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Abstract
Attractive and cost-efficient public transport requires solving computationally difficult optimization
problems from network design to crew rostering. While great progress has been made in many areas,
new requirements to handle increasingly complex constraints are constantly coming up. One such
challenge is a new type of resource constraints that are used to deal with the state-of-charge of
battery-electric vehicles, which have limited driving ranges and need to be recharged in-service.

Resource constrained vehicle scheduling problems can classically be modelled in terms of either
a resource constrained (multi-commodity) flow problem or in terms of a path-based set partition
problem. We demonstrate how a novel integrated version of both formulations can be leveraged
to solve resource constrained vehicle scheduling with replenishment in general and the electric bus
scheduling problem in particular by Lagrangian relaxation and the proximal bundle method.
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1 Introduction

Public transport operators are ramping up the electrification of their bus fleets. Operators
in major German cities like Berlin, Hamburg or Munich have pledged to fully electrify their
public transport systems by 2030 [25]. Moreover, starting in 2026, it is a legal requirement
that 65% of new acquisitions have to have a clean drive train [30]. The European electric
bus market is dominated by battery-powered vehicles, depot chargers and fast opportunity
chargers at selected terminals [31, 5, 9, 32].

Deploying electric buses has to be planned around their complex energy-cycle. Unlike
their diesel counterparts, which can usually drive for an entire day and be fully refueled
within minutes upon returning to the depot, electric buses have limited driving ranges and
significant recharging times. These limitations are usually exacerbated during summer and
winter [31], for instance, enabling air conditioning may reduce a driving range of 250 km down
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11:2 Integrated Approach for EBSP

to 175 km [35]. As such, electric buses either require short schedules or pre-planned detours
and downtime throughout the day to recharge. Moreover, the physics behind recharging
batteries lead to non-linear energy models [27], which must be considered for electric vehicle
scheduling problems to ensure solutions are actually energy-feasible [24, 26, 22].

This paper is structured as follows: In Section 2 we define the electric bus scheduling
problem and in Section 3 we briefly review solution approaches (with non-linear charging) from
the literature. In Section 4 we provide a generalized formulation for resource constrained
vehicle scheduling by integrating the common flow and path-based models presented in
Section 2. In Section 5 we outline how to solve this new formulation leveraging Lagrangian
relaxation and the so-called proximal bundle method. For the sake of brevity, we will often
refer to older publications for details. Since this algorithm has been in commercial use
at a number of public transport operators with partially electrified fleets for a few years
now, we can not provide an open source implementation. Finally, we conclude with some
computational results in Section 6.

2 Problem Description

Attractive and efficient public transport is contingent on high quality solutions to a number
of strategic and operational planning steps, from infrastructure planning, line planning,
and timetabling to vehicle scheduling, duty scheduling, crew rostering, and finally real-time
disposition [34]. Due to the high computational complexity of each planning task, they are
often solved sequentially, even though there are some feedback relationships.

For this paper, we consider the vehicle scheduling planning step for bus systems with
(partially) battery-electric fleets, although we believe our results generalize to any electric
vehicle scheduling or routing problem. We assume that the infrastructure, bus lines and the
timetable have already been fixed, which yield a set of timetabled passenger trips T . A trip
τ ∈ T is the activity of servicing a single repetition of a line from its first to its last stop or
terminal. For example, if a bus line has a periodicity of five minutes, then it admits twelve
trips per hour. The back direction of a line for this purpose is considered as a separate line.

Each trip needs to be serviced by a bus and any individual bus can not service any trips
that happen simultaneously. Moreover, if a bus is scheduled to service two trips in order,
it needs to be able to get from the end terminal of the first trip to the start terminal of
the second in time to comply with the given fixed timetable. Generally, the set of trips
T together with a relation ≺ giving feasible connections called turns or deadheads can be
thought of as a partially ordered set.

The classic (non-electric) bus scheduling problem (BSP) in its simplest form is to find
a cost optimal partition of the trips into chains (subsets of ordered trips), which we call a
vehicle schedule. An individual chain of trips, i.e., a sequence of trips that can be serviced
by the same bus, is a vehicle course. The objective function would generally minimize the
total required fleet size, i.e., the number of vehicle courses, but also the overall operational
expenses.

We are further given a set of depots D and vehicle types V. Each course has to be
assigned a depot the bus has to begin and end service at, and a vehicle type which determines
operational costs, but also which trips, deadheads, depots or potentially other infrastructure
are accessible. Articulated buses or double-deckers may not fit through every road but some
trips have to be serviced by vehicles with a higher capacity for passengers. Moreover, in the
electric setting (Section 2.1), we may have vehicle types with different driving ranges, but
larger batteries incur higher deployment costs.
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We can model BSP as a multi-commodity flow problem on a directed acyclic graph where
pairs of vehicle type and depot K = V × D serve as the commodities, which we call plan
types. Every trip admits a node and we have an arc of the form (τi, τj) ∈ A if and only if
τi ≺ τj , that is, τj can be serviced after trip τi by the same bus. For every depot d ∈ D we
add a source node dout and a sink node din and connect them by pull-out and pull-in arcs
to every trip. K(a) then denotes the plan types admissible on arc a, which can be used to
control access of particular types to trips. By restricting the pull-in and pull-out arcs at a
depot to only the compatible plan types, we further enforce that buses actually return to the
depot that they started their course at.

A vehicle course for type v ∈ V is then a path between the source and sink nodes of a
depot d whose arcs all permit the plan type (v, d). The cost of a vehicle course is simply
the sum over arc costs ck

a of its plan type, which reflect operational expenses. A (binary)
multi-commodity flow of minimum cost on this graph then yields a minimum cost vehicle
schedule.

Moreover, we have so-called vehicle-mix constraints which impose lower and upper bounds
on how many courses may be assigned to particular plan types. This is because depots can
usually only accommodate a certain number of buses of any particular type, or operators
may insist that the fleet composition stay within some parameter. They are given by a family
of plan type subsets K̄ ⊂ 2K and for each K ∈ K̄, we have bounds ℓK and uK, as well as
coefficients κk

K per k ∈ K such that the weighted sum over all courses of those plan types has
to be within [ℓK, uK].

In this BSP model, trips are generally connected to all reachable trips which happen later
within the planning horizon, so a large fraction of the deadheads are long in the sense that
operators prefer a bus assigned to such a deadhead makes a stopover at a parking facility
or depot, where no driver has to be paid to watch over the idle vehicle. In the worst-case,
the total number of deadheads is |T | (|T | + 1)/2, therefore, long arcs are either dynamically
generated on demand while solving BSP [20], or they are modeled implicitly via timelines
(cf. [14, 12]): The planning horizon is discretized and for every time step and parking spot,
a node is added to the graph. The nodes of a spot are connected by idling arcs in order and
there are pull-out and pull-in deadheads between the trips and appropriate timeline nodes.
Every long deadhead is then pruned as it now corresponds to a path between a pull-in and a
pull-out along a timeline, which decreases the total number of arcs on instances of relevant
size [12]. For an example BSP graph with five trips, two depots and one parking spot see
Figure 1.

dout
1 din

1

dout
2 din

2

τ1 τ2

τ3 τ4

τ5

Figure 1 Example BSP Graph with five trips, two depots and one parking spot timeline.
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The grey arcs are the depot pull-in and pull-out deadheads which only permit plan types of
the associated depot. The trip nodes are elongated to indicate their relative start and end
times. There is no deadhead from τ3 to τ1 as there is no way to make the connection in time.
The long deadhead between τ3 and τ4 has been pruned in favor of the parking spot timeline
on top of the graph, which of course needs larger graphs to be of any advantage. If some
trips or deadheads may only be traversed by particular bus types, they must permit only the
corresponding plan types, so that the respective nodes and arcs are no longer part of the
network of those commodities.

Formulating this multi-commodity flow model of the non-electric BSP as an integer linear
program, we obtain

(BSP) min
∑
a∈A

∑
k∈K(a)

ck
axk

a (1)

s.t.
∑

a∈δin(n): K(a)∋k

xk
a −

∑
a∈δout(n): K(a)∋k

xk
a = 0 ∀n ∈ N \ D, k ∈ K (2)

∑
a∈δout(τ)

∑
k∈K(a)

xk
a = 1 ∀τ ∈ T (3)

∑
a∈δout(n)

∑
k∈K(a)

xk
a ≤ 1 ∀n ∈ N \ (D ∪ T ) (4)

ℓK ≤
∑

(v,d)∈K

κ
(v,d)
K

∑
a∈δout(dout)

x(v,d)
a ≤ uK ∀K ∈ K̄ (5)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (6)

where N denotes the entire set of nodes, i.e., it contains T , the depot source and sink nodes
and all timeline nodes. Furthermore, δin(n) denotes the set of incoming and δout(n) the set
of outgoing deadheads at node n. The binary variables xk

a indicate whether arc a is selected
or active for plan type k, i.e., whether a bus of the corresponding type and housed at the
corresponding depot traverses it. (2) are flow conservation constraints per commodity, which
propagate the selected vehicle type and depot along the flow belonging to a vehicle course.
(3) enforces that every trip is covered exactly once and (4) ensures that a parking spot can
be used by at most one bus at the same time. (5) are the vehicle-mix constraints.

Note that if |K| ≥ 2, BSP is NP-hard even without any vehicle-mix constraints [1].
Further note that BSP is a special case of the vehicle scheduling or routing problem, where
vehicles have to visit a set of customers within pre-defined time windows to perform some task
of a given duration. The trips correspond to customers with fixed and tight time windows.

Let MFx = b denote (2) - (5) of the flow formulation in an appropriate matrix notation.

2.1 The Bus Scheduling Problem with Electric Vehicles
The electric bus scheduling problem (EBSP) extends the BSP such that some or all of the
bus types are powered by an electric battery. We collect the corresponding plan types in KE

and normalize all battery capacities and energy consumption to a relative driving range in
[0, 1]. Every deadhead arc admits an energy consumption ek

a per electric plan type, including
the consumption of its target trip. We track the remaining driving range via variables ya at
the beginning of every arc, just after the source trip.

Charging takes place at a limited number of charger slots S, so we introduce timelines
to track when they are occupied by a bus. We denote those recharge nodes si by S̄ and
add them to N . The corresponding timeline arcs a(s, i) = (si−1, si) are called recharge arcs
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and we denote the set of all recharge arcs by AE . Along each we can replenish an amount
of driving range given by a function ∆ζk

s (ya(s,i), θ) where ya(s,i) is the charge state at the
beginning of the recharge arc a(s, i) and θ is the step size of the time discretization. The
charge increment function ∆ζk

s depends on the technology employed at charger slot s and
the vehicle type of the plan type k. Note that if we are given a charge curve ζ as most of the
literature on EBSP assumes, that is, a function mapping time spent charging an initially
empty battery to the resulting state-of-charge, then it relates to the increment function via
∆ζ(y, θ) = ζ(ζ−1(y) + θ) − y. For a homogeneous time step size θ we can just write ∆ζ(y).

This yields the, in general non-linear, mixed-integer program

(EBSP) min
∑

a∈A, k∈K(a)

ck
axk

a (7)

s.t. MFx = b (8)∑
k∈KE(a)

xk
a ≥ ya ∀a ∈ A \ Aout

D (9)

∑
k∈KE(a)

xk
a = ya ∀a ∈ Aout

D (10)

∑
a∈δin(n)
k∈KE(a)

ek
axk

a =
∑

a∈δin(n)

ya −
∑

a∈δout(n)

ya
∀n∈N

n/∈D∪S̄ (11)

∑
a∈δin(si),

k∈KE(a)

ek
axk

a −
∑

k∈KE(a(s,i))

φk
a(s,i) =

∑
a∈δin(si)

ya −
∑

a∈δout(si)

ya ∀a(s, i) ∈ AE (12)

φk
a(s,i) = ∆ζk

s (ya(s,i))xk
a(s,i)

∀a(s,i)∈AE ,

k∈KE(a(s,i)) (13)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (14)

ya ≥ 0 ∀a ∈ A (15)

where Aout
D denotes the set of pull-out arcs at depot nodes, i.e., those arcs that can open new

vehicle courses. We retain the BSP constraints in (8), but on the graph including charge slot
timelines (an example graph would still look like the one in Figure 1, except the timeline
may belong to a charge slot). (9) enforces that only active flow-carrying arcs can also have
non-zero charge states while (10) requires buses to start service with a full battery. (11) and
(12) propagate charge states along active arcs as an energy flow depending on whether any
incoming arc is a recharge arc. (13) gives the amount of restored driving range on active
recharge arcs depending on the incoming charge state. (14) and (15) are the variable domains.
To make (EBSP) a linear program we have to linearize the constraint (13), where we refer to
our contributions [21] and [22].

2.2 A Set Partition Formulation
It is well-known that BSP can be formulated as a set partition problem by applying Dantzig-
Wolfe decomposition to the multi-commodity flow formulation. For k = (v, d) ∈ K, let
Pk denote all dout, din-paths admissible for vehicle type v on the BSP graph. Further, let
P = ∪k∈KPk. Then, assuming a suitable cost vector c ∈ RP (usually the sum over the arcs
on the path), a formulation equivalent to (BSP) is

min
∑
p∈P

cpxp (16)

ATMOS 2024
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s.t.
∑

p∈P :p∋τ

xp = 1 ∀τ ∈ T (17)

∑
p∈P : p∋n

xp ≤ 1 ∀n ∈ N \ (D ∪ T ) (18)

ℓK ≤
∑
k∈K

∑
p∈Pk

xp ≤ uK ∀K ∈ K̄ (19)

x ∈ {0, 1}P (20)

In theory, it is straightforward to turn this into a formulation for EBSP: Let P be the set
of all energy-feasible paths. A path on the BSP graph is energy-feasible if we can insert
recharge events such that the battery is never fully depleted and all trips on the path can
still be serviced as scheduled. Note that finding a cost-optimal recharge schedule for a given
fixed sequence of trips is an instance of the NP-hard fixed route vehicle charging problem
[24], while testing whether such a sequence is energy-feasible by just charging for as much
as possible is polynomially solvable [4]. Further note that the set partition formulation is
straightforward to generalize to any resource constrained vehicle scheduling problem with
replenishment, like railway operation with maintenance scheduling.

Due to the large number of variables, which in the worst case is one per path on the
vehicle scheduling graph, column generation lends itself as the go-to solving approach. The
pricing problem is then a resource constrained shortest path problem with replenishment, i.e.,
we need to find resource-feasible paths on the vehicle scheduling graph with negative reduced
costs. These paths have to be fit with a cost-optimal resource restoration schedule, which for
EBSP generally involves evaluating non-linear ∆ζ.

3 Solution Approaches in the Literature

Electric vehicle routing and scheduling is an active area of research attracting an immense
amount of attention. We therefore restrict this literature review to contributions presenting
solving approaches for the electric vehicle scheduling problem that can handle non-linear
charging explicitly. For an extensive survey on electric vehicle routing and scheduling we
refer to [5] and on electric bus scheduling see [28].

An energy state expansion model is proposed in [33], where for each step of a charge state
discretization, every node of the vehicle scheduling graph is duplicated. The deadhead arcs
connect nodes of appropriate charge states with each other and if there is a recharge window,
such a connection can go from a lower to a higher charge state, so ∆ζ can be evaluated
explicitly per recharge arc. The column generation pricing problem is then a classic shortest
path problem on this energy-state-expanded graph. The column generation itself solves the
Lagrangian relaxation of a path-based set cover formulation in combination with a rounding
heuristic.

In [16] a fully time-and-energy-expanded network is proposed, from which a MILP is
derived, where the frequency at which the passenger lines are serviced and the number of
chargers are decision variables. The formulation is verified using a commercial MILP solver.

A time-and-energy-expanded network with timelines to track charger slot occupation like
in our model is proposed in [3]. Two graphs are obtained by rounding charge states up or
down, from which in turn primal and dual bounds can be derived to fuel column generation.
A diving heuristic explores the branch-and-bound tree in a depth-first manner to obtain
integer solutions.
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[24], [7] and [6] are a series of papers which propose a local search to generate a set
of candidate vehicle courses that the set partition formulation is solved over. For every
candidate vehicle course, the local search has to solve the fixed route vehicle charging problem
to determine whether the course is energy-feasible and its cost, so a labeling algorithm and
recharge event insertion heuristics are developed. [24] introduces linear spline interpolations
of the charge curve ζ from which dominance rules for the labeling method can be derived. [13]
extends [7] to consider settings where operators may wish to charge at publicly accessible third-
party infrastructure with uncertain availability. The problem is solved by a benders-based
branch-and-cut algorithm using a modified version of the labeling algorithm.

Other extensions of [24] are [17] and [10]. [17] develops a label-setting algorithm for the
pricing problem of the column generation for the set partition formulation based on recursive
functions derived from the linear spline charge curve approximation. This is embedded within
a branch-and-price-and-cut framework. [10] extends the model and algorithm from [24] to
also include non-linear discharging.

Other papers relying on linear spline approximations of ζ are [36], which presents an
adaptive large neighborhood search, [37], which develops a label-setting algorithm considering
battery capacity fade, and [38], which also considers capacity fade and develops a MILP with
a number of a priori tightening inequalities and runs a commercial solver on it. We assess
the previously unknown numerical implications of approximating the charge curve ζ by a
linear spline interpolation in [23] and [22].

Lastly, there are a few exact approaches. [26] uses a greedy construction heuristic with
backtracking to insert charging events such that arbitrary ∆ζ can be considered. [4] proposes
a branch-and-check algorithm for factory in-plant electric tow trains. A vehicle schedule
whose courses can be made energy-feasible by charging for as much as possible is accepted as
the optimal solution, otherwise subtour elimination constraints are introduced to prohibit
energy-infeasible courses.

[15] considers an objective function that minimizes the total distance and time spent
charging. As such, every recharge event in an optimal solution will only charge for as much as
is strictly needed to drive the subsequent trips until the next recharge event or the final depot.
One can then use column generation on the set of trip sequences that are energy-feasible
without charging and their costs can be derived a priori from the inverse of arbitrary charge
curves. It is unclear how this approach can work if the objective does not explicitly minimize
the time spent recharging. Operators may not want to strictly minimize charging times due
to robustness considerations and active charge management [22]. Nevertheless, generating
energy-feasible trip sequences is also a core idea behind our method, which further takes
advantage of the easier pricing problem that arises then. Our method could loosely be seen
as a generalization of [15] to resource constrained vehicle scheduling with replenishment,
multiple depots and vehicle types, and arbitrary linear objective functions. It is also the (to
our knowledge) first application of the proximal bundle method [11] to EBSP.

4 An Integrated Flow and Set Partition Formulation

In computational experiments, we have found that the set partition formulation for EBSP
has two undesirable properties, which have also been reported in [15] and we expect should
be observable in related problems: For one, there are a large number of very similar columns
of negative reduced costs, which cause the master problem to quickly become intractable.
Furthermore, the longer the vehicle courses can be and thus have more insertion points for
recharge events, the worse the pricing problem performs. In contrast, rounding heuristics to
produce integer solutions struggle with the flow formulation. Solutions to the LP-relaxation

ATMOS 2024



11:8 Integrated Approach for EBSP

often collect fractional paths into a single bus, charge its battery, and then fractionally
distribute the replenished energy into the network. Vehicle courses derived from a (fractional)
path decomposition of the LP solution then often share a single recharge event and it is
unclear how to efficiently break this up.

Note that a recent publication [29] shows that electric shortest path with recharging and
the corresponding minimum cost flow problem are polynomially solvable if |K| = 1, the
charge curve ζ is piecewise linear, and every minimum cost subpath in the network is also
of minimum energy consumption. However, we believe piecewise linear charge curves to
be an inadequate model choice to describe the recharge process [23, 21, 22]. Furthermore,
energy-optimal subpaths may not be cost-optimal and vice versa in our application. Some
trip to trip arcs involve barely any driving because the bus simply idles at a terminal
waiting to service the back direction of the corresponding line. Such a turn has a low energy
consumption unlike deadheads that involve proper location changes. But the majority of the
operational costs on an arc come from the salary for the driver, so it is possible to have a
turn arc that is more expensive than a deadhead arc but that requires less energy.

As we have already alluded to in Section 3, we can make the set partition formulation
significantly more tractable by limiting P to those paths that start or end at a depot, where
vehicles can be removed from the network, or a facility where consumed resources can be
restored. All interior nodes of these paths shall be trips or parking spot timeline nodes and
the total resource consumption has to be permissible. In the context of EBSP, this means the
path can be serviced on a single battery charge. We call these paths vehicle blocks. Vehicle
courses are then alternating sequences of blocks and restoration or recharge events.

We can then couple the set partition formulation with the flow formulation to have it
arrange blocks into vehicle courses by forcing all deadheads contained in active blocks to
also be active within the flow. Flow conservation will naturally force deadheads to become
active that connect blocks to each other or depots. This yields an integrated flow and set
partition formulation for EBSP.

We can further completely eliminate all resource related constraints from the formulation
by assuming that every block p ∈ P is serviced by a vehicle that has not consumed any
resource yet. Consequently, we have to ensure that all block connections are long enough
such that a vehicle’s resource state can be fully restored from any initial state. We can
enforce this in the timeline model via constraints where an active pull-in onto the timeline
prevents pull-outs within the appropriate time window from carrying flow. We then only
have to consider the maximum driving range when generating vehicle blocks. This is not
a restriction in settings where resource restoration happens in constant time, like regular
maintenance or battery swapping, but it does prevent partially recharging a battery for
EBSP and block connections have to have recharge time windows of length ζ−1(1).

While this is clearly a major restriction compared to allowing partial charging, we hope
that the impact on solution quality is limited by the following observations: On most instances
we have encountered so far, recharge events are either a depot charging event with a longer
time window, especially in rural settings, or an opportunity charging event with a shorter
time window during the turn after a trip. Bus timetables usually tighten their frequency in
the morning and late afternoon to evening since the passenger demand is higher during these
times. This causes a peak of timetabled trips (see Figure 2) and we need at least as many
buses as the largest number of simultaneously scheduled trips as a consequence of Dilworth’s
theorem. Part of these buses will be idle after the morning peak and they can usually be fully
recharged before the afternoon or evening, so the corresponding courses should be mostly
unaffected by the restriction.
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Figure 2 Number of simultaneously scheduled trips of one of our test instances.

Opportunity charging events, as the name suggests, occur during the turns between trips
whose terminals are equipped with chargers and a bus can simply recharge there during the
mandatory downtime before the next trip. While these events are modeled exactly the same
as depot charging via charge slot timelines on the EBSP graph, we can efficiently consider
them during block generation, unlike depot charging.

Recall that the pricing problem for the full set partition formulation of EBSP, where P

is the set of energy-feasible vehicle courses, is a resource-constrained shortest path problem
with replenishment. This problem is computationally challenging because we can potentially
recharge after every trip at any charging facility, for an arbitrary amount of time to an
arbitrary state of charge. In particular, the minimum state of charge that the bus has to
reach depends on the rest of the path, which in turn depends on how much driving range
can actually be restored and the downtime that requires. In fact, as previously mentioned,
fitting a cost-optimal recharge schedule to an entirely fixed sequence of trips is NP-hard [24],
and the pricing problem to generate vehicle courses is a generalization of this problem.

But if the end terminal of a trip is equipped with an opportunity charger, since the
assigned bus is already there, we can simply charge the bus for as long as it can remain
depending on whatever trip is put next on the block. Opportunity charging is therefore
easy to incorporate into the pricing problem for generating p ∈ P and we can extend the
definition of a vehicle block to allow for opportunity charging whenever a trip terminal is
equipped with the necessary infrastructure. This softens our restriction to only apply to
depot charging in between blocks, whereas we can consider partial charging for opportunity
charging infrastructure as a part of vehicle blocks in P .

We can now give a general integrated flow and set partition formulation for integrated
resource constrained vehicle scheduling (with replenishment) (IRCVSP) as

(IRCVSP) min cT x (21)
s.t. MFx = b (22)∑

p∈P : p∋τ

wp = 1 ∀τ ∈ T (23)

∑
p∈Pk: p∋a

wp = xk
a ∀a ∈ A, k ∈ K(a) (24)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (25)

w ∈ {0, 1}P (26)
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where the system (22) is the multi-commodity flow formulation for unconstrained vehicle
scheduling as in BSP. It enforces the vehicle-mix constraints and that capacities at parking
lots and chargers are observed. However, it further needs to guarantee the invariant that
vehicles start all blocks with a fully restored resource state by prohibiting block to block
connections that are too short. But it is otherwise completely devoid of resource constraints.

Constraints (23) ensure that every trip is covered by exactly one vehicle block and
(24) couple the selection of active blocks to that of the active deadheads. Note that if a
block contains an opportunity charging event, then that block needs to be coupled to a
corresponding charge slot pull-in arc, a number of timeline arcs and a pull-out arc in the
flow formulation.

Let MT w = 1 denote (23) and MCFx − MCPw = 0 denote (24) in matrix notation.

5 Solving IRCVSP

Our formulation for IRCVSP is superficially similar to standard formulations for the integrated
vehicle and duty scheduling problem, where P is defined to be the set of all valid driver duties
[34, 2]. A driver duty contains trips and deadheads and has to comply with an underlying
vehicle schedule, thus, it can be coupled to a BSP flow problem like the vehicle blocks in the
IRCVSP formulation.

start solve BSP,
init. blocks

PBM step
stability
center

change?

yesgenerate blocks

no stagnation?

no

yes

fix/unfix
deadheads

fully
integral?

no

yesoutput

Figure 3 Simplified flow chart of our method to solve IRCVSP.

In the case of EBSP, there is an intuitive equivalence between drivers and batteries:
Both can perform a limited amount of work before they have to be substituted by a fresh
replacement. The analogy is literal for battery swapping EBSP instances, otherwise replacing
a battery by a fresh one means we have to fully recharge it. While driver duties are subject
to multiple complicated resource constraints related to working time regulation, we expect
similar algorithmic techniques and frameworks used to solve the integrated vehicle and duty
scheduling problem to also work for resource constrained vehicle scheduling. In this vein,
the algorithm we present here is inspired by our work on the integrated vehicle and duty
scheduling problem. Since the algorithmic techniques are quite involved, we only give an
outline of the method and describe the necessary modifications to apply it to EBSP (see
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Figure 3 for a simplified flow chart). For any detailed descriptions omitted here we refer to
our previous work [34] and [2]. We further note that the method should generalize to all
resource constrained vehicle scheduling problems that fit formulation (IRCVSP).

Our method as depicted in Figure 3 has an inner and an outer loop. For the inner loop
it relies on the (inexact) proximal bundle method (PBM ) [11] in combination with column
generation on the set of vehicle blocks to produce fractional flow values, which are used in a
diving heuristic to gradually produce a fully integral flow on the EBSP graph by fixing or
unfixing arcs as part of the outer loop.

More precisely, we relax the integrality constraints and apply Lagrangian relaxation to
the coupling constraints (24) so that the Lagrangian dual

max
λ∈RA×K(A)

[
min

(
cT − λT MCF)

x + min λT MCP w
]

(27)

s.t. MFx = b s.t. MT w = 1 (28)

x ∈ [0, 1]A×K(A) w ∈ [0, 1]P (29)

decomposes into the LP-relaxation of the multi-commodity flow and a range-restricted set
partition formulation of non-electric BSP. The two subproblems are over separate domains
and coupled solely via the Lagrange multipliers λ. Therefore, the Lagrangian function (27)
is a separable, concave, piecewise linear, and non-smooth function, which can be expressed
as L(λ) = fF (λ) + fP (λ), where

fF (λ) = min
{(

cT − λT MCF)
x

∣∣∣ MFx = b, x ∈ [0, 1]A×K(A)
}

(30)

and

fP (λ) = min
{

λT MCPw
∣∣ MT w = 1, w ∈ [0, 1]P

}
. (31)

This is exactly the setting for the PBM to find the optimal multipliers λ. Given a decompos-
able concave function such as L, the PBM maintains a polyhedral approximation which is
iteratively refined along a sequence of so-called stability centers λi by evaluating the function
components and their subgradients at nearby trial points. Applied to our Lagrangian L from
(27), the stability centers λi converge towards the optimal multipliers. Furthermore, we can
obtain a series that converges towards the optimal primal solution to the LP-relaxation of
(IRCVSP) from the values x and w that attain fF and fP at the trial points [34, 2].

Evaluating fF and fP , i.e., solving the LP-relaxations of the flow and the set partition
problem for different multipliers, is still computationally challenging and has to be done
repeatedly. We therefore solve them approximately, which requires modifications to the PBM
to still guarantee convergence. For details on this inexact PBM for general applications we
refer to [11]. How to process approximate evaluations of fF and fP is explained in [34, 2].

The flow problem fF can be (approximately) solved by any appropriate algorithm, we
rely on the method described in [18], [19], and [20] as a black-box, which can produce both
fractional and integral feasible solutions of high quality as needed. As mentioned before,
we have to employ column generation to solve the set partition subproblem fP , so suppose
P I are the currently selected candidate vehicle blocks from some index set I. If we apply
Lagrangian relaxation to this restricted subproblem we obtain

max
µ∈RT

[
µT1+ min

wI ∈[0,1]P I

(
λT MCP

·I − µT MT
·I

)
wI

]
(32)
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where M·I denotes the submatrix made of columns indexed by I. For fixed multipliers λ and
µ the minimization is trivial to solve by setting wi to one if λT MCP

·{i} ≤ µT MT
·{i} and zero

otherwise. For fixed λ from the current PBM step of solving (27) we can then use the (exact)
PBM to determine the optimal µ, which yields an approximation for fP restricted to P I and
a corresponding argument wI . It is possible to deduce an approximation of the reduced costs
of all vehicle blocks from this by repairing µ∗ into a dual feasible, almost optimal solution,
see [34] for details. The reduced cost of block i is then λT MCP

·{i} − (µ∗)T MT
·{i}. Since MT

and MCP are simply incidence matrices of which trips and deadheads are contained in which
blocks, λ and µ∗ yield arc weights which we use for the vehicle block pricing problem as
explained in Section 4. It can be solved by standard label-setting techniques. If a deadhead
with an opportunity charging window is processed, i.e., a bus can idle at a charger at a trip
terminal for a few minutes, we evaluate ∆ζ for every respective label. While we eliminate
the need to decide when, where and for how long to charge after every trip for the pricing
problem and instead offload this decision to the flow subproblem, generating vehicle blocks
is still a computationally expensive step, so we only do it when the stability center and thus
the candidate trial points of the main PBM process changes significantly.

Finally, the lower bounds and (approximated) primal LP-solutions obtained by repeatedly
evaluating (27) are used to guide a rounding heuristic to find high quality integer solutions
for IRCVSP. Once the PBM appears to stagnate at the current stability center, we enter
the outer loop as indicated in Figure 3 and fix arcs for which xa is close to 1.0, appropriately
propagate this decision through the network and then relaunch the PBM algorithm. We
dynamically adjust the threshold for when an arc becomes fixed to be more aggressive early
on. If a fixing causes the objective to increase by a large margin, the method can backtrack
and revert the decision, however, this step is rarely necessary. The final solution is then a
feasible binary multi-commodity flow on the vehicle scheduling graph which adheres to all
capacity and vehicle-mix constraints, and is straightforward to decompose into individual
vehicle courses as explained in Section 2. It is compatible with a selection of energy-feasible
blocks which are connected with sufficient downtime to fully recharge the battery, so the
vehicle schedule is energy-feasible.

Note that we can obtain an initial solution to start the procedure with by solving the
non-electric BSP to integrality, then we simply cut the resulting vehicle courses into energy-
feasible blocks, which is what the step after “start” in Figure 3 refers to. Throughout the
method we also occasionally delete blocks with large reduced cost from P I to keep the
number of candidate blocks tractable.

6 Computational Results

We tested our method on sixteen anonymous real-life EBSP instances with sizes depicted in
Table 1. Instance G extends F, and I extends H by an additional opportunity fast-charging
terminal. Instances K, L and M are variations of the same instance with different charging
technology and bus types.

We ran our method until it returned a feasible integral solution and recorded the runtime
and objective value. Then, we ran Gurobi 11.0.0 [8] twice on the mixed-integer formulation
(7) - (15) for EBSP with our charge curve linearization of (13) described in [21] and [22],
once with the previously obtained solution and once without any information. After twelve
hours of running Gurobi, we recorded the best found objective value, lower bound, and how
long it took in the cold-started run to find a solution that was at least as good as the one
produced by our method. Note here that our method enforces that the downtime between
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blocks is large enough to fully recharge an initially empty battery, whereas the MILP permits
partial recharge events in the depot. Both permit partial opportunity charging, however.
Therefore, the lower bound and best possible objective are in relation to this more flexible
charging policy. The results are presented in Table 2 and Figure 4. The experiment was
carried out on an AMD EPYC 7542 CPU restricted to two cores and thus four threads per
instance.

Table 1 Number of vehicle types, depots, charge slots, timetabled trips and explicitly given
deadhead arcs of our test instances. So-called long arcs are given implicitly via pull-in and pull-out
arcs at charge slots and parking facilities at the depots.

instance electric
bus types

non-electric
bus types depots charge

slots trips deadheads

A 1 0 1 3 121 992
B 1 0 1 2 123 1 078
C 2 0 1 3 146 3 126
D 1 0 1 3 185 1 769
E 1 0 1 8 189 1 977
F 1 0 1 3 232 1 484
G 1 0 1 5 232 2 064
H 1 1 1 6 333 6 363
I 1 1 1 7 333 7 859
J 1 0 1 14 678 15 589
K 1 0 1 43 709 14 431
L 1 0 1 37 709 17 779
M 1 0 1 34 709 21 343
N 2 1 2 12 822 12 390
O 1 1 1 10 837 111 590
P 1 0 1 28 1 207 42 610

Table 2 Runtime comparison between our method and Gurobi on (7) - (15) for EBSP without a
start solution. The runtime of our method is how long it took to output an integer solution. We
compare it to the time Gurobi takes to produce an integer incumbent that is at least as good as
the reference solution of our method and the entry of the faster one is highlighted. A value of
“-” indicates that Gurobi failed to produce a better solution within twelve hours (43 200 seconds).
Gurobi could not produce any feasible integer solution for instances L and P.

runtime (s) of A B C D E F G H

our method 75 72 413 165 196 371 322 4 469
MILP via Gurobi - 173 4 967 82 6 834 56 8 39 689

I J K L M N O P

our method 6 604 1 767 1 854 5 008 2 637 2 887 29 334 2 792
MILP via Gurobi - 9 929 - - - 297 343 -

Our method can find good solutions faster than Gurobi, as demonstrated on eleven of the
sixteen tested instances, with a bias towards the larger ones. On six instances it produces a
solution in less than two hours that Gurobi can not beat within twelve. In particular, Gurobi
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Figure 4 Relative objective values. The best objective value we obtained after letting Gurobi
run for twelve hours, both with and without a start solution, is the baseline at 1.0. The best lower
bound is given as a relative value by the green triangles pointing to the right. The objective value of
the solution produced by our method is given as a relative value by the orange triangles pointing to
the left.

fails to produce any feasible vehicle schedule for instances L and P, whereas our method
produces solutions that are almost optimal even under the model where partial charging in
the depot is allowed, as can be seen in Figure 4.

Integer heuristics used by Gurobi can produce good schedules faster than the overhead
of our method permits for the small instances D, F, and G, but those heuristics are not
consistent on our test set as can be seen for other small instances A, C, and E. Among the
larger instances, N and especially O are the outliers for which our method is significantly
slower than Gurobi. Examining the vehicle schedules we see that the problem is the restriction
to full recharge windows between blocks. Gurobi can find the optimal solution for O, which
admits one hundred and three recharge events, whereas our method produces a solution with
sixteen. Most of these recharge events in the optimal solution are short and merely top off
an almost fully charged bus, i.e., they are like opportunity recharge events, except the bus
takes a small detour of about five minutes to the depot charger. In our data, this depot
charger is of course not flagged as opportunity charging infrastructure and is therefore not
considered by the vehicle block pricing algorithm. Our method then apparently struggles
to produce compatible blocks that allow for full recharge windows in between. We make a
similar observation for instance N.

Further examining the objective values and lower bounds in Figure 4, we see that our
method solves J, L, and P almost optimally and additionally attains the best found solution
for B, K, and M. At worst, it is within 11% of the best found solution and 15% of the best
lower bound. Lastly, note that a sequential approach of our method and then Gurobi on the
MILP solved A, C, G, J, L, and P to optimality within a total time limit of fourteen hours,
whereas Gurobi did not produce any feasible solution for L and P on its own.
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