybersecurity Training

8% 33%

25%

33%

50%

50%

25%

33%

8%

50%

50%

33%

a)

b)

c)

d)

Importance of Tasks in Mitigating

Cybersecurity Vulnerabilities (n=12)

1 (not important) 2 3 4 5 (crucially important)

Figure 1 Importance given by participants to tasks in mitigating cybersecurity vulnerabilities.

RQ1 – What tasks in the software development life cycle do industrial cybersecurity
professionals consider to be the most crucial in mitigating cybersecurity
vulnerabilities?

Participants were asked to evaluate the following tasks on a scale from one (not important)
to five (crucially important) regarding their assigned importance in mitigating cybersecurity
vulnerabilities.

a) Code reviewing
b) Analysis of code review tool outputs
c) Reading documentation
d) Researching online resources (e.g. Stack Overflow or other community-based resources)

From this question, we obtained the results in Figure 1.
Professionals consider task a), code reviews, among the most critical tasks when mitigating

cybersecurity vulnerabilities. In our survey, code reviewing was given an importance of
four or five out of five by all of our survey participants, and many considered it the most
important task.

Both b) and c) got similar results being considered, generally, less critical than a) but
also having a quite positive average rating of ≈ 4.09 and ≈ 4.01 respectively.

One observation we made was that task d), which involves researching online resources, was
considered relatively unimportant by our participants, with an average rating of approximately
2.4. Participants explained that community-based online resources are important for software
developers when solving programming issues, but not ideal for addressing cybersecurity
vulnerabilities.

An open-ended question was also included in the survey, asking the participants if there
were additional tasks they considered important in mitigating cybersecurity vulnerabilities.
Many chose to answer this question, with the most common answers including code testing,
penetration testing, and secure coding training/workshops, all significant activities and tasks
in cybersecurity.

RQ2 a) – How successful are industrial cybersecurity professionals at finding
cybersecurity vulnerabilities while performing code reviews?

For our analysis, we created an AOI, referred to as the target, around the lines of code in
these snippets which we considered to contain the main vulnerability to be discovered by the
participants.

S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:5

Table 1 Results on the analysis of code snippets with cybersecurity vulnerabilities.

Vulnerability CWE-787 CWE-119 CWE-20 CWE-89 CWE-79

Discovery Rate 17% 50% 42% 100% 83%
Avg. Time Analysed (s) 234 289 259 214 242

Avg. Time to Find Vuln. (s) 205 168 137 91 189
Avg. Time Analysing Target (s) 51 100 51 23 36

1

3

5

2

1

1 2 3 4 5

N
u

m
b

e
r

o
f

P
a
rt

ic
ip

a
n

ts

Number of Vulnerabilities Found

Number of Participants by

Vulnerabilities Found (n=12)

Figure 2 Number of Participants by Vulnerabilities Found.

The accuracy of responses varied considerably between the code snippets. For instance,
in our first snippet of CWE-787, only two users identified the vulnerability in the code, while
all users identified the vulnerability in the CWE-89 code snippet. Table 1 shows an overview
of the results.

CWE-89 and CWE-79 stand out by being the most easily identified, by a considerable
margin. These two vulnerabilities correspond to SQL injection and cross-site scripting (XSS),
respectively, and are likely the most commonly discussed code vulnerabilities. This leads
to the conclusion that the fact that these vulnerabilities are so well-known by professionals
made them stand out and be easily identifiable.

CWE-89 was the fastest to be found by our participants, while CWE-79 was one of
the code snippets in which they took the longest to find vulnerabilities, even though these
programs were quite similar in size. By watching the recordings made with the eye-tracking
software, we see that our participants followed the code’s execution path, which, for the code
snippet on CWE-79, took fairly long before encountering the vulnerable code.

RQ2 b) – Is there a relation between the patterns revealed using eye-tracking
technology and the code reviewers’ success in spotting the vulnerabilities?

The average number of vulnerabilities found per participant is ≈ 3, Figure 2 shows the
distribution of the participants by the number of vulnerabilities they detected out of the five
considered.

When comparing the number of vulnerabilities found with the background information
provided by participants, we found no strong correlations. The years of experience and
educational degree showed correlation values of about 0.08 and 0.31, respectively.

Next, we compared the results of participants who discovered the vulnerability, with those
who did not, for each vulnerability. From this, we found that, on average, participants who
didn’t find the vulnerabilities looked at the code snippets and targets longer than those who

ICPEC 2024

17:6 Improving Industrial Cybersecurity Training

(a) CWE-89 Heatmap – Participants who dis-
covered the vulnerability.

(b) CWE-89 Heatmap – Participants who did not
discover the vulnerability.

Figure 3 Heatmaps for Code Snippet of CWE-89.

Table 2 Average fixation rates of participants (fixations per second).

Average Standard Deviation Minimum Maximum

3.86 1.43 1.73 5.96

did. We also found moderate correlations which indicate that participants who discovered
more vulnerabilities looked at the code and targets for less time with values ≈ −0.4 and
≈ −0.5, respectively.

Heatmaps were created which helped us compare the fixation times on different parts of
the code and targets, revealing potential differences between participants who discovered
vulnerabilities and those who did not; an example of this can be seen in Figure 3.

Between the various heatmaps we compared, we noticed that, for most code snippets,
participants who correctly identified vulnerabilities spent considerably more time looking at
the parts of the programs with vulnerable code. Furthermore, in some snippets, such as the
one seen in the images above, the high performers had a more focused approach to analysing
the code, concentrating on a few key program elements.

We also examined our participants’ gaze paths to determine if their code-reading strategies
somehow impacted their performance. However, we are not able to draw any definitive
conclusions on this since all types of participants followed some recognisable patterns, such
as following the instructions from the main method and stepping into the functions that are
called.

We then looked at the fixation rates of our participants, finding a meaningful correlation
of ≈ −0.59 between the time spent analysing the snippets and their fixations per second or
fixation rate. This correlation indicates that, on average, users with a higher fixation rate
spent less time reading the code. We also found that the fixation rates were fairly consistent
for each individual but varied quite significantly between the participants. Statistics on the
fixation rates of our participants can be seen in Table 2.

When comparing the number of vulnerabilities found to each participant’s average
fixation rate, we see that a moderate correlation of ≈ −0.36 exists between the number of
vulnerabilities discovered and the fixation rate of participants. This value indicates that
participants who discovered more vulnerabilities had, on average, a lower average fixation
rate.

S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:7

5 Discussion

From the survey we created, our participants indicated that, out of the four tasks they
were presented with, code reviewing was the most important in mitigating cybersecurity
vulnerabilities. This demonstrates this task’s significance in industrial cybersecurity and
underscores the need for robust and effective code review practices.

Researching online resources was seen as the least important task from the list we
presented. Participants indicated that they gave this task low importance despite being
commonplace in program development because, specifically from the perspective of mitigating
cybersecurity vulnerabilities, community resources can be unreliable and industry-followed
resources such as standards and official documentation are preferable. Additionally, multiple
participants referenced tasks such as penetration testing and secure coding training as being
very important.

Our code review experiments revealed some interesting results. Firstly, SQL Injection
and XSS vulnerabilities were detected at a much higher rate than the other vulnerabilities
related to issues with memory allocation and buffer over/underflows. We believe, participants
identified these issues quickly because the patterns for SQL Injection and XSS were very
well-known. This indicates a need for increased awareness and training on other cybersecurity
vulnerabilities, particularly those related to memory management and buffer handling, which
may not be as widely recognised or understood.

As for the time it took participants to discover each of the vulnerabilities, the code
snippets we selected are not ideal for this comparison, as several factors have to be considered
to compare the vulnerability detection time, other than the vulnerabilities themselves. To
determine what kinds of vulnerabilities take longer to be found, an experiment must be
created which addresses the following two problems: first, different types of vulnerabilities
require different program structures giving context to the vulnerable code which may vary
in their ease of interpretation. Second, the participants’ code scan path must be carefully
considered as, ideally, the time it takes a user to read any code snippet before reaching the
vulnerable code should be the same; this point has been discussed in other publications
(e.g., [3]).

Through heatmaps, we determined that participants who correctly identified vulnerab-
ilities had a seemingly more focused approach in looking at the code, usually focusing on
the parts of the code snippets containing the vulnerabilities. This leads us to believe that
individuals with more knowledge of the vulnerabilities are quicker to find them as they look
at the program more efficiently. These results warrant further investigation as we can use
the insight into how successful code reviews are conducted to teach people how to replicate
this success.

The scan paths of our participants were also analysed; this was accomplished by reviewing
the eye-tracking recordings of our participants. Some publications have found patterns in
the code analysis process of experts when compared to that of novices[3], however, at this
time we are not able to determine any specific strategies which led to better results during
the experiment.

The eye-tracking data we obtained also included information on the fixation rates of our
participants. Some authors have linked higher fixation rates with increased effort, interest,
and exploration, while lower fixation rates may indicate a lower efficiency in tasks such as
finding vulnerabilities in code [7][8]. In our experiment, participants who had spent less time
looking at the code snippets were found to have higher fixation rates possibly indicating
higher involvement in reading the code. However, we also found that participants who
discovered fewer vulnerabilities had higher average fixation rates, which may indicate an
increased effort in interpreting these code snippets, possibly leading to worse performance.

ICPEC 2024

17:8 Improving Industrial Cybersecurity Training

A limitation of our survey and study was the small sample size, this was mostly a
product of the selection criteria we applied when choosing our participants. This restricts
our confidence in the results and the analysis we can conduct with the data.

As for the future direction of this work, a more in-depth data analysis will be conducted,
additional AOI will be created to enhance our analysis, and other code snippets, besides
those analysed here, will be considered.

6 Conclusions

We conducted a survey and study on code reviews with industrial cybersecurity professionals.
Our main objectives included determining how important these experts consider code reviews,
determining how well they perform during code reviews, and analysing their performance
with the help of eye-tracking technologies.

We conclude that industry professionals consider code reviews critical in mitigating
cybersecurity vulnerabilities. Tasks such as the consultation of community-based resources
(e.g., Stack Overflow), are considered less than ideal for cybersecurity as the information
may be unreliable, and better sources, such as industry standards and official documentation,
are more appropriate in this field.

By a considerable margin, SQL Injections and Cross-site Scripting (XSS) vulnerabilities
were the most commonly detected vulnerabilities. This result can be explained by the fact
that these two vulnerabilities are some of the most well-known and frequently discussed
cybersecurity vulnerabilities.

When comparing the performances of those who discovered vulnerabilities and those who
did not, we found that those who correctly identified vulnerabilities had a more focused
approach to analysing the code and a slightly lower fixation rate, previously linked to lower
efficiency in tasks such as code reviews. This insight into how successful code reviews are
conducted warrants further investigation as it may help us teach people how to replicate this
success.

In our future work, we plan to analyse data with different methods and explore other code
snippets included in the study which weren’t discussed here. This will allow us to provide
further insights into how cybersecurity education should be adapted to improve performance
during code reviews.

In summary, our study emphasises the crucial role of code reviews in cybersecurity. We
also saw the importance of following certain code analysis patterns, and that exposure to
different vulnerabilities is invaluable for code reviewers as commonly discussed issues were
easily recognised.

References
1 Federal Cyber Security Authority. The state of it security in germany in 2023. Federal Office

for Information Security, 2023.
2 Leon Bernard, Sagar Raina, Blair Taylor, and Siddharth Kaza. Minimizing cognitive load

in cyber learning materials -– an eye tracking study. In ACM Symposium on Eye Tracking
Research and Applications, volume PartF169257. Association for Computing Machinery, May
2021. doi:10.1145/3448018.3458617.

3 Teresa Busjahn, Simon, and James H. Paterson. Looking at the main method - an educator’s
perspective. In Otto Seppälä and Andrew Petersen, editors, Koli Calling ’21: 21st Koli Calling
International Conference on Computing Education Research, Joensuu, Finland, November 18
- 21, 2021. Association for Computing Machinery, November 2021. doi:10.1145/3488042.
3488068.

https://doi.org/10.1145/3448018.3458617
https://doi.org/10.1145/3488042.3488068
https://doi.org/10.1145/3488042.3488068

S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:9

4 Daniel Kyle Davis and Feng Zhu. Understanding and improving secure coding behavior with
eye tracking methodologies. In J. Morris Chang, Dan Lo, and Eric Gamess, editors, Proceedings
of the 2020 ACM Southeast Conference, ACM SE ’20, Tampa, FL, USA, April 2-4, 2020, ACM
SE ’20, pages 107–114, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3374135.3385293.

5 Daniel Kyle Davis and Feng Zhu. Analysis of software developers’ coding behavior: A survey
of visualization analysis techniques using eye trackers. Computers in Human Behavior Reports,
7, August 2022. doi:10.1016/j.chbr.2022.100213.

6 Peter Leo Gorski, Sebastian Möller, Stephan Wiefling, and Luigi Lo Iacono. ’i just looked for
the solution!’on integrating security-relevant information in non-security api documentation to
support secure coding practices. IEEE Transactions on Software Engineering, 48:3467–3484,
September 2022. doi:10.1109/TSE.2021.3094171.

7 Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. Toward an objective measure of
developers’ cognitive activities. ACM Transactions on Software Engineering and Methodology,
30, May 2021. doi:10.1145/3434643.

8 Zohreh Sharafi, Bonita Sharif, Yann Gaël Guéhéneuc, Andrew Begel, Roman Bednarik,
and Martha Crosby. A practical guide on conducting eye tracking studies in software en-
gineering. Empirical Software Engineering, 25:3128–3174, September 2020. doi:10.1007/
s10664-020-09829-4.

ICPEC 2024

https://doi.org/10.1145/3374135.3385293
https://doi.org/10.1016/j.chbr.2022.100213
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1145/3434643
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1007/s10664-020-09829-4

Using ChatGPT During Implementation of
Programs in Education
Norbert Baláž #

Department of Computers and Informatics, Technical University of Košice, Slovakia

Jaroslav Porubän1 #

Department of Computers and Informatics, Technical University of Košice, Slovakia

Marek Horváth #

Department of Computers and Informatics, Technical University of Košice, Slovakia

Tomáš Kormaník #

Department of Computers and Informatics, Technical University of Košice, Slovakia

Abstract
This paper examines the impact of ChatGPT on programming education by conducting an empirical
study with computer science students at the Department of Computers and Informatics at the
Technical University in Košice. The study involves an experiment where students in a Component
Programming course use ChatGPT to solve a programming task involving linked lists, comparing
their performance and understanding with a control group that does not use the AI (artificial
intelligence) tool. The task necessitated the implementation of a function to add two numbers
represented as linked lists in reverse order. Our findings indicate that while ChatGPT significantly
enhances the speed of task completion – students using it were nearly three times quicker on average
– it may also detract from deep understanding and critical thinking, as evidenced by the uniformity
and superficial engagement in solutions among the ChatGPT group. On the other hand, the group
working independently displayed a broader variety of solutions and deeper interaction with the
problem, despite slower completion times and occasional inaccuracies. The results highlight a
dual-edged impact of AI tools in education: while they enhance efficiency, they may undermine the
development of critical thinking and problem-solving skills. We discuss the implications of these
findings for educational practices, emphasizing the need for a balanced approach that integrates AI
tools without compromising the depth of learning and understanding in students.

2012 ACM Subject Classification Software and its engineering → Software creation and management

Keywords and phrases generative artificial intelligence, chatbot, ChatGPT, prompt engineering,
source code generation

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.18

Funding This work was supported by project VEGA No. 1/0630/22 Lowering Programmers
Cognitive Load Using Context-Dependent Dialogs.

1 Introduction

In recent years, AI (artificial intelligence) has begun to develop at a tremendous speed, while
its applications have become an integral part of our daily lives. Among its newest and most
exciting areas is its use for code generation, where machine learning models such as OpenAI’s
ChatGPT show significant potential for automating and streamlining software development.
This technology impacts both students [1] and educators [2] in the realm of software-related
education.

1 Corresponding author

© Norbert Baláž, Jaroslav Porubän, Marek Horváth, and Tomáš Kormaník;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 18; pp. 18:1–18:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:norbert.balaz@student.tuke.sk
mailto:jaroslav.poruban@tuke.sk
https://orcid.org/0000-0001-9706-2897
mailto:marek.horvath@tuke.sk
https://orcid.org/0009-0005-4649-2308
mailto:tomas.kormanik@tuke.sk
https://orcid.org/0009-0002-6622-8027
https://doi.org/10.4230/OASIcs.ICPEC.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

18:2 Using ChatGPT During Implementation of Programs in Education

Since its creation, ChatGPT has been used by students around the world to help with a
variety of tasks, from writing school papers to implementing term projects [16]. Multiple
research papers are exploring ChatGPT, its benefits, and its drawbacks when used in
education. The paper [9] highlighted ChatGPT’s varied performance across different subject
domains and its potential benefits when serving as an assistant for instructors and as a virtual
tutor for students. The paper [6] provides an examination of issues and explores the potential
use of ChatGPT in educational contexts. The paper [5] explores the potential and problems
associated with applying advanced AI models in education. A systematic review of the
literature and an analysis of the impact of the application of the ChatGPT tool in education
are presented in [10]. Authors in the [11] assess the efficacy of employing the ChatGPT
language model to generate solutions for coding exercises within an undergraduate Java
programming course. In this paper, we will explore the impact of ChatGPT on education,
specifically focusing on its role in learning programming.

A study detailed in [16] involved 41 university students (33 males and 8 females) aged
19–25, examining the impact of ChatGPT on programming education. Throughout an
eight-week period, students utilized ChatGPT for their weekly object-oriented program-
ming projects. The study concluded with a questionnaire where students shared their
insights, providing an evaluation of ChatGPT’s advantages and disadvantages based on their
experiences.

The study highlights the benefits of using ChatGPT in programming education, including
its ability to provide quick and largely accurate responses and boost confidence in coding.
However, it also points out some significant drawbacks, such as promoting laziness, producing
occasional inaccuracies, and raising concerns about future job security. The findings suggest
that while ChatGPT can be an effective tool in programming education, its utilization needs
careful moderation to address both its positive aspects and potential pitfalls.

The reliability of ChatGPT’s responses remains a contentious issue, especially in edu-
cational settings. The impact of ChatGPT on programming education continues to be
an area of active research, focusing on its practical uses, benefits, drawbacks, and ethical
considerations [1]. Initially, some educational bodies responded to the rise of AI tools like
ChatGPT by banning them, as occurred in early 2023 [14]. As attitudes changed within
months, bans were lifted and AI resources were recommended for educational use.

For the correct implementation of ChatGPT in education, it is important to choose the
right ways of using it. AI can support creative thinking when solving problems, but it is
also simple to use it just to generate the necessary code for a given task, often without any
deeper understanding of the problem.

In our study conducted at the Department of Computers and Informatics at the Technical
University in Košice, we designed an experiment involving computer science students. The
experiment required students enrolled in the Component Programming course to develop and
code a solution to a specified task using Java, followed by completing a questionnaire about
their understanding of the task, their evaluation, and their opinions on using ChatGPT. We
divided the students into two groups, allowing one to use ChatGPT and prohibiting the
other.

We hypothesize that while ChatGPT might improve task completion speed and pro-
ductivity, it may detract from students’ understanding of the task, critical thinking, and
problem-solving creativity. The questionnaire aimed to gather students’ perspectives on
the use of ChatGPT and how they personally utilized the tool. We anticipated that the
group using ChatGPT, despite potentially completing tasks correctly, might exhibit a poorer
grasp of the task. Conversely, the group without ChatGPT might demonstrate a deeper
understanding of the problem or proposed solutions, even if their implementations were not
fully functional.

N. Baláž, J. Porubän, M. Horváth, and T. Kormaník 18:3

2 Experiment

In this section we present the experiment of using ChatGPT by students in a Component
Programming course to solve the programming task. The task concerns the addition of two
numbers, which are represented as a linked list, where each node represents one digit of the
whole number. This task complies with our department’s standards [4].

Text of the task: We have entered 2 integers represented as the linked list format so
that each node represents a digit in the number. Nodes form a number in reverse order,
e.g. 1 -> 2 -> 3 -> 4 -> 5 is the number 54321. Complete the provided code so that
it returns the sum of the two provided numbers in this format. For example: 9 -> 9 and
5 -> 2 returns 124 (99 + 25) represented as 4 -> 2 -> 1. Provided code:
class ListNode {

int val;
ListNode next;

ListNode (int val) {
this.val = val;

}
}

class AddLinkedLists {

public ListNode addTwoNumbers (ListNode l1 , ListNode l2) {
// TODO: implement this function for adding 2 numbers

}

public static void main(String [] args) {
ListNode l1 = new ListNode (0);
l1.next = new ListNode (1);

ListNode l2 = new ListNode (3);
l2.next = new ListNode (2);

AddLinkedLists solution = new AddLinkedLists ();
ListNode result = solution . addTwoNumbers (l1 , l2);

while (result != null) {
System .out.print (result .val + " ");
result = result .next;

}
}

}

In the designated coding exercise, numbers are encapsulated within linked lists with
the least significant digit at the head of the list. Students are tasked with implementing
the addTwoNumbers function, which takes two such linked lists, l1 and l2, as inputs. This
function adds the numbers represented by these lists and returns a new linked list that
encapsulates the sum, with digits again in reverse order, starting from the least to the most
significant.

The challenge lies in correctly iterating through both lists, summing corresponding digits,
and managing any carry-over that occurs when digits sum to 10 or more. This process
begins with the head of each list, ensuring that the addition mirrors the operation of adding
numbers from their least significant digits upwards.

This task, while straightforward for ChatGPT with its ability to quickly generate the
correct solution, presents a significant challenge for introductory programming course students
without AI assistance. These students must not only develop the solution independently, but
they must also deeply understand the underlying problem and manage the complexities of
linked list manipulation and digit-wise addition. The experiment familiarized the students

ICPEC 2024

18:4 Using ChatGPT During Implementation of Programs in Education

not only with the task but also with the problem, laying the groundwork for a comparative
analysis of problem-solving approaches and the depth of understanding between the two
groups.

A total of 23 students worked on the assignment. There were 14 students in the first
group who worked with ChatGPT, and 9 in the second group who worked without ChatGPT
support. Students were in different study groups, which caused a significant disproportion in
group size due to absences. Students solved the task and filled out the questionnaire during
the exercise from the Component programming course. Their solutions can be further used
in analysis or comparison with previously created relevant datasets [15].

2.1 ChatGPT Group
In the group where students used ChatGPT to solve the task, all participants successfully
implemented the correct solution. The times taken to complete the task varied, with an
average duration of 8 minutes and 17 seconds. The quickest completion time recorded was 1
minute, and the slowest was 25 minutes, as depicted in the Fig. 1.

Figure 1 ChatGPT group task solving time.

Analysis of the interactions between students and ChatGPT revealed that the average
number of prompts (i.e., questions or commands given to ChatGPT) per student was 3.7,
with the range being from 1 to 9 prompts. The transcripts of these interactions revealed
highly uniform solutions, primarily generated by ChatGPT with minimal modification by
the students.

This uniformity in the solutions and reliance on ChatGPT’s outputs could explain why
students perceived the task as relatively easy, rating its difficulty as 4 out of 10 on average.
This rating is visualized in Fig. 2, which illustrates the students’ perceived challenge of
the task. This perception highlights the impact of AI tools like ChatGPT in simplifying
complex tasks, but also raises concerns about the depth of understanding and engagement in
problem-solving when using such tools.

2.1.1 Understanding the problem
The questionnaire, which included specific questions like “Why are numbers in a linked list
represented in reverse?”, assessed students’ understanding of problem-solving. The first
group had access to ChatGPT for assistance. Responses varied, with some students clearly
recognizing benefits like simplified manipulation and more efficient operations, while many
answers were vague or off-topic, indicating a lack of engagement with the material.

N. Baláž, J. Porubän, M. Horváth, and T. Kormaník 18:5

Figure 2 ChatGPT group difficulty rating.

Further questions asked students to explain the logic behind their solutions, even if
incorrect. Many demonstrated an understanding of adding numbers via linked lists, with
responses varying from detailed technical explanations involving carry transfers and pointer
movements to concise summaries. However, some responses were unclear or irrelevant,
indicating confusion or disinterest.

The final question probed whether students gained new insights or improved their mastery
of the data structure. Responses were split, with half reporting new knowledge or enhanced
understanding and the other half noting no significant learning. This variation underscores
the differing levels of comprehension and engagement with the task.

2.2 Independent Group

In the independent group, 9 students attempted to implement the task without ChatGPT
assistance, and 6 of them managed to solve it correctly. However, a closer look at the code
revealed some discrepancies. Although one student implemented the solution correctly, they
failed to convert the result back into a list format. Another student’s code only outputs the
tenth digit of the result. This latter error, though minor and quickly rectifiable, seemed
to stem from a lack of careful code testing before submission, especially since this student
took the longest to complete the task. Despite these issues, since the primary focus of this
experiment was not on code perfection but on solving the problem, these solutions were
deemed correct.

The average time taken by this group to complete the task was 22 minutes and 26 seconds,
as illustrated in Fig. 3. Students who solved the problem correctly had an average completion
time of 23 minutes and 40 seconds, with the quickest solution taking 15 minutes and the
slowest taking 45 minutes. Those who did not solve the task spent an average of 20 minutes,
with times ranging from 10 to 30 minutes.

Overall, this group rated the task’s difficulty as 5 out of 10, with individual evaluations
depicted in the Fig. 4. This suggests a moderate level of challenge perceived by the students
who tackled the task independently.

ICPEC 2024

18:6 Using ChatGPT During Implementation of Programs in Education

Figure 3 Independent group task solving time.

Figure 4 Independent group difficulty rating.

2.2.1 Correct solutions
The analysis of correct solutions using verified methods [12] has shown several diverse
approaches. Some students converted linked lists into integers, summed them, and converted
the sum back into a linked list. This method demonstrates a straightforward application
of mathematical operations and transitions between number formats, but it poses a risk of
precision issues or memory overflow with large numbers. Meanwhile, a different approach
involved the use of StringBuilder to reverse and manipulate the numbers, showcasing
creativity and originality, even if this method might be less efficient in some scenarios.

The most accurate solution to the task involved simultaneously traversing both lists,
summing corresponding nodes, and properly managing carryover from one digit to the
next. This approach was particularly effective as it minimized type conversions and directly
manipulated the nodes of the linked lists, aligning closely with the task’s objectives.

2.2.2 Understanding the problem
Responses to the analysis of why linked lists often store numbers in reverse showed a wide
range of understanding levels. Most were concise; some addressed the key point directly,
others came close, and a few admitted complete ignorance.

N. Baláž, J. Porubän, M. Horváth, and T. Kormaník 18:7

The majority of students demonstrated at least a basic grasp of the rationale behind
storing numbers in reverse order, particularly highlighting how this facilitates the addition
process. Notably, even students who struggled with the task recognized the purpose of this
data structure orientation.

The responses to questions regarding the logic behind their solutions revealed a diversity of
approaches and depths of understanding. This variability provides insights into the students’
strategic thinking and problem-solving skills, even though not all solutions were optimal or
adhered strictly to best practices.

In their explanations, most students described converting the numbers represented by
the lists into whole numbers, adding these, and then converting the result back into a
linked list. This method aligns with the intuitive logic commonly used in everyday number
manipulation and was the predominant approach even among those who did not complete the
task successfully. Other students, who briefly described their working solutions, mentioned
techniques like using StringBuilder for manipulating strings and numbers.

In response to the question about gaining new knowledge or a better understanding of the
given data structure, the group’s feedback was predominantly negative, with seven indicating
no new insights and only two reporting positive learning outcomes. This suggests that most
students were already quite familiar with the data structure in question.

3 Conclusion

In this paper, we investigate the effect of using ChatGPT on programming education by
conducting a limited-scale empirical study with introductory programming course students.
After analyzing both groups of students and their responses to the programming task, we can
draw several conclusions about the impact of using ChatGPT versus working independently:

Speed of Completion: Students who used ChatGPT finished their tasks much faster,
nearly three times quicker on average. This efficiency demonstrates the capability of AI
to streamline problem-solving processes.
Depth of Understanding: The speed advantage for the ChatGPT group came at a cost.
Most of their solutions were very similar, suggesting heavy reliance on AI without much
alteration. Many students accepted the generated solutions without deeply engaging with
their content or understanding their functionality, leading to a superficial grasp of the
tasks. However, about a third of these students showed they might have the potential to
solve the problems independently, indicating some retained problem-solving abilities.
Diversity of Solutions and Critical Thinking: On the other hand, the independent group,
while slower, displayed a wider variety of solutions and tended to describe their methods
simply and effectively. This not only shows a broader scope of creativity but also suggests
a deeper interaction with the task, which can enrich the learning experience.
Approach to Problem Solving: Independent students often used approaches similar to
traditional paper-and-pencil methods, reflecting an intuitive and straightforward way of
thinking. This method suggests that they relied on fundamental problem-solving and
mathematical reasoning skills rather than automated processes.

These findings underscore the need for a balanced approach in educational settings
that thoughtfully integrates the use of AI tools like ChatGPT with traditional learning
techniques. This strategy ensures that students not only achieve quick solutions but also
deeply understand the processes and principles involved, thereby cultivating their critical
thinking and problem-solving skills. Their solutions should be examined carefully, since
overuse of ChatGPT without actual understanding of the created solution can be considered

ICPEC 2024

18:8 Using ChatGPT During Implementation of Programs in Education

plagiarism, which can create issues for the evaluator [3] and students of its own. Naturally,
source codes created by ChatGPT can be somewhat different in individual instances, but
their overall similarity can be easily detected, as is confirmed in previous research conducted
on our department [8]. We also observed that multiple results that utilized ChatGPT were
not the best possible ones but rather the most common ones, which is also proven by related
work [7].

One notable observation is that students who worked without ChatGPT frequently
gravitated towards more traditional methods of solving the task. This choice suggests a
deeper level of engagement with the problem and a more inventive approach to finding
solutions. Even though not all these attempts were successful, the students’ ability to
devise potential strategies on their own demonstrates their capacity for critical thinking and
independent analysis. This contrast with the AI-assisted group highlights how reliance on
technology can sometimes bypass the deeper learning processes involved in problem-solving.

When interpreting the results and conclusions of this experiment, it is necessary to
consider validation risks that may affect the generality and accuracy of our findings:

Sample size – With a total of 23 participants, the sample is relatively small, which may
limit the statistical significance of the findings and their applicability to a broader student
population.
Group heterogeneity – Dividing students into two groups may introduce hidden differences
beyond just access to ChatGPT (such as prior programming experience, motivation, or
personal preferences), which could bias the results.
Limited scope of tasks – The experiment focuses on only one specific programming task,
which may limit the ability to apply the findings to other types of tasks or subjects.

Using ChatGPT and similar tools to solve school assignments and projects can significantly
increase the speed and productivity of students, but at the same time, it can have a potentially
negative effect on their understanding of the subject matter, their ability to think critically,
and their creativity. Conducted experiment thus confirmed our assumption. The findings
support the results presented by Savelka et al. [13] about students and by Balse et al. [2]
regarding mentors.

A suitable approach could be the combined use of ChatGPT as a tool for obtaining
quick information or solution proposals while simultaneously ensuring a deeper study of the
material and independent problem solving.

References
1 Christos-Nikolaos Anagnostopoulos. Anagnostopoulos CN. ChatGPT impacts in programming

education: A recent literature overview that debates ChatGPT responses [version 1; peer review:
1 approved with reservations]. F1000Research, 2023. doi:10.12688/f1000research.141958.1.

2 Rishabh Balse, Prajish Prasad, and Jayakrishnan Madathil Warriem. Exploring the potential
of GPT-4 in automated mentoring for programming courses. In ACM Conference on Global
Computing Education Vol 2, page 191, 2023. doi:10.1145/3617650.3624946.

3 Miroslav Binas. Affecting students behavior with plagiarism detection in evaluation process.
In International Conference on Overcoming the Challenges and Barriers in Open Education,
pages 441–441, 2018.

4 Miroslav Binas and Emilia Pietrikova. Useful recommendations for successful implementation
of programming courses. In IEEE International Conference of Emerging Elearning Technologies
and Applications, pages 397–401, 2014. doi:10.1109/ICETA.2014.7107618.

5 Simone Grassini. Shaping the future of education: exploring the potential and consequences
of AI and ChatGPT in educational settings. Education Sciences, 13(7):692, 2023. doi:
10.3390/educsci13070692.

https://doi.org/10.12688/f1000research.141958.1
https://doi.org/10.1145/3617650.3624946
https://doi.org/10.1109/ICETA.2014.7107618
https://doi.org/10.3390/educsci13070692
https://doi.org/10.3390/educsci13070692

N. Baláž, J. Porubän, M. Horváth, and T. Kormaník 18:9

6 Mohanad Halaweh. ChatGPT in education: Strategies for responsible implementation. CONT
ED TECHNOLOGY, 2023. doi:10.30935/cedtech/13036.

7 Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and Juha Sorva.
Exploring the responses of large language models to beginner programmers’ help requests. In
Proceedings of the 2023 ACM Conference on International Computing Education Research -
Volume 1, ICER ’23, pages 93–105, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3568813.3600139.

8 Marek Horvath and Emilia Pietrikova. An experimental comparison of three code similarity
tools on over 1,000 student projects. In IEEE World Symposium on Applied Machine Intelligence
and Informatics, pages 423–428, 2024. doi:10.1109/SAMI60510.2024.10432863.

9 Chung Kwan Lo. What is the impact of ChatGPT on education? a rapid review of the
literature. Education Sciences, 13(4):410, 2023. doi:10.3390/educsci13040410.

10 Marta Montenegro-Rueda, José Fernández-Cerero, José María Fernández-Batanero, and Eloy
López-Meneses. Impact of the implementation of ChatGPT in education: A systematic review.
Computers, 12(8):153, 2023. doi:10.3390/computers12080153.

11 Eng Lieh Ouh, Benjamin Kok Siew Gan, Kyong Jin Shim, and Swavek Wlodkowski. ChatGPT,
can you generate solutions for my coding exercises? an evaluation on its effectiveness in
an undergraduate java programming course. In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1, pages 54–60, 2023. doi:
10.1145/3587102.3588794.

12 Emilia Pietrikova and Sergej Chodarev. Profile-driven source code exploration. In IEEE
Federated Conference on Computer Science and Information Systems, pages 929–934, 2015.
doi:10.15439/2015F238.

13 Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr. Can
generative pre-trained transformers (GPT) pass assessments in higher education programming
courses? In Conference on Innovation and Technology in Computer Science Education V. 1,
pages 117–123. ACM, 2023. doi:10.1145/3587102.3588792.

14 Jody Serrano. New york city schools lift ban on ChatGPT, say initial fear “overlooked the
potential” of AI. URL: https://gizmodo.com/new-york-city-public-schools-lift-ban-
chatgpt-ai-1850453424.

15 Matus Sulir, Michaela Bacikova, Matej Madeja, Sergej Chodarev, and Jan Juhar. Large-
scale dataset of local java software build results. Data, 5(3):86:1–86:11, 2020. doi:10.3390/
data5030086.

16 Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. Augmented intelligence in pro-
gramming learning: Examining student views on the use of ChatGPT for programming
learning. Computers in Human Behavior: Artificial Humans, 1(2):100005, 2023. doi:
10.1016/j.chbah.2023.100005.

ICPEC 2024

https://doi.org/10.30935/cedtech/13036
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1109/SAMI60510.2024.10432863
https://doi.org/10.3390/educsci13040410
https://doi.org/10.3390/computers12080153
https://doi.org/10.1145/3587102.3588794
https://doi.org/10.1145/3587102.3588794
https://doi.org/10.15439/2015F238
https://doi.org/10.1145/3587102.3588792
https://gizmodo.com/new-york-city-public-schools-lift-ban-chatgpt-ai-1850453424
https://gizmodo.com/new-york-city-public-schools-lift-ban-chatgpt-ai-1850453424
https://doi.org/10.3390/data5030086
https://doi.org/10.3390/data5030086
https://doi.org/10.1016/j.chbah.2023.100005
https://doi.org/10.1016/j.chbah.2023.100005

Exercisify: An AI-Powered Statement Evaluator
Ricardo Queirós # Ñ

School of Media Arts and Design & CRACS – INESC TEC,
Polytechnic University of Porto, Portugal

Abstract
A growing concern with current teaching approaches underscores the need for innovative paradigms
and tools in computer programming education, aiming to address disparate user profiles, enhance
engagement, and cultivate deeper understanding among learners This article proposes an innovative
approach to teaching programming, where students are challenged to write statements for solutions
automatically generated. With this approach, rather than simply solving exercises, students are
encouraged to develop code analysis and problem formulation skills. For this purpose, a Web
application was developed to materialize these ideas, using the OpenAI API to generate exercises
and evaluate statements written by the students. The transformation of this application in H5P and
its integration in a LMS gamified workflow is explored for wider and more effective adoption.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases Code generation, Computer Programming, Gamification

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.19

Funding This work is co-funded by the Erasmus+ Programme of the European Union within the
project FGPEPlusPlus, with Agreement Number 2023-1-PL01-KA220-HED-000164696.

1 Introduction

Learning to code can be tough. Understanding programming languages, algorithms, and
problem-solving can be overwhelming, specially for novice students [3].

This work explores a different way of teaching programming. Instead of students solving
problems, they’re given a completed JavaScript solution and asked to write a clear problem
statement based on it. This way, rather than focusing solely on implementing solutions,
students are challenged to think at a higher level by articulating problem statements. This
requires them to analyze, synthesize, and communicate complex ideas, fostering critical
thinking and problem-solving skills which are crucial in programming.

By working backward from a provided solution to create a problem statement, students
gain a deeper understanding of programming concepts and logic embedded within the solution
code. Students are challenged to think critically and analytically as they articulate the
problem requirements based on the provided solution, fostering problem-solving skills essential
in programming.

For this purpose, Exercisify was created. The workflow is straightforward: 1) a complete
source code of a programming exercise is generated and presented to the student; 2) students
write a clear problem statement and test case based on the solution given and 3) the problem
statement and test cases are automatically evaluated and a scored is delivered. Both the
exercise generation and the statement evaluation is supported by the OpenAI API.

The evaluation includes specific criteria to assess various aspects from relatedness of the
statement to the solution code, clarity and coherence of the statement, explanation of input
parameters return values, test cases correctness and English writing.

The rest of the article is structured in three sections: the second section presents related
work on computer learning teaching environments. The following section presents Exercisify
and all its components. Finally, the contributions of this article to the scientific community
are presented as well as the future work.

© Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 19; pp. 19:1–19:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

19:2 Exercisify: An AI-Powered Statement Evaluator

2 Literature review

Currently, AI tools play a crucial role in improving the teaching and learning process of
computer programming by offering personalized and adaptive learning experiences. In
programming education, AI assists educators and learners in various aspects, including
providing automated feedback and code review, offering adaptive learning paths, facilitating
programming tutoring systems, automating assessment and grading tasks, and aiding in code
summarization and documentation.

Another way AI can be used is by generating programming exercises. There is a notable
interest in such generators, as creating diversified and challenging programming exercises
can be time-consuming for educators. These generated exercises can be tailored to cater
to different skill levels, ensuring a dynamic learning environment that adapts to individual
learner needs. Several tools have been developed to address the challenges of programming
exercise generation.

Kurdi [2] conducted a systematic review of automatic exercise generation in various
domains, highlighting the need for tools that offer exercises of controlled difficulty and provide
features like enriching question forms and structures, automating template construction,
improving presentation, and generating feedback.

Zavala [6] presented a tool that uses Automatic Item Generation (AIG) to create consistent
programming exercises using pre-defined templates, ensuring uniformity in testing.

ExGen [5] generates ready-to-use exercises tailored to specific difficulty levels and concepts,
leveraging advances in large language models (LLMs) to autogenerate novel exercises and
filter them to suit students.

Agni [1] is as a code playground tailored for learning JavaScript which includes a back
end with an exercise generation component powered by the ChatGPT API. This integration
automates the exercise creation process by generating statements, solution code, and test
cases. The tool supports the IMS LTI specification, allowing seamless integration with
Learning Management Systems (LMS) such as Moodle, Blackboard, or Canvas.

TESTed [4] is an educational testing framework that supports the creation of programming
exercises with automated assessment capabilities in a programming-language-independent
manner.

Recent work has leveraged pre-trained LLMs for automatic exercise generation using
novel AI technologies. However, challenges such as model biases and system brittleness need
to be addressed when applying LLMs to education.

While several tools exist for programming exercise generation, there is a gap in tools
capable of offering different approaches as the one presented in this article.

3 Implementation

This work introduces a Web application called Exercisify, designed to enhance programming
knowledge through a unique approach. In Exercisify, students are tasked with creating
exercise statements based on generated solutions. This approach offers a novel methodology
that not only challenges their understanding of programming concepts but also fosters
critical thinking, problem-solving, and communication skills crucial for real-world software
development.

The Exercisify graphical user interface (GUI) is structured into three main areas: the
statement and generated solution display on the left, the test case creation area at the top
right, and the result display at the bottom right. The left area showcases the generated
solution and allows students to compose the exercise statement and initiate evaluation. The

R. Queirós 19:3

top right section enables students to define test cases comprising input and output data.
Finally, the bottom right area presents the evaluation results after the evaluation button is
pressed.

Figure 1 Exercisify GUI.

The Exercisify architecture comprises two primary components: the Exercise Generator
and the Statement Evaluator.

3.1 Exercise Generator
The Exercise Generator component is responsible for generating programming solutions using
the OpenAI API . The code below starts by defining an asynchronous JavaScript function
which is responsible for generating exercise statements using the ChatGPT API from OpenAI.
The prompt variable contains the instruction provided to the ChatGPT model. In this
case, it instructs the model to generate a very simple function in JavaScript. The apiKey
variable holds the authentication key required to access the OpenAI API. It’s essential for
authenticating requests to the API. The apiUrl variable specifies the endpoint of the OpenAI
API that will be used to send requests for text generation. The requestData object contains
the data to be sent in the request body to the API. It includes the model to use for text
generation (gpt-3.5-turbo), the user’s prompt message, and parameters like max_tokens
(maximum number of words to generate), temperature (controls randomness), and stop
(criteria to stop text generation).Then the fetch function is used to send a POST request to
the specified API endpoint with the request headers, such as content type and authorization.
The request body contains the requestData object, which is converted to JSON format using
JSON.stringify().

ICPEC 2024

19:4 Exercisify: An AI-Powered Statement Evaluator

Listing 1 Programming solution generation.
async function generateExercise () {

const prompt = " Generate a JavaScript function ...";
const apiKey = "API -KEY ";
const apiUrl = "https :// api. openai .com/v1/chat/ completions ";

// Data to be sent in the request body
const requestData = {

model: "gpt -3.5 - turbo",
messages : [{" role ": "user", " content ": prompt }],
max_tokens : 100,
temperature : 0.7,
stop: ["\\n"],

};

try {
const response = await fetch(apiUrl , {

method : "POST",
headers : {

"Content -Type ": " application /json",
" Authorization ": ‘Bearer ${ apiKey }‘

},
body: JSON. stringify (requestData)

});
...

} catch (error) {
...

}
}

Once the solution is generated, it is presented to the student, who is tasked with creating
a statement for the exercise based on the solution provided. This manual process encourages
students to think critically about the problem and articulate their understanding in writing.

3.2 Statement Evaluator
The Statement Evaluator component assesses the quality and relevance of the exercise
statement created by the student in relation to the provided solution. It leverages the
ChatGPT API from OpenAI once again to evaluate the relatedness of the statement and the
solution based on specific criteria. The key elements of the Statement Evaluator include
1. Evaluation Prompt Creation: The web app generates a prompt for the ChatGPT API,

incorporating both the exercise statement created by the student and the provided
solution. This prompt guides the API in evaluating the alignment of the statement with
the solution based on predefined criteria.

2. ChatGPT API Integration: The Statement Evaluator interacts with the ChatGPT API
to assess the exercise statement. The API processes the prompt and offers feedback on
the statement’s coherence with the solution.

The evaluation criteria used in the Statement Evaluator component is depicted in the
following table.

The first criterion prioritizes the alignment between the exercise statement and the
provided solution code, ensuring it effectively describes the programming task, algorithms
used (if any), and guides students towards the intended solution.

R. Queirós 19:5

Criteria Description Weight

Proximity to solution How closely does the exercise statement
align with the provided solution code? 35%

Clarity of Explanation How clear and understandable are the
instructions provided in the exercise statement? 25%

Test Case Correctness How accurately do the provided test cases
reflect the expected behavior of the solution code? 25%

Input and return values How effectively does the exercise statement
clarify input parameters and expected return values? 10%

English Proficiency How grammatically correct and fluent is the
English language used in the exercise statement? 5%

The clarity of explanation criterion underscores the importance of clear communication
in the exercise statement, ensuring students can readily comprehend the task and its
requirements.

Including test cases is crucial for validating the correctness of the solution code. By
assigning significant weight to this criterion, the evaluation process ensures that the provided
test cases accurately reflect the expected behavior of the solution.

Additionally, clarifying input parameters and expected return values helps students grasp
the function’s purpose and behavior. While not as heavily weighted as other criteria, this
aspect still contributes to the overall effectiveness of the exercise statement.

Finally, ensuring grammatical correctness and fluency in the exercise statement is vital
for clear communication. While English proficiency is essential, it’s appropriately given a
lower weight compared to other criteria, as long as the statement remains understandable.

3.3 H5P transformation
Integrating Exercisify into an LMS workflow can significantly enhance the teaching and
learning experience in programming education. Two common methods for seamless integration
are through Learning Tools Interoperability (LTI) and H5P (HTML5 Package).

Learning Tools Interoperability (LTI) is a standard protocol that allows learning
systems, such as LMS platforms, to integrate with external tools and content.

H5P (HTML5 Package) is a content creation tool that allows educators to develop
and share interactive content across several platforms.

LTI integration facilitates standardized access within LMS platforms, enabling single
sign-on, centralized management, and data exchange for features like grade synchronization.
H5P integration, on the other hand, offers customization flexibility, content embedding,
reusability, and support for interactive elements. The choice depends on factors such as
desired integration level, instructional goals, and LMS platform capabilities.

By integrating Exercisify with the LMS, student performance scores from exercise evalu-
ations can be automatically transported to the LMS gradebook. This eliminates the need for
manual score entry by instructors, saving time and ensuring accuracy in grading. At the
same time, students receive real-time feedback on their exercise submissions, including scores
and performance metrics. This immediate feedback loop promotes continuous learning and
allows students to track their progress throughout the course.

One of the benefits of the LMS integration is the capability of including Exercisify in the
LMS gamification workflow. Here are some examples:

Unlocking Content: Gamification elements such as unlocking content based on performance
scores can be implemented within the LMS. Students can progress through course materials
and access additional resources or levels as they achieve certain performance milestones
in Exercisify exercises.

ICPEC 2024

19:6 Exercisify: An AI-Powered Statement Evaluator

Earning Badges and Achievements: Students can earn badges or achievements within the
LMS for achieving specific scores or completing exercises in Exercisify. These gamified
incentives incentivize engagement, encourage mastery of programming concepts, and add
an element of fun to the learning process.
Competition and Leaderboards: the LMS can enable the creation of leaderboards based
on Exercisify performance scores. Students can compete with peers, track their rankings,
and strive to improve their standings, fostering a sense of healthy competition.

4 Conclusion and Future Work

In conclusion, the development of the Exercisify web app and the integration of AI-based
exercise generation and statement evaluation can empower students to actively engage in
learning, fostering critical thinking and problem-solving skills.

In regard of future directions, the most obvious is to validate the Exercisify tool with real
users. This validation process could involve conducting user testing sessions with students
and educators to gather feedback on usability, effectiveness, and overall user experience.
Additionally, collecting data on user performance and learning outcomes through the tool
can provide insights into its impact on programming education.

Additional future directions:
Enhanced AI Integration: continuously update and refine the AI models used for exercise
generation and evaluation to improve accuracy.
Expanded Exercise Types: diversify the range of supported exercise types to cover several
programming languages and problem-solving scenarios.
H5P support: finalize the transformation of the Web app to the H5P package.

References
1 Yannik Bauer, José Paulo Leal, and Ricardo Queirós. Can a Content Management System

Provide a Good User Experience to Teachers? In 4th International Computer Programming
Education Conference (ICPEC 2023), volume 112 of Open Access Series in Informatics
(OASIcs), pages 4:1–4:8, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

2 Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and Salam Al-Emari. A systematic review
of automatic question generation for educational purposes. International Journal of Artificial
Intelligence in Education, 30, 2019.

3 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, Jakub Swacha, and Filip Miernik.
Managing gamified programming courses with the FGPE platform. Information, 13(2):45,
2022.

4 Niko Strijbol, Charlotte Van Petegem, Rien Maertens, Boris Sels, Christophe Scholliers, Peter
Dawyndt, and Bart Mesuere. Tested – an educational testing framework with language-agnostic
test suites for programming exercises. SoftwareX, 22:101404, 2023.

5 Nguyen Binh Duong Ta, Hua Gia Phuc Nguyen, and Gottipati Swapna. Exgen: Ready-
to-use exercise generation in introductory programming courses. In Proceedings of the 31st
International Conference on Computers in Education Conference, pages 1–10, Matsue, Shimane,
Japan, december 4-8 2023.

6 Laura Zavala and Benito Mendoza. On the use of semantic-based aig to automatically generate
programming exercises. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE ’18, pages 14–19, New York, NY, USA, 2018. Association for
Computing Machinery.

Use of Programming Aids in Undergraduate
Courses
Ana Rita Peixoto #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

André Glória #

Instituto Universitário de Lisboa (ISCTE-IUL), Instituto de Telecomunicações, Portugal

José Luís Silva #

ITI/LARSyS, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Tomás Brandão #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Luís Nunes #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Abstract
The use of external tips and applications to help with programming assignments, by novice program-
mers, is a double-edged sword, it can help by showing examples of problem-solving strategies, but it
can also prevent learning because recognizing a good solution is not the same skill as creating one. A
study was conducted during the 2nd semester of 23/24 in the course of Object Oriented Programming
to help understand the impact of the programming aids in learning. The main questions that drove
this study were: Which type(s) of assistance do students use when learning to program? When /
where do they use it? Does it affect grades? Results, even though with a relatively small sample,
seem to indicate that students who used aids have a perception of improved learning when using
advice from Colleagues, Copilot-style tools, and Large Language Models. Results of correlating
average grades with the usage of tools suggest that experience in using these tools is key for its
successful use, but, contrary to students’ perceptions, learning gains are marginal in the end result.

2012 ACM Subject Classification Social and professional topics → Computing education

Keywords and phrases Teaching Programming, Programming aids

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.20

Funding This work was partially supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT)
ISTAR Projects: UIDB/04466/2020 and UIDP/04466/2020.

1 Introduction

The possibility of using programming aids in undergraduate courses has increased gradually,
but steadily, throughout the last decades, and recently was broadened with the introduction
of Large Language Models (LLM). From the onset of Integrated Development Environments
(IDEs), one of the available tools was the introduction of standard snippets with a hotkey,
the immediate syntax highlighting of errors, or the code advisors that tried to guess the
following tokens necessary to end a construct - some more successfully than others.

The use of these tools raises the question of whether students should be evaluated in their
programming skills with or without these aids and also if their evaluation should include
assessing their proficiency in using the available aids. On the one side, it is important to
teach students to create their own solutions, on the other hand, in their future jobs, they
will most certainly be able to use these and other tools to help in programming, and so it
seems logical that they gather experience in using them.

© Ana Rita Peixoto, André Glória, José Luís Silva, Maria Pinto-Albuquerque, Tomás Brandão, and
Luís Nunes;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 20; pp. 20:1–20:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rita_peixoto@iscte-iul.pt
https://orcid.org/0000-0001-7618-5994
mailto:andre_gloria@iscte-iul.pt
https://orcid.org/0000-0002-5245-4392
mailto:jose.luis.silva@iscte-iul.pt
https://orcid.org/0000-0002-1226-9002
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:tomas.brandao@iscte-iul.pt
https://orcid.org/0000-0002-8603-9795
mailto:luis.nunes@iscte-iul.pt
https://orcid.org/0000-0001-7072-0925
https://doi.org/10.4230/OASIcs.ICPEC.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

20:2 Use of Programming Aids in Undergraduate Courses

The consequences reported seem to be: the change in the skills necessary to train a good
programmer and the increased productivity provided by these new tools [4]. It is no longer
necessary to be as meticulous and focused as before and to memorize syntax in such detail
since the development environment helps with that. Also, most current languages come with
extensive libraries that make algorithmic development a skill that current programmers use
less frequently than a few years ago.

Code completion tools have grown more and more accurate and are evolving into code
generators (as some “copilots” that have both functions integrated) [1], and Large Language
Models, have contributed to increasing the sense that most programming tasks (indeed, most
project development tasks) can be automated [9].

The main question, to which we will try to contribute, is whether these tools are beneficial
for students learning to program or if they indeed prevent learning.

The research questions are:
Q1: Which type(s) of assistance do students use when learning to program?
Q2: When / where do they use it?
Q3: Does it affect grades?

The paper contains a summarized Literature Review, a description of the experiments’
Methodology and context, followed by a Results section and the corresponding Discussion,
and ends with Conclusions and Future Work.

2 Literature Review

Studies regarding the use of programming aids in learning programming have been frequent
in the last few years and mostly tend to conclude that the impact of code generation tools
on novice programmers is significant [6]. Given the length of this work we were forced to
select a few of the most obviously related.

Burak et al. [11] assessed the code generation capabilities of several code-generating
tools using the benchmark HumanEval Dataset and evaluated the proposed code quality
metrics. This study reveals that current tools have very different capabilities, advocating an
advantage for Github Copilot.

Code completion tools assist programmers by suggesting completions for partially typed
code snippets. These tools can significantly improve programming efficiency and reduce
syntax errors for novice programmers. Studies such as [10] found that code completion
can enhance productivity and code quality by reducing the cognitive load associated with
remembering syntax and identifiers.

Kazemitabaar et al. [3] and Prather et al. [8] defend that code generators like OpenAI
Codex and Github Copilot can enhance code-authoring performance and completion rates.
Additionally, automated programming hints, such as next-step code hints with textual explan-
ations, have been found to improve immediate programming performance and learning [7].

Other authors advocate that the use of code completion and code generation tools on
novice programmers has significant pedagogical implications. Research by Lister et al. [5]
emphasizes the importance of incorporating these tools into programming education to
provide support for novices and enhance their learning experience. [2] analyses the impact
of LLM generated “worked examples,” concluding that students find them useful for their
learning.

Automated programming hints, particularly with textual explanations and self-explanation
prompts, significantly improve novice programmers’ immediate performance and learning
outcomes in similar subsequent tasks, according to [7]. This work reports that code hints with

A. R. Peixoto et al. 20:3

textual explanations significantly improved immediate programming performance. However,
these hints only improved performance in a subsequent post-test task with similar objectives
when they were combined with self-explanation prompts.

Code generation and completion tools automate the process of writing code. These
tools can help novice programmers as they provide scaffolding and reduce the complexity
of programming tasks. But, do code generation and completion tools (programming aids)
enhance novice programmers’ understanding of code structure and promote learning by
allowing them to focus on problem-solving rather than syntax details? How do different
advising strategies compare? Those are the questions we will be trying to shed some light on
in the following sections.

3 Methodology

To contribute to answering the questions posed in the previous sections, we have prepared
an experiment during the Object Oriented Programming (OOP) course in the first semester
of 23/24 (sep-23 to dec-23). In this course, students are evaluated in class by the exercises
they complete once a week in 8 of the 12 laboratories (30%), by a mid-term test (20%, a
grade of less than 7.5/20 would result in immediate Fail in the course), and a final project
with presentation and discussion (50%). Exercises and the project can be done individually
or in pairs. At the beginning of the course, students were told that they could use whatever
tools available to do the exercises as long as they could explain every single line of the
code they delivered for evaluation, except in the mid-term test, an individual test, where
no aids were allowed. During exercise evaluation and project discussion, students were
frequently asked to explain and change the solutions presented so that their knowledge of
what they were delivering was tested. Situations, where there were doubts concerning the
students’ understanding of the solution they presented, were extremely rare (2 detected cases
in approximately 8 exercises × 278 students).

The students selected for this study are from three different graduation programs: Com-
puter Science and Engineering (LEI), Computer Science and Management (LIGE), and
Computer Science and Telecommunications (LETI). The first two have day and night-shifts.
Night-shifts are termed “-PL” (pós-laboral): LEI-PL and LIGE-PL and are usually frequen-
ted by working-students. All students have a previous similar background in terms of the
programming courses offered in the three programs. All programs have Introduction to
Programming (one semester, 6 ECTS, mandatory course, approval is required to enroll for
OOP) and an Algorithms and Data Structures course (one semester, 6 ECTS). Students
enrolled in LEI have a significantly higher entrance grade.

An inquiry on the aids used was done after the grades were published to ensure that fear
of influencing the grade would not be a factor. Still, the response was lower than expected
(92/298 students responded, roughly 1/3 of the students enrolled in OOP).

The inquiry (originally in Portuguese, the native language of nearly all of these students)
was composed of an introduction and 9 questions (the text in English of the introduction of
the inquiry is in annex). The questions were the following:
1. What is your student number (optional)?
2. What is your age group? 18-23, 24-35, >35
3. Have you ever used (before OOP) tools / strategies to support learning programming

(see examples in the next question)? Yes/No
4. If you answered “Yes” to the previous question, which ones? (multiple answer possible)

Direct advice from colleagues, family or friends
Paid tutor or mentoring

ICPEC 2024

20:4 Use of Programming Aids in Undergraduate Courses

Developer communities and online forums (StackOverflow, W3Schools...)
Eclipse auto-complete (or other development environment integrated tools - IDE)
External applications or plugins based on Copilot (on GitHub, InteliJ, PyCharm, ...)
Large Language Models, i.e. artificial intelligence technologies for conversation (Chat-
GPT, Bard, ...)
Other

5. Have you used any programming support tools / strategies this year in the OOP course?
No
Only in exercises
Only in project
In project and exercises

6. If you answered yes to the previous question, which ones? (options equal to question 4,
multiple answer possible)

7. Which ones did you find most effective in helping to find appropriate / correct solutions?
from 1 (least effective) to 5 (most effective). (options equal to question 4, but reply in
[1..5] for each)

8. In your opinion, has the use of these tools improved your learning of programming?
Yes/No/Don’t know/Didn’t use

9. If you used them, which ones did you find most useful in helping you to learn OOP? from
1 (least useful) to 5 (most useful). (options equal to question 7)

Of the 92 responses to the inquiry (out of a universe of 298 students), 44 of those have
valid student identifications (question #1, inserted voluntarily), and are relatable to the
students’ courses and grades.

The part of the students that inserted an id is (naturally) biased towards more successful
students, the course had a 81% success-rate but only one of the 44 responders that inserted
an id did not pass the course (2% of the sample).

The age group of responders (question #2) was 90.2% 18-25, and 91% (84/92) claimed
to have used previously some of the learning aids mentioned in the inquiry (question #3),
the same number, 91%, are convinced that using these tools improved their learning ability
(question #8). Only 2% (2) are convinced of the contrary.

Concerning the questions of having used aids in OOP and for what purpose (question
#4), only a minority claims not to have used (14/92) (table 3).

Figure 1 Number of students that responded with id and the number of students enrolled from
each program.

The courses of the 44 identifiable students are: LIGE – 10/85, LETI – 9/58, LEI – 13/72,
LEI-PL – 7/36, LIGE-PL – 5/47. The denominator represents the total number of students
in each program enrolled in OOP. Between 10% and 20% of the population for each course
responded and with a valid an id (figure 1).

A. R. Peixoto et al. 20:5

4 Results

All types of aid seem to have been used less during OOP than previously (questions #4
and #6), according to the responses of the 92 students (figure 2). Large Language Models
(LLMs), Colleagues and Communities are the most admittedly used, in that order, followed
by Auto-complete. Use of Copilot is low and Tutoring is residual (only one student in this
sample admitted to have paid tutoring for OOP). Also, a low usage of Other (non-specified)
resources. Tutoring and Other will not be considered in most of the remaining analysis due
to lack of support.

Figure 2 Histogram of declarations of the types of aid used before and during OOP.

The perceived utilities to help find solutions and learning (tables 1 and 2, questions #7
and #9, respectively) tend to be better for those that used each tool than for those that did
not (with the exception of the utility of using Copilot to solve problems).

Favoured tools (both to find good solutions – Table 1 – and to help in the learning process
– Table 2) – are unclear, although Colleagues have a slight advantage for solving problems, in
the groups of students that actually use these tools. Also, in the group of users of the tools,
Copilot, Colleagues, and LLMs seem to be perceived as more helpful for learning.

Students did not seem to make a difference between finding the solutions and learning
with the most favoured tools. Correlations (Pearson) between votes in these categories
in questions #7 and #9 are: 0.87 for Colleagues, 0.82 for Copilot, 0.73 for Communities
and 0.73 for LLMs. The use of Auto-complete has the lowest correlation (0.59) between
the perceived value for learning and for finding solutions. Other correlations (between 33
numerical variables) have no highlights apart from the obvious correlations between previous
use and use in OOP of the same tools and grades of different evaluations. The variables

ICPEC 2024

20:6 Use of Programming Aids in Undergraduate Courses

Table 1 Perceived utility for solving problems from those that used each tool vs those that didn’t.

Type of aid Used Didn’t use
Colleagues 3.98 +/- 0.84 3.14 +/- 1.09
Communities 3.66 +/- 0.76 3.57 +/- 1.03
Auto-complete 3.66 +/- 0.93 3.20 +/- 1.21
Copilot 3.29 +/- 1.37 4.00 +/- 1.41
LLMs 3.59 +/- 1.02 3.60 +/- 0.89

Table 2 Perceived utility for learning OOP from those that used each tool vs those that didn’t.

Type of aid Used Didn’t use
Colleagues 4.05 +/- 0.82 2.82 +/- 1.22
Communities 3.54 +/- 0.92 3.47 +/- 0.76
Auto-complete 3.47 +/- 1.07 2.72 +/- 1.19
Copilot 4.13 +/- 1.13 2.29 +/- 1.20
LLMs 3.94 +/- 0.79 2.91 +/- 1.45

correlated were the previous use of aids, the use in OOP, the types of tools used in each case,
the score for effectiveness in helping to solve problems, as well as learning effectiveness and
grades for each assessment.

Table 3 Counts per type of usage.

When aid was used #count #count students with id
No 14 6
Only in exercises 9 5
Only in final project 26 15
Exercises and final project 43 18

As for the relation between the type and frequency of aid usage with grades (Tables 3
and 4), results are unclear. The best average grade in Exercises, but also in the Test (recall,
without aids) is from students that have admittedly used aids, but only during exercises
(even though this is a relatively small sample, 5 students). What stands out in these figures
is that students who admit to having used aids only in the final project have lower average
grades in all evaluations. This is an observation with reasonable support: 15/44. Average
grades of students that allegedly used No aids are the best in Project and second-best in
other evaluations.

The relationship between the type of aid used and the grades (Table 5, focusing on the
classes that have a reasonable number of samples, >10) appears to indicate that the type
of aid used is not relevant showing only a slight decay in the average Test grades (the only
evaluation where aids are not allowed) of students that use advice from Colleagues even
though they have good grades in exercises.

If the Test results measure the true value for learning of the different types of aid, then
Communities and LLMs seem to hold some learning value even though standard deviations
are relatively high.

A. R. Peixoto et al. 20:7

Table 4 Average grades per type of usage. Grades in [0..20].

Type of aid Exercises Test Project
No 19.27 +/- 1.15 15.11 +/- 3.40 16.97 +/- 2.08
Only in exercises 19.75 +/- 0.56 16.34 +/- 3.42 16.80 +/- 2.39
Only in final project 17.16 +/- 4.45 14.45 +/- 3.55 15.07 +/- 3.90
Exercises and final project 19.03 +/- 1.59 15.09 +/- 4.92 16.47 +/- 2.61

Table 5 Average grades per type of aid used and Standard Deviations.

Type of aid Exercises Test Project
Colleagues 18.79 +/- 1.57 14.42 +/- 4.68 16.09 +/- 2.56
Communities 18.35 +/- 3.10 15.86 +/- 4.43 16.52 +/- 2.69
Auto-complete 17.83 +/- 3.62 15.09 +/- 5.06 16.26 +/- 2.57
LLMs 18.02 +/- 3.52 15.77 +/- 3.66 16.03 +/- 3.45

5 Discussion

The experience of the teaching staff during this year was particularly rewarding given the
reduction of retained students to < 20%. The new evaluation method (based on exercises,
evaluated nearly every week) is likely to have contributed to this success.

Even though we explicitly mentioned the subject at the beginning of the semester, the
use of tools external to the IDE (Communities, Copilot, or ChatGPT) was seldom seen in
class, where most students still seem to prefer asking colleagues or the teacher. Likely most
of the aids were used during class preparation or individual work.

Apart from very few exceptions, students seemed to be quite familiar with the produced
code, both in the exercises and in the final project.

The majority of the results point to a marginal difference between using aids regularly
(in exercises or always) and not using any, with a slight advantage for those who used aids
(the majority) even in evaluations where aids are not allowed.

Students, that used aids only in the final project, had slightly lower scores in all evaluations.
The hypothesis, based on this, but that we cannot confirm with the current experiment,
is that experience plays a key role in the efficient use of these tools, as in many other
technological tools.

Analyzing the differences between the votes for “tools to find good solutions” and “tools
that help learning,” the differences, although small, show a tendency to consider Communities
and Auto-complete as tools that are more useful to “find good solutions” than to “help
learning,” and Large Language Models the reverse.

Still, the only clue to events, that seem actually to affect grades negatively, is the use of
advice from Colleagues that seems to have a positive effect during exercises but a negative
effect during the Test. This may be related to the fact that being able to explain a solution
is a different skill from actually being able to produce that solution.

Nevertheless, some of the automatic aids seem to affect the ability to generate solutions
less than advice from Colleagues even though the latter should often imply the need to code
the solution themselves.

ICPEC 2024

20:8 Use of Programming Aids in Undergraduate Courses

6 Conclusions and Future Work

Data limitations beyond those that were expected (low participation of students) limit our
conclusions, still, we believe this account presents a valid contribution to add to many others.

In this paper, we describe an experiment that took place in the 23/24 edition of the
Object Oriented Programming course. In this experiment, we have explicitly liberated the
use of any programming aids with the sole demand that students should (at all times) be
able to explain what they were doing.

This experiment aimed at understanding which are the most usual tools used as program-
ming aids by novice students (Q1), when / where students apply them (Q2), and how this
affects their grades (Q3). The main conclusions based on the analysis of this data are the
following:

Most students use some form of programming aids (74/92, 84.8%)
The most common types of aids used are: Large Language Models (50-70/92), Colleagues
(45-63/92); Communities (42-67/92) and Auto-complete (34-37/92), in this order of
preference (answering Q1). The two numbers correspond to previous use and use in OOP;
47% (43/92) of the students use aids in exercises and on the project, 10% (9/92) only in
exercises, 28% (26/92) only use aids in the final project and 15% (14/92) claim to have
used no aids (answering Q2);
The usage of these tools does not seem to have a significant impact on the grades, neither
in situations where aids are allowed nor in those where they are not (addressing Q3).
However, the sample of students who claim not to have used any aids is small (n=14,
15%), and only 6 of these inserted an id, so the results lack support in this respect;
The use of these tools for the last part of the evaluation (project) only seems to be related
to students with lower grades;
Using advice from Colleagues is the only event relatable to a drop of Test grades (the
only evaluation where no aids were allowed);
The students who reported not using any aids (although in small number) have average
grades similar to those who reported using aids.

References
1 Zhamri Che Ani, Zauridah Abdul Hamid, and Nur Nazifa Zhamri. The Recent Trends of

Research on GitHub Copilot: A Systematic Review, pages 355–366. Springer, 2024. doi:
10.1007/978-981-99-9589-9_27.

2 Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly.
Evaluating llm-generated worked examples in an introductory programming course. In Nicole
Herbert and Carolyn Seton, editors, Proceedings of the 26th Australasian Computing Education
Conference, ACE 2024, Sydney, NSW, Australia, 29 January 2024- 2 February 2024, pages
77–86. ACM, January 2024. doi:10.1145/3636243.3636252.

3 Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David Weintrop,
and Tovi Grossman. Studying the effect of AI code generators on supporting novice learners
in introductory programming. In Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola
Kristensson, Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson, editors,
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023,
Hamburg, Germany, April 23-28, 2023, CHI ’23, pages 455:1–455:23, New York, NY, USA,
2023. ACM. doi:10.1145/3544548.3580919.

4 Amy J. Ko. More than calculators: Why large language models threaten learning, teaching,
and education, December 2023. URL: https://tinyurl.com/yck47y5s.

https://doi.org/10.1007/978-981-99-9589-9_27
https://doi.org/10.1007/978-981-99-9589-9_27
https://doi.org/10.1145/3636243.3636252
https://doi.org/10.1145/3544548.3580919
https://tinyurl.com/yck47y5s

A. R. Peixoto et al. 20:9

5 Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Christine Prasad.
Not seeing the forest for the trees: novice programmers and the SOLO taxonomy. In Renzo
Davoli, Michael Goldweber, and Paola Salomoni, editors, Proceedings of the 11th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education, ITiCSE
2006, Bologna, Italy, June 26-28, 2006, volume 38, pages 118–122, New York, NY, USA, June
2006. ACM. doi:10.1145/1140124.1140157.

6 Wenhan Lyu, Yimeng Wang, Tingting Chung, Yifan Sun, and Yixuan Zhang. Evaluating the
effectiveness of llms in introductory computer science education: A semester-long field study.
CoRR, abs/2404.13414, April 2024. doi:10.48550/arXiv.2404.13414.

7 Samiha Marwan, Joseph Jay Williams, and Thomas W. Price. An evaluation of the impact of
automated programming hints on performance and learning. In Robert McCartney, Andrew
Petersen, Anthony V. Robins, and Adon Moskal, editors, Proceedings of the 2019 ACM
Conference on International Computing Education Research, ICER 2019, Toronto, ON, Canada,
August 12-14, 2019, ICER ’19, pages 61–70, New York, NY, USA, 2019. ACM. doi:10.1145/
3291279.3339420.

8 James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen, Andrew
Luxton-Reilly, Garrett B. Powell, James Finnie-Ansley, and Eddie Antonio Santos. "it’s weird
that it knows what I want": Usability and interactions with copilot for novice programmers.
ACM Trans. Comput. Hum. Interact., 31(1):4:1–4:31, November 2024. doi:10.1145/3617367.

9 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and
Maosong Sun. Communicative agents for software development. CoRR, abs/2307.07924, July
2023. doi:10.48550/arXiv.2307.07924.

10 Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How effective developers investigate
source code: An exploratory study. IEEE Trans. Software Eng., 30(12):889–903, 2004.
doi:10.1109/TSE.2004.101.

11 Burak Yetistiren, Isik Özsoy, Miray Ayerdem, and Eray Tüzün. Evaluating the code quality of
ai-assisted code generation tools: An empirical study on github copilot, amazon codewhisperer,
and chatgpt. CoRR, abs/2304.10778, 2023. doi:10.48550/arXiv.2304.10778.

A Inquiry

With this survey, we want to study the impact of using automatic learning support tools
in programming. Since the introduction of tools such as ChatGPT, the use of program-
ming support tools has been discussed, although they have long been used in development
environments, they have taken on a different proportion.

It is arguable that their use can benefit or hinder learning. That’s why we set out to
study their impact. This survey has only been sent out now, after the grades have been
published so that there is no doubt about the possibility of this survey influencing the grades.
We can also guarantee that nothing will be published that would allow participants to be
identified, so I ask everyone to be as honest and thorough as possible in answering all the
questions.

This survey should take no more than 5 minutes to complete.
If you have any questions about this survey, please contact: luis.nunes@iscte-iul.pt
– Place for the 9 questions of the Inquiry already presented on pages 3 and 4.

ICPEC 2024

https://doi.org/10.1145/1140124.1140157
https://doi.org/10.48550/arXiv.2404.13414
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3617367
https://doi.org/10.48550/arXiv.2307.07924
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.48550/arXiv.2304.10778

Authoring Programming Exercises for Automated
Assessment Assisted by Generative AI
Yannik Bauer # Ñ

DCC – FCUP, Porto, Portugal

José Paulo Leal # Ñ

CRACS – INESC TEC, Porto, Portugal
DCC – FCUP, Porto, Portugal

Ricardo Queirós # Ñ

CRACS – INESC TEC, Porto, Portugal
uniMAD – ESMAD, Polytechnic of Porto, Portugal

Abstract
Generative AI presents both challenges and opportunities for educators. This paper explores its
potential for automating the creation of programming exercises designed for automated assessment.
Traditionally, creating these exercises is a time-intensive and error-prone task that involves developing
exercise statements, solutions, and test cases. This ongoing research analyzes the capabilities of the
OpenAI GPT API to automatically create these components. An experiment using the OpenAI
GPT API to automatically create 120 programming exercises produced interesting results, such as
the difficulties encountered in generating valid JSON formats and creating matching test cases for
solution code. Learning from this experiment, an enhanced feature was developed to assist teachers
in creating programming exercises and was integrated into Agni, a virtual learning environment
(VLE). Despite the challenges in generating entirely correct programming exercises, this approach
shows potential for reducing the time required to create exercises, thus significantly aiding teachers.
The evaluation of this approach, comparing the efficiency and usefulness of using the OpenAI GPT
API or authoring the exercises oneself, is in progress.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Computing
methodologies → Artificial intelligence; Applied computing → Interactive learning environments

Keywords and phrases ChatGPT, generative AI, programming exercises, automated assessment

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.21

Funding This work is co-funded by the Erasmus+ Programme of the European Union within the
project FGPEPlusPlus, with Agreement Number 2023-1-PL01-KA220-HED-000164696.

1 Introduction

Since its introduction in late November 2022, ChatGPT has produced a range of reactions,
from enthusiasm to warnings. In academic and educational contexts, there is legitimate
concern about the potential impacts of extensive language models and generative AI. It is
important to acknowledge and address these concerns, but it is equally important to recognize
the potential of these tools to generate text, code, and data, offering valuable resources and
innovative approaches that can positively enhance the educational landscape.

This paper explores the utility of ChatGPT in facilitating the creation of programming
exercises, particularly those designed for automated assessment. The process of authoring
these exercises is time-consuming and error-prone. It involves generating three distinct
components: exercise statements articulated in a natural language, such as English; solutions
in a programming language, such as JavaScript; and test data, including input and expected
output files. Generative AI is promising for faster and more accurate exercise creation.

© Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 21; pp. 21:1–21:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannikbauer.1@gmail.com
https://yannikbauer.me/
https://orcid.org/0000-0001-8987-2419
mailto:zp@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~zp/about/
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://www.ricardoqueiros.com/
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

21:2 Authoring Programming Exercises Assisted by Generative AI

An initial experiment was conducted within the Framework for Gamified Programming
Education (FGPE+) project [13] aiming to create 120 programming exercises suited for
automated evaluation for AuthorKit, a programming exercise repository [15]. This experiment
highlighted ChatGPT’s difficulties in generating valid JSON files and creating effective and
functional test cases for the proposed code solutions. Learning from this, an enhanced
feature was developed for Agni, a virtual learning environment, to assist teachers in creating
programming exercises [20]. An ongoing evaluation is comparing the time, quality, and
benefits of creating exercises independently versus using ChatGPT’s assistance.

2 Related Work

The integration of generative artificial intelligence (AI) in education has gained increasing
attention due to its potential to transform teaching and learning practices. Indeed, for
teachers, writing good questions/exercises and test cases is a fundamental and time-consuming
challenge [11, 24]. New AI tools have already increased productivity in work environments,
as measured in a study of issues resolved per hour. They found an increase of 14% on average,
including a 34% improvement for novice and low-skilled workers, but with minimal impact on
experienced and highly skilled workers [4]. A variety of studies have discussed the possibilities
of AI in generating educational content and providing personalized learning experiences,
highlighting both the opportunities and challenges of these technologies [3, 8, 2, 1, 14, 18, 23].

A study by Sarsa et al. analyzed the quality of programming exercises generated by
OpenAI Codex. It revealed that 84.6% of the exercises generated included a sample solution,
with 89.7% of these being executable. Furthermore, 70.8% of these exercises featured tests,
although only 30.9% of them passed all tests, achieving a test coverage rate of 98.0% [22].
Similarly, another study showed that 75% of exercises created by generative AI were sensible,
81.8% novel, and between 75.8% to 79.2% aligned with the intended themes and concepts [6].
Another study evaluated that students perceived exercises generated by AI as equal to those
created by people. However, the limited variety in AI-generated examples and their close
adherence to given prompts raise questions about their adaptability in creating diverse
learning resources [5]. These findings suggest that while generative AI can produce good
primary educational content, its quality and reliability are still lacking [19].

Other uses, such as automatic feedback, have also shown promise. A web application that
leverages GPT-4 to provide feedback on complex exercises demonstrated a high correlation
with human feedback and deviated by only 6% from human evaluations [10]. A study on
the customization of learning content via generative AI found that AI-generated materials
positively impacted lower-performing students without negative effects on accessibility [17].
The findings highlighted the benefit of personalized learning experiences, particularly for
students struggling with subjects, by providing materials suited to their specific needs, while
more proficient students received more advanced content.

In conclusion, while generative AI holds significant potential for education, it must be
integrated carefully, considering its abilities and limitations. Empirical studies and responsible
guidelines are essential for harnessing the benefits of AI in educational settings.

3 Early exploration

Within the FGPE+ project, an experiment was conducted using OpenAI’s GPT-3.5 API
to automatically generate 120 programming exercises. These exercises were designed for
AuthorKit, a platform for developing programming exercises, that support the definition

Y. Bauer, J. P. Leal, and R. Queirós 21:3

Table 1 Results of using GPT to generate exercises.

Total % of Total % of Valid Resolved % of Resolved
JSON errors 199 35% 23 12%
Code errors 245 44% 67% 3 1%

Correct exercises 120 21% 33%
Total 562 100%

of various parameters. The experiment aimed to generate exercises with several paramet-
ers including title, difficulty level, context, task description, input and output details, an
example, the language used for the solution, the solution code itself, and five input/output
tests. Moreover, parameters such as title, context, etc., were required in multiple languages:
Portuguese, English, Italian, and Polish. The objective was to use the GPT API to automat-
ically generate these exercises, verify their correctness, and convert them into the YAPExIL
format [16], making them suitable for further integration into AuthorKit.

The main challenges in this process involved getting consistent responses for automatic
conversion and testing, as well as ensuring the correctness of the programming exercises.
Several different approaches were initially attempted, such as simply asking for the exercise
with the desired information or requesting separation with “;”, among others. All these
attempts faced the issue of GPT providing inconsistent responses, with changing field keys
and sometimes breaking the requested format. Finally, it was decided to request the responses
in JSON format, providing an example within the prompt. Thus, each prompt included a
description of the required parameters and an example of a response in JSON format. Once
the exercises were received, the JSON format was validated. If the format was valid, the
solution code was tested with the input and output tests. Therefore in the process, two types
of errors could occur: a JSON error, as illustrated in Listing 1, indicating a problem with
the format, or a code error, as shown in Listing 2, arising from issues in the solution code
or failure of a test case. When one of these errors occurred, a response was sent to GPT
describing the error and requesting a fixed exercise. This process is showcased in Figure 1.

Request GPT to
create exercise

Request GPT to
correct the

format

Test test cases
with the solution

Validate format
of the response

True

Request GPT to
correct the

exercise
All tests are correct

Correct JSON format

Validate format
of the response

Correct Exercise

Correct JSON format

False

True
JSON Error

Test test cases
with the solution

All tests are correct

Code Error

False

True

False

False

True

Figure 1 Process of the experiment.

ICPEC 2024

21:4 Authoring Programming Exercises Assisted by Generative AI

Table 1 displays the results of achieving 120 correct programming exercises, including
the number of JSON and code errors, as well as those that were resolved. To arrive at 120
accurate exercises, a total of 562 were generated, indicating that only 21% of the exercises
were correct. 199 exercises, accounting for 35% of the total generated, encountered JSON
Errors, of which 12% were rectified upon consulting GPT. Furthermore, 245 exercises, which
represent 44% of the total, failed due to errors in a test case or the solution code. Only 3
of these could be corrected. It is important to note that a code error can only be detected
if the JSON format is valid. This means that out of the 363 exercises with a valid JSON
format, 245 had a code error, translating to 67%. The consistency of parameters such as title,
solution, task, etc., was manually verified across most generated exercises, and no significant
discrepancies were found.

Some limitations of the experiment included the use of GPT version 3.5; it is possible
that version 4.0 might have delivered better results. The reason behind choosing GPT 3.5
was that when the experiment was conducted, GPT 4.0 was relatively new and associated
with a higher cost. Furthermore, at that time, there were no other well-known generative AI
options with an API to choose from. Additionally, generating the parameters step-by-step
could have potentially enhanced GPT’s capabilities, but this approach was not chosen due
to the API’s limitation of three requests per minute [7, 21]. Not assigning a specific role to
GPT in the prompts, which is often suggested to improve outcomes, was another constraint.
Furthermore, the generation of numerous parameters and the extensive size of the prompts
might have negatively impacted the results.

Listing 1 Example of generated exercise with a JSON Error (missing brackets at the end).
{
"title ":{" english ":" FizzBuzz problem with a twist", ...} ,
...
"task ":{" english ":" Write a function that given n, prints the

FizzBuzzBang output from 1 to n", ...} ,
...
" solution_code ":"..." ,
"tests ":[... , {" input ":"1" , " output ":"1"}

Despite these limitations, the results highlight a challenge with GPT in generating valid
JSON formats using the chosen method. Similar issues with JSON formats have been
reported by other programmers in community forums [9]. The findings also underscore
GPT’s limitations in creating completely accurate programming exercises. With a general
code error rate of 44%, and 67% when considering only exercises with valid formats, the
experiment clearly demonstrates these constraints. However, it is worth noting that in many
code error instances, the overall exercise was correct; often, only one or two test cases were
slightly off, sometimes due to interpretation issues. For instance, in tasks asking for the
maximum word length in a string, there were discrepancies in whether a comma was counted
to the word before or not. In the solution code, GPT generated a code that counted a comma
with the word before, however, in the test case, it interpreted it contrarily.

4 Authoring Tools

GPT was integrated into Agni [20], a web-based platform designed for learning and teaching
JavaScript, to assist teachers in creating programming exercises. However, some changes
were made from the previous experience to improve the results. The approach of Joseph

Y. Bauer, J. P. Leal, and R. Queirós 21:5

Listing 2 Example of generated exercise with a Code Error (first test case).
{
"task ":{" english ":" Create a function that receives a sentence and

returns the largest word in it. If there are multiple words with
the same length , return the first one in the sentence .", ...} ,

...
" solution_code ":

"def largest_word (sentence):
words = sentence .split ()
largest = ’’
for word in words:

if len(word) > len(largest):
largest = word\n return largest ",

"tests ":[
{" input ":" Hello , world !", " output ": "world "},
{" input ":" What is your profession ?", " output ": " profession ?"},
{" input ":" Mathematics isn ’t a sport .", " output ": " Mathematics "},
...]

}

Martinez [12] was followed to include a JSON schema as a parameter in the API prompt. This
clearly improved the consistency of the responses with no further JSON errors detected. Also,
GPT was instructed to take the role of a teacher to help create programming exercises for
JavaScript. Another distinction from the experiment was the demand for viewer parameters
in Agni, accommodating requests for exercise titles, statements, solution codes, and corner
test cases with input and expected output. The version of GPT, namely GPT-3.5, was kept.

Figure 2 Interface of Agni with the Chat GPT Chatbot.

To provide users with an interactive experience and considering broader future use cases
with AI, a chatbot-like feature was incorporated, as shown in its usage in Figure 2. In the
early stages, this feature does not provide a direct conversation with ChatGPT but serves as
a means to input data to generate exercises. This “bot”, accessible during the editing process
of a lesson, notifies authors of potential inaccuracies in the exercises, which can occur despite
improvements made from previous experiments. It then prompts users to specify the number
and topic of exercises they wish to create. A request is sent to the OpenAI API to create the

ICPEC 2024

21:6 Authoring Programming Exercises Assisted by Generative AI

specified number of programming exercises on the desired topic. The received exercises are
then automatically validated in JSON format using the Ajv JSON Schema validator. If valid,
they are presented in a pop-up displaying key information such as the title and statement.
Within this pop-up, authors can request the generation of three additional exercises and
select those to be included in the current lesson. Upon selecting the exercises and clicking
the button to add them, they are added to the current lesson. The evaluation of the test
cases and the solution is not performed in this feature because, in the previous experiment,
many code errors occurred when only one or two out of five test cases failed due to minor
issues. Therefore, it was deemed more effective to keep all exercises, as those with errors can
be easily corrected. After adding the exercises, when a teacher enters one of the generated
ones, the solution code with its test cases is run showcasing visually to the teacher which of
the tests fail or pass.

This refined approach resolved the formatting challenges of the initial experiment, offering
a robust tool to aid teachers in authoring programming exercises.

5 Ongoing and Future Work

This paper presented an experiment on creating programming exercises using the OpenAI
API, highlighting its difficulties in generating valid JSON formats and producing sample
solutions with correct test cases. In the experiment, 67% of the correctly formatted exercises
contained a code error, indicating that a test case failed when running the provided solution.
However, it is important to note that often it was only one out of five test cases that failed,
sometimes due to an interpretation issue of the exercise. A refined feature to assist teachers in
generating programming exercises was then integrated into Agni. To address the formatting
issues, a different approach was adopted, which involved providing a JSON schema in the
prompt to the OpenAI API. However, challenges with the solutions and test cases persisted,
which is why the feature is considered an assistant rather than an automatic generator.

Despite the stated challenges, the feature still offers potential gains in the speed of creating
new programming exercises. Consequently, a questionnaire and survey are being conducted
where evaluators have to create programming exercises using Agni, both with and without
the help of GPT. The evaluators are recording their time and then responding to follow-up
questions about their opinions on the quality and efficiency of using GPT compared to not
using it.

After collecting a substantial number of responses, the data will be analyzed to understand
the teachers’ opinions on this tool and whether a significant reduction in time was observed.
We expect these findings to provide insights into how teachers perceive generative AI features
and to help to improve current and potentially future features.

References
1 Eman A. Alasadi and Carlos R. Baiz. Generative ai in education and research: Opportunities,

concerns, and solutions. Journal of Chemical Education, 100(8):2965–2971, 2023. doi:
10.1021/acs.jchemed.3c00323.

2 Brett A Becker, Michelle Craig, Paul Denny, Hieke Keuning, Natalie Kiesler, Juho Leinonen,
Andrew Luxton-Reilly, James Prather, and Keith Quille. Generative ai in introductory
programming. Name of Journal, 2023.

3 Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James Prather,
and Eddie Antonio Santos. Programming is hard - or at least it used to be: Educational
opportunities and challenges of ai code generation. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2023, pages 500–506, New York,
NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3545945.3569759.

https://doi.org/10.1021/acs.jchemed.3c00323
https://doi.org/10.1021/acs.jchemed.3c00323
https://doi.org/10.1145/3545945.3569759

Y. Bauer, J. P. Leal, and R. Queirós 21:7

4 Erik Brynjolfsson, Danielle Li, and Lindsey Raymond. Generative ai at work, 2023. arXiv:
2304.11771.

5 Paul Denny, Hassan Khosravi, Arto Hellas, Juho Leinonen, and Sami Sarsa. Can we trust
ai-generated educational content? comparative analysis of human and ai-generated learning
resources, 2023. arXiv:2306.10509.

6 Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. Robosourcing educational resources
– leveraging large language models for learnersourcing, 2022. arXiv:2211.04715.

7 Enterprise DNA Experts. How to use chat gpt: A simple guide for beginners, September 2023.
URL: https://blog.enterprisedna.co/how-to-use-chat-gpt/.

8 Stefan Feuerriegel, Jochen Hartmann, Christian Janiesch, and Patrick Zschech. Generative ai.
SSRN Electronic Journal, January 2023. doi:10.2139/ssrn.4443189.

9 Aaron Issac. Chatgpt functions malformed json, July 2023. URL: https://community.openai.
com/t/chatgpt-functions-malformed-json/306509.

10 Lukas Jürgensmeier and Bernd Skiera. Generative ai for scalable feedback to multimodal
exercises in marketing analytics. Available at SSRN, 2024.

11 Richard Lobb and Jenny Harlow. Coderunner: a tool for assessing computer programming
skills. ACM Inroads, 7(1):47–51, February 2016. doi:10.1145/2810041.

12 Joseph Martinez. Return json from gpt, July 2023. URL: https://betterprogramming.pub/
return-json-from-gpt-65d40bfc2ef6.

13 Rytis Maskeliūnas, Robertas Damaševičius, Tomas Blažauskas, Jakub Swacha, Ricardo Queirós,
and José Carlos Paiva. Fgpe+: The mobile fgpe environment and the pareto-optimized gamified
programming exercise selection model—an empirical evaluation. Computers, 12(7):144, 2023.

14 Rosario Michel-Villarreal, Eliseo Vilalta-Perdomo, David Ernesto Salinas-Navarro, Ricardo
Thierry-Aguilera, and Flor Silvestre Gerardou. Challenges and opportunities of generative
ai for higher education as explained by chatgpt. Education Sciences, 13(9), 2023. doi:
10.3390/educsci13090856.

15 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Fgpe authorkit–a
tool for authoring gamified programming educational content. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, pages 564–564,
2020.

16 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Yet another pro-
gramming exercises interoperability language (short paper). In 9th Symposium on Languages,
Applications and Technologies (SLATE 2020). Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik, 2020.

17 Ivica Pesovski, Ricardo Santos, Roberto Henriques, and Vladimir Trajkovik. Generative ai for
customizable learning experiences. Sustainability, 16(7), 2024. doi:10.3390/su16073034.

18 Prajish Prasad and Aamod Sane. A self-regulated learning framework using generative ai and
its application in cs educational intervention design. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2024, pages 1070–1076, New York,
NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3626252.3630828.

19 Junaid Qadir. Engineering education in the era of chatgpt: Promise and pitfalls of generative
ai for education. In 2023 IEEE Global Engineering Education Conference (EDUCON), pages
1–9, 2023. doi:10.1109/EDUCON54358.2023.10125121.

20 Ricardo Alexandre Peixoto de Queirós. Integration of a learning playground into a lms. In
Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer
Science Education Vol. 2, pages 626–626, 2022.

21 Laurie Ruettimann. How to interact with chat gpt-4 effectively: Top tips for better questions,
September 2023. URL: https://laurieruettimann.com/chat-gpt-4-ask-questions/.

22 Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. Automatic generation of pro-
gramming exercises and code explanations using large language models. In Proceedings
of the 2022 ACM Conference on International Computing Education Research - Volume 1,
ICER ’22, pages 27–43, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3501385.3543957.

ICPEC 2024

https://arxiv.org/abs/2304.11771
https://arxiv.org/abs/2304.11771
https://arxiv.org/abs/2306.10509
https://arxiv.org/abs/2211.04715
https://blog.enterprisedna.co/how-to-use-chat-gpt/
https://doi.org/10.2139/ssrn.4443189
https://community.openai.com/t/chatgpt-functions-malformed-json/306509
https://community.openai.com/t/chatgpt-functions-malformed-json/306509
https://doi.org/10.1145/2810041
https://betterprogramming.pub/return-json-from-gpt-65d40bfc2ef6
https://betterprogramming.pub/return-json-from-gpt-65d40bfc2ef6
https://doi.org/10.3390/educsci13090856
https://doi.org/10.3390/educsci13090856
https://doi.org/10.3390/su16073034
https://doi.org/10.1145/3626252.3630828
https://doi.org/10.1109/EDUCON54358.2023.10125121
https://laurieruettimann.com/chat-gpt-4-ask-questions/
https://doi.org/10.1145/3501385.3543957

21:8 Authoring Programming Exercises Assisted by Generative AI

23 Jiahong Su and Weipeng Yang. Unlocking the power of chatgpt: A framework for applying
generative ai in education. ECNU Review of Education, 6:1–12, April 2023. doi:10.1177/
20965311231168423.

24 John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. Who tests the testers? In Proceedings
of the 2018 ACM Conference on International Computing Education Research, ICER ’18,
pages 51–59, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/
3230977.3230999.

https://doi.org/10.1177/20965311231168423
https://doi.org/10.1177/20965311231168423
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999

	p000-Frontmatter
	p001-Hermans
	p002-B.Canico
	1 Introduction
	2 Related Work
	3 Background: Witter Library
	4 Approach: DSL for White-Box Tests
	5 Evaluation
	5.1 Context
	5.2 Method
	5.3 Results

	6 Discussion

	p003-Cipriano
	1 Introduction
	2 Related work
	3 Definitions
	3.1 Assessment types
	3.2 Test function types
	3.3 Unit Testing frameworks

	4 Lessons Learned: recommendations
	4.1 Generic recommendations
	4.1.1 Tackling problem evasion
	4.1.2 Test construction

	4.2 Specific recommendations per assessment type
	4.3 Other recommendations

	5 The Future of Automatic Assessment
	6 Limitations
	7 Conclusion

	p004-Horvath
	1 Introduction
	2 Related work
	3 Assessment Techniques
	4 Challenges and Enhancements in System Architecture for Programming Education
	5 Enhancements in Assessment Methodologies
	6 Future Directions
	7 Conclusion

	p005-Amorim
	1 Introduction
	2 Background and Related Work
	2.1 Online judge systems
	2.2 Kumon-inspired methods and potential benefits

	3 Progressive Method for Teaching Programming
	3.1 The Course – Programming I
	3.2 The online judge system: Codex
	3.3 Our Kumon-based approach

	4 Case Study Methodology
	5 Results and Discussion
	5.1 Threats to validity

	6 Conclusion

	p006-Thangaraj
	1 Introduction
	2 Exploring Formative Assessments' Potential to Improve Programming Learning
	2.1 Enhancing Programming skills through Learning from Errors
	2.2 Enhancing Formative assessment with adaptive strategy
	2.3 Encouraging Learning and Proficiency in programming through Adaptive Formative assessment
	2.4 Research Questions

	3 Development of Adaptive Formative Assessment Framework
	3.1 Quiz Implementation
	3.2 Adaptive Approach
	3.3 Questions Development

	4 Research Methodological paradigm
	4.1 The Population
	4.2 Data collection strategies

	5 Results & Discussion
	5.1 RQ-1: Increasing self-confidence
	5.2 RQ-2: Understand & Correct the errors
	5.3 RQ-3: Students' perception on learning modular parts
	5.4 Low vs Moderate vs High – Difficulty levels

	6 Conclusion and Future Work

	p007-Barros
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Context
	5 Concept map creation activity
	5.1 Application
	5.2 Lessons learned and practicalities

	6 Observed outcomes
	6.1 In-class observation
	6.2 Student Survey

	7 Limitations
	8 Recommendations and Conclusions

	p008-Antunes
	1 Introduction
	2 Methodology
	3 Discussion
	4 Conclusion

	p009-Trigo
	1 Introduction
	2 Literature review
	3 DEER Conceptual Proposal
	4 Examples of escape rooms
	5 Conclusion

	p010-Mourato
	1 Introduction
	2 Related Work
	3 Paddle Environment
	3.1 Invocation Tree View
	3.2 Heap View

	4 Implementation
	5 Conclusions and Future Work

	p011-Queiros
	1 Introduction
	2 The FGPE environment
	3 Related work
	3.1 Offline Strategies
	3.2 Other Tools

	4 The offline client-server optimization model
	5 The implementation of Client-side Evaluation Engine
	5.1 Cached interface for Gamification Service
	5.2 Client-side Gamification Service

	6 Conclusions

	p012-Bubenkova
	1 Introduction
	2 Background
	3 Proposed approach
	3.1 First iteration
	3.1.1 First iteration outcome

	3.2 Second iteration
	3.2.1 Second iteration outcome

	3.3 Third iteration
	3.3.1 Third iteration outcome

	3.4 Outcomes and Project Example

	4 Experiment setup and conduction
	4.1 Course Characteristics
	4.2 Conjectures

	5 Results
	5.1 Conjecture 1
	5.2 Conjecture 2
	5.3 Conjecture 3
	5.4 Conjecture 4

	6 Conclusion
	6.1 Interpretation of Results
	6.2 Challenges and Limitations
	6.3 Future work

	p013-Portela
	1 Introduction
	2 Background
	2.1 Learning Paths and Outcomes
	2.2 TechTeach and Similar Works

	3 Material and Methods
	4 Learning Path Model
	4.1 Strategy Rules
	4.2 Gamification Mechanisms

	5 Case Study
	5.1 Design
	5.2 Implementation
	5.2.1 Subject Plan
	5.2.2 Assessment Methods
	5.2.3 Gamification

	5.3 Analysis of the results

	6 Conclusion

	p014-Iosif
	1 Introduction
	2 Related Work
	2.1 Serious Games for Cybersecurity Education
	2.2 Industrial Code Review

	3 Methodology
	3.1 Context
	3.2 Game Artifact

	4 Results and Discussion
	4.1 Player Behavior Model
	4.2 Solved Challenges Counts and Percentages
	4.3 Time to solve a challenge
	4.4 Knowledge Exchange
	4.5 Discussion on Validity and Limitations

	5 Conclusions

	p015-Heeney
	1 Introduction
	2 Related Work
	3 The MIRTO Robotic Platform
	3.1 Software for MIRTO

	4 Implementation of Digital Twin
	4.1 High-Level System Architecture
	4.2 Implementation

	5 Conclusion and future work

	p016-Iosif
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Querying and Scraping GitHub for Repositories
	3.2 Data Extraction
	3.3 Analysis Method

	4 Results
	4.1 Number of Commits with mentions of CWE per Year
	4.2 CWE per year
	4.3 Programming Language vs CWE
	4.4 Lines changed vs CWE

	5 Discussion
	5.1 Implications for AI-Assisted Patching
	5.2 Commits with CWE
	5.3 Programming Language vs CWE
	5.4 Lines changed vs CWE

	6 Threats to Validity
	7 Conclusions and Future Work

	p017-RiegelCorreia
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions

	p018-Balaz
	1 Introduction
	2 Experiment
	2.1 ChatGPT Group
	2.1.1 Understanding the problem

	2.2 Independent Group
	2.2.1 Correct solutions
	2.2.2 Understanding the problem

	3 Conclusion

	p019-Queiros
	1 Introduction
	2 Literature review
	3 Implementation
	3.1 Exercise Generator
	3.2 Statement Evaluator
	3.3 H5P transformation

	4 Conclusion and Future Work

	p020-Peixoto
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions and Future Work
	A Inquiry

	p021-Bauer
	1 Introduction
	2 Related Work
	3 Early exploration
	4 Authoring Tools
	5 Ongoing and Future Work

