
Landmark Hub Labeling: Improved Bounds and
Faster Query Answering
Justine Cauvi #

École Normale Supérieure de Lyon, France
Department of Computer and Information Science, University of Konstanz, Germany

Ruoying Li #Ñ

Department of Computer and Information Science, University of Konstanz, Germany

Sabine Storandt #

Department of Computer and Information Science, University of Konstanz, Germany

Abstract
Hub Labeling (HL) is a state-of-the-art method for answering shortest-distance queries between node
pairs in weighted graphs. It provides very fast query times but also requires considerable additional
space to store the label information. Recently, a generalization of HL, called Landmark Hub Labeling
(LHL), has been proposed, that conceptionally allows a storage of fewer label information without
compromising the optimality of the query result. However, query answering with LHL was shown to
be slower than with HL, both in theory and practice. Furthermore, it was not clear whether there are
graphs with a substantial space reduction when using LHL instead of HL. In this paper, we describe
a new way of storing label information of an LHL such that query times are significantly reduced and
then asymptotically match those of HL. Thus, we alleviate the so far greatest shortcoming of LHL
compared to HL. Moreover, we show that for the practically relevant hierarchical versions (HHL and
HLHL), there are graphs in which the label size of an optimal HLHL is a factor of Θ(

√
n) smaller

than that of an optimal HHL. We establish further novel bounds between different labeling variants.
Additionally, we provide a comparative experimental study between approximation algorithms for
HL and LHL. We demonstrate that label sizes in an LHL are consistently smaller than those of HL
across diverse benchmark graphs, including road networks.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Route Planning, Shortest Path, Hub Labeling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.1

1 Introduction

Efficiently determining the shortest path distance between node pairs in a given weighted
graph G(V, E, c) is important for a multitude of applications, including navigation, vehicle
routing, and network design [3, 4, 13, 14, 15]. Using Dijkstra’s algorithm, such distance
queries can be answered in O(n log n + m) with |V | = n and |E| = m. However, if many
queries need to be answered on the same input graph, preprocessing methods can help to
tremendously reduce subsequent query times. One state-of-the-art method is Hub Labeling
(HL) [6]. In a HL, each node v ∈ V gets assigned a node label L(v) ⊆ V , and the shortest
path cost c(π(v, w)) is stored along for each w ∈ L(v). The labels need to fulfill the so called
cover property that demands that ∀s, t ∈ V : ∃v ∈ L(s) ∩ L(t) ∩ π(s, t). In other words, for
each shortest path, its end nodes need to have at least one common node from that path in
their respective labels. The node is then called a hub for s, t.

This allows for a very simple and fast query answering routine: For each v ∈ L(s) ∩ L(t)
compute c(π(s, v)) + c(π(t, v)), with both values being precomputed, and keep track of the
minimum. The resulting value is guaranteed to coincide with the shortest path distance

© Justine Cauvi, Ruoying Li, and Sabine Storandt;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 1; pp. 1:1–1:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:justine.cauvi@ens-lyon.fr
https://orcid.org/0009-0001-5444-8877
mailto:ruoying.li@inf.uni-konstanz.de
https://www.algo.uni-konstanz.de/team/li
https://orcid.org/0009-0004-9196-6413
mailto:sabine.storandt@inf.uni-konstanz.de
https://orcid.org/0000-0001-5411-3834
https://doi.org/10.4230/OASIcs.ATMOS.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

s

t

hub zone

perfect landmark zone perfect landmark zone

s t
v

w

s t
w

v

Figure 1 Top: Illustration of hub zone (green) and perfect landmark zone (purple) for the node pair
s, t. Bottom: Two LHL query answering scenarios for s, t with L(s)∩L(t) = {v, w}: In the left image
(assuming uniform edge weights), the best lower bound is realized via w with c(π(s, w))−c(π(t, w)) =
3 − 2 = 1 and the best upper bound is realized via v with c(π(s, v)) + c(π(t, v)) = 1 + 1 = 2. Here,
the upper bound is tight. In the right image, the best upper bound via v is 3 + 2 = 5 and the best
lower bound via w is 4 − 2 = 2. Here, the lower bound is tight.

between s and t. If the labels are stored sorted by ID of the contained nodes, the intersection
of two labels can be computed in linear time. Thus, query answering only takes O(|L(s)| +
|L(t)|) ∈ O(Lmax) where Lmax := maxv∈V |L(v)|.

While HL allows for fast query answering, storing labels that meet the cover property often
requires a substantial amount of space. Landmark Hub Labeling (LHL) is a generalization of
HL which uses a weaker cover property and thus potentially allows for smaller label sizes
[16]. The underlying observation is that if s and t both store the distance to a node v that is
not on the shortest path from s to t but on a shortest path from a to b that contains both
s and t, one can still deduce the correct shortest path distance between s and t, now by
computing |c(π(s, v)) − c(π(t, v))|. Such a node v where |c(π(s, v)) − c(π(t, v))| = c(π(s, t))
is also called a perfect landmark for s, t. The relaxed cover property of LHL now demands
that for each s, t ∈ V their label intersection L(s) ∩ L(t) either contains a hub or a perfect
landmark for s, t. The issue is that query answering becomes more intricate with LHL, as
one needs to figure out whether a hub or a perfect landmark leads to the tight distance
bound. To accomplish this, each node in I := L(s) ∩ L(t) is considered in both roles. This
results in an upper bound UB := minv∈I c(π(s, v)) + c(π(t, v)) as well as a lower bound
LB := maxv∈I |c(π(s, v))−c(π(t, v))| on the shortest path distance c(π(s, t)) where either UB

or LB needs to be tight, see Figure 1 for an illustration. To check if LB is tight, one needs to
reconstruct the path from (w.l.o.g.) s to v up to a distance of LB and see whether t is found.
If this is the case, c(π(s, t)) = LB follows, otherwise it is certified that c(π(s, t)) = UB. To
make the path traversal step efficient, a variant of LHL called path-consistent LHL (PC-LHL)
was introduced in [16]. It allows to reconstruct the shortest path from a node s to one of its
stored label nodes v in O(k) where k denotes the number on edges on that shortest path.
However, this still results in distance query times of O(Lmax + D) where D denotes the
diameter of the input graph. Depending on the structure of the input graph, the query time
might thus be significantly larger than the O(Lmax) query time of HL.

In this paper, we show that one can actually answer distance queries with a PC-LHL also
in O(Lmax) by storing and indexing the labels in a novel manner. Furthermore, we show
that both in theory and practice substantial space savings are possible when imposing the
weaker cover property of LHL instead of the stronger one required for HL.

J. Cauvi, R. Li, and S. Storandt 1:3

1.1 Related Work

Hub Labeling (HL) has been studied extensively, both from a theoretical and practical
perspective. Constructing a Hub Labeling (HL) with minimum total or average label size
poses an NP-hard problem [2]. Interestingly, the complexity of computing a HL with minimum
average label size is still open on trees. For this special case, a PTAS was described in [1]. In
general graphs, an approximation algorithm with a factor of O(log n) and a running time of
O(n3 log n) is known [2, 8], as well as an O(log D) approximation algorithm which is based
on a LP-relaxation [1]. For practical applications, however, oftentimes fast heuristics are used
instead of the slower and more intricate approximation algorithms. Usually, those construct
a special type of HL, called a hierarchical HL (HHL) [7, 8, 12]. Here, nodes are ranked by
some notion of importance and the node label of a node v can only contain nodes that have
at least the same rank as v. Approximation algorithms were also studied for HHL, with the
best known guarantee being in O(

√
n log n) [2].

As storing the labels of a HL or a HHL requires a lot of memory, label compression
techniques have been investigated [9]. Recently, Landmark Hub Labeling (LHL) has been
introduced as a complementary way to reduce the label size [16]. It was shown that the
O(log n) approximation algorithm for HL can be adapted to also work for LHL. Furthermore,
a O(log n) approximation algorithm with a running time of O(n6) was proposed for the
path-consistent variant (PC-LHL) as well as a heuristic construction methods that run in
O(n3) [16, 17]. However, the query time analysis as well as a proof-of-concept-study revealed
worse query times when using the PC-LHL framework instead of HL.

1.2 Contribution

In this paper, we provide numerous new structural insights into LHL.
We first carefully study the relationships between different LHL and HL variants. For

example, we prove that for the hierarchical variants (HLHL and HHL), the optimal label size
of the HLHL is always smaller than that of a HHL and there exist graphs where the factor
between the respective label sizes is Θ(

√
n). This label size gap even applies to HHL and

PC-HLHL, where PC-HLHL denotes the practically relevant path-consistent HLHL variant.
We show several further novel gaps and bounds, see Figure 2 for an overview of results on
tree graphs, and Figure 4 for results on general graphs. Our new gaps illustrate the great
potential of reducing the space consumption when using LHL instead of HL.

Next, we prove that computing an optimal PC-HLHL is NP-hard by reduction from HHL,
which itself was proven to be NP-hard in [2]. To nevertheless see whether the theoretical space
improvements we show for (PC-H)LHL over (H)HL also translate into practical improvements,
we describe how to efficiently implement known and novel (approximation) algorithms. In
an experimental study on diverse benchmark graphs, we demonstrate that label sizes of LHL
are indeed consistently smaller than those of HL.

Finally, we tackle the most pronounced weakness of LHL with respect to HL, which is
the query time of O(Lmax + D). The +D term stems from the necessity to conduct a path
traversal in the LHL query in order to check whether the computed lower or upper distance
bound is tight. We describe a new method for storing labels of a (PC-)LHL such that no
path traversal is needed anymore for this check. Accordingly, we can now match the O(Lmax)
query time of HL. We thus establish LHL as a viable alternative to HL, both with respect to
space consumption and query time.

ATMOS 2024

1:4 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

2 Preliminaries

Throughout the paper, we assume to be given an undirected graph G = (V, E, c) with positive
edge costs c : E → R+ and a unique shortest path between any pair of nodes s, t ∈ V . The
latter property can be ensured via symbolic perturbation of the edge costs. We use π(s, t) to
denote the shortest path between nodes s, t ∈ V and c(π(s, t)) = c(π(t, s)) for its cost.

We already defined Hub labeling (HL) and Landmark Hub labeling (LHL) in the in-
troduction. We now provide additional definitions for the labeling variants which are also
studied in the remainder of the paper.

▶ Definition 1 (Hierarchical Hub Labeling). A HL L is a Hierarchical Hub Labeling (HHL) if
there is a ranking r : V → {1, . . . n}, with n = |V |, such that for every v ∈ V , all w ∈ L(v)
are such that r(w) ≥ r(v).

For a fixed ranking r, one can find in polynomial time the HHL with minimum total label
size which is called the canonical HHL.

▶ Definition 2 (Canonical HHL). Given a node ranking r, the canonical HHL is such that,
for v, w ∈ V , w ∈ L(v) if and only if there is a shortest path starting at v on which w has
the highest rank.

We can also define a hierarchical LHL (HLHL) in the same way as HHL by allowing all nodes
to contain only nodes of higher or equal rank in their label. Another important property on
labelings that we will explore is path-consistency.

▶ Definition 3 (Path-Consistent Labeling). A labeling is path-consistent (PC) if for each
w ∈ L(v), we also have w ∈ L(u) for all u on a shortest path from v to w.

In what follows, we will use PC-(L)HL to refer to a path-consistent (Landmark) Hub
Labeling and PC-H(L)HL to denote a path-consistent hierarchical (Landmark) Hub Labeling.

It was shown in [16] that every canonical HHL is path-consistent. Given a ranking r,
we can also define the canonical PC-HLHL, which is the PC-HLHL respecting r with the
smallest labeling size [16].

▶ Definition 4 (Canonical PC-HLHL). Given a node ranking r, the canonical PC-HLHL is
such that, for v, w ∈ V , w ∈ L(v) if and only if there is a maximal shortest path containing
v and w on which w has the highest rank.

Finally, also the concept of a Landmark Labeling (LL) was defined in [16].

▶ Definition 5 (Landmark Labeling). A Landmark Labeling (LL) is a labeling L : V → 2V

which satisfies the landmark cover property, that is for every pair of nodes s, t ∈ V , there is
a node v ∈ L(s) ∩ L(t) which is a perfect landmark for s, t.

Clearly, LL is a special type of LHL just like HL.

3 Relationships between Labeling Variants

With the plethora of labeling variants that have been proposed in the literature, it is interesting
to investigate how optimal label sizes behave with respect to each other. Obviously, label
sizes of more general variants are at most as large as those of the respective special cases.
But we are also interested in the size of the gaps that can arise between them.

In this section, we provide novel results on trees and general graphs, and summarize the
known gaps between different LL, LHL, and HL classes in relationship diagrams.

J. Cauvi, R. Li, and S. Storandt 1:5

3.1 On Trees
In [1], the authors show that the optimal HL on trees is hierarchical. Based on the same
idea we can show that the optimal PC-LHL on trees is also hierarchical.

▶ Theorem 6. For every tree T = (V, E) and any valid PC-LHL L for T , there exists a
hierarchical PC-LHL L′ such that |L′| ≤ |L|.

Proof. The idea is to construct a hierarchical PC-LHL L′ based on the given L without
increasing the label size.

For each u ∈ V , let L(u) be the label set of u, we define an induced subtree Tu ⊆ T in
the same way as in [1]: Let u be the root of Tu, there is a path π(u, v) ∈ Tu if v ∈ L(u). A
vertex w belongs to Tu if there is a label v ∈ L(u) such that w ∈ π(u, v). We call this tree
the label tree of u on T respects L(u).

We now show that Tu ∩ Tv ̸= ∅, for every u, v ∈ V . Let w ∈ L(u) ∩ L(v), then w ∈ Tu

and w ∈ Tv. Due to Helly Property ([10],[11]), given a family of subtrees of T , if every
two subtrees in the family intersect, then all subtrees intersect on at least one node r. To
construct L′, we first let L′ = L. Secondly, we assign the node r the highest rank and add r

into the label set L′ of every node, then remove the labels w ∈ L′(u) for u ∈ T , such that
r ∈ π(u, w). Now L′ is still a valid PC-LHL with |L′| ≤ |L|.

Let T1, . . . , Tk be the subtrees rooted at the neighbors of r. The shortest paths between
u, v are covered by r, where u ∈ Ti, v ∈ Tj , i, j ∈ {1, . . . , k}, i ̸= j. Therefore, we can deal
with the subtrees T1, . . . , Tk separately. Let Ti be one subtree rooted at the neighbor of r.
Let π(r, w) be the degree two path such that any node on the path, except r and w, has
degree two, and the degree of w is not two. Let u ∈ π(r, w) \ {r, w}, then the shortest path
from any node in T can be covered by r. We, therefore, remove the labels in v ∈ L(u) such
that v ̸= r and v ̸= u. Now L′ is still valid and |L′| ≤ |L|. If Ti for i ∈ {1, . . . , k} is a path,
we assign all nodes in Ti the lowest ranks, then L′[Ti] is a valid hierarchical PC-LHL.

We obtain the subtrees that are not just a path. Let T ′ be a subtree after removing the
degree 2 chain from r. Let l1, . . . , lp be the leaves in T ′. Then r ̸∈ π(li, lj) for i ≠ j. There
exists a node u ∈ L(li) ∩ L(lj), and u ∈ L(w) for all w ∈ π(li, lj). This means all nodes that
lie on the path of two leaves contain a common label. Hence, as a pair of nodes always lies
on a path from a leaf to another leaf, for any u, v ∈ T ′, L(u) ∩ L(v) ̸= ∅. Therefore, the label
trees T ′

u, T ′
v ⊆ T ′ have an intersection. Again according to the Helly Property, all label trees

have a common intersection. We assign the node the next highest rank.
For each subtree, we can apply this construction recursively, and the resulting L′ is

hierarchical and PC with |L′| ≤ |L|. ◀

Since the optimal HHL is canonical and thus also PC, HHL is a special case of PC-HL. Hence,
the optimal labeling of PC-HL on trees has the same size as HHL. It thus follows that it also
has the same size as HL.

In Figure 2, we present the known optimal label size relations between different labelings
on trees, and the blue color highlights the relations of our contribution in this work. On trees,
the optimal LHL has the smallest size of any labeling. For a star graph with n nodes, the
average label size in optimal LL is O(n), where in the optimal LHL it is constant. For a path,
the optimal solution of HL has a maximum label size of O(log n), while the optimal solution
of LHL has a maximum size of O(1). The HLHL is a special labeling of LHL, but whether
the optimal LHL on trees is hierarchical is still open. As we have shown that the optimal
PC-LHL on trees is hierarchical and PC-HLHL is a special case of HLHL, we conclude that
the optimal HLHL is at most as large as PC-LHL, PC-HLHL, and canonical PC-HLHL.

ATMOS 2024

1:6 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

LHL

HLHL

PC-HLHL

Hierarchical

Non-Hierarchical

Landmark Hub Labeling Hub Labeling

LL

Landmark Labeling

On Trees

PC-HHLCanonical PC-HHL

Canonical HHL HHL

=

=

=

=
PC-HLHL

Canonical PC-HLHL

=
PC-LHL

=

=

=

=

Figure 2 Relation of optimal solution between different labelings on trees. This diagram consists
of three labelings, LL, LHL, and HL. In particular, we present the relations for optimal solutions
on hierarchical and PC labeling of LHL and HL. The arrows point to the labeling whose optimal
solution is always smaller or equal to the other one. The function classes on the arrow are the largest
known factors of the optimal label size of the larger labeling to the smaller labeling on particular
tree families. Equal means that both labelings have the same optimal label size on trees. The blue
highlighted relations are our contributions.

3.2 On General Graphs
In [2] it was shown that the gap between HHL and HL can be in Ω(

√
n). We prove that the

optimal HL on the same instance satisfies the PC property. Thus, the gap between HHL
to both PC-HL and PC-LHL is also at least a factor of Ω(

√
n). Using the same example,

we show that the gap between hierarchical and non-hierarchical (PC-)LHL is also at least a
factor of Ω(

√
n).

▶ Theorem 7. There is a graph family for which the optimal HLHL size is Ω(
√

n) times
larger than the optimal label size of LHL.

Proof. We take the same example as in [2] (that is the graph in Figure 3 without the bi

nodes) in which they prove that the gap between HL and HHL can be Ω(
√

n). They exhibit a
HL for the considered graph of total labeling size in O(n). Each node has to contain at least
one label in the label set, thus the smallest summed label size of a graph without isolated
nodes is in O(n). Since HL is also an LHL, the optimal LHL size is also in O(n). We show
that the total size of any HLHL is Ω(n 3

2). Now we consider a ranking of the nodes on the
clique, let r(c1) < ... < r(ck), and consider pix and cj for i < j and 1 ≤ x ≤ k. The only
shortest path containing pix and cj is (pix, ci, cj). Since ci cannot be in the label of cj , then
either pix is in the label of cj or cj is in the label of pix. This produces at least one label for
each such pair. The total number of such pairs is:

k

k−1∑
i=1

i = k2(k − 1)
2 ∈ Ω(n 3

2).

Then the total label size of HLHL is Ω(n 3
2). Hence, the gap between the optimal HLHL and

the optimal LHL is Ω(
√

n). ◀

J. Cauvi, R. Li, and S. Storandt 1:7

clique of size k ckc1

s

b1 bk

pkkp11 pk1

Figure 3 Example graph with Θ(
√

n) label size gap between HHL and HLHL.

Now consider the gap between PC-HLHL and PC-LHL. It is easy to verify that the HL
proposed in [2] is PC. Furthermore, PC-HLHL is an HLHL. It follows that in this graph
family, the optimal PC-HLHL size is Ω(

√
n) times larger than the label size of PC-LHL.

Note that the graph in Figure 3 without the bi nodes contains non-unique shortest paths
from ci to s. However, one can assign each {ci, pi1} and each {pi1, s} edge with a cost of 2/3,
and all other edges with a cost of one. Then the graph has unique shortest paths and the
optimal label sizes of the discussed labelings are still the same.

We now modify their example and show the gap between the optimal label size of HHL
and the optimal label size of (PC-)HLHL is Ω(

√
n).

▶ Theorem 8. There is a graph family for which the optimal HHL size is Ω(
√

n) times larger
than the optimal label size of (PC-)HLHL.

Proof. Consider the undirected graph in Figure 3. The graph consists of k stars, denoted
as c1, . . . , ck. Each star has k leaves, denoted as pi1, . . . , pik for a star with center ci. The
centers of the stars form a clique. The leaves of each star connect to another center denoted as
b1, . . . , bk. Finally, all leaves connect to the node s. The total number of nodes is k2 + 2k + 1,
and the length of every edge is 1.

Now consider the following HLHL for this graph. The nodes are sorted according to their
ranking from high to low: s, bk, . . . , b1, ck, . . . , c1, pkk, . . . , p11. The node s is in every label
set. The label bi is in the label set of nodes pi1, . . . , pik, c1, . . . , ck, and bi. And ci is in the
label set of node cj where j ≤ i. Finally, every p node adds itself to its label set. It is easy to
verify the cover property and path consistency holds. Each of node s, b and p has a label size
of O(1). The label size of every c node is in O(k). It follows that the total label size is O(n).

Now we show the optimal HHL size is in Ω(n 3
2). W.l.o.g., let r(c1) < r(c2) < · · · < r(ck).

Consider any pix and cj where i < j, the shortest path between them is π(pix, cj) = (pix, ci, cj).
Since ci is not in L(cj), then either pix in L(cj) or cj in L(pix). Due to the same reason as
in Theorem 7, the total label size of HHL is Ω(n 3

2). Hence, the gap between the optimal
(PC-)HLHL and the optimal HHL is Ω(

√
n). ◀

In Figure 4, the label size bounds between different labels are shown for general graphs.
Clearly, the gaps are at least as large as those for trees. LHL has the smallest optimal label
size. Between the LHL and HL labels, the optimal HHL is the largest. There exists a graph
family such that every optimal hierarchical labeling of LHL and HL is at least a factor of
Ω(

√
n) larger than the non-hierarchical one. The gap between HHL and (PC-)LHL is at

least a factor of Ω(
√

n) on a graph family that allows multiple shortest paths between two
nodes. For unique shortest paths, the known gap is at least a factor of Ω(log n) on paths.

ATMOS 2024

1:8 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

LHL

HLHL

PC-HL

HL

PC-LHL

PC-HHLCanonical PC-HHL

Canonical HHL HHL

=

=

=
=

HHL

Hierarchical
Non-Hierarchical

Landmark Hub Labeling Hub Labeling

LL

Landmark Labeling

PC-HLHL

Canonical PC-HLHL
=

PC-HLHL

On General Graphs

Figure 4 Relation of optimal solution between different labelings. The dashed arrows mean that
the gap of the corresponding labelings is found on a graph family with non-unique shortest paths.

4 NP-Completeness of PC-HLHL

In this section, we argue that finding an optimal PC-HLHL is NP-complete by a reduction
from HHL. The reduction takes an instance of HHL consisting of a graph G = (V, E) and an
integer k and constructs a graph G+ and an integer k′ such that the following conditions are
equivalent: (i) There is an HHL of size k in G. (ii) There is an PC-HLHL of size k′ in G+.
We prove the following theorem based on this reduction idea.

▶ Theorem 9. The problem of deciding whether an undirected graph has a PC-HLHL of size
at most k is NP-complete.

Before showing the reduction, we first prove the following useful Lemmas. Note that for
the cover property, we do not consider the pair of (v, v) for v ∈ V . Therefore, a node v is in
its label set if and only if it is in the label set of other nodes.

▶ Lemma 10. Given a graph G = (V, E) in which all nodes in this graph have a degree of at
least 3, and there is a unique shortest path between every two nodes. Let G+ = (V +, E+) be
the graph obtained by connecting one single node to each node in G. Denote v′ ∈ V + \ V as
the node added to the node v ∈ V , called leaf of v. There is an optimal PC-HLHL such that
leaves have lower ranks than non-leaf nodes and no leaf is contained in any label set.

Proof. Any maximal geodesics that v′ lies on contains v too, and v′ is always one of the end
nodes. Let L be one optimal PC-HLHL on G+, with the ranking r which is also a canonical
PC-HLHL. It was shown in [16] that the canonical PC-HLHL is the minimum PC-HLHL
respected to the rank r. We now construct a canonical PC-HLHL ranking r′ such that all
leaves have a lower rank than its neighbor and the respected labeling L′ has a size at most
as the size of L. For any r(u′) > r(u), let r′(u) = r(u′) and r′(u′) = r(u), we now show
the total label set size does not change. Case one: For a node v such that u′ ∈ L(v), its
label set does not increase. Since u lies on all the maximal geodesics that u′ lies on. Then
L′(v) ⊆ L(v) \ {u′} ∪ {u}. Case two: For a node v such that u ̸∈ L(v), its label set does not
increase either. Assume that after the ranking swap, there is a node v that u ̸∈ L(v), but
now u is in L′(v). Then it follows that u has now the highest rank on one maximal geodesic
π′ ∈ π+(v, u), where π+(v, u) is the set of maximal geodesics that contain both u and v. Let

J. Cauvi, R. Li, and S. Storandt 1:9

s, t be the end nodes of the maximal geodesic and π′ = π(s, v) ∪ π(v, u) ∪ π(u, t). Then u has
now the highest rank on the maximal geodesic π(s, u′). Then u′ has the highest rank on it in
the rank r. It follows that u′ must be in L(v). It is a contradiction. Therefore, for a node v,
if u′ ̸∈ L(v), then u ̸∈ L′(v), their label set size does not increase either. We update the rank
for such leaves using the same methods until every leaf has a rank lower than their neighbor,
and |L′| = |L|. It follows that any label set contains no leaf. Furthermore, one can assign r′

in the way that all leaves have lower ranks than the nodes in V and it is still optimal. ◀

▶ Lemma 11. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
Let L be an optimal PC-HLHL such that all leaves have lower ranks than the nodes in V ,
then for a leaf v′, its label set L(v′) = L(v).

Proof. Let L be an optimal PC-HLHL such that all leaves have lower ranks than the nodes
in V . Due to path consistency, for a leaf v′, L(v′) ⊆ L(v). Now we show L(v) ⊆ L(v′).
Assume that there is a label w ∈ L(v) and w ̸∈ L(v′). Since w ̸∈ L(v′), w does not have the
highest rank on any maximal geodesics end by node v′, and any shortest path reaches v is a
part of one maximal geodesics end by v′. Therefore, on any maximal geodesics that contains
v, w does not have the highest rank. According to canonical property, w ̸∈ L(v). This leads
to a contradiction. Therefore L(v) ⊆ L(v′) and L(v) = L(v′). ◀

▶ Lemma 12. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
Let L be an optimal PC-HLHL on G+ such that all leaves have lower ranks than the nodes
in V , and L(G+[G]) be the sublabeling of a PC-HLHL in G+ that is induced by the graph G,
then L(G+[G]) is an HHL for nodes in V .

Proof. Let L be an optimal PC-HLHL such all leaves have lower ranks than non-leaf nodes.
We show that there is no landmark in L(G+[G]). Assume that there is a landmark w ∈ L(u)∩
L(v)∩π+(u, v), and L(u)∩L(v)∩π(u, v) = ∅. It follows L(u′)∩L(v′)∩π(u′, v′) = ∅. However,
L is a valid PC-HLHL. This leads to a contradiction. Therefore, L(u) ∩ L(v) ∩ π(u, v) ̸= ∅
for u, v ∈ V . Hence, L(G+[G]) is an HHL for G. ◀

▶ Lemma 13. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
The graph G has an HHL of size k if and only if G+ has a PC-HLHL of size 2k.

Proof. Let |V | = n, |E| = m. It follows |V +| = 2n and |E+| = m + n. Assume G has
a canonical HHL L of size k with the rank r. We construct a canonical PC-HLHL of G+

as follows. We assign each non-leaf node v in G+ with the rank of r(v) + n. And assign
the rank of leaves randomly from 1 to n. The label set of non-leaf stays the same, and for
each leaf v′ let L(v′) = L(v). Since all maximal geodesics which end by a leaf v′ contain
the node v, and all shortest paths reaching node v are covered in the HHL, therefore all
maximal geodesics are also covered by assigning L(v′) = L(v). And the canonical HHL is
path-consistent. Hence, the constructed labeling is a canonical PC-HLHL with a size of 2k.

Assume that L is an optimal PC-HLHL of G+ of size 2k. Let L be an optimal PC-HLHL L

such all leaves have lower ranks than the nodes in V . According to Lemma 11 and Lemma 12,
L(G+[G]) is an HHL for nodes in V with |L(G+[G])| = k. Assuming that L(G+[G]) is not
an optimal HHL, then we can construct a PC-HLHL for G+ with a smaller HHL, then L is
not optimal. It is a contradiction. Therefore, the optimal HHL size is k. ◀

5 Construction Algorithms

In [6], the authors formulate HL as a weighted set cover problem (U, S) so that one can
use a greedy algorithm to compute an O(log n) approximation of the optimal solution. The
universe U is a set of uncovered node pairs, S is the collection of all subsets of uncovered

ATMOS 2024

1:10 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

pairs that can be covered by the same node. They introduce the center graph of a node
v for the undirected graph as follows. In the center graph Gv = (V ′, Ev), for all u, w ∈ V

there is an edge between node u and w if and only if they are not yet covered and v lies on
the shortest path between them. The center graph does not contain isolated nodes. The
greedy algorithm chooses the maximal density subgraph (MDS) of all center graphs and
adds the center to the label set of the nodes in the MDS. It removes the covered pairs from
U and repeats until all pairs are covered. This greedy algorithm can also be applied to
LHL [16]. The difference from the HL formulation is that for a center graph Gv, there is an
edge between uncovered pair (u, w), if and only if v lies on some shortest path containing u

and w. The O(log n) approximation factor still holds. We call this algorithm w-LHL.

5.1 Improvements
A naive way to compute the LHL using the greedy algorithm is to precompute all maximal
shortest paths (also called geodesics). To construct the center graph of a node v, one must
check for each uncovered pair (s, t) whether v lies on one of their maximal geodesics. This
can be done by iterating over all maximal geodesics containing v, and checking whether
they also contain s and t. However, this takes linear time to check. This implementation
costs O(n3) space and O(n5) running time. We propose two improvements for computing
the greedy algorithm efficiently. The improved algorithm needs only O(n2) space and has a
running time of O(n4 log n). However, it is faster in practice.

The first improvement is to efficiently check whether a node can cover a pair. Instead
of storing all maximal geodesics, one can use a distance matrix to store only the shortest
path distances. This reduces the space consumption from O(n3) to O(n2). Given a node
v and a pair (s, t), v is a hub or a perfect landmark if and only if c(s, v) + c(v, t) = c(s, t)
or c(s, t) + c(v, t) = c(s, v) or c(s, v) + c(s, t) = c(v, t). Therefore, checking whether a node
covers a pair can be done in constant time. The second improvement is to avoid unnecessary
recomputation of the MDS of a node’s center graph every round by using “lazy updates”.
Note that the MDS of a graph cannot be increased by removing nodes or edges in the graph.
We use a max-heap to store for each node the density of the MDS of its center graph. In
each iteration, a threshold d is initially set to −∞. While the node v at the top has a
corresponding stored density of at least d, we recompute the density md of its new center
graph and update d = max(d, md). Then, the node is pushed back to the heap. Note that
the density may decrease because some pairs may be covered from the last round. Finally, we
cover the pairs in the best MDS with the respective center node. For the nodes with lower
density of the center graph, the MDS is not updated every round to avoid the redundant
calculation. The total running time is now in O(n4 log n).

5.2 PC-Labeling
The resulting label from the greedy algorithm is not necessarily PC. Given a valid LHL, one
can produce a PC-LHL in polynomial time. We run Dijkstra for each node v until it reaches
all nodes w with v ∈ L(w). Then we check for the resulting shortest path tree whether there
is a node u such that v ̸∈ L(u). If so, we add v into the label set of u, thus ensuring PC.

5.3 Hierarchical LHL
In [2], authors propose the weighted greedy HHL algorithm, which selects the whole center
graph of maximum density instead of its MDS. Since every center graph is only chosen
once, the resulting labeling is hierarchical. We now also select the whole center graph for

J. Cauvi, R. Li, and S. Storandt 1:11

hierarchical LHL. This algorithm is called w-HLHL. Another greedy algorithm is selecting
the center graph which has the most edges. We call this g-(H)LHL. Note that w-HLHL and
g-(H)LHL are not necessarily PC. For w-HLHL and g-(H)LHL, one can also apply the “lazy
updates”. The heap now stores the density of the whole center graph for w-HLHL or the
number of edges for g-(H)LHL. The respective running times are in O(n3 log n).

6 Improved Query Answering

In an LHL distance query for nodes s, t ∈ V , we first compute the lower and the upper
distance bound LB and UB and then check whether LB is tight by traversing the path from
(w.l.o.g.) s to the assumed perfect landmark node v up to distance LB. If we detect t, a
path from s to t with cost equal to LB is found and thus this is the correct distance value.
The path traversal from s to v can easily dominate the query time.

To improve the query time, we need a more efficient way to characterize whether v is
indeed a perfect landmark for s, t. To accomplish this, we now assume that the shortest
path tree Tv emerging from v is known. We furthermore denote with LCAv(s, t) the lowest
common ancestor of s and t in the shortest path tree rooted at node v. The following lemma
describes the connection between Tv and the role of v for s, t in an LHL query.

▶ Lemma 14. The node v is a perfect landmark for s, t ∈ V if and only if LCAv(s, t) = s

or LCAv(s, t) = t. The node v is a hub for s, t ∈ V only if LCAv(s, t) = v.

Proof. To be a perfect landmark, there needs to be a shortest path from w.l.o.g. s to v

over t. Thus, in Tv, t has to be an ancestor of s and LCAv(s, t) = t follows. To be a hub,
the shortest path from s to t needs to go over v and thus it follows LCAv(s, t) = v. These
observations hold because we have a unique shortest path between each pair of nodes. ◀

It was shown in [5] that for a given tree graph Tv, an LCA data structure can be computed
in linear space and time that allows to answer LCAv(s, t) queries in O(1). Below, we discuss
how to leverage the lemma and this data structure to improve LHL query times without
increasing the asymptotic space consumption and to efficiently check whether a given labeling
fulfills the weak cover property.

6.1 An Alternative Method for Label Storage
Conventionally, each node simply stores its labels as a list of nodes with corresponding
distance values (sorted by node ID to enable efficient computation of label intersections).
But to make use of Lemma 14, we need a label-centered perspective. We thus propose
the following alternative way to store label information: Each node v ∈ V stores a partial
shortest path tree T ∗

v defined as the smallest subtree of Tv that contains all nodes w with
v ∈ L(w). Shortest path distances are stored along with the tree nodes as well as a pointer
to the root node. For each T ∗

v , we compute an LCA data structure as described above.
The nodes then additionally hold a list of pointers to their positions in these partial

shortest path trees, sorted by the ID of the respective root node. On query time, the lists of
s and t are processed and common root node IDs are identified in linear time. For each such
root node v, we then query the LCA data structure to check whether v is a perfect landmark
for s, t according to Lemma 14. If that is the case, we can immediately abort the procedure
and return the respective distance. Otherwise, we check whether LCAv(s, t) = v and if that
is the case, update the UB value (initially set to ∞) if necessary. If no perfect landmark was
detected, we return the UB value at the end which is now certified to be correct. We thus
get the following corollary.

ATMOS 2024

1:12 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

v

s

t

s

t

s

t

v v vw

Figure 5 In the left image, the shortest path tree from node v (marked red) is depicted and
nodes w with v ∈ L(w) are marked blue. In the three images to its right, the compressed tree is
shown and different query answering scenarios are indicated. In the first, LCAv(s, t) is neither s, t

nor v and thus v is not a perfect landmark or a hub for s, t. In the second, LCAv(s, t) = t and thus
v is a perfect landmark. In the third, LCAv(s, t) = v and thus v is a potential hub for s, t.

▶ Corollary 15. Distance queries can be answered with LHL in O(Lmax).

However, compared to simply storing L(v) with every node v ∈ V , we might have increased
the space consumption significantly by also storing T ∗

v . For PC-LHL, this is luckily not the
case as shown in the next lemma.

▶ Lemma 16. In a PC-LHL, we have
∑

v∈V |L(v)| =
∑

v∈V |T ∗
v |.

Proof. The PC property demands that for a node v ∈ L(w) also all nodes u on the shortest
path from w to v have v in their label L(u). Therefore, if we consider T ∗

v , we know that for
each u ∈ T ∗

v we also have v ∈ L(u). The lemma follows. ◀

Accordingly, the space consumption is at most doubled by the alternative method to store
the label information. But as L(v) is replaced by a list of pointers, it demands at most half
of the space than it takes to store the node ID and the distance explicitly, reducing the
overhead further. Moreover, with T ∗

v being stored, we can also answer path queries very
efficiently by simply traversing the respective tree edges. To answer path queries with (H)HL
efficiently, either substantially larger query times are necessary or additional information
needs to be stored with every label [16]. With our method we can guarantee to answer path
queries in O(Lmax + k) where k denotes the number of edges on the shortest path.

For non-PC LHL, the summed size of the partial shortest path trees T ∗
v might indeed

be much larger than the summed label sizes. However, we can use the same trick as
proposed in [9] (there applied to the labels themselves for later compression) to also ensure∑

v∈V |L(v)| =
∑

v∈V |T ∗
v | as for PC-LHL. The idea is simply to only keep nodes w ∈ T ∗

v

with v ∈ L(w) and insert shortcuts between w, w′ ∈ T ∗
v if the shortest path w, .., w′, ..v is

part of Tv but for all nodes u on the shortest path from w to w′ it yields v /∈ L(u). Figure 5
illustrates this concept as well as how to use the compressed T ∗

v for query answering.
So while for the query answering routine described in [16] the PC-property was vital to

achieve a query time in O(Lmax + D), we can now guarantee query times in O(Lmax) even
for non-PC LHL based on our novel method to store the label information.

6.2 LHL Verification
With our improved query answering routine described above, we can also efficiently check
whether a given labeling L is a feasible LHL. We compute the shortest path trees rooted at
v for all v ∈ V and the respective LCA data structures. For each node pair s, t, we can then
check in Ts the correct distance and compare it to the distance obtained by running the
LHL query algorithm. If these do not match for some pair, L is not a valid LHL. This check
procedure requires O(n2) space, a preprocessing phase in O(nm + n2 log n) and a running
time for the verification in O(n2Lmax).

J. Cauvi, R. Li, and S. Storandt 1:13

Table 1 Benchmark set summary.

Benchmark Set # Instances |V | |E| |E|/|V |

OSM 12 [100, 2000] [99, 2132] 1
PACE 100 [10, 491] [15, 4100] [1, 32]

7 Experiments

We implemented the approximation algorithms described in Section 5 in C++, including
the lazy variants. The primary goal of the evaluation is to compare HL, HHL, (PC-)LHL
and HLHL label sizes in practice. As shown in Table 1, we use road networks extracted
from OpenStreetMap1 (OSM) as well as the PACE challenge 2020 benchmark 2. The PACE
challenge 2020 benchmark contains a diverse set of graphs (100 instances in total) with
number of nodes up to 500 nodes and density up to 32. Due to the large running times
of the approximation algorithms, we restricted our tests to road networks with up to 2000
nodes (12 graphs in total). Experiments were conducted on a single core of an AMD Ryzen
Threadripper 3970X (3.6 GHz) with 128 GB main memory. The time-out was set to 20
minutes per instance.

g-HHL w-HL w-HHL g-HLHL w-LHL PC w-LHL w-HLHL

10−1

100

101

L
−
L

m
in

Figure 6 Label size comparison on the PACE benchmark set. The depicted value is the difference
between the average label size and the minimal average label size among the solutions of all algorithms.
Note the logscale of the y-axis.

Figure 6 and Table 2 show the label size comparison on the PACE benchmark set. In
compliance with our theoretical results, the LHL sizes are in general significantly smaller
than the HL sizes. In 95 out of 100 instances, the smallest label size is returned from one
of the (H)LHL algorithms. The relative difference of HL to LHL size is up to a factor of
34.01 (on a graph with a density of 15). For instances with a density less than 2, w-HLHL
computes on average smaller label sizes than w-LHL, which is somewhat surprising. For
instances with higher density, w-LHL performs best overall. The PC-LHL constructed with
our augmentation algorithm is smaller than w-HL in 51 out of 100 instances but we still
observe that enforcing this property increases the label size significantly compared to the
other LHL variants. Thus, our new query answering routine described in Section 6, which
does no longer rely on the PC-property, is very useful to also keep the label size small.

Figure 7 and Table 3 show the results on the OSM benchmark set. We observe similar
trends as for the PACE instances. The LHL algorithms consistently produce smaller label
sizes. In fact, w-HLHL computes the smallest labeling in all instances. On average, each

1 https://www.openstreetmap.org
2 https://pacechallenge.org/2020/td

ATMOS 2024

https://www.openstreetmap.org
https://pacechallenge.org/2020/td

1:14 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

g-HHL w-HL w-HHL g-HLHL w-LHL PC w-LHL w-HLHL
0

2

4

L
−
L

m
in

Figure 7 Label size comparison on the OSM benchmark set. The depicted value is the difference
between the average label size and the minimal label size among the solutions of all algorithms.

node has at least two more labels in HLs than in LHLs. While this does not sound like a lot,
we remark that with every decrease of the average label size by 1 we save space proportional
to the size of the graph. The relative difference is up to a factor of 3, even on these rather
small instances. We expect this gap to grow further on larger instances. Again, enforcing
the PC property leads to larger label sizes and thus should be avoided. Alternatively, there
might be other construction algorithms that take the PC property directly into account and
thus produce smaller PC-LHL.

Regarding the construction time, the w-HLHL algorithm without lazy updates could not
compute the result within 20 minutes on the four largest road network instances, while the
engineered one finished in time on all of them. On the large PACE instances, the lazy variant
was up to a factor of 3.75 faster.

8 Conclusions & Future Work

We provided new structural insights into LHL, including label size gaps towards the respective
HL variants, hardness results, and improved query routines. There are several directions for
future work. Our experimental results indicate that w-HLHL performs better than w-LHL
on graphs of low density. It would be interesting to provide a theoretical explanation for
this. From a practical perspective, there is a clear demand for LHL construction algorithms
that scale well with the graph size. Our focus was on approximation algorithms to have a
somewhat fair comparison between label sizes. However, most algorithms used in practice
are fast heuristics. For LHL, so far only heuristics for the path-consistent variant were
investigated [17]. With our alternative method to store labels, there is no longer the need
to ensure the PC property, which should allow for easier construction and smaller label
sizes. Moreover, there is room for further improving the space consumption. The method
for compressing HL described in [9] relies on storing labels as trees and reducing space by
identifying common tree structures. This approach should be transferable to LHL, where
we store inverse label trees instead. Furthermore, our LCA-based query routine allows for
stopping early if a perfect landmark is identified for the query node pair s, t. Thus, assigning
node IDs in an LHL such that perfect landmarks are identified early for many node pairs
could decrease the query time in practice. This is not possible in an HL query, where always
all labels in L(s) and L(t) need to be inspected to ensure that the tightest upper distance
bound is identified.

J. Cauvi, R. Li, and S. Storandt 1:15

References
1 Haris Angelidakis, Yury Makarychev, and Vsevolod Oparin. Algorithmic and hardness results

for the hub labeling problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1442–1461. SIAM, 2017.

2 Maxim Babenko, Andrew V Goldberg, Haim Kaplan, Ruslan Savchenko, and Mathias Weller.
On the complexity of hub labeling. In International Symposium on Mathematical Foundations
of Computer Science, pages 62–74. Springer, 2015.

3 Jaime Barceló, Hanna Grzybowska, and Sara Pardo. Vehicle routing and scheduling models,
simulation and city logistics. Dynamic Fleet Management: Concepts, Systems, Algorithms &
Case Studies, pages 163–195, 2007.

4 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation
networks. Algorithm engineering: Selected results and surveys, pages 19–80, 2016.

5 Michael A Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2):75–94, 2005.

6 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

7 Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Robust exact
distance queries on massive networks. Microsoft Research, USA, Tech. Rep, 2, 2014.

8 Daniel Delling, Andrew V Goldberg, Ruslan Savchenko, and Renato F Werneck. Hub labels:
Theory and practice. In Experimental Algorithms: 13th International Symposium, SEA 2014,
Copenhagen, Denmark, June 29–July 1, 2014. Proceedings 13, pages 259–270. Springer, 2014.

9 Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Hub label compression. In
International symposium on experimental algorithms, pages 18–29. Springer, 2013.

10 PC Gilmore. Families of sets with faithful graph representation. IBM Research Note NC, 184,
1962.

11 András Gyárfás and Jenö Lehel. A helly-type problem in trees. Combinatorial Theory and its
applications, 4:571–584, 1970.

12 Kartik Lakhotia, Qing Dong, Rajgopal Kannan, and Viktor Prasanna. Planting trees for
scalable and efficient canonical hub labeling. arXiv preprint arXiv:1907.00140, 2019.

13 Sara Nazari, M Reza Meybodi, M Ali Salehigh, and Sara Taghipour. An advanced algorithm
for finding shortest path in car navigation system. In 2008 First International Conference on
Intelligent Networks and Intelligent Systems, pages 671–674. IEEE, 2008.

14 Kali Prasad Nepal and Dongjoo Park. Solving the median shortest path problem in the
planning and design of urban transportation networks using a vector labeling algorithm.
Transportation Planning and Technology, 28(2):113–133, 2005.

15 Sven Peyer, Dieter Rautenbach, and Jens Vygen. A generalization of dijkstra’s shortest path
algorithm with applications to vlsi routing. Journal of Discrete Algorithms, 7(4):377–390,
2009.

16 Sabine Storandt. Algorithms for landmark hub labeling. In 33rd International Symposium
on Algorithms and Computation (ISAAC 2022). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022.

17 Sabine Storandt. Scalable landmark hub labeling for optimal and bounded suboptimal pathfind-
ing. In Kate Larson, editor, Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI-24, pages 6788–6795. International Joint Conferences on Artificial
Intelligence Organization, August 2024. Main Track. doi:10.24963/ijcai.2024/750.

ATMOS 2024

https://doi.org/10.24963/ijcai.2024/750

1:16 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

A Detailed Experimental Data

Table 2 This table presents a random sample of 30 results, chosen from a total of 100, which
describe the average label sizes |L| and running times t(s) of the output produced by each algorithm
tested on the PACE challenge benchmark set. The largest label size among them is indicated in italic
font, while the smallest label size among them, which is denoted as Lmin in Figure 6, is presented in
bold font. In column w-LHL, the values of PC represent the number of labels that have increased
when the results of w-LHL are transformed into PC w-LHL.

g-HHL w-HL w-HHL g-HLHL w-LHL w-HLHL
|L| t(s) |L| t(s) |L| t(s) |L| t(s) |L| t(s) PC |L| t(s)

e003 4.9 ≤ 1 4.9 ≤ 1 4.9 ≤ 1 4.1 ≤ 1 4.1 ≤ 1 0.2 4.1 ≤ 1
e017 5.5 ≤ 1 5 ≤ 1 5.3 ≤ 1 4.8 ≤ 1 4.9 ≤ 1 0.8 4.8 ≤ 1
e027 5.4 ≤ 1 4.8 ≤ 1 4.7 ≤ 1 5 ≤ 1 4.7 ≤ 1 0.7 4.7 ≤ 1
e029 5.9 ≤ 1 5.8 ≤ 1 5.8 ≤ 1 5 ≤ 1 4.9 ≤ 1 0.1 4.9 ≤ 1
e031 4.6 ≤ 1 4.5 ≤ 1 4.4 ≤ 1 4.2 ≤ 1 4.1 ≤ 1 0.3 4 ≤ 1
e033 5.6 ≤ 1 5.4 ≤ 1 5.1 ≤ 1 5.4 ≤ 1 4.9 ≤ 1 0.3 5.2 ≤ 1
e043 6.8 ≤ 1 6.2 ≤ 1 6.6 ≤ 1 5.9 ≤ 1 5.6 ≤ 1 0.6 5.8 ≤ 1
e047 9.7 ≤ 1 8.4 ≤ 1 8.8 ≤ 1 7.7 ≤ 1 7 ≤ 1 0.9 7.2 ≤ 1
e059 14.8 ≤ 1 11.9 ≤ 1 12.9 ≤ 1 8.3 ≤ 1 7.6 ≤ 1 0.1 8 ≤ 1
e065 6.2 ≤ 1 5.9 ≤ 1 5.8 ≤ 1 5.6 ≤ 1 5.4 ≤ 1 0.8 5.3 ≤ 1
e071 10.2 ≤ 1 6.9 ≤ 1 7.2 ≤ 1 8.5 ≤ 1 6.7 ≤ 1 0.4 7.2 ≤ 1
e073 7.8 ≤ 1 7.2 ≤ 1 7.5 ≤ 1 7.3 ≤ 1 6.7 ≤ 1 1 6.9 ≤ 1
e075 11.4 ≤ 1 9.8 ≤ 1 10.9 ≤ 1 9.4 ≤ 1 8.8 ≤ 1 2.1 9.1 ≤ 1
e083 10.1 ≤ 1 9.1 ≤ 1 9.1 ≤ 1 8.8 ≤ 1 8.3 ≤ 1 1.8 8.6 ≤ 1
e085 8.4 ≤ 1 8.3 ≤ 1 8 ≤ 1 6.9 ≤ 1 7.2 ≤ 1 1.4 6.9 ≤ 1
e087 5.8 ≤ 1 6 ≤ 1 5.8 ≤ 1 5.9 ≤ 1 5.5 ≤ 1 0.2 5.9 ≤ 1
e089 5.4 ≤ 1 5.3 ≤ 1 5.3 ≤ 1 5.1 ≤ 1 4.8 ≤ 1 0.2 5.1 ≤ 1
e111 9.2 ≤ 1 8.1 ≤ 1 8.5 ≤ 1 7.5 ≤ 1 6.8 1 0.6 7 ≤ 1
e117 9.9 ≤ 1 9.4 1 9.4 ≤ 1 9.3 ≤ 1 9 1 1.8 9 ≤ 1
e133 7.5 1 7.5 1 7.4 ≤ 1 6.7 ≤ 1 6.4 1 0.7 6.6 ≤ 1
e137 33.8 1 33.6 2 33.7 1 7.1 1 6.4 2 0.3 6.7 1
e143 8.4 1 8.6 1 8.2 ≤ 1 7.6 ≤ 1 7.6 1 0.9 7.6 ≤ 1
e151 5 ≤ 1 5.5 1 5 ≤ 1 4.5 ≤ 1 4.3 1 0.2 4.5 ≤ 1
e153 7.9 1 8.1 1 7.9 ≤ 1 7.1 1 6.9 2 0.9 6.9 1
e159 8.5 1 8.5 1 8.2 1 7.3 1 7.5 2 0.7 7.3 1
e173 8.5 2 9.1 2 8.4 1 7.2 1 7.4 3 1.1 7.1 1
e183 54.9 19 21.2 8 53.4 2 51.4 6 20.8 12 0.3 50.4 6
e185 9.6 5 9.5 4 9.5 2 7.9 2 7.9 6 1.1 7.8 2
e189 5.3 4 5.4 4 5.3 3 4.6 3 4.7 5 0.3 4.6 3
e193 12.9 26 12.8 13 12.6 6 11.2 7 10.8 20 1.2 11.1 7

J. Cauvi, R. Li, and S. Storandt 1:17

Table 3 This table presents the average label sizes |L| and running times t(s) of the output
produced by each algorithm tested on the benchmark set OSM. The largest label size among them
is indicated in italic font, while the smallest label size among them, which is denoted as Lmin in
Figure 7, is presented in bold font. In column w-LHL, the values of PC represent the number of
labels that have increased when the results of w-LHL are transformed into PC w-LHL.

g-HHL w-HL w-HHL g-HLHL w-LHL w-HLHL
|L| t(s) |L| t(s) |L| t(s) |L| t(s) |L| t(s) PC |L| t(s)

1 5.7 ≤ 1 5.7 ≤ 1 5.7 ≤ 1 2.0 ≤ 1 2.0 1 0 2.0 ≤ 1
2 4.7 ≤ 1 4.8 ≤ 1 4.7 ≤ 1 3.6 ≤ 1 3.6 ≤ 1 0.3 3.5 ≤ 1
3 5.3 ≤ 1 5.5 ≤ 1 5.4 ≤ 1 4.0 ≤ 1 4.0 1 0.7 4.4 ≤ 1
4 5.2 ≤ 1 5.1 ≤ 1 5.1 ≤ 1 2.9 ≤ 1 3.0 1 0.3 3.0 ≤ 1
5 9.5 72 9.9 136 9.4 68 8.1 84 8.5 285 4.7 7.9 82
6 10.3 74 10.4 148 10.2 69 8.5 84 8.9 315 4.2 8.7 84
7 9.4 73 9.5 146 9.3 68 7.7 82 7.5 311 2.8 7.4 83
8 8.9 74 9.2 161 8.7 71 7.1 87 7.1 363 2.4 6.9 88
9 12.3 484 13.6 848 12.0 437 10.8 557 10.5 523
10 12.4 494 13.2 899 12.3 445 11.0 587 10.3 532
11 11.4 475 11.9 856 11.0 438 9.7 541 9.6 530
12 10.0 489 10.4 1019 10.0 461 8.1 584 7.8 572

ATMOS 2024

	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Relationships between Labeling Variants
	3.1 On Trees
	3.2 On General Graphs

	4 NP-Completeness of PC-HLHL
	5 Construction Algorithms
	5.1 Improvements
	5.2 PC-Labeling
	5.3 Hierarchical LHL

	6 Improved Query Answering
	6.1 An Alternative Method for Label Storage
	6.2 LHL Verification

	7 Experiments
	8 Conclusions & Future Work
	A Detailed Experimental Data

