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Abstract
We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-PdM),
where a timetable given by a set of trips must be operated by a fleet of vehicles. Here, the health
states of the vehicles are assumed to be random variables, and their maintenance schedule should be
planned based on their predicted failure probabilities. Utilizing the Bayesian update step of the
Kalman filter, we develop a rolling horizon approach for RSRP-PdM, in which the predicted health
state distributions are updated as new data become available. This approach reduces the uncertainty
of the health states and thus improves the decision-making basis for maintenance planning. To
solve the instances, we employ a local neighborhood search, which is a modification of a heuristic
for RSRP-PdM, and demonstrate its effectiveness. Using this solution algorithm, the presented
approach is compared with the results of common maintenance strategies on test instances derived
from real-world timetables. The obtained results show the benefits of the rolling horizon approach.
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1 Introduction

Rail transport is one of the most positive modes of transport concerning environmental
friendliness and sustainability. Its volume is likely to increase further in the future. This
leads to an increased complexity in the planning of vehicle rotations and results in more
challenging scenarios, particularly with respect to maintenance scheduling.

A maintenance strategy that has become increasingly important in recent years is
predictive maintenance (PdM). One reason is the availability of sensors and the ability
to analyze the data they generate using machine learning. In addition, PdM has obvious
advantages in terms of economic and ecological factors. These advantages are based on the
fact that the costs for spare parts are lower if the currently installed components are used
until the end of their service life. As this also minimizes the number of spare parts used, the
environmental impact is likewise reduced.

To combine the advantages of rail transport with those of PdM, it is necessary to develop
approaches that integrate predictive maintenance planning into the optimization of rolling
stock rotations.

1 Corresponding author.

© Felix Prause and Ralf Borndörfer;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 13; pp. 13:1–13:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prause@zib.de
https://orcid.org/0000-0001-9401-3707
mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
https://doi.org/10.4230/OASIcs.ATMOS.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


13:2 A Bayesian Rolling Horizon Approach for RSRP-PdM

One problem that arises in the application of PdM strategies is that the considered health
states are usually unobservable quantities that have to be derived from measurements using
some model. There are various steps in this process that introduce uncertainty into the
obtained states. For example, measurement errors may occur when recording the observable
quantities, or the employed model may be imprecise or only approximate. Since the states
are subsequently projected into the future to serve as a basis for maintenance decisions, and
the exact operating conditions cannot be known at that point in time, the uncertainty of the
health states increases the further they are projected into the future. This uncertainty must
be taken into account and addressed when optimizing the vehicle rotations.

Contribution

We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-
PdM), as presented in [31], and propose a rolling horizon approach that reduces the uncertainty
of the health states and their future predictions. For this purpose, the RSRP-PdM is solved
and the determined vehicle rotations are partially operated until measurements of the health
states become available, for example, by analyzing sensor data collected during operation
when the vehicles are parked overnight. Using these observations of the health conditions,
the current predictions of the states are then updated by Bayesian inference. This reduces
the variance of the health states and results in a subsequent RSRP-PdM instance.

Furthermore, we introduce a local neighborhood search, which is a modification of the
heuristic presented in our earlier paper [29], to solve the occurring RSRP-PdM instances.

Outline

The article is structured as follows: First, in Section 2, we review and discuss the literature on
the two arising tasks, i.e., the rolling stock rotation planning problem (RSRP) and predictive
maintenance (PdM). Next, the problem formulation of RSRP-PdM, as stated in [31], is
reproduced in Section 3. In Section 4, we describe the utilized Bayesian inference procedure.
We provide a description of the rolling horizon approach in Section 5 and present a heuristic
that extends the algorithm proposed in [29]. Section 6 then introduces the considered
maintenance strategies, which are compared with each other in the subsequent computational
experiments. Finally, we draw a conclusion on the obtained results in Section 7.

2 Related Work

Both aforementioned topics, i.e., PdM as well as RSRP, have already been thoroughly
described and studied in the literature. In the following, we provide a brief overview of
articles dealing with these two subjects.

The Rolling Stock Rotation Planning Problem (RSRP)

In RSRP, we are given a fleet of vehicles and a timetable whose trips must be operated.
Furthermore, maintenance requirements are defined that the vehicles have to fulfill. The
task is then to determine rotations for the rolling stock that operate all trips, satisfy the
specified maintenance conditions, and have minimum costs. The articles addressing RSRP
can be categorized according to the following three aspects:

Regarding the model used to represent the vehicle rotations.
According to the applied solution approach.
Based on the employed maintenance strategy.
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For a survey of the RSRP literature, we refer to [32]. An extensive comparison of different
articles with an emphasis on additionally considered constraints can be found in [31].

The RSRP is usually modeled by space-time graphs, where the nodes correspond to
events specified by a location and a time point, and the arcs represent the different actions
of the vehicles, e.g., [8, 25, 38]. Then, there is the sequence model, in which the nodes depict
the trips that need to be operated and the arcs indicate whether two tasks can be conducted
in succession, see [6]. Next, we have the hypergraph model utilized by [4, 18, 32]. This
model is a generalization of the space-time graph in which the hyperarcs represent vehicle
compositions and their orientation during operation. Finally, there is the state-expanded
event-graph, see [29, 31]. This is a space-time graph that is extended by additional dimensions
to implicitly track the resource flow that enforces the maintenance constraints. In contrast to
the previously mentioned approaches, this model allows for non-linear degradation functions,
which is of particular relevance as the wear of mechanical components often exhibits such a
behavior.

In all these models, the solutions to RSRP are given by flows that cover the trip arcs or
nodes sufficiently often and satisfy the additional maintenance or capacity constraints. These
induced flow problems are then solved by using branch and bound [8], the direct application
of mixed-integer linear programs [17, 20, 21, 34, 39], column generation [2, 4, 32], branch
and price [14, 25, 32], or the utilization of heuristics [5, 6, 18, 38].

The literature primarily employs preventive maintenance strategies. These include time-
based maintenance [2, 4, 8, 14, 32] and distance-based maintenance [2, 4, 17, 21, 25, 32].
Recently, also condition-based and predictive maintenance regimes have been introduced for
rail transport. Here, the maintenance decisions are either based on the vehicle states [5, 20],
a classification of the vehicle conditions into degradation stages [39], or the remaining useful
life (RUL) of the vehicles [34]. Finally, there are solution approaches that schedule the
maintenance based on the predicted failure probability of the rolling stock [29, 31].

Predictive Maintenance (PdM)

The literature regarding PdM generally focuses on the prediction of the RUL or indices
representing the future health conditions of the vehicles. We refer to [22] for different concepts
of health indices. These indices usually do not consider the vehicles themselves, but rather
the mechanical, electrical, or hydraulic components that are installed in them. The employed
approaches are often distinguished into data-driven and model- or physics-based ones, see [1].
In addition, there are hybrid methods that combine both. A comprehensive literature review
on PdM can be found in [13].

Data-driven models usually rely on machine learning techniques like classical neural
networks (NNs), recurrent neural networks such as long short-term memory (LSTM) net-
works [10], support vector machines (SVMs) and decision trees [23], or deep learning [11].
For a survey of data-driven approaches applied in the railroad sector, see [9].

Model-based approaches, on the other hand, are based on some assumptions regarding
the degradation process and often utilize Bayesian updating procedures [7, 16, 27].

Finally, there are hybrid approaches that combine model-based methods with machine
learning. These include, for example, relevance vector machines, i.e., Bayesian variants of
SVMs [35], Bayesian inference applied to the output of NNs [15, 26], or the assumption of a
piecewise linear degradation behavior, followed by the subsequent combination of the outputs
of multiple NNs using a Kalman filter [24]. In addition, a concept for extending deep learning
models to Bayesian NNs is presented in [28], which enables the NNs to determine probability
distributions for the predicted RUL.

ATMOS 2024



13:4 A Bayesian Rolling Horizon Approach for RSRP-PdM

Note that the hybrid approaches and the Bayesian methods have the advantage of
obtaining a probability distribution for the RUL that captures the uncertainty of the
prediction.

3 Problem Description

We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-
PdM), as presented in [31], and recall its description in the following. Suppose we are given
a train timetable T consisting of various trips that need to be operated, and we have a
homogeneous fleet of vehicles V at our disposal to conduct them. Each trip t ∈ T features a
departure and an arrival location, i.e., ld

t , la
t ∈ L, as well as a departure and an arrival time,

i.e., kd
t , ka

t ∈ K. Here, L is the set of locations and K is the time horizon, which consists of
a finite set of time points. Furthermore, we associate an integer nt ∈ Z>0 with each trip,
which indicates how many vehicles are required to operate t.

The task of RSRP-PdM is not only to find a feasible sequence of trips for each vehicle,
i.e., a set of trips in which each pair of time-consecutive trips can be operated in succession,
but also to schedule the maintenance of the vehicles. The maintenance actions can be carried
out at the maintenance locations LM ⊆ L and should be based on the predicted health states
of the vehicles. These health states are considered to be random variables since they cannot
be measured directly and are thus prone to measurement, determination, and prediction
errors. In addition, they are assumed to be normally distributed, i.e., Hv,k ∼ N (µ, σ2) for
some µ ∈ [0, 1] and σ2 > 0. Hence, all health states are distributed by the family of normal
distributions with parameter space Θ = [0, 1]× R>0 and can thus be characterized by their
corresponding parameters θ ∈ Θ. In this sense, we assume that the initial state of each
vehicle v ∈ V is given by an initial parameter θv,0 ∈ Θ that determines Hv,0. Note that a
health value of one corresponds to a condition that is as good as new, while a value of zero
or less signifies that the vehicle has a breakdown. The failure probability of a vehicle at a
certain time is therefore given by

Pf (v, k) := P[Hv,k ≤ 0] =
0∫

−∞

exp
(
− µ2

v,k

2σ2
v,k

)
√

2πσ2
v,k

dx = 1
2

1 + erf

 −µv,k√
2σ2

v,k

 ,

where erf is the Gauss error function.
The deterioration of the vehicles and their maintenance is then described by modifying

the parameters that represent their health states. Therefore, we associate a degradation
function ∆t : Θ → Θ with each of the trips t ∈ T , whose application describes the wear
that occurs during the operation of t. Let τt := ka

t − kd
t be the duration of t, then the

parameters of v after conducting t are determined by θv,k+τt
= ∆t(θv,k). To obtain a

reasonable deterioration behavior, we further demand µv,k+τt ≤ µv,k and σ2
v,k+τt

≥ σ2
v,k

for (µv,k+τt
, σ2

v,k+τt
) = ∆t(µv,k, σ2

v,k), i.e., the mean of the health state decreases, while the
uncertainty about the condition grows. Similarly, we can associate degradation functions
with the other activities of the vehicles such as waiting or deadheading, which might depend
on the duration or the mileage of the corresponding task. Maintenance is also described
by a wear function, which does not cause a deterioration of the condition, but resets the
parameters of the health state to a certain value θm ∈ Θ.

We further assume that we occasionally receive measurements yv,k of the true health
value of v at time k that exhibit noise originating from the measuring process. This noise is
supposed to be normally distributed around zero with known variance σ2

y > 0.
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Combining these notions, the task of RSRP-PdM is to determine a feasible assignment of
the trips to the vehicles such that each trip is operated by the required number of vehicles.
The objective here is to find an assignment of minimum total cost that takes the potential
failure costs into account, i.e., the product of the predicted failure probability during the
operation of the trips and the costs associated with the breakdown of a vehicle. Finally,
we require that the rotations must be balanced, i.e., the number of vehicles located at each
destination at the beginning and at the end of the time horizon have to coincide. This
constraint is important as it gives rise to schedules that can be repeated periodically.

4 Bayesian Inference

In RSRP-PdM, as described in Section 3, the health states of the vehicles and their predictions
are assumed to be random variables to reflect their uncertainty. Since these random variables
are distributed by members of a family of probability distributions, their associated probability
density functions (PDFs) can be characterized by their parameters, and the degradation
functions describe how these parameters change. The deterioration process can therefore
be understood as a dynamical system in which the parameters of the vehicle conditions
represent the system states, and the degradation functions define the state transitions.

One problem that arises in practice is that the degradation functions are also subject to
uncertainty since they can only be derived from historical data, and the actual operating
conditions are unknown at the time of planning. If this uncertainty is factored in, the variance,
and thus the uncertainty, of the predicted health states increases the further into the future
they are projected. However, these predicted conditions form the basis for maintenance
planning. Therefore, it should be attempted to reduce their variance to obtain more accurate
estimates of the actual health states. This can be achieved by updating the predicted states
with measurements, which is a filtering problem, see [36]. Using standard terminology, we
utilize the rule of Bayes for these updates, see, for example, [36].

▶ Theorem 1 (Rule of Bayes [36]). Let θ and y be random variables representing a parameter
estimate and a measurement, then it holds

P[θ | y] = P[y | θ] · P[θ]
P[y] ∝ P[y | θ] · P[θ].

Here, P[θ] is the prior belief about θ before obtaining measurement y, P[y | θ] describes
the likelihood, i.e., the relationship between the true state and y, which represents the
measurement error. P[θ | y] is the belief about θ after the information about y is incorporated,
i.e., the posterior belief, and P[y] is the marginal probability, which can be interpreted as
a normalization constant ensuring that P[θ | y] has an integral of one. Furthermore,
f(x) ∝ g(x) signifies that f(x) is proportional to g(x), i.e., there exists a constant c ∈ R
such that f(x) = c · g(x) for all x ∈ R. For further details, we refer to [36].

We now transfer the notions of Theorem 1 to the situation in RSRP-PdM. Recall that
we assumed in Section 3 that the health states are normally distributed with a mean
between zero and one. Suppose we are given a vehicle v at time k0 with health state
Hv,k0 ∼ N (µk0 , σ2

k0
) that operates some services S = {s1, . . . , sn}, i.e., a set consisting of

trips, waiting times, deadhead trips, and maintenance actions in their chronological order.
Then, a prediction of the health state of v after the operation of S can be determined by
applying the degradation functions of the services in S to the parameters characterizing
Hv,k0 . If we set ∆S := ∆sn ◦ · · · ◦∆s1 and k := k0 + τs1 + · · ·+ τsn , the predicted state is
therefore Ĥv,k ∼ N (µ̂k, σ̂2

k) with (µ̂k, σ̂2
k) = ∆S(µk0 , σ2

k0
).

ATMOS 2024



13:6 A Bayesian Rolling Horizon Approach for RSRP-PdM

Here, Ĥv,k represents the current belief about the true health state Hv,k. If we now
obtain a measurement y of the true health state with a measuring error whose variance is
specified by σ2

y > 0, then we have y | Ĥv,k ∼ N (Ĥv,k, σ2
y). Thus, we can apply the rule of

Bayes to obtain Hv,k = Ĥv,k | y. Since the considered random variables are all normally
distributed, this inference corresponds precisely to the update step of the Kalman filter, as
described in [36].

▶ Definition 2 (Kalman Filter Update Step). Let µ̂ ∈ Rn be the predicted mean of the
estimated state and P̂ ∈ Rn×n the corresponding predicted covariance matrix. Furthermore,
let H ∈ Rm×n be the measurement model, y ∈ Rm a measurement of the true state and
R ∈ Rm×m the corresponding covariance matrix of the measurement. Then, the Kalman
filter update step is defined as follows:

K = P̂HT
(

HP̂HT + R
)−1

µ = µ̂ + K (y −Hµ̂)

P = (In −KH) P̂,

where K ∈ Rn×m is the Kalman gain, µ ∈ Rn is the updated mean of the estimated state,
P ∈ Rn×n is the corresponding updated covariance matrix, and In ∈ Rn×n is the identity
matrix of size n.

Considering Definition 2 for the one-dimensional case and assuming that the measurement is
a direct observation of the true state, i.e., H = 1, we obtain the following corollary:

▶ Corollary 3. Let µθ ∈ R be the predicted mean of the estimated state and σ2
θ > 0 the

corresponding predicted variance. Furthermore, let µy ∈ R be a direct measurement of the
true state and σ2

y > 0 the corresponding variance of the measurement noise. Then, applying
the Kalman filter update step yields the updated state estimate

X ∼ N

(
µθσ2

y + µyσ2
θ

σ2
θ + σ2

y

,
σ2

θσ2
y

σ2
θ + σ2

y

)
.

The inferred health states can therefore be directly determined by applying Corollary 3.
Moreover, they are also normally distributed and thus members of the considered family of
probability distributions.

An example illustrating the impact of inference is given in Figure 1. The two graphs show
the development of a vehicle’s predicted/updated health state over time. The corresponding
PDFs are given from right to left and show the state after the operation of ten trips in
each case, starting with the initial health Hv,0 on the far right. It can be observed that the
variance in the scenario without inference continues to increase, while it remains in the same
order of magnitude if the states are updated with measurements after every ten trips. As a
result, Hv,50 has a high probability of taking values between 0.25 and 0.45 in the second case,
whereas in the first case, it contains essentially no information since its variance is too large.

Application to Non-normally Distributed Health States

However, the health states do not necessarily have to be represented by normally distributed
random variables. Other possible models could, for example, be based on families of
probability distributions that are used in reliability theory, such as the family of Weibull or
gamma distributions, see, e.g., [12].
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(a) PDF of the predicted health state over time,
without state updates.

(b) PDF of the health state over time, using infer-
ence after every tenth trip.

Figure 1 Comparison of the health state PDF development over time, with and without inference.

Furthermore, it would also be conceivable that the states are distributed by discrete
distributions or PDFs that do not belong to any common family of distributions. In these
cases, we have to choose a family of distributions whose members fit the given data as well
as possible since the employed approach is based on the assumption that the PDFs of the
random variables representing the health states all belong to a parametric family.

Suppose now that we have determined such a family of distributions for modeling the
health states and are able to obtain measurements of the true states, which are either given
by point estimates with a certain measuring error or described by a PDF. If we then apply the
rule of Bayes to infer the posterior of the health state after incorporating the measurement, as
described above, the resulting PDF does not necessarily have to be a member of the selected
family. It may even be that it does not belong to any common family of distributions.

In these cases, the posterior of the state would have to be approximated by a member of
the considered family of distributions. This would, for example, be possible by employing a
Markov chain Monte Carlo algorithm to sample from the posterior distribution of the health
state. Subsequently, we determine the PDF of the family that best fits the obtained data
w.r.t. some statistical distance. Another option would be the utilization of a variational
Bayesian method, see, e.g., [37].

5 Solution Approach

In this section, we introduce the rolling horizon approach. This algorithm determines a
solution for RSRP-PdM by sequentially generating and solving sub-instances. Here, the
instances occurring in each iteration are solved by a heuristic, which is also described below.

5.1 The Rolling Horizon Approach
The idea of the rolling horizon approach is the following: Suppose we have a solution for
RSRP-PdM where the expected deterioration caused by the trips is only known approximately.
Then, the maintenance services of the vehicles are planned entirely based on predictions
of the health states, whose uncertainty increases the further they are projected into the
future. However, if it is possible to occasionally obtain measurements of the health states
and incorporate them into the planning of the rotations, these can be adjusted such that the
vehicles are assigned to trips that better match their conditions. In addition, maintenance
needs can be better estimated, and the vehicles can be serviced at more appropriate times.

ATMOS 2024



13:8 A Bayesian Rolling Horizon Approach for RSRP-PdM

This can be accomplished by first solving the initial RSRP-PdM instance (solveInstance)
and operating the resulting vehicle rotations until measurements y of the health states become
available at a certain time ky (operateRotations). Subsequently, a new problem instance
is created by restricting the timetable of the considered instance to trips whose departure
time is greater than or equal to ky (restrictTrips). The positions of the vehicles are
then updated by assigning them the location at which they are at time ky or at which they
terminate the operation they are conducting at that time (updatePositions). In addition,
the predicted health states of the vehicles are updated with y using Bayesian inference, as
described in Section 4 (inferStates). This procedure is outlined in Algorithm 1 and results
in a new RSRP-PdM instance, which is then considered in the next iteration of the approach.
The algorithm stops when all trips of the original instance have been completed.

Algorithm 1 One iteration of the rolling horizon approach.

Input : RSRP-PdM instance I, measurements y of the health states at time ky

Output : Updated RSRP-PdM instance for the remaining time
1 s← solveInstance(I)
2 operateRotations(s, ky)
3 I ′ ← restrictTrips(I, ky)
4 I ′ ← updatePositions(I ′, s, ky)
5 I ′ ← inferStates(I ′, y)
6 return I ′

5.2 A Local Neighborhood Search That Considers Transition Costs
To solve the occurring RSRP-PdM instances, we utilize a modified version of the multi-
swap heuristic proposed in [29]. This algorithm initially solves the underlying RSRP of
the instance using an integer linear program that neglects the maintenance constraints.
Afterwards, maintenance is scheduled in a second step by determining a shortest path in
the state-expanded event-graph (SEEG). Then, a local neighborhood search is employed to
improve the rotations of the current solution, where maintenance planning is again done by
searching for a shortest path in the SEEG.

This local neighborhood search works as follows: Given two vehicle rotations, the first
step is to determine the possible swap positions, i.e., the times at which both vehicles can
reach and operate the next trip of the other. This groups the trips of the rotations into sets
that can be exchanged without violating the feasibility of the corresponding vehicle schedules.
Subsequently, the generated subsets of trips are randomly swapped to obtain new rotations.
An example of this procedure is shown in Figure 2a. Here, the rotations of vehicles v1 and
v2 (top) are first grouped into subsets of interchangeable trips (middle). Afterwards, some of
these related subsets are swapped to create two new vehicle schedules (bottom).

In [29], the swapping decisions are sampled from a discrete uniform distribution U{0, 1},
i.e., the swaps are performed with a probability of one-half. However, some swaps are more
beneficial than others in terms of costs, and their selection may accelerate the process of
finding good solutions. Therefore, the transition costs of the vehicles should be included
when determining the exchange probabilities. These costs are referred to as cij ∈ R≥0, for
i, j ∈ {1, 2}, and are associated with the waiting times and deadhead trips that are necessary
for vehicle vi to reach the next trip of vehicle vj . For example, consider the scenario depicted
in Figure 2b with costs c11 = c22 = 1 and c12 = c21 = 10. If we disregard maintenance
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v1

v2

v1

v2

v1

v2

(a) The various stages of the local neighborhood search.

c11

c12

c21

c22

(b) The costs used in the weighted variant
of the swapping procedure.

Figure 2 Visualization of the stages of the employed heuristic (a) and of the transition costs of
the vehicles between trip subsets of the second stage (b).

decisions, a swap of the second pair of trip subsets would lead to an increase in transition
costs. Therefore, it would not be advisable to swap with a probability of one-half at this
position. For this reason, we use a probability of

Ps =
{

c11+c22
c11+c12+c21+c22

if c11 + c12 + c21 + c22 ̸= 0
1
2 else

for sampling the swapping decisions. However, to ensure a certain degree of exploration, the
Ps were finally rounded to values in [0.05, 0.95]. The swapping decisions for each pair of trip
subsets are then made in chronological order with the associated probability Ps. Here, we
set Ps := 1− Ps if the previous decision was a swap to account for the resulting exchange of
c11 and c12, as well as of c22 and c21.

A comparison of the solutions obtained with the multi-swap heuristic using this swapping
procedure with those of the algorithm from [29] can be found in Appendix A. The results
demonstrate the effectiveness of the modified swapping approach.

6 Computational Results

In this section, we examine the results of the Bayesian rolling horizon approach proposed in
Section 5.1. For this purpose, we compare its solutions with those of two other maintenance
strategies, namely predictive maintenance without Bayesian inference and preventive main-
tenance. To solve the occurring RSRP and RSRP-PdM instances, we apply the weighted
multi-swap heuristic presented in Section 5.2 and use scenarios derived from the instances
given in [30] for testing.

Computational Setup

The data structures and algorithms were implemented in Julia v1.9.4 [3], and Gurobi
v10.0.2 [19] was employed to solve the integer programs that are used to find initial rotations
for the heuristics. The computations were conducted on a computer with Intel(R) Xeon(R)
Gold 6342 @ 2.80GHz CPUs, eight cores, and 64GB of RAM. Finally, all approaches had
a time limit of seven hours, with the rolling horizon approach using one hour to solve the
RSRP-PdM instance of each day of the given week.

ATMOS 2024



13:10 A Bayesian Rolling Horizon Approach for RSRP-PdM

6.1 Test Instances

The considered test scenarios, used for the evaluation and comparison of the maintenance
regimes, are based on the instances T1 – T6 constructed in [30]. Each of them has an
individual timetable, which needs to be completed within one week, and contains the
information about the available fleet, i.e., the operating costs of the vehicles and their initial
positions. In addition, the distances between the considered locations and the costs associated
with trips, waiting times, deadheading, and maintenance are indicated. The costs for vehicle
breakdowns are also defined.

The components that specify the conditions of the vehicles are their doors, and it is
assumed that they can undergo 1,500 cycles before failing. This assumption is based on
the real-world data used in [33] and influences the number of required maintenance services.
Furthermore, the expected deterioration caused by the operation of each trip, i.e., the number
of expected cycles, is given by the mean and variance of a normal distribution derived from
the passenger volume at the served stations, see [30]. Note that the vehicle conditions in the
conducted computations are assumed to deteriorate only during the operation of the trips.
In the original instances, a non-linear degradation behavior is considered, whereas we assume
a linear one, as this improves the comparability of the obtained solutions.

From each of these instances, we derive ten scenarios by sampling the initial states
of the vehicles, i.e., the number of already performed cycles, from the discrete uniform
distribution U{0, 1200}. In addition, the number of cycles that actually arise during each
trip is sampled from the corresponding normal distribution. These values are later used to
determine whether vehicle failures occur during the operation of the obtained schedules and
to derive the measurements utilized in the Bayesian approach. This gives rise to the various
scenarios T1-01 – T6-10, which are used for the computations below.

Furthermore, we assume that, if the states are considered as random variables, the initial
states of the vehicles, the conditions after maintenance, and the measurements each have
a variance of 25, i.e., the corresponding values are accurate to within ten cycles with a
probability of 90%. Finally, for the predictive approaches, we apply a transformation that
converts the number of cycles into a health value between zero and one. Here, zero cycles
correspond to a new condition, i.e., a value of one, while 1,500 cycles correspond to a vehicle
failure and thus a value of zero. The variances were also adjusted accordingly.

6.2 Compared Maintenance Strategies

Now, we describe the maintenance strategies considered in the computational experiments.
Since we assume a linear degradation behavior, one-dimensional quantities simply have to be
added. However, if the states and occurring cycles of the trips are considered as random
variables, the convolution of their PDFs must be determined. Nevertheless, since both are
presumed to be normally distributed, this convolution can be calculated by summing the
mean values and the variances of the corresponding PDFs.

Preventive Maintenance

The first considered maintenance strategy is preventive maintenance (PM), which represents
the status quo of maintenance planning. In this approach, one-dimensional quantities such
as the traveled distance or the elapsed time are usually considered, and maintenance is
performed before the values exceed a certain threshold.
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Applied to the considered scenarios, we assume that maintenance decisions are based on
the number of operated cycles, but only the mean values of the distributions characterizing
the deterioration due to the trips are used. Since the vehicles are assumed to complete 1,500
cycles before failing, we must first define a suitable threshold to avoid vehicle breakdowns.
For this purpose, we examine the preventive strategy with safety margins of 5% and 10%.

Based on the 3σ rule, i.e., the fact that approximately 99.7% of the values in a normal
distribution lie within an interval of three standard deviations around the mean, we require
that µ + 3σ ≤ 1, 500 holds for all parameters that the predicted health state of a vehicle
could possess before maintenance. Let v be a vehicle in new condition, i.e., with parameters
(µ, σ2) = (0, 25). Then, we apply the degradation functions of randomly selected trips to
v until the mean value of its predicted state is 1,350 and 1,425, respectively. With 50,000
repetitions, this results in a maximum variance of 750 or 800. Thus, a margin of 5% does
not fulfill the property required above and might therefore lead to failures. Hence, we use a
threshold of 1,350 cycles, i.e., a safety margin of 10%, for PM.

Predictive Maintenance

The next strategy used is the direct application of predictive maintenance (PdM), as described
in [29, 31]. Here, maintenance planning is based on the predicted failure probabilities of
the vehicles. However, the health states are not updated. Since the degradation behavior
is assumed to be linear, the deterioration of a vehicle v due to a trip t is expressed by the
convolution of the PDF of the random variable representing the health state of v with the
PDF of the random variable describing the expected number of cycles occurring during the
operation of t. As previously mentioned, the initial vehicle states and the conditions after
maintenance are assumed to have a variance of 25.

Predictive Maintenance with Bayesian Inference

Finally, we consider the maintenance strategy developed in this article, namely predictive
maintenance with Bayesian inference (PdM-B). For this, we utilize the predictive mainte-
nance regime PdM described above but additionally assume that it is possible to receive
measurements of the health states when the vehicles are parked overnight. As explained in
Section 4, we assume that these measurements are normally distributed and have a fixed
variance σ2

y = 25, which reflects the measuring error. After obtaining the measurements of
the states, we apply Algorithm 1, using Corollary 3 to update the predicted vehicle states
and reduce their variance. This yields a new RSRP-PdM instance, which is subsequently
solved.

6.3 Results
The results of the computations are summarized in Table 1 and show the number of
maintenance services and the total costs of the solutions after averaging the scenarios derived
from each instance. The best results for each instance are marked in bold. A more detailed
itemization of the costs by type can be found in Tables 3–5 in Appendix B. Here, only the
actually incurred costs are taken into account, i.e., the expected failure costs, which are
considered in the predictive maintenance strategies for maintenance planning, are ignored.
In addition, all determined vehicle rotations were compared with the number of cycles
that actually occurred, i.e., the number of cycles that were sampled for each trip when the
scenarios were created. However, none of the generated solutions resulted in a vehicle failure.

ATMOS 2024
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Table 1 Number of maintenance services and total costs of the solutions generated by the
considered maintenance strategies after averaging the scenarios of each instance.

Instance Maintenance services Total costs
PM PdM PdM-B PM PdM PdM-B

T1 6.3 5.8 5.8 272,822 271,781 271,937
T2 4.9 4.9 4.9 462,219 466,564 458,174
T3 14.9 13.3 13.2 1,421,806 1,411,300 1,412,457
T4 6.0 5.5 5.1 212,015 212,069 211,831
T5 7.0 6.8 6.2 346,513 344,891 342,976
T6 21.1 18.8 18.7 2,369,415 2,377,673 2,375,013
Σ 60.2 55.1 53.9 5,084,790 5,084,278 5,072,388

A comparison of PM with PdM shows that both approaches achieve better results in terms
of costs than the other for three of the six instances. Overall, however, they have almost the
same total costs. The reason for this is that PdM reduces the number of maintenance services
but does so at the expense of higher deadhead costs, compare Tables 3 and 4. Nevertheless,
excluding instance T2, PdM performed fewer maintenance services for each instance and was
able to reduce the total number of service actions by 5.1.

PdM-B, on the other hand, is able to reduce the number of conducted maintenance
operations even further. To be precise, an average of 6.3 fewer maintenance operations are
required compared to PM. Moreover, it can compensate for the disadvantage of PdM and
reduces the deadhead costs to such an extent that it generates the vehicle schedules with
the lowest total costs. It was thus able to achieve lower costs than PM for all instances
except T6 and reduced the number of maintenance services for all instances except for T2.
In particular, the number of service actions for instances with many vehicles, i.e., for T3 and
T6, is reduced. Looking at the entire network, i.e., all instances combined, PdM-B was able
to decrease the number of maintenance actions by 10.5%, while the costs are 0.24% lower. If
the fixed costs, i.e., the costs required to operate the trips, are neglected, the overall cost
advantage increases to 0.97%.

The cost differences, expressed as percentages, of PdM-B compared to PM and PdM are
shown in Table 6. These differences range between -1.02% and 0.24% and between -1.8%
and 0.08%, respectively. If the fixed costs are again excluded, the cost advantages for the
individual instances increase to up to 5.72% and 8.05%, respectively.

The main cost benefits of PdM-B in comparison to PM are less maintenance (T1), lower
deadhead costs (T2), or the combination of both (T3 and T5), see Tables 3 and 5. For
T4, the costs for maintenance and deadhead trips are also decreased, but PdM-B deploys
additional vehicles that may be necessary to absorb a more severe deterioration identified
by the incorporation of the measurements. In addition, some maintenance can be spared
by using these vehicles, which also reduces the costs. In the case of T6, PdM-B achieved
solutions with higher costs than PM, which is due to the increased deadhead costs, although
the number of maintenance tasks could be lowered.

Compared to PdM, PdM-B achieves lower costs for four of the six instances and lower
costs overall, specifically 0.23% less. When the fixed costs are neglected, the benefit is 0.93%.
In addition, the number of performed maintenance actions was reduced by a total of 1.2.
The cost savings are again due to lower deadhead costs (T2 and T6) and to a combination of
lower deadhead and maintenance costs (T4 and T5). For T1 and T3, the solutions generated
by PdM-B have slightly higher costs than those generated by PdM. In the first case, this
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is due to the utilization of additional vehicles, which reduces deadhead costs, while in the
second case, slightly higher deadhead costs are accepted to assign the vehicles to trips that
better match their conditions.

7 Conclusion

In this article, we presented a rolling horizon approach for RSRP-PdM that incorporates
health state measurements using Bayesian inference. We also extended the local neighborhood
search from [29] to include transition costs when determining the swapping probabilities.

For this purpose, we first gave a literature review of the two topics RSRP and PdM. Then,
we recalled the problem formulation of RSRP-PdM and introduced the notions that arise in
the context of Bayesian inference. Subsequently, the Bayesian rolling horizon approach was
introduced and we described the modified local neighborhood search. Finally, we conducted
computational experiments with three different maintenance strategies, namely preventive
and predictive maintenance, as well as predictive maintenance with Bayesian inference, and
compared their solutions.

The results show that the iterative scheduling of the Bayesian approach is advantageous
over both preventive and predictive maintenance without updating. Not only can the number
of maintenance actions be reduced by 10.5% compared to the conventional strategy of
preventive maintenance, but also the total costs of all instances combined are decreased by
0.24%, or by 0.97% if the fixed costs are excluded. In comparison to predictive maintenance
without updating, the costs can likewise be reduced by 0.23% and 0.93% respectively due to
fewer deadhead trips, while the number of maintenance operations is also slightly decreased.
This demonstrates the effectiveness and benefits of the Bayesian rolling horizon approach.

In addition, we have shown that taking transition costs into account improves the
performance of the multi-swap heuristic, both in terms of the solution value after a short
and a long computation time.
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A Computational Evaluation of the Weighted Swapping Procedure

In the following, we evaluate the effectiveness of the multi-swap heuristic utilizing the
weighted swapping procedure presented in Section 5.2. We will refer to this approach as
weighted multi-swap (WMS) and compare its results with those obtained by the algorithm
from [29]. This uses a swapping probability of one-half and is therefore denoted as equal
probability multi-swap (EPMS) in the following.

For testing, we use the instances of the preventive maintenance strategy described in
Section 6. The detailed results are listed in Appendix A and show the values of the solutions
obtained by EPMS and WMS after 360 seconds and after one hour of computation time.
The best results for each instance are marked in bold.

We can observe that EPMS finds the best result after 360 seconds only eight times and
that it was able to determine the best solution after one hour for only eight scenarios. The
majority of these cases occur for instances T3 and T4, both of which are medium-sized
scenarios in terms of the number of trips. In addition, there is a tie for the best solution for
six and seven instances, respectively. WMS, on the other hand, could find the best solution
after 360 seconds for 46 of the scenarios and achieved a better result after one hour for 45 of
the 60 instances. These results show that the cost-oriented swapping used in WMS offers an
advantage over the procedure employed in EPMS, both in terms of finding good solutions
quickly and finding solutions with low costs.

Table 2 Results of EPMS and WMS after 360 seconds and after one hour of computation time.

Instance EPMS after 360 s WMS after 360 s EPMS WMS

T1-01 274,016 272,090 272,514 272,090
T1-02 276,858 276,120 276,544 276,120
T1-03 276,684 275,607 275,836 275,607
T1-04 272,514 272,090 272,514 272,090
T1-05 272,514 272,090 272,090 272,090
T1-06 270,075 270,075 270,075 270,075
T1-07 277,825 276,544 276,544 276,544
T1-08 272,514 272,090 272,090 272,090
T1-09 272,090 272,090 272,090 272,090
T1-10 270,075 270,075 270,075 270,075

T2-01 507,420 494,036 484,718 468,615
T2-02 511,781 488,175 496,993 474,073
T2-03 503,256 492,784 493,873 471,772
T2-04 486,411 476,156 480,048 468,335
T2-05 498,193 466,304 485,160 459,522
T2-06 500,491 482,167 480,559 472,028
T2-07 506,559 485,151 489,451 474,629
T2-08 496,731 473,915 484,462 461,136
T2-09 499,435 475,127 486,415 461,121
T2-10 500,269 484,520 481,735 468,810

Continued on next page
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Table 2 – continued from previous page

Instance EPMS after 360 s WMS after 360 s EPMS WMS

T3-01 1,443,584 1,417,645 1,429,586 1,415,815
T3-02 1,466,915 1,436,870 1,459,579 1,435,336
T3-03 1,471,162 1,486,642 1,446,601 1,458,286
T3-04 1,465,143 1,442,264 1,448,476 1,433,629
T3-05 1,510,924 1,441,830 1,469,280 1,432,776
T3-06 1,456,730 1,475,282 1,437,910 1,456,083
T3-07 1,470,481 1,443,980 1,447,427 1,441,852
T3-08 1,430,814 1,424,607 1,422,649 1,424,329
T3-09 1,433,021 1,419,417 1,427,896 1,418,864
T3-10 1,449,332 1,412,973 1,427,362 1,411,817

T4-01 216,340 216,664 214,181 215,506
T4-02 219,954 221,504 218,414 216,350
T4-03 222,980 218,718 220,409 216,814
T4-04 219,139 222,581 217,756 218,094
T4-05 220,460 221,212 219,281 219,683
T4-06 219,149 219,112 216,181 215,830
T4-07 219,666 218,058 216,285 216,839
T4-08 216,103 218,168 215,807 215,936
T4-09 223,116 220,051 221,855 215,975
T4-10 219,098 217,057 216,856 214,176

T5-01 347,529 346,924 347,356 346,111
T5-02 349,658 349,658 349,658 349,658
T5-03 349,642 348,547 349,359 347,590
T5-04 345,630 345,630 345,630 345,175
T5-05 357,457 350,891 356,291 350,891
T5-06 343,027 342,714 343,027 342,052
T5-07 358,069 352,783 354,852 351,553
T5-08 347,051 345,996 347,002 345,996
T5-09 351,079 350,766 351,079 350,417
T5-10 345,039 345,039 345,039 343,742

T6-01 2,394,624 2,384,517 2,379,655 2,370,161
T6-02 2,450,322 2,430,110 2,432,481 2,392,949
T6-03 2,400,259 2,390,905 2,389,128 2,380,847
T6-04 2,390,995 2,390,943 2,390,995 2,370,129
T6-05 2,397,184 2,384,236 2,387,226 2,372,693
T6-06 2,442,339 2,426,068 2,416,792 2,390,244
T6-07 2,393,514 2,404,469 2,389,038 2,382,052
T6-08 2,393,010 2,389,088 2,384,886 2,373,894
T6-09 2,428,272 2,422,976 2,415,699 2,389,409
T6-10 2,386,473 2,382,799 2,377,996 2,362,586
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B Tables of Computational Results

Table 3 Costs by type after averaging the scenarios of each instance when the preventive
maintenance strategy (PM) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,507 1,342 12,600 247,373 272,822
T2 64,438 25,595 9,800 362,386 462,219
T3 308,384 58,388 29,800 1,025,235 1,421,806
T4 20,137 14,248 12,000 165,630 212,015
T5 41,425 6,459 14,000 284,629 346,513
T6 536,986 63,994 42,200 1,726,235 2,369,415

Σ 982,877 170,025 120,400 3,811,487 5,084,790

Table 4 Costs by type after averaging the scenarios of each instance when the predictive
maintenance strategy (PdM) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,507 1,301 11,600 247,373 271,781
T2 64,438 29,939 9,800 362,386 466,564
T3 308,384 51,082 26,600 1,025,235 1,411,300
T4 20,137 15,303 11,000 165,630 212,069
T5 41,425 5,237 13,600 284,629 344,891
T6 536,986 76,852 37,600 1,726,235 2,377,673

Σ 982,877 179,714 110,200 3,811,487 5,084,278

Table 5 Costs by type after averaging the scenarios of each instance when the preventive
maintenance strategy with Bayesian inference (PdM-B) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,737 1,227 11,600 247,373 271,937
T2 64,438 21,550 9,800 362,386 458,174
T3 308,384 52,439 26,400 1,025,235 1,412,457
T4 22,151 13,850 10,200 165,630 211,831
T5 41,425 4,523 12,400 284,629 342,976
T6 536,986 74,392 37,400 1,726,235 2,375,013

Σ 985,121 167,981 107,800 3,811,487 5,072,388
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Table 6 The cost differences of PdM-B compared to PM and PdM in percent after averaging the
scenarios of each instance.

Instance Cost diff. in % Cost diff. without fixed costs in %
PM PdM PM PdM

T1 −0.32 +0.06 −3.48 +0.64
T2 −0.86 −1.80 −4.05 −8.05
T3 −0.66 +0.08 −2.36 +0.30
T4 −0.09 −0.11 −0.40 −0.51
T5 −1.02 −0.56 −5.72 −3.18
T6 +0.24 −0.11 +0.86 −0.41

Combined −0.24 −0.23 −0.97 −0.93
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