
The Line-Based Dial-a-Ride Problem
Kendra Reiter1 #

Department of Computer Science, University of Würzburg, Germany

Marie Schmidt #

Department of Computer Science, University of Würzburg, Germany

Michael Stiglmayr #

Department of Mathematics and Informatics, University of Wuppertal, Germany

Abstract
On-demand ridepooling systems offer flexible services pooling multiple passengers into one vehicle,
complementing traditional bus services. We propose a transportation system combining the spatial
aspects of a fixed sequence of bus stops with the temporal flexibility of ridepooling. In the line-based
Dial-a-Ride problem (liDARP), vehicles adhere to a fixed, ordered sequence of stops in their routes,
with the possibility of taking shortcuts and turning if they are empty. We propose three MILP
formulations for the liDARP with a multi-objective function balancing environmental aspects with
customer satisfaction, comparing them on a real-world bus line. Our experiments show that the
formulation based on an Event-Based graph is the fastest, solving instances with up to 50 requests
in under one second. Compared to the classical DARP, the liDARP is computationally faster, with
minimal increases in total distance driven and average ride times.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases DARP, ridepooling, liDARP, public transport, on-demand

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.14

Related Version ArXiv Version: https://arxiv.org/abs/2409.08860

Supplementary Material
Software (Source Code & Data): https://github.com/ReiterKM/liDARP [28], archived at swh:1:
dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74

1 Introduction

Line-based bus services are able to pool a large number of transportation requests along
popular trajectories, thus contributing towards reducing mobility-related emissions when
people decide to take the bus instead of the car. However, when there is little demand (e.g.,
in rural areas or during off-peak periods), buses often run infrequently and almost empty,
so that the described benefits do not materialize. Ridepooling approaches, where multiple
passengers are pooled into a shared vehicle, accepting a slight detour compared to their
direct route, are often proposed to complement line-based bus services for these scenarios.
These approaches are inefficient where they do not succeed to pool requests sufficiently.

We formalize a conceptual approach called line-based ridepooling which combines the
spatial aspect of a classical line-based bus service with the temporal flexibility of on-demand
ridepooling, inspired by real-life examples, including the FLEX’HOP 722 in France, and the
NAHBUS3 and the Rufbus4 in Germany. In line-based ridepooling, we consider a fixed and
ordered sequence of bus stops (defined, e.g., by a prior operating regular bus line) which we

1 corresponding author
2 https://www.cts-strasbourg.eu/fr/se-deplacer/transport-a-la-demande/
3 https://www.nahbus.de/rufbus
4 https://rufbus.nordfriesland.de/Rufbus-Nördliches-u-südliches-Nordfriesland/

© Kendra Reiter, Marie Schmidt, and Michael Stiglmayr;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 14; pp. 14:1–14:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kendra.reiter@uni-wuerzburg.de
https://orcid.org/0009-0004-7281-6516
mailto:marie.schmidt@uni-wuerzburg.de
https://orcid.org/0000-0001-9563-9955
mailto:stiglmayr@uni-wuppertal.de
https://orcid.org/0000-0003-0926-1584
https://doi.org/10.4230/OASIcs.ATMOS.2024.14
https://arxiv.org/abs/2409.08860
https://github.com/ReiterKM/liDARP
https://archive.softwareheritage.org/swh:1:dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74;origin=https://github.com/ReiterKM/liDARP;visit=swh:1:snp:524c223863e09e0805437db626c16f633e4a1b65;anchor=swh:1:rev:d63855b2b17f2c872abbceefd1b6d996f6e09673
https://archive.softwareheritage.org/swh:1:dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74;origin=https://github.com/ReiterKM/liDARP;visit=swh:1:snp:524c223863e09e0805437db626c16f633e4a1b65;anchor=swh:1:rev:d63855b2b17f2c872abbceefd1b6d996f6e09673
https://www.cts-strasbourg.eu/fr/se-deplacer/transport-a-la-demande/
https://www.nahbus.de/rufbus
https://rufbus.nordfriesland.de/Rufbus-N�rdliches-u-s�dliches-Nordfriesland/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 The Line-Based Dial-a-Ride Problem

use as pick-up and drop-off locations. In contrast to a classical line-based bus, our vehicles
have the flexibility to skip stops and take shortcuts, enabling tailored pick-up and drop-off
times dependent on the specific customer requests. However, in contrast to ridepooling, we
use the spatial structure of the given line as a sort of service promise, ensuring that passengers
are only transported towards their destination along the line. In particular, vehicles may not
turn with passengers on board. We call this the directionality property. We aim to achieve a
transportation mode which is more efficient and provides a higher quality of service than the
classical line-based bus, especially in areas with low demand or during off-peak times.

In this paper, we define a new optimization problem to serve passenger requests in
line-based ridepooling. Due to its similarity to the general Dial-a-Ride problem (DARP),
from which it differs by the directionality property and the underlying geography, we call
this problem the line-based Dial-a-Ride problem (liDARP). Here, we study the static variant,
where all requests are known ahead-of-time, and consider a homogeneous fleet of vehicles.

We observe that, due to the directionality property, each vehicle route can be decomposed
into a number of sublines, separated by vehicle turns, with each transported passenger assigned
to exactly one subline. We introduce and compare three mixed-integer linear programming
(MILP) formulations for the liDARP that exploit this property. The first formulation,
presented in Section 4.1, explicitly models sublines and the assignment of passengers to
them. The second and third formulation, presented in Section 4.2 and Section 4.3, are based
on Cordeau’s classic 3-index Location-Based formulation [7] and the Event-Based model
introduced by Gaul et al. in [14]. Section 5 discusses computational results.

Our contribution is threefold: First, we present a general problem definition for the
liDARP, an approach to organizing passenger transport with the potential to combine
benefits from a line-based public transport and on-demand transportation. Second, we
develop and present three MILP formulations for the liDARP. Third, we compare these three
models on synthetic test instances.

2 Related Work

Traditional modes for passenger transportation like the bus, metro, or train, operate based
on lines (prescribing the sequence of stops visited) and timetables (prescribing the timing of
each stop) or frequencies (prescribing the distance to be kept between individual vehicles
on a line). While public transport planning often takes a network perspective, there are
also many contributions that study timetabling or frequency setting on an individual line
with the objective to find an optimal balance between service quality and operator cost, see,
e.g., [18, 19] and the references therein. Gkiotsalitis et al. [15] present a model that allows
to establish regularly operating sublines within a longer line to deal with inhomogenous
demand along the line. Aktaş et al. [1] study a situation where selected stops are assigned to
an express service, forming a shorter and quicker route. Their goal is to determine which
vehicles should perform this express service during morning rush hour, based on expected
demand. While still a rather uncommon strategy during the planning of public transport
operations, short-turning and stop-skipping are common control strategies in transit systems
to mitigate effects like vehicle bunching and overcrowding, see [18].

The literature on Dial-a-Ride problems (synonymously called ridepooling, on-demand bus
services, or demand-responsive transport) is extensive, with in-depth overviews of the current
state being provided by Cordeau and Laporte [9] (until 2007) and Ho et al. [17] (2007 until
2018). Typography and variants are discussed in Molenbruch et al. [20], whence this paper
is concerned with the static, homogeneous, multi-objective approach, compromising the
conflicting goals of system efficiency (including environmental aspects) and user experience.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:3

Early approaches towards exact solution methods to the DARP were carried out by
Psaraftis in [25] and [26]. Cordeau [7] proposes a 3-index arc-based mixed-binary linear
program for the standard DARP, which was adapted to a 2-index formulation by Røpke
et al. [30]. Røpke et al. propose a branch-and-cut approach which is tested on a large
number of benchmark instances. Parragh [22] constructs further valid inequalities related
to capacity restrictions, integrating these into a branch-and-cut framework as well as a
variable neighborhood search heuristic, based on both the 3-index and 2-index formulations.
Gschwindt and Irnich [16] develop an exact branch-and-cut-and-price approach, which solves
all instances of the benchmark set introduced by [30] exactly. Recently, Rist and Forbes [29]
propose a branch-and-cut framework where a DARP route is broken in multiple fragments,
which are paths between a request’s pick-up and drop-off where the vehicle has a non-empty
load. Then, a route is created as a combination of fragments. Gaul et al. [14] propose a new
MILP formulation, relying on an Event-Based graph with nodes representing pick-up/drop-off
events denoting a feasible user allocation of the corresponding vehicle and edges connecting
feasible transitions between events.

Next to exact methods, many papers consider heuristic solution methods to solve the
DARP, including metaheuristics such as simulated annealing [4, 27], adaptive large neighbor-
hood search [23, 24, 31], and tabu search [3, 8].

We are aware of only three publications where the DARP is studied in combination with
an underlying line structure: Archetti et al. [2] restate and prove results from the dissertation
of Busch [6], showing that the Vehicle Routing Problem on the line is NP-hard, both with
an unlimited and a limited fleet of fixed capacity. A complexity classification of DARP
variants has been proposed by de Paepe et al. [10], establishing a scheme akin to scheduling
problems. They examine variants on the line geography, showing that the DARP on the line
with one vehicle of capacity one is solvable in polynomial time. The DARP on a line with
multiple homogeneous vehicles of fixed capacity ≥ 1 is NP-complete, which has been shown
by Bjelde et al. [5] based on a reduction from the Circular Arc Coloring problem. All
three papers are focused on exploring the complexity of the problem, where they consider
only the special case with equally spaced stations and do not allow for shortcuts.

3 Problem Description

We consider a set of κ vehicles of capacity Qmax that operate on a bus line, specified by a
sequence of bus stops H = (1, . . . , n), to transport m stop-to-stop passenger requests R.

The vehicles do not need to traverse the whole line in each route, but are allowed to take
short-cuts (including skipping stops at which no passenger wants to board or alight), to wait,
and to turn at any stop, the latter of which may not be done with passengers on board. In
this way, we guarantee that the directionality property is fulfilled, i.e., each passenger, at all
times, is transported towards their direction with respect to the sequence of stops defined
by the bus line. Pairwise (time) distances ti,j between all stops i, j ∈ H are given, with
ti,i := tturn denoting the turn time at i ∈ H. These distances respect the triangle inequality.

Each request r ∈ R specifies an origin stop or ∈ H, a destination stop dr ∈ H, a time
window [er, lr], a load (number of passengers in the request) qr, and a service time br

for boarding and alighting. We assume that boarding is synchronous, i.e., if one request’s
destination is another request’s origin, and both requests are transported by the same vehicle,
we require that the first request alights before the second boards. This reflects the widely
accepted standard boarding procedure on public transit systems. Furthermore, passengers
do not transfer between vehicles.

ATMOS 2024

14:4 The Line-Based Dial-a-Ride Problem

We make two service promises to our accepted passengers regarding 1) their total travel
time and 2) their waiting time that have to be respected. For the former, we guarantee that
the passenger’s total ride time Lr will not exceed the time needed to travel the direct route
(between their origin and destination) by a pre-specified factor, the excess factor α, i. e.,
Lmax

r := α · tor,dr
. For the latter, we ensure that the actual pick-up (resp. drop-off) time is

not more than β minutes later (resp. earlier) than the specified earliest pick-up (resp. latest
drop-off) time.

Our objective is to create a reliable service for customers and, at the same time, integrate
environmental aspects by reducing emissions compared to passengers travelling in their own
vehicles. Therefore, our objective function is composed of two weighted components: the
number of accepted passengers and the saved distance (i. e., the difference between the sum
of direct distances between all origins and destinations and the total distance driven by our
vehicles), which we want to maximize. The optimization problem now consists of deciding
which passenger requests are accepted, and which are rejected, to assign accepted requests
to one of the κ vehicles, and to plan the routes of these vehicles.

The above-defined problem is a variant of the Dial-a-Ride problem: removing the restric-
tion that vehicles may only turn without passengers on board, it reduces to a (standard)
DARP. Given that our vehicle’s operations are constrained by the line, we call our problem
the line-based Dial-a-Ride problem (liDARP).

4 MILP Formulations for the liDARP

The underlying line structure, which defines an order of bus stops, combined with the
directionality property, allows us to divide the route of each vehicle into a number of sublines:
a sequence of stops at which a vehicle stops to pick-up or drop-off passengers. The first
subline is initialized when a vehicle starts its route and a new subline starts after each of the
vehicle’s turns. We split the set of sublines S into ascending sublines (Sasc), travelling from
a stop i to j with i < j, and descending sublines (Sdesc), travelling in the opposite direction.

Similarly, we divide the passenger requests r ∈ R into ascending requests (Rasc) and
descending requests (Rdesc). As passengers may not be on board when the vehicle turns, each
accepted request can be assigned to exactly one subline, with ascending requests assigned to
ascending sublines and descending requests assigned to descending sublines.

In Section 4.1, we exploit these properties to propose a Subline-Based MILP for the
liDARP, explicitly modelling sublines and passenger assignments to sublines. In Section 4.2
and Section 4.3, we show that the sublines can also be used to simplify MILP formulations
for the standard DARP.

Note that the sublines in the liDARP are similar to the so-called fragments proposed by
Rist and Forbes [29] in their branch-and-cut approach for the DARP. Namely, a subline can
be further subdivided into fragments, which start with a pick-up node and end when the
vehicle is empty.

4.1 Subline-Based Formulation
The Subline-Based formulation relies on the concept of a subline. Given the set of vehicles K,
we assign each k ∈ K a set of sublines S and use binary variables ys,k

i to indicate whether
subline s of vehicle k stops at bus stop i. The route of every subline s of vehicle k is encoded
by the binary variables xs,k

i,j that denote the path between bus stops i, j ∈ H. Depending on
the direction of the subline s, these only need to be defined for i ≤ j or j ≤ i, respectively.
Sublines are computed on a vehicle-basis and symmetry breaking constraints are defined on
the vehicle’s index to remove alternative solutions with equal objectives.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:5

Flow conservation constraints ensure these routes are consistent in each subline and
between consecutive sublines. We track the start and end stop of each subline with binary
variables xs,k

i,i , which correspond to sublines s of vehicle k turning at bus stop i.
Requests are assigned to sublines using binary variables assigns,k

r to indicate if request r

is transported by subline s of vehicle k. Note that these only need to be created for pairs
(r, s) with both r and s travelling in the same direction. We ensure each passenger is picked
up at most once, with the corresponding subline stopping at both the origin and destination
stop. The underlying line structure determines each subline’s pick-up and drop-off sequence,
allowing capacity constraints to be expressed solely in variables assigns,k

r .
Continuous variables arrs,k

i and deps,k
i model the arrival and departure time of subline

s of vehicle k at bus stop i, respectively. We introduce constraints to ensure the stopping
time is sufficiently long for all assigned passengers who are boarding or alighting the vehicle
at a station to do so. Similarly, we ensure that the time between departure at a bus stop
i and arrival at the next bus stop j on the vehicle’s route is equal to ti,j . The departure
and arrival times are further constrained by the fact that, when a request is assigned to a
subline, the corresponding departure and arrival times have to respect the request’s time
window and associated service promises. For this, we track the pick-up and arrival time of
every request r.

An overview of parameters and variables, and the full model are given in Appendix B.1.

4.2 Location-Based Formulation
Inspired by mathematical programming formulation for the traveling salesperson and vehicle
routing problems, Cordeau [7] models the Dial-a-Ride problem using a graph where nodes
represent origin or and destination dr locations of requests r and arcs represent direct
connections between locations. In principle, traveling between any pair of locations is possible,
though many arcs can be removed in a pre-processing step based on time constraints.

To account for the directionality property, we can modify Cordeau’s DARP formulation
for use in the liDARP as follows: we treat the requests as (general) DARP input, adding
modifications to respect the line precedence and to prevent that vehicles turn with passengers
on board. Observing that a vehicle may only turn after drop-off location or before a pick-up
location, we introduce additional nodes at these bus stops which are used to start or end
a turn, allowing us to model our problem based on fewer arcs than the general DARP. A
start-turn node denotes that a vehicle is turning at a pick-up node (and then starting a new
subline), while an end-turn node denotes that a vehicle is turning after a drop-off node (and
ending the current subline). Similar to the general DARP, many arcs can be excluded by
pre-processing based on time windows and service constraints.

Binary variables xk
i,j model whether vehicle k travels from node i to node j with flow

constraints ensuring feasible operations. Additional variables and big-M -constraints are
needed to keep track of the time at which locations are visited and of vehicle load, so that
the requirements with respect to time windows, service promises, and vehicle capacity are
ensured. Technical details and the full model are given in Appendix B.2, where we use
strengthening techniques based on [11].

4.3 Event-Based Formulation
Encoding feasible user allocations in vehicles as nodes, and constructing only edges between
feasible connections, Gaul et al. [14] propose the Event-Based graph as a basis to formulate
the general DARP as a MILP. Every node in the Event-Based graph represents a Qmax-tuple,

ATMOS 2024

14:6 The Line-Based Dial-a-Ride Problem

where the first entry represents the most recent action: a pick-up r+ or drop-off r− of a
request r, and the remaining entries denote the other passengers on board. The node 0
is used to denote the depot. Finding feasible vehicle routes for the DARP can then be
interpreted as a minimum cost circulation flow problem with the additional constraints that
each passenger cannot be picked up more than once and that time windows and service
constraints need to be respected.

While the number of events grows exponential with Qmax, many nodes can already be
excluded during the construction of the Event-Based graph due to incompatibility of time
windows and service constraints. The directionality property allows us to further reduce this
set. In particular, requests i and j cannot be part of the same event if

one of them is ascending and the other is descending, or
both requests are ascending (resp. descending) and the request with a later (resp. earlier)
starting station cannot board a vehicle with the other already on board due to time
window constraints.

The Event-Based model for the DARP can be directly applied to the liDARP by an adapted
construction of the Event-Based graph, distinguishing ascending and descending events and
connecting only events that preserve the directionality property, hence we do not re-state
the formulation here. Moreover, Gaul et al. [12] proposed further arc eliminations.

5 Computational Experiments

In this section, we present numerical experiments for the liDARP on synthetic benchmark
instances. For all experiments, we set the passenger load qr = 1 and service time br = 3 min
for all r ∈ R. The service promise parameters were set to a maximum waiting time of
β = 15 min and a maximum exceedance of direct ride time by α = 3. The objective function
weights were chosen to be c1 = 10 for the number of accepted passenger and c2 = 1 for the
saved distance for the computational results.

The models for the Subline-Based and Location-Based formulation were implemented in
Python 3.11 using Gurobi 10.0. The Event-Based formulation was implemented in C++ 17
using CPLEX 22.1, based on the code by Gaul et al. [13]. The computations are carried out
using a 12th Gen Intel Core i7-1260P CPU, running at 2.10 GHz with 32 GB RAM. For all
runs, we set the solver timeout to 60 min and repeated the calculation five times, averaging
the runtimes.

5.1 Benchmark Instances
We create new benchmark instances specifically for the liDARP using the existing bus stops
of bus line 6 in Würzburg, Germany, as pictures in Figure 1, with 16 stops connecting the
city center to a residential area. We calculate bus stop distances using OpenStreetMap [21],
assuming vehicles can take shortcuts and rounding to the nearest minute.

For the given bus stops H, we generate requests that uniformly choose a pick-up and
drop-off stop in H. We generate an equal amount of requests per time window type,
picking the (earliest) pick-up time or (latest) drop-off time uniformly in the interval [0, 480],
corresponding to an operation of 8 hours. The vehicles have a capacity of Qmax ∈ {3, 6} and
take tturn = 3 min to turn.

We generated 14 instances on the given sequence H, varying from 16 requests with 2
vehicles to 50 requests with 5 vehicles, following the sizing of the well-known benchmark
instances by Cordeau [7] for the classical DARP. The instance names consist of a prefix ‘w’
(for Würzburg), followed by two numbers, where the first indicates the number of vehicles
and the second denotes the number of requests.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:7

Figure 1 Route of bus line 6 in Würzburg, Germany, from [21].

5.2 Results
In this section, we first compare the three proposed MILP formulations using the benchmark
bus line test instances. Second, we assess the trade-off between environmental savings and
customer satisfaction. Lastly, we compare the liDARP model to the classical DARP model
to evaluate its competitiveness.

Computational Time
Figure 2 shows the computational time per benchmark instance for all three formulations.

w2-1
6

w2-2
0

w2-2
4

w3-1
8

w3-2
4

w3-3
0

w3-3
6

w4-1
6

w4-2
4

w4-3
2

w4-4
0

w4-5
8

w5-4
0

w5-5
0

10−2

10−1

100

101

102

103

104

instance

ru
nt

im
e

[s
]

Subline-Based
Location-Based
Event-Based

Figure 2 Runtime of the three formulations on the benchmark instances. Solid markers denote
Qmax = 3, unfilled markers Qmax = 6, and the dashed line marks the solver timeout.

The results clearly show that the Event-Based model outperforms the Location-Based and
Subline-Based models in all instances, for either capacity. For Qmax = 3, the Subline-Based
model reached the timeout for all but one instance, w2-16, and we were not able to compute
a solution for the three largest instances due a lack of available memory. For Qmax = 6, the
largest possible instance the model could solve was w4-32.

ATMOS 2024

14:8 The Line-Based Dial-a-Ride Problem

Observing the Location-Based model, we see a step-structure, where the runtime signific-
antly increases with the number of requests, then decreases as the instances switch to the
next-largest number of vehicles. We see a similar effect in the Event-Based model between
instances w4-58 and w5-40. This is supported by the model size differences reported in
Table 1, which strongly correlate to the number of passenger requests.

In the two instances where the Location-Based model reached timeout for Qmax = 3,
namely w4-58 and w5-50, we note that although the achieved a relative MIP gap at timeout
was greater than 1, the objective value found was within 8 % and even 0 % of the optimum,
respectively.

Table 1 Number of constraints and variables for the benchmark test instances with Qmax = 3,
ordered by the number of requests. SB = Subline-Based, LB = Location-Based, EB = Event-Based.

Num. Constraints Num. Boolean Var. Num. Cont. Var.

Inst. SB LB EB SB LB EB SB LB EB

w2-16 45 042 553 317 20 030 968 189 1952 150 53
w4-16 90 388 787 335 40 188 1868 196 3872 154 56
w3-18 83 315 752 401 35 841 1731 238 3276 170 64
w2-20 67 290 689 497 28 062 1372 294 2440 186 76
w2-24 96 434 825 746 38 462 2062 430 2928 222 106
w3-24 144 443 998 830 57 117 3168 449 4368 224 119
w4-24 197 732 1171 769 79 228 4116 437 5808 226 109
w3-30 227 963 1244 956 87 213 4473 610 5460 278 122
w4-32 352 756 1555 1174 133 500 6792 706 7744 298 149
w3-36 340 895 1490 1627 127 749 6564 935 6552 332 199
w4-40 577 636 1939 1867 214 204 10 668 1117 9680 370 223
w5-40 722 789 2224 1657 267 755 12 945 1065 12 080 372 188
w5-50 1 227 649 2774 2419 453 155 20 885 1602 15 100 462 249
w4-58 1 400 268 2803 3282 517 020 21 976 2154 14 036 532 326

The Subline-Based model requires a significantly higher number of resources, with the
number of constraints and boolean variables exceeding those of both the Location-Based and
Event-Based models by factors of 100 and 10, respectively. Notably, the Location-Based
model uses 10 times more boolean variables than the Event-Based model, but both require a
similar amount of continuous variables.

In general, this result is not surprising, as Gaul et al. [14] demonstrated the computational
efficiency of the Event-Based graph in a MILP formulation for the classical DARP, as many
complicating constraints are implicitly encoded in the underlying network structure.

All following experiments are carried out with Qmax = 3.

Trade-off Analysis

To evaluate the trade-off between environmental savings and customer attractiveness in our
chosen objective function, we compare three different settings: in the environmentally focused
setting, we use objective weights c1 = 1, c2 = 10, placing an emphasis on the distance saved,
whilst in the customer focused setting, we use weights c1 = 10, c2 = 1, emphasising the
number of transported passengers. We also include a setting with equal weights as a base
case. The trade-off between objective function components is visualized in Figure 3.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:9

30% 40% 50% 60% 70% 80% 90% 100%

−20

0

20

40

60

share of accepted passengers

sa
ve

d
di

st
an

ce

environmental focus
equal weights
customer focus

Figure 3 Objective Function parameters for varying weights. Each marker shape represents one
benchmark instance.

Note that both objective functions are considered as maximizing objectives. A positive
saved distance is preferred, as this corresponds to more direct passenger kilometers saved
than total routing costs accumulated. All instances in Figure 3 were solved to optimality.

We observe that, in the customer-focused setting, all passengers are accepted in all
instances. In the environmental-focused setting, the saved distance is always non-negative.
We have highlighted the approximated Pareto front for a specific instance, w2-20, represented
by triangles, by connecting the markers corresponding to the three obtained weighted-sum
solutions in Figure 3 to better illustrate the trade-offs. The saved distance decreases from
7 min to −22 min between the environmental-focused and the customer-focused setting, while
the share of accepted passengers increases from 40 % to 100 %. The same pattern can be
observed for all other benchmark instances. Hence, the proposed objective function is capable
of capturing multiple needs and can be adjusted accordingly, dependent on the chosen
application.

DARP versus liDARP

Lastly, we compare the liDARP formulation to the classical DARP formulation, where
vehicles are allowed to take any route between passenger without needing to adhere to the
line structure. We use the above-introduced benchmark instances, extending these to cases
with up to 11 vehicles and 132 requests (similar to the extended benchmark set introduced
by Røpke et al. [30]). We set tturn = 0 min for both formulations and set the solver timeout
to 60 min. The computational time for both models is shown in Figure 4, averaged over five
runs. The Event-Based model was used to produce the liDARP results.

We observe that the liDARP model is faster in all instances. While both models’
computational time increases with the number of requests, the liDARP was able to solve
even the largest instances with over 100 requests in less than 10 s, while the DARP model
was aborted at timeout. Examining the objective values, both models accepted all requests
in all instances, while they differ in the saved distance, which is visualized in Figure 5. The
DARP achieved a higher saved distance in all but one instance, w10-100, which was aborted
at timeout, with the average deviation being 3 min and the maximum deviation being a
saving of 10 min in instance w11-132. Both models use all available vehicles for all instances.

ATMOS 2024

14:10 The Line-Based Dial-a-Ride Problem

w2-1
6
w2-2

4
w3-2

4
w3-3

6
w4-2

4
w4-4

0
w5-4

0
w5-6

0
w6-6

0
w7-5

6
w7-8

4
w8-8

0
w9-7

2

w9-1
08

w10
-10

0

w11
-88

w11
-13

2

10−2

10−1

100

101

102

103

104

instance

ru
nt

im
e

[s
] DARP

liDARP

Figure 4 Runtime of the DARP and liDARP on the extended benchmark instances. The dashed
line marks the solver timeout.

w2-1
6
w2-2

4
w3-2

4
w3-3

6
w4-2

4
w4-4

0
w5-4

0
w5-6

0
w6-6

0
w7-5

6
w7-8

4
w8-8

0
w9-7

2

w9-1
08

w10
-10

0

w11
-88

w11
-13

2

0

50

100

instance

sa
ve

d
di

st
an

ce

DARP
liDARP

Figure 5 Saved distance of the liDARP and DARP on the extended benchmark instances.

The average ride time, measured as the time between pick-up and drop-off of each request,
was marginally higher in the DARP model, with an average increase of 0.14 min. The
difference in the average share of empty mileage, defined as the fraction of empty mileage
over the total distance, is less than 0.02 on average. Similarly, the difference in average
detour, which is the fraction of passenger distance driven to the shortest distances between
pick-up and drop-off, is less than 0.025 on average.

Examining each DARP solution, we count the number of requests which are, at least for
a portion of their trip, travelling away from their destination, i.e., violating the directionality
property. The only instances where there are no such violations are w3-18, w3-30, and w4-32.
On average, 7.7 % of passengers travel in the opposite direction for at least a portion of their
trip, with the largest amount being 18.9 % in instance w9-90. We hypothesize that these
routes will likely be viewed as unnecessary by customers, even if they are the most efficient
amongst all possible connections.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:11

While there is a difference in saved distance and ride time, passengers do not have to
accept significant detours when using the liDARP compared to the DARP model, and the
vehicles travel without passengers for a similar amount of time.

6 Conclusion

We present the line-based Dial-a-Ride problem (liDARP), wherein ridepooling vehicles operate
on-demand on a sequence of bus stations, adhering to the directionality property, time and
capacity constraints, and our service promises. The efficiency of this approach is validated
through numerical computations on benchmark instances derived from on a real-life bus line
in Würzburg, Germany. Our multi-objective approach successfully balances environmental
concerns, by reducing the total distance travelled compared to individual passenger trips,
and the attractiveness, measured in the total amount of passengers accepted.

The advantages of the liDARP additionally include the possibility to use existing infra-
structure, being based on a sequence of bus stops, which may increase utilization in off-peak
times or in areas with low demand. Thus, we provide a system that can serve as an alternative
to public transport, providing flexibility to its customers to improve attractiveness.

Our approach can be extended to inhomogeneous vehicles with varying capacities, to
determine where each vehicle is best allocated to serve the customer base. Future research
could explore varying demand scenarios, such as operating a feeder line to a train station
or considering rush-hour induced fluctuations in demand. Finally, this paper focuses on
the static variant of the liDARP, where all requests are known in advance. Investigating
the liDARP under unknown and dynamic demand may provide insights into its practical
applicability and competitiveness in a real-world setting.

References
1 Dilay Aktas, Pieter Vansteenwegen, and Kenneth Sörensen. A demand-responsive bus system

for peak hours with capacitated vehicles. In Proc. 11th Triennial Symposium on Transportation
Analysis conference (TRISTAN XI), Mauritius Island, 2022. TRISTAN.

2 Claudia Archetti, Dominique Feillet, Michel Gendreau, and M. Grazia Speranza. Complexity of
the VRP and SDVRP. Transportation Research Part C: Emerging Technologies, 19(5):741–750,
August 2011. doi:10.1016/j.trc.2009.12.006.

3 Andrea Attanasio, Jean-François Cordeau, Gianpaolo Ghiani, and Gilbert Laporte. Parallel
Tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing,
30(3):377–387, March 2004. doi:10.1016/j.parco.2003.12.001.

4 John W. Baugh, Gopala Krishna Reddy Kakivaza, and John R. Stone. Intractability of the
Dial-a-Ride Problem and a Multiobjective Solution Using Simulated Annealing. Engineering
Optimization, 30(2):91–123, February 1998. doi:10.1080/03052159808941240.

5 Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight bounds for online tsp on
the line. ACM Transactions on Algorithms (TALG), 17(1):1–58, 2021. doi:10.1145/3422362.

6 Ingrid Busch. Vehicle routing on acyclic networks. Dissertation, The Johns Hopkins University,
Baltimore, Maryland, 1991.

7 Jean-François Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations
Research, 54(3):573–586, 2006. doi:10.1287/opre.1060.0283.

8 Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.
doi:10.1016/S0191-2615(02)00045-0.

9 Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and algorithms.
Annals of Operations Research, 153(1):29–46, 2007. doi:10.1007/s10479-007-0170-8.

ATMOS 2024

https://doi.org/10.1016/j.trc.2009.12.006
https://doi.org/10.1016/j.parco.2003.12.001
https://doi.org/10.1080/03052159808941240
https://doi.org/10.1145/3422362
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1007/s10479-007-0170-8

14:12 The Line-Based Dial-a-Ride Problem

10 Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-
aided complexity classification of dial-a-ride problems. INFORMS Journal on Computing,
16(2):120–132, 2004. doi:10.1287/ijoc.1030.0052.

11 Martin Desrochers and Gilbert Laporte. Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Operations Research Letters, 10(1):27–36, 1991.
doi:10.1016/0167-6377(91)90083-2.

12 Daniela Gaul, Kathrin Klamroth, Christian Pfeiffer, Arne Schulz, and Michael Stiglmayr. A
Tight Formulation for the Dial-a-Ride Problem, 2023. arXiv:2308.11285.

13 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Solving the Dynamic Dial-a-Ride
Problem Using a Rolling-Horizon Event-Based Graph. In 21st Symposium on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021), volume 96
of Open Access Series in Informatics (OASIcs), pages 8:1–8:16, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2021.8.

14 Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Event-based MILP models for
ridepooling applications. European Journal of Operational Research, 301(3):1048–1063, 2022.
doi:10.1016/j.ejor.2021.11.053.

15 Konstantinos Gkiotsalitis, Marie Schmidt, and Evelien van der Hurk. Subline frequency
setting for autonomous minibusses under demand uncertainty. Transportation Research Part
C: Emerging Technologies, 135:103492, 2022. doi:10.1016/j.trc.2021.103492.

16 Timo Gschwind and Stefan Irnich. Effective handling of dynamic time windows and its
application to solving the dial-a-ride problem. Transportation Science, 49(2):335–354, 2015.
doi:10.1287/trsc.2014.0531.

17 Sin C. Ho, Wai Yuen Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and
Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B: Methodological, 111:395–421, 2018. doi:10.1016/j.trb.2018.
02.001.

18 Omar J. Ibarra-Rojas, Felipe Delgado, Ricardo Giesen, and Juan Carlos Muñoz. Planning,
operation, and control of bus transport systems: A literature review. Transportation Research
Part B: Methodological, 77:38–75, 2015. doi:10.1016/j.trb.2015.03.002.

19 Pei Liu, Marie Schmidt, Qingxia Kong, Joris Camiel Wagenaar, Lixing Yang, Ziyou Gao,
and Housheng Zhou. A robust and energy-efficient train timetable for the subway system.
Transportation Research Part C: Emerging Technologies, 121:102822, 2020. doi:10.1016/j.
trc.2020.102822.

20 Yves Molenbruch, Kris Braekers, and An Caris. Typology and literature review for dial-
a-ride problems. Annals of Operations Research, 259(1):295–325, 2017. doi:10.1007/
s10479-017-2525-0.

21 OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org, 2017.

22 Sophie N. Parragh. Introducing heterogeneous users and vehicles into models and algorithms
for the dial-a-ride problem. Transportation Research Part C: Emerging Technologies, 19(5):912–
930, 2011. doi:10.1016/j.trc.2010.06.002.

23 Sophie N. Parragh and Verena Schmid. Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Computers & Operations Research, 40(1):490–497, 2013.
doi:10.1016/j.cor.2012.08.004.

24 Christian Pfeiffer and Arne Schulz. An ALNS algorithm for the static dial-a-ride problem
with ride and waiting time minimization. OR Spectrum, 44(1):87–119, 2022. doi:10.1007/
s00291-021-00656-7.

25 Harilaos N. Psaraftis. A Dynamic Programming Solution to the Single Vehicle Many-to-
Many Immediate Request Dial-a-Ride Problem. Transportation Science, 14(2):130–154, 1980.
doi:10.1287/trsc.14.2.130.

https://doi.org/10.1287/ijoc.1030.0052
https://doi.org/10.1016/0167-6377(91)90083-2
https://arxiv.org/abs/2308.11285
https://doi.org/10.4230/OASIcs.ATMOS.2021.8
https://doi.org/10.1016/j.ejor.2021.11.053
https://doi.org/10.1016/j.trc.2021.103492
https://doi.org/10.1287/trsc.2014.0531
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2015.03.002
https://doi.org/10.1016/j.trc.2020.102822
https://doi.org/10.1016/j.trc.2020.102822
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://doi.org/10.1016/j.trc.2010.06.002
https://doi.org/10.1016/j.cor.2012.08.004
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1287/trsc.14.2.130

K. Reiter, M. Schmidt, and M. Stiglmayr 14:13

26 Harilaos N. Psaraftis. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-
Ride Problem with Time Windows. Transportation Science, 17(3):351–357, 1983. doi:
10.1287/trsc.17.3.351.

27 Line Blander Reinhardt, Tommy Clausen, and David Pisinger. Synchronized dial-a-ride
transportation of disabled passengers at airports. European Journal of Operational Research,
225(1):106–117, 2013. doi:10.1016/j.ejor.2012.09.008.

28 Kendra Reiter. The line-based Dial-a-Ride problem. Software, swhId:
swh:1:dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74 (visited on 2024-08-20). URL:
https://github.com/ReiterKM/liDARP.

29 Yannik Rist and Michael A. Forbes. A New Formulation for the Dial-a-Ride Problem.
Transportation Science, 55(5):1113–1135, 2021. doi:10.1287/trsc.2021.1044.

30 Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks, 49(4):258–272,
2007. doi:10.1002/net.20177.

31 Stefan Ropke and David Pisinger. An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4):455–472,
2006. doi:10.1287/trsc.1050.0135.

A Variable Overview

Table 2 Summary of liDARP parameters.

Notation Definition

H set of bus stops, {1, . . . , n}
K set of vehicles, {1, . . . , κ}
R set of passenger requests, {1, . . . , m}
Rasc set of passenger requests travelling in ascending direction
Rdesc set of passenger requests travelling in descending direction
or origin stop of passenger request r

dr destination stop of passenger request r

qr load of request r

er earliest departure time of request r

lr latest arrival time of request r

br service time for request r

ti,j travel time from bus stop i to j

α service promise constant relating to maximum ride time, excess factor
β service promise constant relating to maximum wait time
Lr total ride time of request r

Lmax
r maximum ride time of request r, dependent on α and β

tturn time it takes for a vehicle to turn around
c1, c2 objective weights

B MILP Formulations

B.1 Subline-Based Formulation
In this section, we present the MILP model for the Subline-Based formulation introduced in
Section 4.1. All parameters and variables are summarized in Table 3.

ATMOS 2024

https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1016/j.ejor.2012.09.008
https://archive.softwareheritage.org/swh:1:dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74;origin=https://github.com/ReiterKM/liDARP;visit=swh:1:snp:524c223863e09e0805437db626c16f633e4a1b65;anchor=swh:1:rev:d63855b2b17f2c872abbceefd1b6d996f6e09673
https://github.com/ReiterKM/liDARP
https://doi.org/10.1287/trsc.2021.1044
https://doi.org/10.1002/net.20177
https://doi.org/10.1287/trsc.1050.0135

14:14 The Line-Based Dial-a-Ride Problem

Table 3 Summary of notation for the Subline-Based model.

Notation Definition

Parameters

S set of sublines, {1, . . . , σ}
Sasc set of sublines travelling in ascending direction
Sdesc set of sublines travelling in descending direction

Binary Decision Variables

assigns,k
r 1 if request r is assigned to subline s of vehicle k

ys,k
i 1 if subline s of vehicle k visits node i

startk
i 1 if node i is the start node of vehicle k

endk
i 1 if node i is the end node of vehicle k

xs,k
i,j 1 if node j is visited immediately after node i on subline s of vehicle k

xs,k
i,i 1 if vehicle k turns at node i after executing subline s

wr1,r2 1 if requests r1 and r2 are on the same subline of the same vehicle
zk 1 if vehicle k is in use

Continuous Decision Variables

deps,k
i departure time of subline s of vehicle k at node i

arrs,k
i arrival time of subline s of vehicle k at node i

pickupr pick-up time of request r

arrtimer drop-off time of request r

In this model, we explicitly model the path of every subline of each vehicle, using binary
variables ys,k

i to denote if subline s of vehicle k stops at bus station i and binary variables xs,k
i,j

to denote if the direct path from station i to station j is used. Further binary variables startk
i

and endk
i denote if vehicle k starts and ends at station i, respectively. Then, by tracking

the turning stations of every subline s, i.e., stations i where xs,k
i,i = 1, we track the start

and end station of every subline. For every variable which references both passengers and
sublines, such as assigns,k

r , we only create those variables where the passenger and subline
are travelling in the same direction.

To ensure our model respects the boarding precedence (requests which are alighting leave
the vehicle before those boarding can enter), we construct the following three subsets for
every request i ∈ R:

Preco,o
i , containing all requests j which have the same origin as i, are travelling in the

same direction, and should board before i,
Preco,d

i , containing all requests j whose destination is at i’s origin, are travelling in the
same direction, and should alight before i boards, and
Precd,d

i , containing all requests j which have the same destination as i, are travelling in
the same direction, and should alight before i.

Note that the set Precd,o
i , which denotes all origin requests that need to be served before

request i is dropped-off, is not created as it is always empty due to the boarding assumption.
Furthermore, we track which passengers are pooled together on the same subline of the

same vehicle with binary variables wr1,r2 . These are required, together with the precedence
sets, to ensure we allow for sufficient boarding and alighting times per passenger at every
stop. To model these, we use big-M constraints with M1 := maxr∈R Lmax

r .

K. Reiter, M. Schmidt, and M. Stiglmayr 14:15

Binary variables zk denote that vehicle k is used by our solution. Here, we use big-M
constraints with M2 := maxr∈R lr + (2 · σ − 1) · br, where σ denotes the number of sublines,
to ensure the arrival and departure time variables for each vehicle are only set if they are
also used.

To strengthen the model, we enforce that a vehicle’s end stop is placed after it has
turned twice, i.e., after two consecutive sublines start and end at the same stop. Then, every
following subline is empty and turns at the same stop. This reduces the number of possible
solutions with the same objective value.

We define T + := maxr∈R Lmax
r + (σ − 1)tturn to be the end of service, i.e., when all

vehicles end their operation at the latest.
We note that the model’s size is dependent on the choice of σ, the number of sublines,

which is hard to choose. We set σ = 2 · m for all experiments presented here.
The full Subline-Based model is given by:

max
x

c1 ·

(∑
s∈S

∑
k∈K

∑
r∈R

assigns,k
r · tor,dr

−
∑
k∈K

∑
s∈S

∑
(i,j)∈H×H:

i ̸=j

xs,k
i,j · ti,j

)

+ c2 ·
∑
s∈S

∑
k∈K

∑
r∈R

assigns,k
r

s.t.
∑
i∈H

startk
i ≤ 1 ∀ k ∈ K (1a)∑

i∈H

endk
i =

∑
i∈H

startk
i ∀ k ∈ K (1b)∑

i∈H

xs,k
ii =

∑
i∈H

startk
i ∀ k ∈ K, s ∈ S \ {σ} (1c)

xσ,k
i,i = 0 ∀ i ∈ H, k ∈ K (1d)

y1,k
i = startk

i +
∑
j<i

x1,k
j,i ∀ i ∈ H, k ∈ K (1e)

ys,k
i = xs−1,k

i,i +
∑
j<i

xs,k
j,i ∀ i ∈ H, k ∈ K, s ∈ Sasc \ {1} (1f)

ys,k
i = xs−1,k

i,i +
∑
j>i

xs,k
j,i ∀ i ∈ H, k ∈ K, s ∈ Sdesc (1g)

ys,k
i = xs,k

i,i +
∑
j>i

xs,k
i,j ∀ i ∈ H, k ∈ K, s ∈ Sasc (1h)

ys,k
i = xs,k

i,i +
∑
j<i

xs,k
i,j ∀ i ∈ H, k ∈ K, s ∈ Sdesc \ {σ} (1i)

yσ,k
i = endk

i +
∑
j<i

xσ,k
i,j ∀ i ∈ H, k ∈ K (1j)

zk=
∑
i∈H

startk
i ∀ k ∈ K (1k)∑

r:or≤i,dr>i

assigns,k
r ≤ Qmax ∀ k ∈ K, s ∈ Sasc, i = 1, . . . , n − 1 (1l)

∑
r:or≥i,dr<i

assigns,k
r ≤ Qmax ∀ k ∈ K, s ∈ Sdesc, i = 2, . . . , n (1m)

zk≥ ys,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1n)

ATMOS 2024

14:16 The Line-Based Dial-a-Ride Problem

zk≥ xs,k
i,j ∀(i, j) ∈ E, s ∈ S, k ∈ K (1o)

zk≥ assigns,k
r ∀ r ∈ R, s ∈ S, k ∈ K (1p)

M2 · zk≥ arrs,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1q)

M2 · zk≥ deps,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1r)

startk
i ≥

∑
j∈H:j<i

startk+1
j ∀ i ∈ H, k ∈ {1, . . . , κ − 1} (1s)

deps,k
i ≥ arrs,k

i ∀ i ∈ H, s ∈ S, k ∈ K (1t)

arrs,k
j ≥ deps,k

i + ti,j · xs,k
i,j ∀(i, j) ∈ H × H with i < j, s ∈ Sasc, k ∈ K (1u)

arrs,k
j ≥ deps,k

i + ti,j · xs,k
i,j ∀(i, j) ∈ H × H with i > j, s ∈ Sdesc, k ∈ K (1v)

arrs,k
i ≥ deps−1,k

i + tturn · xs−1,k
i,i ∀ i ∈ H, s ∈ Sasc \ {1}, k ∈ K (1w)

arrs,k
i ≥ deps−1,k

i + tturn · xs−1,k
i,i ∀ i ∈ H, s ∈ Sdesc, k ∈ K (1x)

arrs,k
i ≥ 0 ∀ i ∈ H, s ∈ S, k ∈ K (1y)∑

k∈K

∑
s∈S

assigns,k
r ≤ 1 ∀ r ∈ R (1z)

2 · assigns,k
r ≤ ys,k

or
+ ys,k

dr
∀ k ∈ K, s ∈ S, r ∈ R (1aa)

assigns,k
r · (er + bor

)≤ deps,k
or

∀ k ∈ K, s ∈ S, r ∈ R (1ab)

lr + T + · (1 − assigns,k
r)≥ arrs,k

dr
∀ r ∈ R, s ∈ S, k ∈ K (1ac)

wri,rj ≤ assigns,k
ri

∀ s ∈ S, k ∈ K, ri, rj ∈ R (1ad)
assigns,k

ri
+ assigns,k

rj
− 1≤ wri,rj

∀ s ∈ S, k ∈ K, ri, rj ∈ R (1ae)

pickupr≥
∑
k∈K

∑
s∈S

assigns,k
r · arrs,k

or
∀ k ∈ K, s ∈ S, r ∈ R (1af)

arrtimer≥
∑
k∈K

∑
s∈S

assigns,k
r · arrs,k

dr
∀ k ∈ K, s ∈ S, r ∈ R (1ag)

bri
+ pickupri

− pickuprj
≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Preco,o

ri
(1ah)

bri + arrtimeri − pickuprj
≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Preco,d

ri
(1ai)

bri + arrtimeri − arrtimerj ≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Precd,d

ri
(1aj)

deps,k
or

≥ assigns,k
r · (pickupr + br) ∀ r ∈ R (1ak)

deps,k
dr

≥ assigns,k
r · (arrtimer + br) ∀ r ∈ R (1al)

eor
≤ pickupr ≤ lor

∀ r ∈ R (1am)
edr ≤ arrtimer ≤ ldr ∀ r ∈ R (1an)
arrtimer + br − pickupr≤ α · tor,dr ∀ r ∈ R (1ao)

Constraint (1a) ensures each vehicle is used at most once and constraint (1b) ensures that
a started vehicle also ends at a bus stop. Constraint (1c) makes sure every started vehicle
turns around at some station, while (1d) denotes that the last subline of each vehicle does not
turn. Constraints (1e) to (1i) are for flow conservation between sublines and their turn stops.
The last subline ends at its end stop, which is controlled by (1j). Constraint (1k) tracks

K. Reiter, M. Schmidt, and M. Stiglmayr 14:17

the amount of vehicles which are used. The upper capacity of every vehicle is ensured by
(1l) and (1m), for both subline directions. Constraints (1n) to (1r) ensure that only vehicles
which are started can travel to and between stops. Constraint (1s) is a symmetry breaking
constraint which says that vehicles with a smaller index start at a smaller station.

Constraint (1t) ensures a vehicle departs from a bus stop only after it has arrived, while
constraints (1u) and (1v) ensure the arrival time at the next bus stop respects the minimum
travel time. Constraints (1w) and (1x) take into account the turning time, linking a subline’s
end time with the subsequent subline’s start time at the same stop. Finally, constraints (1y)
ensures all times are positive.

Constraint (1z) ensures a passenger is picked up at most once and, by constraint (1aa),
only if the subline they are assigned to also stops at their origin and destination. The link
between earliest pick-up and departure from the origin times, as well as latest drop-off and
arrival at the destination times, is handled with constraints (1ab) and (1ac), respectively.
Finally, constraints (1ad) and (1ae) link the variable wri,rj to denote if two passengers are
assigned to the same subline of the same vehicle.

Constraints (1af) and (1ag) place a lower bound on the pick-up time and drop-off time
of each passenger, dependent on the vehicle’s arrival time at the corresponding station.
Constraints (1ah) to (1aj) ensure the precedence rules for boarding are respected and add
sufficient service times between serving customers. Then, constraints (1ak) and (1al) ensures
the vehicle can only depart after the last passenger has fully boarded or alighted. The time
windows of each passenger is guaranteed by (1am) and (1an), while the maximum travel
time is limited by constraint (1ao).

B.2 Location-Based Formulation
In this section, we describe the construction of the underlying graph for the Location-Based
formulation in more detail, as well as presenting the full MILP model. All notation is
summarized in Table 4.

We introduce ascending bus stops Hasc := {h1, . . . , hn} and descending bus stops Hdesc :=
{hn+1, . . . , h2n}. Bus stops hi ∈ Hdesc and hn+i ∈ Hasc are virtual copies of stop i ∈ H.
In reality, these may be the same stop on opposite sides of the road, for vehicles travelling
in opposite directions. We connect all bus stops hi ∈ Hdesc with their corresponding
hn+i ∈ Hasc, in both directions (corresponding to a turn at station i), and enforce that two
stops in either set can only be served in upstream order with respect to the line.

Similar to the classical DARP formulation, for each request r ∈ R, we construct four nodes
or, dr, ōr, d̄r in a liDARP-Graph GR = (HR, ER). Here, the nodes or and dr correspond to
the classic pick-up and drop-off nodes of r. The node ōr is a start-turn node, denoting that
the vehicle is at or, facing the opposite direction, i.e., before it turns and picks up request
r at or. Similarly, the node d̄r is an end-turn node, denoting that the vehicle is at dr, has
dropped off the request r, and is now turning to continue in the opposite direction. Then,

if r ∈ Rasc: we construct or at the origin hor ∈ Hasc, dr at the destination hdr ∈ Hasc

stop, ōr at hn+or
∈ Hdesc, and d̄r at hn+dr

∈ Hdesc.
if r ∈ Rdesc: we construct or at the origin hor

∈ Hdesc, dr at the destination hdr
∈ Hdesc

stop, ōr at hor−n ∈ Hasc, and d̄i at hdr−n ∈ Hasc.

We set P := {or : r ∈ R}, D := {dr : r ∈ R}, P̄ := {ōr : r ∈ R}, and D̄ := {d̄r : r ∈ R}
to denote the sets of these bus stops. We additionally define time windows on the nodes ōr

and d̄r of every request r ∈ R, dependent on the time windows on or and dr, respectively,
accounting for the boarding and turn times. We introduce two depots, the start depot δstart

ATMOS 2024

14:18 The Line-Based Dial-a-Ride Problem

Table 4 Summary of notation for the Location-Based model.

Notation Definition

Parameters

δstart start depot
δend end depot
P set of pick-up nodes
D set of delivery node
P̄ set of start-turn nodes, before a pick-up node
D̄ set of end-turn nodes, after a drop-off node
NR set of all pick-up and delivery nodes in all directions, depending on requests R

HR set of all pick-up, delivery, and depot nodes, depending on requests R

ER set of all edges between nodes in ER

Binary Decision Variables

xk
i,j 1 if vehicle k travels on arc (i, j) ∈ ER

zk 1 if vehicle k is used

Continuous Decision Variables

Bi start of service time at bus stop i

Qi passenger load departing bus stop i

Lr ride time of passenger r

and the end depot δend, where vehicles start and end their route. Let NR := P ∪ D ∪ P̄ ∪ D̄

denote all pick-up, drop-off, and turn stops, and HR := {δstart, δend} ∪ NR all nodes including
the depots.

The edge set ER :=
⋃10

i=1 Ei
R between nodes in HR is constructed as follows:

E1
R := {(or, dr) ∈ P × D : r ∈ R}, connecting each request’s origin with its destination,

E2
R := {(vi, wj) ∈ (P ∪D ∪D̄)× (P ∪D ∪ P̄) : hvi

, hwj
∈ Hasc, i ̸= j, vi precedes wj , i, j ∈

R}, connecting all ascending stops to subsequent stops in the same direction,
E3

R := {(vi, wj) ∈ (P ∪D∪D̄)×(P ∪D∪P̄) : hvi , hwj ∈ Hdesc, i ̸= j, vi precedes wj , i, j ∈
R}, connecting all descending stops to subsequent stops in the same direction,
E4

R := {(ōr, or) ∈ P̄ × P : r ∈ R}, connecting the start-turn stop of each request with its
corresponding origin stop in the opposite direction,
E5

R := {(dr, d̄r) ∈ D × D̄ : r ∈ R}, connecting the destination stop of each request with
its corresponding end-turn stop in the opposite direction,
E6

R := {(vi, wj) ∈ (P ∪ D ∪ D̄) × (P ∪ D ∪ P̄) : vi, wj ∈ Hasc, hvi = hwj , i ̸= j,

¬(vi ∈ D ∧ wj ∈ P), evi
≤ ewj

, lvi
≤ lwj

, i, j ∈ R}, connecting ascending stops at the
same original physical bus stop if they are compatible regarding their time windows,
E7

R := {(vi, wj) ∈ (P ∪ D ∪ D̄) × (P ∪ D ∪ P̄) : vi, wj ∈ Hdesc, hvi = hwj , i ̸= j,

¬(vi ∈ P ∧ wj ∈ D), evi
≤ ewj

, lvi
≤ lwj

, i, j ∈ R}, connecting descending stops at the
same original physical bus stop if they are compatible regarding their time windows,
E8

R := {(δstart, δend)}, connecting the starting depot to the ending depot to allow for
unused vehicles,
E9

R := {(δstart, or) ∈ {δstart}×P : r ∈ R}∪{(δstart, ōr) ∈ {δstart}×P̄ : r ∈ R}, connecting
the start depot to all pick-up locations and their start-turn stops,
E10

R := {(dr, δend) ∈ D × {δend} : r ∈ R} ∪ {(d̄r, δend) ∈ D̄ × {δend} : r ∈ R}, connecting
all drop-off locations and their end-turn stops to the end depot.

K. Reiter, M. Schmidt, and M. Stiglmayr 14:19

Here, we write v precedes w to denote that the bus stations corresponding to v precedes that
corresponding to w with respect to the corresponding line direction. We use Eturn := E4

R ∪E5
R

to denote all the edges on which the vehicles turn. Each edge is only added once, even if it
appears in multiple sets. The travel time of the edges is given by the original network, where
a turn takes tturn and travel between two pick-ups or drop-offs at the same physical stop is
instantaneous.

In our model, the binary variable xk
i,j denotes if a vehicle k travels on defined arcs

(i, j) ∈ ER. Variables zk denote if vehicle k is used in the solution.
We define that the vehicle loads qδstart := qδend = 0, qi := 1 for all i ∈ P and qi := −1

for all i ∈ D. Additionally, we set the service times bδstart := bδend = 0 and bi = 0 for all
i ∈ P̄ ∪ D̄. Let Qi denote the passenger load of a vehicle departing a stop i and let the
continuous variable Bi denote the start of service time at stop i. Note that these do not
require an index for the vehicle k as each node can be visited by at most one vehicle and the
vehicles are homogeneous with a maximum capacity Qmax, as has been discussed in [7]. We
require that Qk

δstart
:= Qk

δend
= 0 for all k ∈ K, thus removing these variables from the model.

To strengthen the model, we introduce a symmetry breaking constraint which enforces
that vehicles of lower index are used first. Then, the full Location-Based model is given by:

max
x

c1

(∑
k∈K

∑
i∈P

ti,i+m · xk
i,i+m −

∑
k∈K

∑
j∈HR:

(i,j)∈ER

∑
i∈HR

ti,j · xk
i,j

)
+ c2

∑
k∈K

∑
j∈HR:

(i,j)∈ER

∑
i∈P

xk
i,j

s.t.
∑
k∈K

∑
j∈HR:

(i,j)∈ER

xk
i,j ≤ 1 ∀ i ∈ P (2a)

∑
j∈HR:

(i,j)∈ER

xk
i,j −

∑
j∈HR:

(m+i,j)∈ER

xk
m+i,j = 0 ∀ i ∈ P, k ∈ K (2b)

∑
j∈P ∪P̄

xk
δstart,j = 1 ∀ k ∈ K (2c)

∑
i∈D∪D̄

xk
i,δend

= 1 ∀ k ∈ K (2d)

∑
j∈HR:

(j,i)∈ER

xk
j,i −

∑
j∈HR:

(i,j)∈ER

xk
i,j = 0 ∀ i ∈ NR, k ∈ K (2e)

1 −
∑

j∈NR

∑
i∈NR:

(i,j)∈ER

xk
i,j ≤ M3 · xk

δstart,δend
∀ k ∈ K (2f)

Bj ≥ (Bk
δstart

+ bδstart + tδstart,j) · xk
δstart,j ∀ j ∈ P ∪ P̄ ∪ {δend}, k ∈ K (2g)

Bk
δend

≥ (Bi + bi + ti,δend) · xk
i,δend

∀ i ∈ D ∪ D̄ ∪ {δstart}, k ∈ K (2h)

Bj ≥ (Bi + bi + ti,j) ·
∑
k∈K

xk
i,j ∀ i, j ∈ NR : (i, j) ∈ ER (2i)

Bi ≥ ei +
∑

j∈HR\{i}

(
max{0, ej − ei + bj + tj,i} ·

∑
k∈K

xk
j,i

)
∀ i ∈ NR (2j)

Bi ≤ li −
∑

j∈HR\{i}

(
max{0, li − lj + bi + ti,j} ·

∑
k∈K

xk
i,j

)
∀ i ∈ NR (2k)

Li = Bi+m − (Bi + bi) ∀ i ∈ P (2l)

ATMOS 2024

14:20 The Line-Based Dial-a-Ride Problem

ti,i+m ≤ Li ≤ α · ti,i+m ∀ i ∈ P (2m)
Qj ≥ qj · xk

δstart,j ∀ j ∈ P ∪ P̄ , k ∈ K (2n)

Qj ≥ (Qi + qj) ·
∑
k∈K

xk
i,j ∀ i, j ∈ NR : (i, j) ∈ ER (2o)

0 ≥ Qi · xk
i,δend

∀ i ∈ D ∪ D̄, k ∈ K (2p)

Qi ≤ Qmax · (1 −
∑
k∈K

xk
i,j) ∀ (i, j) ∈ Eturn (2q)

Qi ≥ −Qmax · (1 −
∑
k∈K

xi,j) ∀ (i, j) ∈ Eturn (2r)

Qi ≤ Qmax ·
∑
k∈K

∑
j∈HR:

(i,j)∈ER

xk
i,j ∀ i ∈ HR (2s)

zk ≥ 1
|HR|2

·
∑

(i,j)∈ER

xk
i,j ∀ k ∈ K (2t)

zk ≥ zk+1 ∀ k ∈ K (2u)

Constraints (2a) and (2b) ensure each passenger is picked up at most once and is dropped-
off by the same vehicle. Vehicles must start (2c) at δstart and end at δend (2d) depots,
maintaining flow conservation across all arcs (2e). Only unused vehicles may use the arc
(δstart, δend), as denoted by (2f), where we use a big-M constraint with M3 := |ER|. The
service start times for leaving and entering the depot, as well as consistency across arcs,
is handled by (2g)–(2i). Constraints (2j) and (2k) ensure time consistency regarding the
requests time windows. The maximum ride time of each request is defined and bounded by
constraints (2l) and (2m). Load constraints (2n)–(2s) ensure vehicles respect capacity limits
at each bus stop as well as on turning arcs. Constraint (2t) counts the number of required
vehicles. Finally, we use the symmetry breaking constraint (2u) to improve computational
times.

	1 Introduction
	2 Related Work
	3 Problem Description
	4 MILP Formulations for the liDARP
	4.1 Subline-Based Formulation
	4.2 Location-Based Formulation
	4.3 Event-Based Formulation

	5 Computational Experiments
	5.1 Benchmark Instances
	5.2 Results

	6 Conclusion
	A Variable Overview
	B MILP Formulations
	B.1 Subline-Based Formulation
	B.2 Location-Based Formulation

