
Modeling Subway Networks and Passenger Flows
Antoine Thébault #

Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France
Alstom Transport, Saint-Ouen, France

Loïc Hélouët #

Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France

Kenza Saiah #

Alstom Transport, Saint-Ouen, France

Abstract
Simulation of urban rail networks provides useful information to optimize traffic management
strategies w.r.t. goals such as satisfaction of passenger demands, adherence to schedules or energy
saving. Many network models are too precise for the analysis needs, and do not exploit concurrency.
This results in an explosion in the size of models, and long simulation times. This paper presents
an extension of Petri nets that handles trajectories of trains, passenger flows, and scenarios for
passenger arrivals. We then define a fast event-based simulation scheme. We test our model on a
real case study, the Metro of Montreal, and show that full days of train operations with passengers
can be simulated in a few seconds, allowing analysis of quantitative properties.

2012 ACM Subject Classification Computing methodologies → Modeling and simulation

Keywords and phrases Subways, Passenger Flows, Modelization, Petri-Nets, Trajectory-Nets

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.16

Funding Work supported by ANRT CIFRE Grant No 2022-0444.

1 Introduction

Development of urban transport networks such as metros is a key issue in the development
of cities. Beyond infrastructure, efficient traffic management algorithms are needed to
plan operations in the network, and take the most appropriate decisions to optimize its
performance. Traffic management can be seen as a combination of planning (one needs a
priori schedules to provide a transport offer to clients, and plan composition of train fleets
in metro lines), control (to take decisions online to handle delays caused by incidents, and
avoid their propagation), and optimization of key performance indicators (KPIs).

Several quality criteria are usually addressed at the same time. An obvious one is
passengers satisfaction, which is highly correlated with waiting times in stations. This means
that to satisfy passengers demand, traffic management has to consider issues raised by crowds
in stations, and by delays. Other quality criteria address running cost of a network, energy
consumption, adherence to a determined schedule, etc. To answer all the needs of these
complex systems, it is natural to consider automated techniques. However, models for metros
are usually huge: even for a small network with a single line, a few stops and a small size fleet
of metros, the size of models that can capture the dynamics of the network exceed several
millions of states [3]. This exceeds the limits of most verification and optimization tools
that rely on an explicit state representation. This calls for the use of efficient simulation
techniques and statistical approaches to address real-size case studies.

Related Work. Several commercial tools propose realistic models to simulate metro networks.
OpenTrack [20] is often used to measure the KPIs achieved under a certain traffic management
policy. OpenTrack models are precise, and almost digital twins of the running systems. As a

© Antoine Thébault, Loïc Hélouët, and Kenza Saiah;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 16; pp. 16:1–16:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.thebault@inria.fr
https://orcid.org/0009-0002-7255-9746
mailto:loic.helouet@inria.fr
https://orcid.org/0000-0001-7056-2672
mailto:kenza.saiah@alstomgroup.com
https://doi.org/10.4230/OASIcs.ATMOS.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2 Modeling Subway Networks and Passenger Flows

consequence, the simulation of a day of operation requires important computing resources.
The Railsys suite [7] is another tool addressing train operations at a microscopic level. The
simulation scheme of [11] starts from timetables. It considers how primary delays propagate
in a schedule, and uses symbolic descriptions of train trips and reduction rules to represent
states in a compact way and speed up the simulation process. However, this simulation
framework does not consider passengers. Models to simulate metro with their payloads
have been developed. Railnet is a simulation model to help planning shared occupation
of tracks between freight and passengers transport [19]. The network model is a graph
and the vehicles moves are depicted as sequences of arrival and departure dates. Railnet is
used to find a solution for insertion of new freight trips that do not harm passengers trains.
The model proposed in [1] is an origin-destination model for passengers interconnection to
forecast passenger movements and help propose new layouts for interconnections. Another
simulation method proposed in [9] evaluates passenger flows in case of service interruption.
The simulation is mainly a calculus of paths duration, involving access time, waiting time,
and transport duration. Many other tools exist, addressing modeling and simulation at low
(microscopic) or high (macroscopic) level, with a formal background inspired from graphs,
queuing theory, etc. We refer to [10, 15] for surveys of the domain.

Challenges. Most of the models proposed are either too low level and require important
computing resources to simulate a network, or describe metros at a higher level, but ignore
passengers. An ideal model should have a semantics close enough to the behavior of the
running system, but yet allow fast techniques to perform large simulation campaigns and
produce sound statistics on the performance of the system. The basic ingredients of the
model must take care of the network topology, of varying composition of vehicle fleets,
timetables, and passengers. Of course, an appropriate model for a metro network is a timed
model (performance of traffic management is often measured w.r.t. delays or end-to-end trip
durations) but also a stochastic model, as trips and dwell durations are subject to random
perturbations: unexpected delays can be imposed to a vehicle by a passenger blocking a
door, or by a choice of a driver to extend the dwell time in case of important crowds on
platforms. As already mentioned, state space explosion is an issue for tools and models
relying on explicit states representation. Further, as train movements are independent as
long as the distance between the two vehicles is sufficient, concurrency models such as Petri
nets are natural candidates to design metros.

Contributions. In this paper, we propose an efficient simulation scheme for metros operated
with a moving block policy. Our model includes train movements, passenger flows in stations,
platforms and vehicles. Important situations such as delayed trains are difficult to address
with standard models such as timed automata [2] or Time Petri nets [18], which led to
proposing a new timed variant of Petri nets in [13]. We extend this work, and propose
trajectory nets, a variant of Time Petri that includes passenger flows. Roughly speaking,
a trajectory net is a Petri net in which some places represent track portions and contain
forecast train trajectories instead of tokens. Passenger flows in a network are modeled by
assigning an integral vector indexed by destinations to trains and platforms, and by queues
representing connections between lines. Last, scenarios to describe passenger arrivals in the
network are modeled as sequences of Origin-Destination matrices indexed by time periods.
Despite these extensions, the model still benefits from fast simulation techniques that were
developed for Time Petri nets. We show the efficiency of our simulation scheme on a real
case study: we evaluate the effects of train insertions on passengers waiting times during
peak hours in the metro of Montreal.

A. Thébault, L. Hélouët, and K. Saiah 16:3

2 A subway network model

A subway network is mainly a graph, and it is natural to see a day of operation as a description
of how vehicles move on this graph. A metro that follows a path in the network graph travels
at a given speed between two stations, i.e. the train moves for a period of time between two
events: a departure and an arrival. The other events that can be considered are incidents,
or decision taken by an operator. Last, vehicles have independent moves if they are distant
enough in the network, but close trains may have to adapt their speed to maintain safety
distances. This calls for the use of concurrent models, and Time Petri nets [18] seem tailored
for this task: the flow relation of a net can represent the network, tokens can be used to
represent trains, and the timing constraints attached to transitions can be used to enforce
trips durations or dwell times. It was shown however that Time Petri nets are not expressive
enough to model simple situations where a train has to wait for a departure order even when
its dwell time has expired. A new model called waiting nets was proposed to solve this issue
in [13]. Further, speed adaptation for close trains cannot be captured by tokens and clocks.
In the rest of this section, we describe trajectory nets, a model that extends Time Petri nets
to handle safety distances and varying speeds of trains. Roughly speaking, a trajectory net is
a Petri net in which some places can contain diagrams representing several train trajectories
from a station to the next one instead of tokens. Trajectories are discretizations of space-time
diagrams, a representation of trains moves frequently used to give a feedback on realized and
planned train movements in a network. In the rest of the paper, configurations of a network
will be mainly collections of trajectories.

Before introducing the elements of our new model, let us recall the basics of Petri nets. A
Petri net is a bipartite graph composed of a set of places, denoted P that represent resources,
of a set of transitions, denoted T representing actions. Places and transitions are connected
via a flow relation, i.e. a subset of P × T ∪ T × P . The set •(t) denotes the resources (set of
places) required for transition t to occur, and the set (t)• represent the resources produced by
execution of transition t. Petri nets are often used to model systems with a lot of concurrency
and analyze their behaviors. The state of a Petri net is called a marking, and is a map that
associates a number of tokens to each place. The state of a Petri net evolves by firing actions,
i.e. consuming one token in each place representing a resource required by a transition t

and producing one token in each place in the postset of t. Behaviors of Petri nets can be
infinite, and the state state space reachable by a Petri net from an initial marking can also
be infinite. Despite this expressive power, many properties such as reachability are decidable
for Petri nets [17]. Figure 1 shows an example of Petri nets with places P = {p1, p2, p3} and
transitions T = {t1, t2}. Repeating sequence of transitions t1.t2 allows to fill place p3 with
any number of tokens. Due to their graphical nature that can easily simulate networks, to
their clear semantics, and to their decidability, Petri nets or their extensions are often used
to model railway systems.

•
p1

p2

p3t1

t2

Figure 1 An example Petri net.

ATMOS 2024

16:4 Modeling Subway Networks and Passenger Flows

▶ Definition 1. A segment is a pair of points ⟨(x, y)(x′, y′)⟩ where x, x′ are real values that
represent time and y, y′ are real values that represent distances. A trajectory is a pair (tr, b),
where b is a boolean indicating if the trajectory is blocked, and
tr = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xk−1, yk−1)(xk, yk)⟩ is a finite sequence of consecutive segments
such that x0 =0, and ∀i, xi > xi−1 and yi ≤ yi−1. A trajectory is complete if yk =0.

In a point (x, y) of a segment, x represents a duration, and y a remaining distance to a
destination. So, trajectories define how distance to arrival decreases over time. For instance a
trajectory tr = ⟨(0, 200)(10, 100)⟩.⟨(10, 100)(30, 0)⟩ describes a train at distance 200 m from
its goal, that arrives 30 seconds later. It travels at 10m/s during 10 seconds, and then slows
down at 5m/s. A train approaching a close predecessor will have to adapt its trajectory to
preserve headways, and elapsing δ time units will simply consist in shifting trajectory segments
by δ units to the left. For a trajectory tr = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xk−1, yk−1)(xk, yk)⟩, and a
date d ≤ xk we will denote by tr(d) the coordinate of a train at date d. For xi ≤ d ≤ xi+1 we
have tr(d) = yi + (d− xi). (yi+1−yi)

(xi+1−xi) . We will say that two trajectories tr, tr′ respect a safety
headway h if and only if ∀d, |tr(d)−tr′(d)| ≥ h, and that tr′ is above tr if ∀d, tr′(d)−tr(d) ≥ 0.
Trajectories are defined for track portions of bounded length. For a length H we assume
that for every trajectory, y0 ≤ H. So, we can have at most H/h trajectories respecting a
safety headway h in a track segment of length H.

Trajectory nets defined hereafter will use sequence of trajectories of the form TS =
(tr1, b1) · · · (trk, bk) to represent trips for several trains in a given space of length H. We
forbid ill-formed sequences of trajectories where trains overtake or violate the safety headway.

▶ Definition 2. A sequence of trajectories TS = (tr1, b1) · · · (trk, bk) is consistent (w.r.t.
headway h) iff every pair of trajectories in TS respects safety headway h, and bi = true

implies that bj = true for every j < i.

For a sequence of trajectories TS = (tr1, b1) · · · (trk, bk), we can denote by xk
j (resp. yk

j)
the jth value of x (resp. y) in trajectory k. With this notation, yk

0 = trk(0) is the current
distance to next stop of train k in sequence TS. Let CTS(H, h) denote the set of consistent
sequences of trajectories (w.r.t. headway h) in a space of length H. Given a consistent
sequence of trajectories TS = (tr1, b1) · · · (trk, bk) such that trk(0) ≤ H − h, we can sample
an additional trajectory trk+1 such that TS.(trk+1, false) is consistent and yk+1

0 = H. Let
I = [α, β] be a time interval depicting a possible trip duration (these values depend on train
speeds allowed by the network, the rolling stock specifications, and the policies given by
operators), d ∈ I be a rational value, and t̂rk+1 = ⟨(0, H)(d, 0)⟩. Trajectory t̂rk+1 depicts
a space time diagram for a train traveling at average speed H

d when no other train is on
the track. Now, to preserve consistency of a place contents one cannot always add directly
t̂rk+1, to an existing sequence TS : the wished trajectory may have to be adapted (this
amounts to reducing the speed of a train) to stay at distance h from preceding trains. That
is, one has to compute a trajectory trk+1 =↑ (t̂rk+1, TS, h) such that, for every time value t,
↑ (t̂rk+1, TS, h)(t) = max(t̂rk+1(t), trk(t) + h).

Computing ↑ (t̂rk+1, TS, h) is a simple geometrical calculus, defined formally in Ap-
pendix A. One can notice that by construction, trk+1 =↑ (t̂rk+1, TS, h) is the only tra-
jectory for a train running at speed H/d whenever possible such that TS.(trk+1, false)
is consistent. For a given sequence TS and time interval I = [α, β], we denote by
SAMPLE(TS, H, h, I) = {↑ (̂tr|T S|+1, TS, h) | ∃d ∈ I ∧ ̂tr|T S|+1 = ⟨(0, H)(d, 0)⟩} the set of
additional trajectories depicting trains with trips of length H, that can be added consistently
to TS while respecting headway h with an initial speed in interval [H

β , H
α]. This way of

sampling trajectories allows the introduction of random perturbations w.r.t. a chosen speed

A. Thébault, L. Hélouët, and K. Saiah 16:5

20 40 60 80 100 120 140 160 s

1800m

.

.
.

.
•

20 40 60 80 100 120 140 160 s

1800m

.

.
.

•

Figure 2 A sequence of trajectories (left) and its left shift by δ = 40s (right).

profile with an appropriate probability distribution on I. The sampled trajectories can be
simple segments respecting headways (such as the black trajectory in Figure 2), or sequences
of consecutive segments at distance ≥ h from preceding train (such as the orange and green
trajectories in Figure 2).

As one can see on Figure 2, trajectories have an intuitive graphical representation, showing,
after x time units the distance from a train to the next station. A trajectory that is blocked
represents a train that cannot move because it does not have a sufficient headway ahead. Let
us now give a graphical intuition of how trajectories evolve when time progress. We will call
the left shift of a sequence of trajectories by a real value δ the sequence of trajectories obtained
by letting trajectories of blocked trains unchanged, and translating all other trajectories
by a value −δ. Figure 2 shows an example of left shift. In the original configurations, two
trajectories are blocked : a train at distance 0 from arrival (represented by a dot) and its
successor, that has to stop to preserve a headway, represented by a thick black line. The
next two trains are at a sufficient distance to continue their planned trip during 20 seconds.
The left shift of the initial positions of trains by 20 seconds simply consists in a translation
of 20 units to the left of unblocked trajectories (erasing the parts of shifted trajectories with
negative absiscaes). As for trajectory creation, left shift of a trajectory tr by δ time units is
a simple geometrical operation, denoted by LS(tr, δ), that we define formally in Appendix B.
We now have all elements to define our simulation model for metro networks.

▶ Definition 3. A trajectory net is a tuple N = (P, T, F, H, I) where P = PC ∪ PT is a set
of places partitioned into control places PC and trajectory places PT . T is a set of transitions,
and F ⊆ P × T ∪ T × P . Maps H : PT → Q associates a length, and I : PT → Q2 a time
interval with each trajectory place of PT .

As usual, we denote by •(t) = {p ∈ P | (p, t) ∈ F} the preset of a transition t ∈ T and
by (t)• = {p ∈ P | (t, p) ∈ F} its postset. A marking M of PC is a map that associates an
integral number of tokens with every control place in PC . We say that M enables a transition
t ∈ T iff, for every place p ∈ PC ∩ •(t), M(p) > 0. The effect of a firing of a transition t on a
marking M that enables it is to produce a new marking M ′ obtained by removing a token
from each place in •(t) ∩ PC and then adding a token in each place of (t)• ∩ PC . With a
slight abuse of notation, we will write M ′ = M − •(t) + (t)• . Let Hmax = maxp∈PT

H(p),
and assume a fixed headway h for the whole network. A trajectory marking (or TMarking
for short) is a map µ : PT → CTS(Hmax, h) that associates a sequence of trajectories with
each place of PT . We will say that µ enables t if, for every place p ∈ •(t) ∩ PT , µ(p) is not
empty and contains a trajectory of the form (tr, true), with tr = ⟨(0, 0)(0, 0)⟩ depicting a
train arrived at the end of its trip. A configuration of a net N is a pair C = (M, µ) where M

is a marking, and µ a TMarking. Figure 3 is a simple trajectory net with two control places
p3, p4, two trajectory places p1, p2 and a transition t. The TMarking of place p1 is a sequence
of two trajectories, where the green trajectory was adapted to preserve safety headways.

ATMOS 2024

16:6 Modeling Subway Networks and Passenger Flows

p1

•
p3

p2

p4

t

H(p1) = 500 I(p1) = [40, 60] H(p2) = 700 I(p2) = [30, 50]

Figure 3 Basic elements of a trajectory net: places, transitions, trajectories.

The semantics of trajectory nets is given in terms of discrete and timed moves from
a configuration to the next one. Discrete moves depict arrivals and departures of trains,
trajectory changes imposed to preserve safety headways, and timed moves depict how
trajectories evolve when time elapses. One can simulate a train waiting in a station S with a
trajectory place pS representing the station, such that H(pS) < h. In this setting, a TMarking
of place pS can contain at most one train, which waiting duration lays in I(pS). Adding a
trajectory in place pS models an arrival in station, removing a trajectory a departure.

Given a non-empty TMarking µ(p) = (tr0, b0) · · · (trk, bk) one can easily find the remaining
time δarr(p) before arrival of a train depicted by trajectories in µ(p) if tr0 is not blocked, or
δblock(p) before a trajectory in µ(p) has to be blocked to preserve consistency of µ(p). For
a sequence TS = (tr0, b0) · · · (trk, bk), UNBLOCK(TS) = (tr0, false) · · · (trk, false) is the
sequence obtained by unblocking all trajectories in TS.

Consider semantics rule R1 below, depicting an arrival or a departure. Roughly speaking,
the rule consists in “consuming” a complete trajectory representing a train arrived in station,
creating new ones in the places1 of (t)•, and unblocking trajectories of trains that were
blocked until this arrival. The second semantics rule R2 below describes how trains can get
blocked when there is not enough space ahead to move.

(R1)

M enables t, µ enables t, M ′ = M − •(t) + (t)•
∀p ∈ PT ∩ •(t), µ(p) = (⟨(0, 0)(0, 0)⟩, true).W ∧ µ′(p) = UNBLOCK(W)

∀p′ ∈ PT ∩ (t)•, µ′(p′) = µ(p′) · (tr, false), where tr ∈ SAMPLE(µ(p′), H, h, I(p))
C = (M, µ) t−→ C ′ = (M ′, µ′)

(R2)

µ(p) = (tr1, b1) · (tr2, b2) · · · (tri, bi) · · · (trk, bk)
bi = false ∧

(
(bi−1 = true ∧ tri(0)− tri−1(0) = h) ∨ tri = ⟨(0, 0)(0, 0)⟩

)
µ′(p) = {(tr1, b1), (tr2, b2) · · · (tri, b′i = true) · · · (trk, bk)}

C = (M, µ) blockp,i−→ C ′ = (M, µ′)

Timed moves just let time elapse. We adopt an urgent semantics: a timed move of
duration δ is allowed from configuration C if and only if no discrete move is allowed in C.
Unsurprisingly, letting time pass is modeled by a left shift of TMarkings. However, blocked
trajectories represent trains that cannot move without violating a safety headway. Hence,
the left shift of a TMarking µ(p) = {(tr1, b1) · · · (trk, bk)} by a duration δ is a new TMarking
{(tr′1, b1) · · · (tr′k, bk)} where tr′i = LS(tri, δ) if bi = false and tri = tr′i otherwise.

1 To represent metro networks, one only needs |(t)•| = 1 but this restriction is not needed in the semantics.

A. Thébault, L. Hélouët, and K. Saiah 16:7

(R3)

δ ∈ R>0

∀t ∈ T, M does not enable t ∨ µ does not enable t

∀p ∈ PT such that µ(p) is defined δ ≤ min(δarr(p), δblock(p))
∀p ∈ PT , µ′(p) = LS(µ(p), δ)

C = (M, µ) δ−→ C ′ = (M ′, µ′)

With these semantic rules, we can simulate the behavior of a metro network represented
by a trajectory net. Arrivals and departure are symbolized by transitions firings, and result
in the sampling of a new trajectory that is consistent with the possible speeds of trains and
with the TMarking of the new track entered. An interesting feature of Rule 3 is that one can
directly elapse time for a duration δ = min

p∈PT

min(δarr(p), δblock(p)), i.e. progress time up to

the date of the next discrete event : arrival/departure in station, or blocking of a trajectory.
With this approach, one does not need to sample a discrete clock and compute what happened
at each time step. This approach is called event-based simulation, and considerably speeds
up simulation of metro networks. One can also see from these rules the advantages of using
Petri nets variants: in each discrete rule, the effect of an event changes the contents of a
single place, or the preset/postset of a single transition.

We can now define runs of a trajectory net. A run is a sequence ρ = C0
δ0−→ C1

e0−→ C1 · · ·
where each Ci is a configuration, Ci

δi−→ Ci+1 is a legal time move, and Ci
ei−→ Ci+1 is a

legal discrete move (ei is either a transition firing, or the blocking of a trajectory in a place).
Note that the behavior of a net starting from a configuration C0 is not deterministic, as
transitions firings sample random durations for newly created trajectories.

Despite their apparent simplicity, trajectory nets allow for the design of complex topologies
of metro networks involving forks, joins, reversal or garage zones for trains, ... Using control
places filled at the appropriate moment, one can guide a train reaching a fork to enter the
next track segment on its trip. We refer interested reader to Appendix F for examples.

3 Passenger flows

The model of Section 2 does not consider passengers, but only possible moves of trains. In
this section, we model passenger flows as a side quantitative information evolving with runs
of a trajectory net, i.e. as quantities representing crowds, that are updated at each timed
and discrete move. First of all, passenger flows are not constant over time, and depend on
particular scenarios. In most cities, during a working day, one can observe peak hours during
which commuters move from their home to their workplace, and the way back in the evening.
Scenarios for passenger flows during weekends differ w.r.t. dates and duration of peaks,
number of moving passengers or destinations. To control efficiently a transport network,
i.e. provide the expected transport offer but nevertheless use the right amount of resources,
operators use different policies for each scenario. In this section, we first explain how scenarios
for passenger flows are usually represented in metro networks (using Origin-Destination
matrices), how connections between parts of a network (corridors or access to quays) are
specified. We use these representations to decorate in a consistent way runs of our metro
model with quantities depicting passengers that are moving towards a platform, waiting on a
platform, or traveling in a train.

Roughly speaking, passenger behaviors (arrivals and final destination) are encoded as
sequences of origin/destination matrices, connections as queues, and train payloads as vectors
containing the number of passengers alighting at each destination in the network. To avoid
overloading our model, we consider that all passengers move at identical constant speed

ATMOS 2024

16:8 Modeling Subway Networks and Passenger Flows

from a point to the next one. This modeling choice may result in slight modification in the
duration of transit times. Indeed all passengers do not move at the same speed, corridors
may contain bottlenecks, and paths from a platform to another one on a different line may
include stairs, etc. However, there is no clear consensus on how passenger flows should be
modeled. It seems that for corridors with bottlenecks, the throughput depends mainly on the
width of the bottleneck [21]. We will hence model passengers moving in a station by queues
of integers. In a similar way, there is no canonical model to represent passengers entering or
leaving a trains, and the time needed to load and unload may depend on characteristics of
the rolling stock (e.g. the number of doors, their width and their position) [16]. Here again,
we will adopt a simple model, and consider the exchanges that occur depending on the dwell
time, passengers on platform, and available space in trains.

▶ Definition 4. Let S = {S1, · · ·Sm} be a list of stations in a metro network, and let us
fix a duration ∆. An Origin Destination Matrix (ODM for short) is an integer matrix OD

indexed by S. Each entry OD[si, sj] represents a number of passengers willing to travel from
station si to station sj in ∆ time units. A scenario is a sequence OD1, OD2, ..., ODn of
origin destination matrices. The duration of a scenario is n ·∆

An ODM depicts the number of passengers traveling from one origin station (represented
by a row in the matrix), to a destination station (represented by a column) during a duration
of ∆ time units. The origin and destination stations need not be located on the same subway
line. This means that passengers may have to use interconnection at stations shared by
several lines, and move from one platform to another one to continue their journey. Hence,
the path followed by passengers will have an impact on passenger flows in the transit areas
at connection points. A metro network can be seen as a graph depicting connections from a
station to the next one along each line and interconnections between two lines. We assume
that this graph is consistent with the flow relation of the trajectory Petri net modeling
our network. We also assume that passengers always follow the shortest path (in terms of
distance or in terms of number of stations) in this graph when traveling from an origin station
So to a destination station Sd. With this assumption one can compute the shortest path for
every pair (So, Sd) of origin/ destination, using for instance the well known Floyd-Warshall
algorithm (see for instance [5]). For completeness, we provide this algorithm in Appendix D.
Let us assume that we have obtained a matrix MD giving the shortest distance between any
pair of connected stations. Then, we can compute a matrix MNS such that MNS(Si, Sj) = k

if station Sk is the next station to visit on an optimal path going from Si to Sj . When one
knows the final destination of passengers, this matrix MNS allows to decide, when a train
stops at a station, how many passengers leave the train, and how many passengers continue
their journey to the next station on the same line. The calculus of MNS can be done with a
simple extension of the Floyd-Warshall algorithm, given in Appendix E. Notice that this way
of modeling passengers choices is a way to keep the model simple. We could make passenger
choices more complex, e.g. allow choices of alternative routes to a destination, or choice of a
particular line to go from an origin to a destination. Note that line information is not needed
when lines do not share common track portions (as in the metro of Montreal).

Each ODM is used to depict passenger arrivals and destinations in the network for a
duration ∆. Scenarios allow changes in the arrival dates at each station, at each period
of the day. Let d ≤ ∆. Assuming that an ODM OD represents faithfully passenger trips,
the number of passengers entered in the network at station Si willing to go to station Sj is
⌊OD[i, j] · (d/∆)⌋. Remembering the time t elapsed since the beginning of a simulation, one
can compute how many passengers have entered the network and their destination at time
t + δ. Note that this calculus may involve contents of several OD matrices.

A. Thébault, L. Hélouët, and K. Saiah 16:9

OD Matrix 1

Origins

D
es

tin
at

io
ns

Period 1
Period 2

Period n

0

n ·∆

Entry Si Entry Sj

Path Sj , SkEntry Sk

Line 1

Line 2

Figure 4 Integration of scenarios and passenger flows in the model.

At each instant, one wants to remember the number of passengers for a destination in a
train, on platforms, in corridors connecting one entry to a platform, or on platform serving a
line to another platform serving a different line in the same station. We define a payload as
a vector of integers indexed by station, that is vectors of the form PL = [v1, · · · , vn]. The
interpretation is the following: if PL describes the passengers of a train, then PL[i] indicates
the number of passengers willing to reach station si in that train. Obviously, when a train
alights at station Si, then at least PL[i] passengers leave the train. Further, if Si is the last
station on the same line on a shortest path to station Sk, then PL[k] passengers leave the
train too, and move towards a corridor connecting the reached platform Si to the platform
MN [Si, Sk], that is the next step on the journey to Sk. We assume that passengers do not
make mistakes, i.e. they all follow the shortest path to their destination. Payloads are also
used to represent awaiting passengers on a platform: PL[i] is then the number of passengers
that did not yet board a metro and are waiting for a train to go to station Si.

Let us now add corridors to the model. Corridors connect entries of the network to
platforms, and bridge lines to allow journeys involving several metro lines. As for trains and
platforms, one has to remember the number of passengers moving in a corridor and their final
destination. However, passenger moves in corridors take time, and cannot be represented
with a payload. We use FIFO queues to represent passenger flows.

▶ Definition 5. A passenger queue is an tuple Q = (lQ, spQ) where lQ is a length (in meters),
spQ is an average speed. A state of a passenger queue Q is a vector of payloads MQ indexed
by 1..l. We will denote by MQ[k] the passengers at distance k from the beginning of the queue,
and MQ[k][j] = n means that at distance k, n passengers are willing to go to station Sj.

Each entry MQ[k] in a passenger queue represents a section of 1 meter on a path from an
origin (a platform or a station entry) to a destination (a platform). We take some simplifying
assumptions : the speed of passengers is constant in the whole space represented by Q and
is the same for all passengers. Passengers do not interact. With these assumptions, we
can simply remember with MQ[k][j] how many passengers willing to go to station Sj are at
distance k from the next platform. So, using passenger queues, one need not assign a behavior
to every passenger in the network (which would be too costly to simulate). More complex
models for crowd behaviors have been proposed [12, 16], but we are mainly interested in
durations of transfers and in destinations of passengers, not in individual movements. Further,
modeling flows with queues allow for an easy calculus of the evolution of crowds. Let MQ be
the current state of a queue Q = (l, sp) from an entry at station Si to a platform, d be the

ATMOS 2024

16:10 Modeling Subway Networks and Passenger Flows

current date. Assume that the played scenario is OD1, OD2, ..., ODn. We can easily compute
how the state of Q evolves within δ time units. Passengers in MQ at distance x ≤ δ · sp

have arrived, so the corresponding sum of payloads from 1 to x is added to the payload
of the platforms. Passengers in MQ at distance y > x + 1 simply progressed in the queue,
i.e. MQ[y − ⌊δ · v⌋] = MQ[y]. Last, assuming that d and d + δ belong to the same period,
i.e. arrivals are given by a single ODM OD, we have OD[i][j] · δ

∆ new passengers arriving
in Q willing to go to station Sj , and spread uniformly on entries δ · sp . . . l of the queue.
In practice, computing the actualized contents of queues within δ time units may involve
several OD matrices, and one has to pay attention to rounding to avoid loosing passengers.
To avoid heavy notations, we leave the complete definition of passenger moves to a more
formal definition provided in Appendix G, and we will simply write M ′

Q = Update(d, δ, MQ)
to denote that M ′

Q is the state of queue Q after δ time units have elapsed since date d.
Similar rules apply for queues representing connections between platforms. In a similar
way, we can represent how the payload of a train evolves when time elapses. When a train
arrives at station Si, passengers alighting at Si leave the train, and either leave the system,
or move to the queue representing the connections to another platform. Then, passengers
on platform board the train up to the maximal capacity CTmax of the vehicle. We refer
to the model of [12] to compute the time needed by n passengers to leave a train. We set
talighting = ⌈n ·Dwidth ×Dnb⌉ × ta where Dwidth is the width of a door in meter, Dnb is the
number of doors of the vehicle and ta is the time for one passenger to alight, estimated in
seconds. Note that a train cannot leave if its passengers are still alighting, so when talighting

is greater than the dwell time planned, the train is delayed. When all passengers alighting at
si have left the train, and the payload of the train is TP then the free space can be used to
let n ≤ CTmax −

∑
TPk passengers enter the train. Boarding is similar to alighting time,

i.e. we have tboarding = ⌈n ·Dwidth ×Dnb⌉ × tb, where tb is the average time needed by a
passenger to board a train. Here, if tboarding is larger than the remaining dwell time of a
train, then our model assumes that doors close, and that some passengers fail to board.

As the remaining space, or the dwell time of trains might not allow all passengers to board,
some of them will stay on the platform. Failures to board are an important performance
indicator, as this is one of the quantitative aspects that characterizes users’ satisfaction. As
for queues, we will denote by TP ′i = Update(d, δ, TPi) the change of payload in train Ti

within δ time units, and P ′i = Update(d, δ, Pi) the change in platform i’s payload. Figure 4
gives an illustration of passenger flows between platforms, corridors, entries and trains.

Let us now reconnect trajectory nets, passenger queues and scenarios. The global
state of a simulation is represented by a tuple

(
C, d, (Pi)i∈1..KP

, (TPi)i∈1..KT
, (MQi

)i∈1..KQ
)
)

where C is a configuration of the trajectory net depicting the physical network, d is a
date, (Pi)i∈1..KP

represents platforms crowds, (TPi)i∈1..KT
represents train payloads, and

(MQi)i∈1..KQ
are the queues contents. Let t be an arrival of a train in station si after a

delay δ. The new state of the system is
(
C ′, d + δ, (P ′i)i∈1..KP

, (TP ′i)i∈1..KT
, (M ′

Qi
)i∈1..KQ

)
,

where C ′ is the configuration reached by the trajectory net after elapsing δ time units and
firing t, i.e., such that C

δ−→ C ′′
t−→ C ′, and P ′i = Update(d, δ, Pi), TP ′i = Update(d, δ, TPi),

M ′
Qi

= Update(d, δ, M ′
Qi

). Similar rule applies when blocking operations occur. At each use
of an operational rule for a train movement, at most one train has its payload updated, but
the contents of all queues and platforms change. So, one has to perform a number of updates
in O ((Kp + KQ · Lmax + 1) · S), where Lmax is the maximal length of a queue. Experimental
results in the next section show that this simulation model is efficient, and allows for fast
simulation of a complete day of metro operation.

A. Thébault, L. Hélouët, and K. Saiah 16:11

4 A case study: The metro of Montreal

We consider a real-size case study, namely the Metro network of Montreal (see [6] and
Appendix H for a complete map). The network is composed of three main lines (orange,
green, blue) plus a short yellow side line. The orange line is 31km long, it has 42 trains
and 31 stations, which corresponds to 128 places and transitions in our net model. The
green line is 22km long, it has 34 trains, which corresponds to 108 places and transitions in
our net model. The blue line is 9km long, with 32 trains, which corresponds to 48 places
and transitions. In addition to the trajectory net defining the physical behavior of trains,
queues have been created for each platform, and set a limit for the capacity of platforms. We
choose a default queue distance of 10m for corridors from an entry to a platform, a platform
capacity of 1000 awaiting passengers, and a train capacity of 1000 passengers. We represent
the 4 interconnections in the network with 8 queues (one per direction) of 50m.

The control part of the trajectory is extracted from a real GTFS file [8] (a standard
proposed by Google in 2006 for timetable description). This public data depicting one day
of operation on Montreal’s network is available on the STM site [22]. From this timetable,
we generate a list of events associating a date, a vehicle id and a transition to fire. This
timetable allows to feed the control part of our model to trigger train departures. If needed,
delays can be inserted to simulate small perturbations (e.g. doors blocking) or a more serious
anomalies causing a technical interruption of traffic.

We simulated the trajectory net depicting Montreal’s network with the MOCHY tool [14],
an Open-GL software developed for the simulation of transport networks described with
variants of Petri nets. The experimentation was conducted with a weekday scenario repeating
the same OD matrix representing one hour of passenger flows. In this matrix, for every
entry OD[i, j], we generated randomly a high number of passengers entering the network
at station Si and willing to go to destination Sj . This number of passengers per hour was
generated with a uniform law to sample a value ranging from 0 to 100. Multiplying an
average number of 50 passengers per hour by the number of stations in the network rapidly
leads to large flows of incoming passengers. With this scenario, we can model a peak period:
in all stations, a large number of passengers arrive and travel from their home place to their
work. In weekdays scenarios, the payload of all trains increase up to their full capacity if the
operators do not inject new trains in the network. The objective of this simulation was to
consider the effects of train insertion during peak hours, to verify that this policy influences
train payloads. Overall, simulating a full day of operation for the three main lines with
110 trains and their passenger flows takes between 1 and 2 minutes on a standard laptop
(Intel core i7). Our first simulation results are represented in Figures 5 and 6. Figure 5 is
a space-time diagram drawn from our simulation logs. It represents train moves between
station Montmorency and station Cote-Vertu on the Orange line from 5:00 to 8:20. The
horizontal axis represents time. The vertical axis represents localization of trains, labeled
by station names plus a garage, and ordered according to their position on the line. Each
colored line represents a train. This simulation follows exactly the planned timetable, i.e,
events have been realized exactly at their planned dates. The timetable was designed to
guarantee regularity of train departures at each station, and to increase the frequency of
trains to absorb passenger peaks. On the space time diagram, one can observe regularity of
service: train trajectories are parallel lines. When a train is inserted, trajectories adapt and
get closer, as expected.

ATMOS 2024

16:12 Modeling Subway Networks and Passenger Flows

Figure 5 A Space-Time diagram for the Orange line.

Figure 6 Passenger flows at Berri-Uqam Orange line.

Figure 6 gives information on passenger flows at station Berri-UQAM (BUQ), more
precisely for the platform located on the orange line. This station is an important node
in the network, because it is an interconnection between the orange and green lines. The
horizontal axis represents time, and the vertical axis a number of passengers. Each point on
each curve was recorded at the date of closure of train doors, i.e. when a train is about to
leave the station. The orange curve describes occupation of trains that stop at the considered
platform. As one can see the trains rapidly fill at their maximum capacity between 6:00 and
7:00. The green curve represents passengers who alighted at BUQ, and will move to the green
line in the next coming seconds, the light blue curve represents the number of passengers
that boarded the currently stopped train. The dark blue curve represents the number of
passengers who alighted at that station but do not connect to the green line (they will exit
the station). Last, the yellow curve represents passengers who failed to board because the
train was full. This is an important indicator, that impacts user satisfaction. The pink curve
depicts the number of passengers who had to wait before entering the station (this value
remains low during the depicted simulation because platforms are never full).

A. Thébault, L. Hélouët, and K. Saiah 16:13

The simulation is done with heavy passenger flows conditions from early morning until
12 o’clock. The consequence is that trains are almost full on the whole time period shown in
Figures 5 and 6 except for the period 07:00 - 10:00, when frequency of trains is increased
sufficiently to reduce platforms occupation and hence avoid failures to board. Then, from
7:00 to 9:30AM, train occupation is low to 50-60% and no passenger fails to baord. After
10:00AM, the number of trains on the network is reduced. As the incoming passenger flows
remain high on all lines, trains occupation increases. However frequency of stops remains
sufficient to keep trains occupation at 90% of their maximal capacity, and the number of
boarding and alighting passengers remains rather stable after 10:00 during the simulation.

Figure 7 A delay at station Sauve creates a passengers peak at Beaubien.

In a second experiment, we studied the consequence of a 10min delay at 7:30AM at
station Sauvé (the 5th station on the Orange line) with the same weekday scenario. For
space reasons, the space-time diagram of this scenario appears in Appendix I. The networks
takes around 30 minutes to recover from this primary delay. Figure 7 shows the consequences
of this perturbation on passengers at station Beaubien (located 4 stations after Sauvé on
the orange line). A peak in trains occupation arises at 7:43AM. It is due to the increased
time gap between train departures, but also to a larger number of passengers boarding at
the previous stations for the same reason.

5 Conclusion

We have proposed a model for metro networks with their passenger flows. This extension
of Petri nets includes time, positions of moving objects, and queues to represent passenger
moves between platforms and metros. The proposed semantics allows fast simulation, by
computing the state of the system at each discrete event occurrence. At each event, the time
elapsed is known, which is sufficient to update trajectories and passenger flows. Simulation
of a complete day of operation is fast enough to handle real-size cases such as the Metro of
Montreal, and study the effects of operational choices on passenger flows.

A first direction to extend this work is to consider other values than the number of
passengers. For instance, considering the energy consumed by a metro network is a crucial
need. Another challenging task is to address traffic management as a controller synthesis
problem, building controllers that optimize a quantitative criterion (energy, nb. of failures to

ATMOS 2024

16:14 Modeling Subway Networks and Passenger Flows

board...). Standard approaches of control (e.g. à la [4]) will not work for metros, due to the
number of states to consider. Solutions to build effectively optimized traffic management
algorithms may come from abstraction, approximation, and possibly learning techniques.
Last, even if this model is tailored for metros, the concurrent nature of the model should be
useful in a setting where objects are most of the time independent, and interact only in local
delimited areas, such as road sections or automated plants.

References
1 Y. Ahn, T. Kowada, H. Tsukaguchi, and U. Vandebona. Estimation of passenger flow for

planning and management of railway stations. Transportation Research Procedia, 25:315–330,
2017. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016.
doi:10.1016/j.trpro.2017.05.408.

2 R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

3 N. Bertrand, B. Bordais, L. Hélouët, T. Mari, J. Parreaux, and O. Sankur. Performance
evaluation of metro regulations using probabilistic model-checking. In Proc. of RSSRail 2019,
volume 11495 of Lecture Notes in Computer Science, pages 59–76, 2019.

4 C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Third Edition.
Springer New York, 2021. doi:10.1007/978-0-387-68612-7.

5 T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001.

6 Société des Transports de Montréal. GTFS Static Overview. https://www.stm.info/sites/
default/files/media/Stminfo/images/plan-metro-blanc.pdf, 2024.

7 Rail Management Consultants International GmbH. Railsys suite. https://www.rmcon-int.de
/home-en/.

8 Google. GTFS Static Overview. https://developers.google.com/transit/gtfs, 2022.
9 S. Guanghui, S. Bingfeng, Z. Kun, Z. Ben, and Z. Xuanchuan. Simulation-based method for the

calculation of passenger flow distribution in an urban rail transit network under interruption.
Urban Rail Transit, 9:110–126, 2023. doi:10.1007/s40864-023-00188-z.

10 R. Haehn. Optimisation and Analysis of Railway Timetables under Consideration of Uncer-
tainties. PhD thesis, Aachen University, 2022.

11 R. Haehn, E. Ábrahám, and N. Kotowski. Acceleration techniques for symbolic simulation
of railway timetables. In Proc. of RSSRail’22, volume 13294 of Lecture Notes in Computer
Science, pages 46–62, 2022.

12 N. Harris. Train boarding and alighting rates at high passenger loads. Journal of Advanced
Transportation, 40:249–263, June 2006. doi:10.1002/atr.5670400302.

13 L. Hélouët and P. Agrawal. Waiting nets. In Proc. of PETRI NETS’22, volume 13288 of
Lecture Notes in Computer Science, pages 67–89. Springer, 2022.

14 L. Hélouët and A. Thébault. Mochy: A tool for the modeling of concurrent hybrid systems.
In Application and Theory of Petri Nets and Concurrency, pages 205–216, 2023.

15 K. Kecir. Performance evaluation of urban rail traffic management techniques. PhD thesis,
Universite de Rennes 1, 2019.

16 N. Luangboriboon, S. Seriani, and T. Fujiyama. The influence of the density inside a train
carriage on passenger boarding rate. International Journal of Rail Transportation, 9(5):445–460,
2021.

17 E.W. Mayr. An algorithm for the general petri net reachability problem. SIAM Journal on
Computing, 13(3):441–460, 1984.

18 P. M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis, University of
California, Irvine, CA, USA, 1974.

https://doi.org/10.1016/j.trpro.2017.05.408
https://doi.org/10.1007/978-0-387-68612-7
https://www.stm.info/sites/default/files/media/Stminfo/images/plan-metro-blanc.pdf
https://www.stm.info/sites/default/files/media/Stminfo/images/plan-metro-blanc.pdf
https://www.rmcon-int.de/home-en/
https://www.rmcon-int.de/home-en/
https://developers.google.com/transit/gtfs
https://doi.org/10.1007/s40864-023-00188-z
https://doi.org/10.1002/atr.5670400302

A. Thébault, L. Hélouët, and K. Saiah 16:15

19 G. Michal, N. Huynh, N. Shukla, A. Munoz, and J. Barthelemy. Railnet: A simulation
model for operational planning of rail freight. Transportation Research Procedia, 25:461–473,
2017. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016.
doi:10.1016/j.trpro.2017.05.426.

20 A. Nash and D. Huerlimann. Railroad simulation using OpenTrack. In Computers in Railways
IX, pages 45–54, 2004.

21 A. Seyfried, T. Rupprecht, O. Passon, B. Steffen, W. Klingsch, and M. Boltes. New insights
into pedestrian flow through bottlenecks. Transportation Science, 43:395–406, March 2007.
doi:10.1287/trsc.1090.0263.

22 STM. STM Developers section. https://www.stm.info/en/about/developers, 2023.

A Computing ↑ (trk+1, T S, h)

Let trk = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xn−1, yn−1)(xn, yn)⟩, and let dh ∈ [xm, xm+1] be the date
where t̂rk+1(dh) = trk(dh) + h. Then

↑ (trk+1, TS, h) = ⟨(0, H).(dh, trk(dh) + h)⟩ · ⟨(dh, trk(dh) + h)(xm+1, ym+1 + h)⟩ · · ·
· · · ⟨(xn−1, yn−1 + h)(xn, yn + h)⟩ · ⟨(xn, yn + h)(xn + h · d

H , 0)⟩

B Formal definition of Left Shift

▶ Definition 6. The left shift of a segment s = ⟨(xi−1, yi−1)(xi, yi)⟩ is defined if xi ≥ δ, and
is a segment LS(s, δ) = ⟨(x′i−1, y′i−1)(x′i, y′i)⟩, where : x′i−1 = max(0, xi−1 − δ), x′i = xi − δ,
y′i−1 = yi−1 + δ · yi−yi−1

xi−xi−1
, y′i = yi.

Let (tr, b) be a trajectory with tr = s1 · s2 · · · sk, and let δ ≤ xk. The left shift of (tr, b)
by duration δ, is denoted LS(tr, b). If b is true, then LS(tr, b) = (tr, b). If b is false, then
LS(tr, b) = LS(Siδ

, δ) · · ·LS(sk, δ), where iδ the index of the first segment such that LS(si, δ)
is defined.

Notice that as soon as δ ≤ xk, index iδ exists.

C Computing δarr, δblock

Let us now detail, for a given configuration C = (M, µ) and a given place p how to compute
the value of δarr(p) and δblock(p) when µ(p) = tr1 · tr2 · · · trk. First, the arrival date to
consider is the date of the first unblocked trajectory. Let i be the index of this trajectory, and
let tri = s1 . . . sq with sq = ⟨(xq−1, yq−1)(xq, 0)⟩. Then, the train represented by trajectory
tri can only arrive in station within xq time units, so δarr(p) = xq. In the same setting, one
can compute the remaining time before train represented by tri has to brake to maintain a
safety headway h. Letting tr−1

i (y) denote the date x at which traji(x) = y, then the train
has to adapt its speed at date δblock(p) = tr−1

i

(
(n− 1) · h

)
.

ATMOS 2024

https://doi.org/10.1016/j.trpro.2017.05.426
https://doi.org/10.1287/trsc.1090.0263
https://www.stm.info/en/about/developers

16:16 Modeling Subway Networks and Passenger Flows

D Algorithm to compute passenger paths

Algorithm 1 Floyd-Warshall Distance Matrix.

parameter N : the set of ids of the places
the cells of the matrix are initially null
MD : the distance square matrix from an origin to a destination
for all (id1, id2) ∈ A do ▷ Matrix initialization

MD(id1, id2) = 1 ▷ arcs weights are set to 1
end for
for all k ∈ N do ▷ Distance Matrix Building

for all i ∈ N do
for all j ∈ N do

v ← null

if MD(i, j)! = null then
if MD(i, k)! = null AND MD(k, j)! = null then

v ← min(MD(i, j), MD(i, k) + MD(k, j))
else

v ←MD(i, j)
end if

else if MD(i, k)! = null AND MD(k, j)! = null then
v ←MD(i, k) + MD(k, j)

end if
MD(i, j)← v

end for
end for

end for

A. Thébault, L. Hélouët, and K. Saiah 16:17

E Algorithm to compute the next station on a trip

Algorithm 2 Floyd-Warshall Next step Matrix.

parameter MD : from Floyd-Warshall Distance Matrix algorithm
parameter N : the set of ids of the places
the cells of the matrix are initially null
MNS : the next step squared matrix from an origin to a destination
for all (id1, id2) ∈ A do ▷ Matrix initialization

MNS(id1, id2) = id2
end for
for all k ∈ N do ▷ Next Step Matrix Building

for all i ∈ N do
for all j ∈ N do

v ← null

if i! = j then
if MD(i, k) == null OR MD(j, k) == null then

v ←MNS(i, j)
else if MD(i, j) == null then

v ←MNS(i, k)
else if MD(i, j) ≤MD(i, k) + MD(k, j) then

v ←MNS(i, j)
else

v ←MNS(i, k)
end if

end if
MNS(i, j)← v

end for
end for

end for

F Complex network patterns with Trajectory nets

Consider for instance Figure 8-a). This piece of trajectory net represent a typical pattern to
design forks. In this Figure, a train represented by a segment in place PT,A can be guided
to a track U (represented by place pT,U) if place pc,U is filled or to track D (represented by
place pT,D) if place pc,D is filled. Figure 8-b) represents another typical pattern appearing in
networks, namely the en of track and the turn back procedure. Form these two examples, one
can see that filling control places at the right moment is a way to control arrivals, departures
and directions of trains. If timetable is provided, one can even implement it with a controller
that fills the appropriate places at the planned departure dates. A pattern of the form of the
net given in Figure 9 can also be used to represent a garage, initially filled with a sequence
of trajectories representing the available fleet of vehicles.

G Uptading queue, platform and train payloads

Let us detail how passengers waiting on quays, walking, or entered in a train are updated
between date d and d + δ. Let

(
C, d, (Pi)i∈1..KP

, (TPi)i∈1..KT
, (MQi

)i∈1..KQ
)
)

be the current
configuration, and Scen = OD1 · · ·ODK be the scenario used for simulation.

ATMOS 2024

16:18 Modeling Subway Networks and Passenger Flows

Figure 8 Fork from section A to sections U or D controlled by place pc,U and pc,D.

pT,A

•

pc,U

t1

pT,U

pc,D

t1

pT,D

Figure 9 Garage and Reversals.

pend

t1

pgarage

t2

pbegin

Let Pi be the contents of a platform at a station Si, and Qi = (li, vi) be the queue relating
gates at the platform at station Si. Let MQi

denote the state of Qi.
The new state of MQi

in C ′ after δ time units is M ′
Qi

= M←δ
Qi

+ ArrMQi
(Scen, d, d + δ),

where M←δ
Qi

is the left shift of queue contents, i.e. MQi [⌊y − δ⌋ · vi] = MQi [y − δ · vi], and
ArrMQi

(Scen, d, d+ δ) is the payload representing passengers arrived on platform Si between
date d and d + δ .

Formally, let k1, k2 be two integers such that d ∈ [(k1 − 1) ·∆, k1 ·∆] and
d + δ ∈ [(k2 − 1) ·∆, k2 ·∆]. Then

ArrMQi
(Scen, d, d + δ)[x] =


OD[k2] · 1

∆ if x ∈ [0, d + δ − k2]
OD[k2 − i] · 1

∆ if x ∈ [d + δ − k2 + 1, d + δ − k2 −∆ · i]
OD[k1] · 1

∆ if x ∈ [(k2− k1− 1) ·∆, δ]

Let us now consider the contents of platform Pi when no train is at station
Si. The payload of the platform is incremented by the number of passengers ar-
rived from the entry gate plus queues arriving on the platform. That is, P ′i [k] =∑

x∈0..δ MQi
[x][k]

∑
SQj→i

∑
x∈0..δ MQj,i

[x][k] where SQj→i is the set of queues from a plat-
form j to a platform j.

Let us now consider the situation where a train with payload TPm is stopped at station
Si We consider a simplified model for exchanges, where passengers board a train when all
passengers leaving at station Si have left the train. We consider that leaving a train takes a
constant time ∆lt per passenger, and similarly that boarding takes time ∆bt.

If TPm[Si].∆lt > δ then TP ′m[Sj] = TPm[Sj] (i.e., if the time needed to unload the train
at station Si is larger than δ) then for every Sj ̸= Si and TP ′m[Si] = TPm[Si]− ⌊δ/∆lt⌋.

If TC(p)[Si].∆lt ≤ δ then TP ′m[Si] = 0, then the allowed number of passengers after all
passengers stopping at Si have exited the train is maxboard = TCmax −

∑
Sj ̸=Si

TPm[Sj].
The number of passengers who will board also depends on the remaining available time, i.e.,
δb = δ − TPm[Si] ·∆lt.

A. Thébault, L. Hélouët, and K. Saiah 16:19

Then, the number of passengers boarding who will board is: nbpC,δ =
max(δb

∆bt
, maxboard)

We divide the stations in two groups: S= containing stations Sk such that Pi[Sk] <

nbpC,δ/|S|−1, and S+, containing stations such that Pi[Sk] ≥ nbpC,δ/|S|−1 For every station
Sk ∈ S= we set P ′i [Sk] = 0 and TP ′m[Sk] = TPm[Sk] + Pi[Sk]. The remaining number of
passengers is nbprC,δ = nbpC,δ −

∑
Sk∈S=

Pi[Sk] This number of passengers is fairly distributed

on other destination, 2, by allowing nk passengers to board, with nk = ⌊nbprC,δ/|S+|⌋ or
nk = ⌊nbprC,δ/|S+|⌋+ 1, i.e. setting P ′i [Sk] = Pi[Sk]− nk and TP ′m[Sk] = TPm[Sk] + nk.

H Map of the metro network in Montreal

Figure 10 The STM Montreal Network.

2 To distribute fairly these passengers, we memorize the last destinations with the most passengers, or
choose randomly at each round which destinations receive an additional passenger.

ATMOS 2024

16:20 Modeling Subway Networks and Passenger Flows

I Appendix: A space-time diagram for a delay occurring at station
Sauve

The Space-Time diagram below in Figure 11 depicts a incident causing a 10 minutes delay
at 7:30AM at station Sauvé during a weekday scenario. Station Sauvé is the 5th station
on the Orange line, after a start in station Montmorency. It is located 4 stations before
station Beaubien. Figure 11 shows that this incident impacts 4 vehicles. The networks takes
around 30 minutes to recover from this primary delay. This can be observed as a “hole” in
the parallel lines representing train trips.

Figure 11 A delay at station Sauve impacts multiple vehicles.

	1 Introduction
	2 A subway network model
	3 Passenger flows
	4 A case study: The metro of Montreal
	5 Conclusion
	A Computing uparrow(tr_{k+1},TS,h)
	B Formal definition of Left Shift
	C Computing delta_{arr}, delta_{block}
	D Algorithm to compute passenger paths
	E Algorithm to compute the next station on a trip
	F Complex network patterns with Trajectory nets
	G Uptading queue, platform and train payloads
	H Map of the metro network in Montreal
	I Appendix: A space-time diagram for a delay occurring at station Sauve

