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Abstract
Traffic assignment is a core component of many urban transport planning tools. It is used to
determine how traffic is distributed over a transportation network. We study the task of computing
traffic assignments for public transport: Given a public transit network, a timetable, vehicle
capacities and a demand (i.e. a list of passengers, each with an associated origin, destination,
and departure time), the goal is to predict the resulting passenger flow and the corresponding
load of each vehicle. Microscopic stochastic simulation of individual passengers is a standard, but
computationally expensive approach. Briem et al. (2017) have shown that a clever adaptation of
the Connection Scan Algorithm (CSA) can lead to highly efficient traffic assignment algorithms,
but ignores vehicle capacities, resulting in overcrowded vehicles. Taking their work as a starting
point, we here propose a new and extended model that guarantees capacity-feasible assignments and
incorporates dynamic network congestion effects such as crowded vehicles, denied boarding, and
dwell time delays. Moreover, we also incorporate learning and adaptation of individual passengers
based on their experience with the network. Applications include studying the evolution of perceived
travel times as a result of adaptation, the impact of an increase in capacity, or network effects due
to changes in the timetable such as the addition or the removal of a service or a whole line. The
proposed framework has been experimentally evaluated with public transport networks of Göttingen
and Stuttgart (Germany). The simulation proves to be highly efficient. On a standard PC the
computation of a traffic assignment takes just a few seconds per simulation day.
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1 Introduction

Efficient, sustainable, and accessible public transport systems are critical to promoting
economic growth, reducing congestion and minimizing environmental impact. This calls for
innovative methods to optimize resource allocation, improve passenger comfort and ensure
the overall efficiency of transit networks. A crucial part in the planning process of public
transit systems is traffic assignment. Traffic assignment models are used to predict the
passenger flow and the estimated load of vehicles within a transit network for a given demand
scenario, making them a fundamental analysis and evaluation tool at both planning and
operational levels [4]. Results of traffic assignments provide valuable insights into possible
congestion problems due to insufficient capacity. They can be used to study the benefits of
introducing additional services, increased frequencies, larger vehicle capacities or possible
network extensions [5]. In this work, we consider the following variant of public traffic
assignment: As input we are given a public transit network, a corresponding timetable and a
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18:2 Dynamic Traffic Assignment for Public Transport with Vehicle Capacities

vehicle schedule with vehicle capacities. The demand is specified by a list of passengers, each
with an associated origin, destination, and departure time. The task is to assign for each
individual passenger a journey from his origin to his destination.

Microscopic stochastic simulation of individual passengers is meanwhile a standard, but
computationally expensive approach. Briem et al. [1] have shown that a clever adaptation
of the Connection Scan Algorithm (CSA) [7] can lead to highly efficient traffic assignment
algorithms. However, their approach ignores vehicle capacities, resulting in unrealistic
assignments and overcrowded vehicles (they report in their case study assignments of about
1200 passengers to a single vehicle). The commercial state-of-the-art tool PTV VISUM has
recently integrated CSA into their transport assignment for faster shortest path search [12].

Contribution. Taking the work of Briem et al. [1] as a starting point, we here propose a
new and extended model that guarantees capacity-feasible assignments. We use agent-based
modeling, a powerful tool to study the behavior of passengers, transport vehicles and the
interaction between them. By modeling passengers as autonomous agents, this approach
captures the different decision-making processes, preferences and adaptive behaviors that
individuals exhibit during their journeys. More specifically, our model incorporates dynamic
network congestion effects such as crowded vehicles, denied boarding, and dwell time delays.
Moreover, we also incorporate learning and adaptation of individual passengers based on
their experience with the network. The proposed model has been implemented as a prototype.
Computational experiments with public transport networks of Göttingen and Stuttgart
(Germany) demonstrate the efficiency of the approach. We present three case studies with
selected applications:
1. First, we study how passengers respond to network congestion. We find that the learning

process is quite effective. It helps to improve the average perceived travel times and to
reduce cases of denied boardings due to overcrowded vehicles.

2. Second, we examine the benefits of increasing capacity. It turns out that a moderate
increase in capacity leads to a significant reduction in average perceived travel times.

3. Third, we compare unlimited vs. limited vehicle capacity. As expected the passenger
flows with unlimited vehicle capacity turn out to be highly unrealistic.

Related work. There is a long history of research on traffic assignment in public transport,
see [9, 10, 11] for surveys. Conventional traffic assignment models distinguish between
frequency-based and timetable-based models. These two groups differ in the modeling of
the network. In frequency-based models [16, 20, 25, 24] the timetable is only modeled at
the line level. Each line has an assigned frequency. These models aim at determining the
average loads on the lines. In timetable-based models [13, 14, 17, 18, 19], the trips of a line
are explicitly modeled, and the task is to determine loads on each single trip. A prominent
example of the implementation of a schedule-based model is the commercial software VISUM,
which is primarily used for long-term planning. In agent-based models, passengers are not
considered as an aggregated flow, but are simulated individually on a microscopic level. The
individual vehicles are also modeled as individual agents, which allows great freedom in
modeling (for example, the development of vehicle-specific delays or seating and standing
capacities). Agent-based models focus on the dynamic interactions between passengers and
the network as well as interactions between passengers. Individual, adaptive decisions are
simulated as a reaction to dynamic network conditions. The network conditions are in turn
dependent on the individual decisions of the passengers. In addition to dynamic processes
within a day, a learning process lasting several days is usually modeled. The experiences on
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one day are incorporated into the expectations of the individual passengers and thus influence
the decisions on subsequent days. These learning processes model long-term adaptations
of passengers to the network conditions. In 2008, Wahba presented MILATRAS [26, 27],
the first agent-based simulation in public transport that models a learning process. In
MILATRAS, the traffic assignment is considered as a Markov decision problem, where the
possible positions of the passengers (stops, vehicles) are the states and the possible decisions
(choice of the next line or stop to alight) are the actions. In 2009, MATSim, an activity-based
agent simulation framework, was extended by Rieser et al. to include public transportation
trips [21]. In MATSim, each traveler has a population of plans representing journeys. Each
passenger randomly selects a plan from its population. This selection is based on journey
ratings and the learning process is implemented as a co-evolutionary algorithm.

With BusMezzo [2, 4, 5] another agent-based simulation was introduced by Cats in 2011,
designed as an operations-oriented model for short-term to mid-term planning [3]. The
probabilistic decisions in BusMezzo depend on the current expectations of passengers, based
on previous days’ experiences and current real-time information. The individual decisions
(boarding, alighting and walking) depend on pre-computed path sets, where each action (e.g.
alighting at a specific stop or boarding a specific vehicle) is assigned a path set (e.g. a subset
of all possible paths to the destination after alighting). In [4] a path is defined as a sequence
of stops, whereby the exact lines and transfers are not specified. A single path is therefore not
a concrete journey. The expected waiting time at a stop is calculated based on the combined
frequency of the lines at the stop. A SoftMax model is used when deciding between different
actions. Passengers learn the perceived travel times and the waiting times for the individual
path segments. In contrast to MILATRAS and BusMezzo, the model proposed in this paper
avoids the static pre-computation of alternative path sets. Instead, we consider and evaluate
all feasible actions dynamically on-the-fly in an event-based manner, allowing passengers to
react in a flexible way on network conditions such as unexpected delays or congestion. In our
model the evaluation of individual passenger decisions depends on explicit journeys, which
include specifically defined trips and transfers. Due to the explicit definition of journeys, the
model is also suitable for timetables that include routes with low frequencies or individual
special trips. Passengers can learn the expected load and reliability of specific trips, not only
about lines. Similarly, probabilities of failed transfers can be learned.

Overview. The remainder of this paper is structured as follows. First, we start with the
necessary preliminaries to formalize the problem in Section 2. In Section 3, we introduce
our framework in detail. In Section 4, we present a computational study evaluating our
framework and showcasing a few applications. Finally, we conclude with a short summary.

2 Preliminaries

This section describes the modeling of the network and provides basic definitions and notations.
A timetable is modeled as an event-activity network [15]. An event-activity-network is a
tuple (E ,A,S, T ,L,F ,D) whose components are described below. The events E and the
activities A form a network N = (E ,A), where the events correspond to the nodes and the
activities to the arcs. The events are divided into departure events Edep and arrival events
Earr. Each event e is associated with a time τ(e), a trip trip(e) ∈ T , and a stop stop(e) ∈ S.
We write dep(s) and arr(s) for the set of all departure and arrival events at stop s. An
activity (e1, e2) can be a driving, dwelling or transfer activity. A dwelling arc is an arc from
an arrival event to a departure event, modeling the waiting of a vehicle at a stop. Driving
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arcs are arcs from a departure to an arrival event and model driving from one stop to the
next. Driving and dwelling activities have an in-vehicle time τ ivt(e1, e2) := τ(e2) − τ(e1)
and a minimum in-vehicle time τ ivt

min(e1, e2). The difference between the regular duration
and the minimum duration of an arc corresponds to the catch-up potential in case of delays.
A driving or dwelling activity (e1, e2) has a reference to its trip trip(e1, e2) ∈ T .

A trip t ∈ T is an alternating sequence of departure and arrival events (e1
dep(t), e2

arr(t),
e2

dep(t), ...., e
|S(t)|−1
arr (t), e

|S(t)|−1
dep (t), e

|S(t)|
arr (t)), where S(t) is the set of stops served by the

trip t. Denote by ei
dep(t) the departure event and by ei

arr(t) the arrival event at the ith stop
of t. The times of the events of a trip are non-decreasing, so τ(ei

dep(t)) ≤ τ(ei+1
arr (t)) and

τ(ei
arr(t)) ≤ τ(ei

dep(t)) always apply. This sequence of events defines the alternating sequence
of driving and dwelling activities(t) of trip t. For a trip segment between the ith and jth
stop of a trip t, with i < j, we write ei

dep(t)→ ej
arr(t). This trip segment contains all driving

and dwelling arcs between the departure event at the ith stop and the arrival event at the
jth stop of trip t. Let activities(ei

dep(t)→ ej
arr(t)) be this sequence of arcs. Each trip has a

seat capacity capsit(t), which corresponds to the number of seats in the vehicle. The capacity
cap(t) ≥ capsit(t) of a trip is the sum of the seats and standing capacity. This capacity is
considered as a hard upper limit for the number of passengers that can be on a trip. Trips
are grouped into lines L, where each trip of a line serves the same sequence of stops. Let
line(t) be the line of a trip t and line(e) the line of an event e. We assume that two trips
of a line cannot overtake each other. A line is therefore a set of trips ordered according
to the first departure time. Let t1 and t2 be two subsequent trips of a line. The headway
headway(ei

x(t1)) := τ(ei
x(t2)) − τ(ei

x(t1)) of an event is the time until the corresponding
event of the next trip. A transfer is an arc from an arrival event to a departure event of
another trip. Such arcs are not explicitly modeled, but are implicitly defined by the stops S
and footpaths F . A footpath (s, s′) ∈ F between two stops can be passed at any time. The
time required for a footpath is given by ℓ(s, s′) ∈ N. A minimum transfer time mct(s) can
be specified for transferring at stop s. A transfer earr → edep with trip(earr) ̸= trip(edep)
is therefore valid if either stop(earr) = stop(edep) and τ(earr) + mct(stop(earr)) ≤ τ(edep)
applies, or if stop(earr) ̸= stop(edep) and the footpath (stop(earr), stop(edep)) exists with
τ(earr) + ℓ(stop(earr), stop(edep)) ≤ τ(edep). A valid transfer can become invalid in the
course of the simulation due to delays. Conversely, an invalid transfer can also become
valid if the departure event is delayed. The walking time τwalk(earr → edep) of a transfer
is ℓ(stop(earr), stop(edep)) if stop(earr) ̸= stop(edep), and 0 otherwise. The waiting time
τwait(earr → edep) of a transfer is τ(edep)− τ(earr)− τwalk(earr → edep). To model delays
that can propagate between different trips, dependency arcs (t1, t2) ∈ D are introduced
between two consecutive trips of a vehicle. Like activities, they have a minimum duration. If
a trip arrives late at its last stop, the next trip of the vehicle is delayed accordingly.

The agents are generated using an OD-matrix. The OD-matrix specifies how many
passengers per hour want to travel from a specific start stop origin to a specific destination
stop dest. Each passenger is assigned a fixed start time τstart. A more realistic modeling,
in which the start time is chosen by the agents themselves depending on the network, is
conceivable, but is not dealt with in this paper. During a simulated day, a journey is created
for each passenger, which is an alternating sequence of trip segments and valid transfers.
In addition to transfers between two trips, a journey can also have an initial walk at the
start or a final walk to the destination. We therefore extend our definition of transfers
to include the special cases origin → edep and earr → dest, where origin is the start and
dest is the destination. A final transfer earr → dest always has a waiting time of 0. A
journey J consisting of n trip segments therefore has the form J = {origin → ei1

dep(t1),
ei1

dep(t1)→ ej1
arr(t1), ej1

arr(t1)→ ei2
dep(t2), ...., ein

dep(tn)→ ejn
arr(tn), ejn

arr(tn)→ dest}.
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3 Agent-Based Dynamic Traffic Assignment Model

In this section we introduce our dynamic traffic assignment model step-by-step. We first
sketch and discuss the model of Briem et al. [1], as it serves in many respects as the basis
for the simulation presented in this work. Then we present a high-level description of our
simulation model. Afterwards, we provide details about the modeling of congestion effects,
passenger preferences, route choice, learning, and real-time reactions.

Traffic assignment using Connection Scan Algorithm. In [1], passenger preferences are
modeled using perceived arrival times. These are used to make decisions based on factors
such as arrival time, number of transfers, walking time, waiting time, and delay robustness.
The algorithm simulates different decisions for each passenger (boarding a vehicle, alighting
a vehicle, walking to another stop) and assigns probabilities to these options based on the
perceived arrival times of each option. The boarding and alighting decisions are binary
(board or stay at a stop, alight or stay on a trip). The perceived travel times for all options
are calculated with a single run of the Connection Scan Algorithm [7]. In a second scan
over all elementary connections, a random decision whether to board the vehicle is made
for each passenger waiting at the corresponding departure stop. Then, for all passengers in
the current vehicle, a random decision is made whether to alight at the arrival stop. Finally,
for each alighting passenger, a random decision is made as to which stop they will walk
to (or remain at the current stop). This approach is very efficient, but is based on some
unrealistic assumptions. First, the model assumes unlimited vehicle capacities. This leads to
traffic allocations in which individual vehicles have unrealistically high load factors. Second,
passengers do not react in any way to high occupancy rates and are treated as uniform
decision makers; personal preferences or experiences are not implemented. Third, movements
of vehicles are not simulated and transfer uncertainty is modeled by adding a random variable
to the arrival times. Consequently, it is not possible to model specific vehicle delays and
how passengers react to them. As capacities and occupancy rates are ignored and delays
are modeled as random variables, the network performance is completely independent from
passenger decisions.

3.1 High-level Description of Model
In our model, passengers are modeled as agents with their own preferences and experiences.
The individual decisions of the passengers influence the network dynamics and the passenger
decisions are in turn dependent on the network dynamics. The network flow is therefore the
result of the passengers’ interaction with the network. Each individual trip is modeled as a
separate entity whose performance depends on the decisions of the agents. The modeling of
vehicles as entities allows explicit delays and delay dependencies between vehicles. Section 3.2
describes three different network congestion effects that are implemented in this model:
crowded vehicles (including seat allocations), denied boardings and dwell time delays.

The model replicates the impact of network performance on passenger decisions. We
develop a flexible choice model that allows passengers to make adaptive decisions in response
to these dynamic network conditions. As in [1], we evaluate decisions by calculating a
perceived travel time (Section 3.3) for each option, but we incorporate the three modeled
congestion effects. In Section 3.4, we explain how probabilities are assigned to different
options based on the perceived travel times. Instead of binary choices, passengers choose
between boarding trips of different lines and alighting at different downstream stops. The
advantage of this is that passengers can react adaptively to the characteristics of different
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18:6 Dynamic Traffic Assignment for Public Transport with Vehicle Capacities

journeys, rather than just considering the current and optimal options. One drawback is that
the journey characteristics can change in the time between the decision and the execution of
the chosen event. In Section 3.6, we describe how passengers can change their decisions based
on real-time information. Individual passengers adapt their behavior to their experiences
with the network. Passengers’ decisions are influenced by the experience they have gained
by repeatedly traveling through the network on consecutive days (Section 3.5). Modeling
a learning process is of great importance as the network conditions vary from day to day.
The learning process models how passengers react to the fluctuating network congestions on
different days and allows them to avoid highly congested trips.

The model is developed as an event-oriented simulation with discrete time steps. We
keep the algorithmic framework and the overall structure of a simulated day from the model
in [1]. Changes to the algorithm are described in Section 3.3. As event times are no longer
static (in particular, due to dwell time delays), the connections cannot be pre-sorted and
we need a priority queue Q. This contains all events of the period to be simulated. The
events are sorted in ascending order according to the current time of the events. If two events
have the same time, arrivals are processed before departures. On each pass through the
main loop, the current event is extracted from Q. All passengers who have not yet started
their day are loaded into the network. They select their first boarding. The type of event is
then distinguished. In the case of a departure event, the passengers waiting at the current
stop are processed in random order. In the case of an arrival event, the passengers on the
current vehicle are processed. When a departure event is processed, a dwell time delay may
be generated and propagated. In this case, Q must be updated. At the end of each day, the
expectations and perceived travel times are updated.

3.2 Congestion Effects
Crowded vehicles. Seats are allocated as follows: We assume that passengers alight from
the vehicle before those waiting at the stop board. Seats may therefore become available.
First, passengers are drawn at random from those currently standing until either all seats are
occupied or all passengers are seated. Second, the waiting passengers then board the vehicle
in random order. We therefore assume that the passengers mix while waiting. Entering
passengers are assumed to take a seat if one is available. The main causes of dissatisfaction
in overcrowded vehicles are standing and physical proximity to other passengers. Let
qonboard(e1, e2) ≤ cap(t) be the number of passengers of an activity (e1, e2) of the trip t. The
discomfort depends on the current passenger load λ(e1, e2) := qonboard(e1, e2)/capsit(t) and
on whether a seat has been found. The load is defined relative to the number of seats. These
two properties give the crowding factor βcrowding

k (λ(e1, e2), seatedk(edep, (e1, e2))), where k

is the current passenger and edep is the departure event at which the passenger boarded the
current trip. The Boolean function seatedk, which indicates whether the passenger k has a
seat, thus depends not only on the current arc, but also on the time of boarding. We assume
that a passenger will not give up a seat once it has been found. The crowding factor is
modeled as a step function (see Table 1). The load of a vehicle is not known to the passenger
in advance and is therefore based on the passenger’s personal experience on previous days,
or a default value if no experience is available. Learning is described in Section 3.5. The
model also allows for real-time load information, but this is beyond the scope of this paper.

Denied boardings. As with the seat allocation, the standing room allocation depends on the
random order of boarding passengers. It is possible that the number of passengers wishing to
board a vehicle is greater than the remaining capacity. In this case, some of the passengers
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must therefore remain at the stop. We refer to this as denied boarding at a departure event
edep. The passengers must respect the minimum transfer time at the current stop and may
walk to another stop in response to the denied boarding. They are therefore treated as
passengers who alight at stop(edep) at time τ(edep). Such an unplanned complication is
associated with additional stress for the passenger. Therefore, the subsequent waiting or
walking time to the next boarding event is penalized by a multiplier βfail

k .

Dwell time delays. We model the dwell time as a monotonically increasing function based
on the number of boarding and alighting passengers. Let qalight be the current number of
alighting passengers and qboard the current number of boarding passengers. The required
dwell time is given by (qalight + qboard)/doorCapacity(t), where doorCapacity(t) is the
number of passengers that can board or alight per second. This value differs significantly
between different vehicle types, for example buses generally have a smaller doorCapacity

than trains. It should be noted that this is a greatly simplified model; for example, the
time to open and close the doors is ignored. Since boarding and alighting is the dominant
component [22], this is sufficient to capture the systematic evolution of delays caused by
the network flow. For more accurate modeling, more information is needed on the vehicles
used. If the required dwell time is greater than the scheduled one of a dwelling arc, the
corresponding departure is delayed by the difference. Occurring delays are propagated
downstream along the corresponding trip (as in [23]). Additionally, delays of trains are
propagated across shared rails.

3.3 Perceived Travel Time
Perceived travel time is a key characteristic that influences passenger satisfaction with public
transport. Unlike actual travel time, it takes into account that waiting times, walking
distances, transfers and in-vehicle crowding are perceived differently by passengers. Each
passenger in the model has its own preferences and experiences. The perceived travel time
is dependent on the network dynamics of the current day and the passenger’s experience
gained on previous days. Each passenger has different sources of information about expected
times and vehicle loads. These sources can be, in descending order of priority, real-time
information, experience, or default values (scheduled times or an input parameter for load).
Unless otherwise specified, the source with the highest priority is used.

During the simulation, each passenger is assigned a journey iteratively through partial
decisions. Two types of decisions are made: a passenger waiting at a stop, has to decide
which trip to board next (or whether to walk directly to the destination if there is a footpath).
The passenger chooses between departure events that can be reached from the current stop,
including departure events reachable by a footpath. Second, a passenger traveling in a
vehicle has to decide at which stop to alight. To implement these decisions, we calculate
for each passenger k an expected perceived travel time fk(e) for each boarding and alighting
event e, that corresponds to the optimal journey from the current event to the destination.
The initial perceived travel times are calculated before the start of the simulation and are
based on scheduled times. The perceived travel times are updated at the end of each day
after incorporating passenger experience, and are recalculated during a day when real-time
information is available. At the time of the decision, the passenger does not know the actual
perceived travel times, as the activities are in the future. These values are therefore only
estimates for the current day. We account for crowding by weighting the in-vehicle-travel
time by a crowding factor βcrowding

k depending on the vehicle load. Similarly, waiting and
walking times are weighted by passenger-specific factors βwalk

k and βwait
k , respectively. We
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also use an additive penalty βtransfer
k for each transfer and β̂fail

k (tr) for a possible failed
transfer tr. The penalty term for a failed transfer corresponds to the weighted additional
waiting time caused by the failed transfer, multiplied by an estimated probability pfail

k (tr).
The expected perceived travel time fk(e) of an event e is defined recursively as the minimum
over all possibilities to continue from this event to the destination. In the following, we derive
these calculations step by step. First, we define an expected perceived travel time pttk for
each transfer and for each trip segment. The perceived travel time of a journey is the sum of
the perceived travel times of all trip segments and transfers of the journey (including the
waiting time at the origin stop). The perceived travel time of a trip segment is the sum of
the perceived travel times of all driving and dwelling arcs of the trip segment. The perceived
travel time of an activity (e1, e2) is obtained by multiplying the crowding factor with the
duration of the activity, i.e.

pttk(edep, (e1, e2)) := βcrowding
k (λk(e1, e2), seatedk(edep, (e1, e2))) · τ ivt

k (e1, e2),

where edep is the departure event at which the passenger k boarded the current trip. Since
a passenger does not know in advance when he will find a seat, he assumes that he will
find a seat at the first arc with an expected load of less than 1. The Boolean function
seatedk(ei

dep(t), (ej(t), ej′(t))) is true if an arc (em(t), em′(t)) exists with λk(em(t), em′(t)) < 1
and i ≤ m ≤ j. This is a pessimistic estimate: even if the expected loads match the actually
experienced values, the passenger may find a seat earlier.

The perceived travel time of a trip segment is

pttk(ei
dep(t)→ ej

arr(t)) :=
∑

(e,e′)∈activities(ei
dep

(t)→ej
arr(t))

pttk(ei
dep(t), (e, e′)).

The real travel time of a transfer tr = earr → edep consists of the waiting time for the next
trip and, if a footpath is required for the transfer, the length of the footpath. These times are
multiplied by passenger-specific coefficients βwalk

k and βwait
k . In addition, there are penalty

terms βtransfer
k for the transfer itself and β̂fail

k (tr) for a possible failed transfer. The penalty
term for a failed transfer corresponds to the weighted additional waiting time caused by the
failed transfer. Since the additional waiting time after the failed transfer is not known at the
time of the decision, it must be estimated. To allow an efficient calculation, this estimate is
based only on the timetable. We define the expected additional weighted waiting time after
the failed boarding β̂fail

k (tr) as headway(edep) · βfail
k . The value β̂fail

k (tr) is then multiplied
by a probability pfail

k (tr) estimated by passenger k that boarding at edep is not possible due
to limited capacity of trip(edep) or delays of earr. This probability is assumed to be 0 at the
beginning of the simulation. It depends on two components, pdenied

k and pdelay
k . The overall

probability pfail
k (tr) is calculated as pdenied

k (edep) + pdelay
k (tr) − (pdenied

k (edep) · pdelay
k (tr)).

Both components are based on the passenger’s experience on previous days. The probability
pdelay

k is calculated using a weighted empirical distribution function of the arrival times
τ(earr). The perceived travel time of a transfer tr = earr → edep is

pttk(tr) := β̂fail
k (tr) · pfail

k (tr) + βwait
k · τwait

k (tr) + βwalk
k · τwalk(tr) + βtransfer

k .

We additionally define walkdest
k (s) = βwalk

k · ℓ(s, dest) as the weighted walking time from
stop s to destination dest of passenger k. Using these definitions, we can now recursively
define the expected perceived travel times fk(e). The minimum perceived travel time from
an arrival event earr to the destination stop is given by the minimum over all outgoing valid
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transfers and the weighted walking time to the destination stop. Transfers that are only
possible due to a learned delay of the departure event are ignored here. We first define the
minimum over all transfers:

f trans
k (earr) := min

earr→e′
dep

pttk(earr → e′
dep) + fk(e′

dep).

The value fk(earr) is the minimum of this value and the weighted walking time, i.e.

fk(earr) = min{f trans
k (earr), walkdest

k (stop(earr))}.

In particular, fk(earr) is 0 if stop(earr) is the destination of k. The minimum perceived
travel time of a departure event edep is the minimum over all possible trip segments. The
respective trip segment is defined by the arrival event at which the passenger alights. For a
departure event ei

dep(t) this results in

fk(ei
dep(t)) = min

j>i
pttk(ei

dep(t)→ ej
arr(t)) + fk(ej

arr(t)).

We have therefore defined a minimum perceived travel time fk(e) to the destination for each
passenger k and for each possible boarding and alighting event.

Calculation of initial perceived travel times. Algorithm 1 describes the calculation of
the initial perceived travel times fk(e). These initial values are independent of the network
dynamics. The times therefore correspond to the regular times according to the timetable, a
standard load λstd is assumed for each activity and the probability of a failed boarding is
assumed to be 0. The algorithm is based on the profile connection scan algorithm [7], with
the difference that we calculate perceived travel times instead of earliest arrival times. In
addition, dwelling activities must also be taken into account. As in [7], we first perform a
simple earliest arrival time query with CSA to determine the driving arcs C that can be
reached from the origin. We limit the time horizon to τarr(k) + ∆τ , where τarr(k) is the
earliest (real) arrival time of k at its destination dest. We therefore discard journeys that
arrive more than ∆τ later at the destination than the fastest journey. During the execution
of the algorithm, a set of Pareto-optimal journeys B[s] from s to the destination is calculated
for each stop s ∈ S. The criteria are the departure time and the minimum perceived travel
time to the destination. For each departure event edep, a label L = (τdep, ptt, trip) is created
consisting of the departure time τdep, the minimum perceived travel time to the destination
ptt and the first trip of the journey trip. For Pareto dominance, the difference between the
departure times of the labels must be added to the perceived travel time of the later label.

We iterate over the driving arcs C in descending order of departure times. In each loop
iteration, the invariant applies that pttcurr[t] is the minimum perceived travel time from
the earliest scanned departure event of the trip t to the destination. At the beginning
of the iteration for the travel arc (ei

dep(t), ei+1
arr (t)), pttcurr[t] therefore corresponds to the

minimum perceived travel time from ei+1
dep (t) to the destination. At the arrival event ei+1

arr (t),
the passenger has three options: he can change to another trip, walk to the destination or
stay in the vehicle. We calculate the minimum of these three options. First, we calculate the
perceived travel time for a transfer. The optimal transfer is the transfer to the Pareto-optimal
partial journey with the smallest departure time. Here we discard the case that a passenger
alights to get back on the current trip immediately. Let Lf be the label of this journey. The
perceived travel time for a transfer transfer is therefore the sum of the perceived travel time
of Lf and the cost of the transfer (waiting time and penalty for transfer). The perceived
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Algorithm 1 Calculation of the initial perceived travel times fk to the destination of
passenger k.

Input: list C of relevant driving arcs sorted by regular departure times
Output: perceived travel times fk(e)
foreach t ∈ T do

pttcurr[t]←∞
foreach driving arc (ei

dep(t), ei+1
arr (t)) ∈ C, descending by τ(ei

dep(t)) do
let Ltransfer be the label L ∈ B[stop(ei+1

arr (t))] with minimum departure time
τdep(L), for which τdep(L) ≥ τ(ei+1

arr (t)) and trip(L) ̸= t apply
if Ltransfer ̸= ⊥ then

transfer ← ptt(Ltransfer) + βtransfer
k + βwait

k (τdep(Ltransfer)− τ(ei+1
arr (t)))

else
transfer ←∞

alight← min{transfer, walkdest
k (stop(ei+1

arr (t)))}
remain← pttcurr[t] + βcrowding

k (λstd, λstd < 1) · τ ivt(ei+1
arr (t), ei+1

dep (t))
minptt← min{alight, remain}
if minptt =∞ then continue
pttcurr[t]← minptt + βcrowding

k (λstd, λstd < 1) · τ ivt(ei
dep(t), ei+1

arr (t))
fk(ei+1

arr (t))← alight

fk(ei
dep(t))← pttcurr[t]

Ls ← (τ(ei
dep(t))−mct(stop(ei

dep(t))), pttcurr[t] + βwait
k ·mct(stop(ei

dep(t))), t)
if Ls is not dominated: insert Ls into B[stop(ei

dep(t))] and remove dominated
labels

foreach footpath (s′, stop(ei
dep(t)) ∈ F do

Lf ← (τ(ei
dep(t))− ℓ(s′, stop(ei

dep(t)), pttcurr[t] + βwalk
k · ℓ(s′, stop(ei

dep(t)), t)
if Lf is not dominated: insert Lf into B[s′] and remove dominated labels

travel time for the passenger to walk to the destination is given by walkdest
k (stop(ei+1

arr (t))).
We summarize these two options under alight. The perceived travel time for staying in
the vehicle is equal to the sum of the minimum perceived travel time from ei+1

dep (t) to the
destination (i.e. pttcurr[t]) and the cost of the dwelling arc between ei+1

arr (t) and ei+1
dep (t). The

sum of these two costs is called remain. The minimum of all three options is minptt.
Afterwards, pttcurr[t] is updated. The minimum perceived travel time for the departure

event ei
dep(t) corresponds to the sum of the costs of the current driving arc and the costs

of the minimum option at the arrival event (minptt). We store the calculated minimum
perceived travel times in fk. We still need to update the Pareto sets. We create a label for
the current stop and for all footpaths. We incorporate the minimum transfer time or footpath
length directly into the labels. The departure time of the label therefore corresponds to
the departure time of ei

dep(t) minus the minimum transfer time or walking distance. For
the perceived travel time ptt of the labels, the corresponding costs for waiting or walking
must be added to the current perceived travel time pttcurr[t]. We first test whether a label
is dominated by another label of the corresponding Pareto set. If this is not the case, it is
inserted. The labels dominated by the inserted label are then removed.

Updating the perceived travel times. Updating the perceived travel times fk works in
a similar way to the initial calculation in Algorithm 1. This subsection only describes the
differences. Only a small subset of all events is affected by the update. It would therefore be
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suboptimal to scan the entire list C. Instead, we use a priority queue Q, which contains the
arcs in descending order according to regular departure times. At the beginning, Q contains
the arcs for which at least one property has changed. At the end of each iteration, all driving
arcs through which the current driving arc can be reached are inserted into Q. These are the
previous driving arc of the current trip t and all driving arcs (ej

dep(t′), ej+1
arr (t′)) for which the

transfer ej+1
arr (t′)→ ei

dep(t) is valid. Another difference is that during the update, each stop
is usually visited much less frequently, as only a small subset of the travel arcs are scanned.
We therefore do not calculate the Pareto sets. Instead, we calculate the minimum perceived
travel time for a transfer by scanning over all departure events e′

dep that are reachable from
ei+1

arr (t) via a valid transfer. Transfers that are only valid because of the learned delay of the
boarding event are ignored. We therefore use the regular time for e′

dep.
In the initial calculation, a default value λstd was assumed for the load of each arc. This

means that a passenger assumes that they are either always seated or always standing. This is
no longer the case with the update. As a reminder: A passenger assumes that they must stand
until they reach an arc (ei

dep(t), ei+1
arr (t)) for which they expect a load factor of less than 1, i.e.

λ̃k(ei
dep(t), ei+1

arr (t)) < 1. In addition to pttcurr[t], we store another value pttsitting
curr [t], which is

the minimum perceived travel time to the destination, assuming that the passenger is seated
for the rest of the journey. If we scan an arc (ei

dep(t), ei+1
arr (t)) with λ̃k(ei

dep(t), ei+1
arr (t)) < 1,

we set pttcurr[t]← pttsitting
curr [t]. The initial calculation of the minimum perceived travel times

and their update at the end of the day or in real-time reactions is independent of the other
passengers. The parallelization of these steps is therefore trivial.

3.4 Choice Model
We use a mixed (ϵ − greedy, SoftMax) decision model. With a probability of 1 − ϵ, the
optimal decision is made directly. In the other case, the SoftMax selection is used. This mixed
model results in the agents predominantly making the optimal decision, while occasionally
opting for a random action according to the SoftMax principle. The SoftMax function is used
to assign probabilities to the individual decisions based on the perceived travel times fk.

In general, the SoftMax selection for any actions a with costs f(a) has the following form:

p(a) := e(f(aopt)−f(a))/γ(d)∑
a′

e(f(aopt)−f(a′))/γ(d) ,

where aopt is the optimal action, γ(d) is the temperature and d is the current day. The costs
of an action are therefore considered relative to the optimal costs. If a high temperature
is chosen, the probability of making suboptimal decisions is higher. In the limit value for
γ → 0, the optimal decision is always made. The temperature therefore influences the average
perceived travel times of passengers.

Boarding and walking decisions. When a passenger k is waiting at a stop, he decides
on a trip, specifically a departure event, which he wants to board next. For simplicity,
assume that the passenger just alighted at an arrival event earr. The passenger decides
on the basis of the perceived travel time fk. We restrict the departure events in question
to the earliest available trips on each line. Let the set of relevant departure events be
reldep(earr) := {ei

dep(t)|earr → ei
dep(t) is valid and there is no valid transfer earr → ei

dep(t′)
with line(t) = line(t′) and τ(ei

dep(t′)) < τ(ei
dep(t))}. Here we only consider transfers if they

are valid for the regular time τreg(edep) of the departure event. Transfers that become valid
due to delays are handled as part of the real-time reactions in Section 3.6. The expected
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perceived travel time for a selected boarding event edep consists of the perceived travel time
of the transfer earr → edep and fk(edep). As we only consider valid transfers and the arrival
time τ(earr) is fixed at the moment of the decision, the probability pdelay

k (earr → edep) of
the transfer being invalid because of a delay is 0. Let

f∗
k (earr) := min

earr→edep,edep∈reldep(earr)
pttk(earr → edep) + fk(edep)

be the perceived travel time for the optimal transfer among the relevant ones. The passenger
first decides whether to walk to the destination or wait for a ride. The perceived travel time
of the optimal transfer f∗

k (earr) is compared with the weighted walking time walkdest
k (s).

Let fopt
k := min(walkdest

k (s), f∗
k (earr)) be the optimal decision. The probability that the

passenger decides to walk to the destination is

p(walk) := e(fopt
k

−walkdest
k (s))/γ(d)

e(fopt
k

−walkdest
k

(s))/γ(d) + e(fopt
k

−f∗
k

(earr))/γ(d)
,

If the passenger does not walk to the destination, he chooses a departure event from
reldep(earr). We define the relative perceived travel time for a transfer earr → edep with
edep ∈ reldep(earr) as

frel
k (earr → edep) := f∗

k (earr)− (pttk(earr → edep) + fk(edep)).

This value is therefore 0 for the optimal transfer and negative otherwise. The probability
that the passenger decides for the transfer earr → edep is

p(earr → edep) := efrel
k (earr→edep)/γ(d)∑

e′
dep

∈reldep(earr)
efrel

k
(earr→e′

dep
)/γ(d) .

If a walk is required for the selected transfer, the passenger changes the stop after making
the decision. So far, we have assumed that the passenger has just alighted at an arrival event
earr. However, it is also possible that a departure decision is made that does not immediately
follow an alighting event. This is not a problem because any tuple (s, τ) consisting of
a stop and a time can define a set of relevant boardings. We described the special case
(stop(earr), τ(earr)).

Alighting decisions. If a passenger has boarded at a departure event ei
dep(t) of the trip t, he

decides at which downstream stop of t he will alight. He therefore decides on an arrival event
ej

arr(t) with j > i. Together, ei
dep(t) and ej

arr(t) result in a trip segment ei
dep(t)→ ej

arr(t) of
the journey. The expected perceived travel time for a selected exit results from the sum of
the perceived travel time of this trip segment and fk(ej

arr(t)). We again define the perceived
travel time relative to the optimal decision. The perceived travel time for the optimal
alighting decision is

f∗
k (ei

dep(t)) := min
m>i

pttk(ei
dep(t)→ em

arr(t)) + fk(em
arr(t)).

The relative perceived travel time for an exit at the jth stop is

frel
k (ei

dep(t)→ ej
arr(t)) := f∗

k (ei
dep(t))− (pttk(ei

dep(t)→ ej
arr(t)) + fk(ej

arr(t))).

This value is 0 for the optimal decision and negative otherwise. The probability that the
passenger chooses the jth stop is

p(ei
dep(t)→ ej

arr(t)) := efrel
k (ei

dep(t)→ej
arr(t))/γ(d)∑

m>i

efrel
k

(ei
dep

(t)→em
arr(t))/γ(d) .
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3.5 Learning

After each simulated day, the expected perceived travel times fk are updated according to
the experiences on the current day. Thus, an explicit learning process is modeled through
which the passengers learn properties of the network. We mark the learned properties with a
tilde. The properties learned are the loads of driving arcs λ̃k(edep, earr), the probabilities
for denied boardings p̃denied

k (edep), the probabilities for failed transfers because of delays
p̃delay

k (earr → e′
dep) and the times τ̃k(e) of the events. The learned values are updated in two

steps: First, the expected properties are updated for the activities and events experienced
by the passenger on the current day. Then the perceived travel times fk are recalculated.
The recency parameter κ indicates how highly new experiences are weighted. For κ = 1,
the accumulated experiences correspond to the average of all experiences. For κ < 1 newer
experiences are weighted higher and for κ > 1 lower. The accumulated experiences are defined
as in [4] as a function of the experiences on the current day and the accumulated experiences
before the current day. Since not every event is updated every day, we need to memorize
the number of updates for each event and property. Let |λk(edep, earr)|, |pdenied

k (edep)| and
|τk(e)| be the number of updates. The respective number is incremented before the update.

At the end of each day, a passenger k has a journey Jk = {o → ei1
dep(t1), ei1

dep(t1) →
ej1

arr(t1), ej1
arr(t1) → ei2

dep(t2), ...., ein

dep(tn) → ejn
arr(tn), ejn

arr(tn) → dest} and a set of denied
boardings Dk. Let driving_arcs(Jk) be the set of all driving arcs of Jk, events(Jk) the set
of all events of Jk and eventsdep(Jk) the set of all departure events of Jk. In addition to the
times of the events and the utilization of the activities, the proportion of passengers who
were unable to board due to limited capacity out of those who attempted to on the current
day is also stored for each departure event. Let pdenied

d (edep) be this quantity.
Let λd(edep, earr), pdenied

d (edep) and τd(e) be the respective properties of the network on
day d. The first step is to integrate the properties of the current day into the learned values
λ̃k(edep, earr), p̃denied

k (edep) and τ̃k(e).
We update the load λ̃k(edep, earr) for the driving arcs (edep, earr) ∈ driving_arcs(Jk):

λ̃k(edep, earr)← λ̃k(edep, earr) · (1− |λk(edep, earr)|−κ) + λd(edep, earr) · |λk(edep, earr)|−κ,

for the departure events edep ∈ events(Jk) ∪ Fk the probabilities p̃denied
k (edep):

p̃denied
k (edep)← p̃denied

k (edep) · (1− |pdenied
k (edep)|−κ) + pdenied

d (edep) · |pdenied
k (edep)|−κ,

and for the events e ∈ events(Jk) the times τ̃k(e):

τ̃k(e)← τ̃k(e) · (1− |τk(e)|−κ) + τd(e) · |τk(e)|−κ.

We set the learned load of a dwelling arc (ei
arr(t), ei

dep(t)) to the learned load of the
following driving arc, i.e. λ̃k(ei

arr(t), ei
dep(t)) ← λ̃k(ei

dep(t), ei+1
arr (t)). In order to learn the

probability p̃delay
k (earr → edep) that a transfer fails because earr is delayed, the experienced

times for each arrival event in events(Jk) are memorized. Let T d(earr) be the sampled
arrival times of earr after day d. We calculate an inverse weighted empirical distribution
function based on this sample. The probability p̃delay

k (earr → edep) is equal to the weighted
share of sampled arrival times that are greater than τreg(edep)− τmin(earr → edep), i.e.

p̃delay
k (earr → edep) =

d∑
i=1

wd
i · 1Ti>τreg(edep)−τmin(earr→edep),
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where τmin(earr → edep) is the minimum required time for the transfer (either minimum
change time or footpath length) and 1Ti>τreg(edep)−τmin(earr→edep) is the indicator for Ti >

τreg(edep)− τmin(earr → edep) and

wd
i = i−κ ·

d∏
j=i+1

(1− j−κ).

These normalized weights are derived from the update formulas above. A problem arises when
updating the times: as only parts of a trip are updated, it may happen that τ̃k(e1) > τ̃k(e2)
applies to an activity (e1, e2). The property that the times of a trip are non-decreasing
is therefore violated. To restore this property, the delays at the first or last event are
extrapolated to the start or end of each trip.

After the values λ̃k, p̃denied
k , p̃delay

k and τ̃k have been updated, the expected perceived
travel times fk must be updated. However, a complete recalculation is not necessary as only
a small subset of all events and activities have changed.

3.6 Real-time Reactions
Until now, passengers’ decisions have been based on personal experience or, in the absence
of experience, on the timetable and default values. However, current circumstances may
differ from these experiences. Therefore, mechanisms are implemented that allow adaptive
behavior based on current information. Similar to Milatras [27], these mechanisms allow
to change the original decision. In general, a new decision is made if the currently selected
action is worse than expected or if an unselected action is better than expected. The affected
perceived travel times f(e) are updated with a CSA query, taking into account the current
information. The new decision then follows the same principle as the original, but with
updated scores for each option. Boarding and alighting decisions are reconsidered for various
cases, mainly due to differences between expected and actual event times or vehicle loads.

We distinguish between real-time reactions while a passenger is waiting at a stop and
real-time reactions while a passenger is in a vehicle. For real-time reactions at stops, we
further distinguish between two cases. In the first case, let the originally selected trip t∗ be
the currently departing trip (boarding_redo). If τ(ei

dep(t∗)) > τ̃k(ei
dep(t∗)) applies, the trip is

more delayed than expected and a change of decision is possible. After updating fk(ei
dep(t∗)),

a completely new boarding decision is made as described in Section 3.4. The current trip t∗

remains a possible option.
For the second case, let ej

dep(t) ̸= ei
dep(t∗). The passenger therefore has the option of

switching from the currently selected trip t∗ to trip t (boarding_switch). We distinguish
between four different reasons why a switch could be advantageous: (1) trip t is departing
earlier than expected, (2) there is still free capacity in t and p̃denied

k (ej
dep(t)) > 0 applies, (3)

boarding at ej
dep(t) is not possible according to regular times and was therefore not included

in the original decision, and (4) the current simulation time τcurr is greater than the expected
departure time of the current choice t∗, i.e., the current choice is more delayed than the
passenger expected.

A binary decision between these two options is made following the described (ϵ −
greedy, SoftMax) decision model with two restrictions after updating the values f(ej

dep(t))
and f(ei

dep(t∗)). To avoid a bias towards earlier departing but worse trips, the switch is
only executed if the updated perceived travel time for ej

dep(t) is not worse than the updated
perceived travel time for ei

dep(t∗). On the other hand, we also want to avoid that the passenger
switches to a better trip if the original choice was already suboptimal, as this would defeat



J. Patzner and M. Müller-Hannemann 18:15

the purpose of a probabilistic decision model. The switch is therefore not made if the original
choice was suboptimal and the original choice is not worse than expected under the current
circumstances.

The real-time reactions in vehicles work in a similar way to the real-time reactions at
stops. The current passenger k has a currently selected arrival event ei∗

arr(t) at which they
want to alight. If the trip t arrives at a stop, the passenger has the option to change his
decision. Let ei

arr(t) with i ≤ i∗ be the current arrival event. In the case where i = i∗, the
passenger has arrived at the stop where he plans to alight. A change of decision is possible if
the current trip is more delayed than expected. If the optimal transfer is still possible, no
change of decision is necessary, as the journey with the minimum perceived travel time to
the destination remains the same. If this transfer is no longer possible, the perceived travel
time for an exit at ei

arr(t) becomes worse. In this case, a new alighting decision is made,
taking into account the current information (alighting_redo). The current arrival remains a
possible option.

If i < i∗ applies, the passenger has the option of alighting early at the current stop
(alighting_switch). There are three reasons why early alighting might be attractive: (1)
the current trip t arrived earlier than expected, which could allow a new transfer at the
current stop, (2) the current trip t arrived later than expected and the optimal transfer at
the originally selected exit at ei∗

arr(t) is no longer possible with the projected downstream
delay, and (3) the passenger has no seat and seatedk(eh

dep(t), (ei−1
dep (t), ei

arr(t)) was true at the
time of the original decision (eh

dep(t) being the boarding event), in which case the passenger
expects to have to stand for the rest of the trip. If one of these causes is given, a binary
decision is made between the two events ei

arr(t) and ei∗

arr(t). As with the decision at stops,
the switch is only made if the expected perceived travel time for alighting at the current
event ei

arr(t) is not worse than for the current choice ei∗

arr(t). If the original choice ei∗

arr(t) was
suboptimal and the optimal transfer is still possible after the exit at event ei∗

arr(t) according
to the current information, the switch is also not made. It is still possible for a passenger to
find a seat sooner than they expected when they made their original decision. In this case,
later exits can become more attractive because the perceived travel time in the current trip
is smaller than expected. If the passenger finds a seat, a new alighting decision is made.

4 Experimental Study

In this section, the model is tested on two different public transportation networks. First, the
experimental setup and the choice of parameters are presented. Subsequently, three different
experiments are conducted to assess the proposed model.

4.1 Experimental Setup
The simulation was implemented in C++ and compiled with mvc 14.3 on Windows 10 using
the O2 compiler option. The experiments were run on an AMD Ryzen 7 5800X, clocked at
4.7 GHz during program execution, with 32 GB DDR4 memory with a latency of CL16 and a
clock frequency of 3600 MHz. As the model is probabilistic, the results are averaged over ten
runs. We simulate a total of two hours of the timetable per day and evaluate all passengers
who start their journey within the first simulated hour. For each run, we simulate 30 days.
The 2-hour timeframe is sufficient to demonstrate the learning process as the timetable is
hourly periodic. As we only simulate a limited timeframe, it is not guaranteed that passengers
can finish their journey, for example in the case of consecutive denied boardings. For this
case, we introduce a new penalty βunfinished, which we set to the Euclidean distance in
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Table 1 Crowding factor βcrowding
k .

load seated standing
0 ≤ λ ≤ 0.6 1.0
0.6 < λ ≤ 1.0 1.2
1.0 < λ ≤ 2.0 1.4 2.2

Table 2 Characteristics of the Stuttgart and Göttingen networks. The number of trips and
driving arcs refer to the 2-hour simulation frame.

Network #stops #lines #trips #driving arcs #footpaths # passengers per hour
Göttingen 257 22 205 2348 0 1943
Stuttgart 735 403 3175 17381 8732 44836

meters between the current stop and the destination. The parameters for the perceived
travel times are identical for each passenger k and are chosen as βwait

k = 1, βwalk
k = 1.5

and βtransfer
k = 300. We choose βfail

k = 2 as the multiplier for the additional waiting or
walking time after a failed boarding. The choice of the crowding factor βcrowding

k is based on
a British meta-study [28] and is summarized in Table 1.

We use datasets for the public transportation networks of Göttingen (goevb) and Stutt-
gart [8], provided in LinTim format [23], including the OD matrix. Stuttgart is a mixed
network, consisting of 25 train lines and 378 bus lines. Göttingen, in contrast, is a pure
bus network consisting of 22 lines. Table 2 shows the main properties of the two data
sets. The buses in Stuttgart have a total capacity of 70 and the total capacity of the trains
is between 400 and 1000. In Göttingen, buses have a capacity of 50. For simplicity, we
assume that the number of seats corresponds to half the total capacity. This is in line with
common bus models. We assume that for buses 0.4 passengers can board or alight per second
(doorCapacity), corresponding to the value recommended by the Transportation Research
Board [22]. For trains, let doorCapacity = cap/200. The value is chosen depending on the
capacity, based on a study for the French city of Nantes [6]. The minimum transfer times
mct are specified by LinTim for both data sets. For Stuttgart, the minimum transfer time is
60s and for Göttingen 180s. Footpaths were limited to a maximum of 1800s. We discard
journeys that arrive more than ∆τ = 3600s later than the fastest journey on the current day.
The rest of the parameters have been determined by testing. We have chosen a constant
temperature of γ = 400 for Göttingen and γ = 250 for Stuttgart. For both networks, we
chose ϵ = 0.2 for the probability of choosing a random option. Furthermore, we have set the
recency parameter to κ = 0.5 and the standard load to λstd = 0.5.

4.2 Performance

The simulation was run in parallel on 16 threads. For Stuttgart, an average runtime of
493 seconds was achieved for the whole simulation. Calculating the initial perceived travel
times took 70 seconds. On a single day, 89672 passengers were simulated in less than 14.1
seconds on average. For Göttingen, the whole simulation took about 6 seconds. The memory
consumption of the simulation is relatively high, as each passenger has to store their personal
experiences and expected travel times. For Stuttgart 10.5 GB and for Göttingen 0.2 GB
were used.
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(a) Göttingen. (b) Stuttgart.

Figure 1 Evolution and composition of the perceived travel times.

4.3 Experiments

Experiment 1: Evolution of perceived travel times. In a first experiment, we examine the
evolution of the average perceived travel times over 30 days. This evolution is shown for both
networks in Figure 1, including the components of the perceived travel times. For simplicity,
we assume that all passengers start their learning process on the first day. More complex
scenarios are possible in the model. The overall average perceived travel time decreases
from 6296s to 5792s for Göttingen and from 2707s to 2412s for Stuttgart. Perceived travel
times decrease significantly in the first few days. After 10 days, only minimal gains are
achieved. The variance between each of the ten runs was quite small with a maximum
deviation from the mean improvement of about 10% for Göttingen and 6% for Stuttgart.
The three effects of network congestion are directly reflected in the additional waiting time
for denied boardings, the real waiting time and the penalty term for overcrowded vehicles.
For both networks, these components of the total perceived travel time decrease over the
course of the simulation. The greatest difference is recorded in the additional waiting time
penalty for denied boardings. For Göttingen, this value decreases by 227s and for Stuttgart
by 118s. The average number of denied boardings per passenger decreases from 0.24 to 0.05
for Göttingen and from 0.21 to 0.01 for Stuttgart. For both networks, the real waiting time
decreases significantly during the simulation (108s decrease for Göttingen and 123s decrease
for Stuttgart). For Göttingen, it increases on the first few days and only drops below the
initial value on the fourth day. The reason for this is that passengers explore nominally
worse journeys due to the experienced network congestion effects. Similar effects can be
seen in the number of transfers, walking time and the real travel time. If the nominally
worse journeys are similarly congested as the journeys selected on previous days, the overall
perceived travel time can increase. The crowding penalty decreases by 201s for Göttingen and
64s for Stuttgart. Most of this improvement is due to passengers’ desire to avoid standing.
The average standing time drops from 495s to 307s for Göttingen and from 69s to 31s for
Stuttgart. In this experiment, we have shown how passengers respond to network congestion
through the learning process and improve their average perceived travel time by incorporating
personal experiences and avoiding congestion. We have found that denied boardings and the
resulting additional waiting times have the largest impact on passengers.

Experiment 2: Capacity expansion. In this experiment, we examine the benefits of
increasing capacity, targeted to trips operating on full capacity. To determine candidates
for a capacity increase, we simulate both networks for one day and determine the trips
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(a) Göttingen. (b) Stuttgart.

Figure 2 Evolution of denied boardings per passenger with regular and increased capacities.

that are affected by denied boardings. Each trip with at least one denied boarding has
its capacity increased by 40%. As a result, the capacities were increased for 41 trips in
Göttingen and for 236 trips in Stuttgart. A large benefit was achieved by this capacity
expansion for both networks, especially on the first day of the simulation. Compared to the
first day of Experiment 1, the total perceived travel time for Göttingen decreased from 6296s

to 5775s. For Stuttgart, the difference is smaller (from 2707s to 2585s). As the simulation
progresses, this difference becomes smaller as passengers adjust their behavior when capacity
is at its limit. At the end of the simulation, the difference compared to Experiment 1 is 321
seconds for Göttingen and 31 seconds for Stuttgart. The improvement is largely due to the
reduction in the number of denied boardings and the resulting improvement in real waiting
times. The average number of denied boardings is shown in Figure 2. On the final day, the
average number of denied boardings is below 0.01 for both networks, which is a substantial
improvement for Göttingen. This suggests that for Göttingen the regular capacity is too
limited to satisfy passenger demand.

Experiment 3: Unlimited capacities. In Experiment 3, we study the scenario of unlimited
vehicle capacities. As a result, some trips are highly overloaded. For Stuttgart, there are
buses with over 300 passengers and trains with over 1000 passengers. Similarly, buses with
over 130 passengers are found in Göttingen. For Göttingen, 7.9% of all driving edges have
loads greater than their regular capacity, compared to 2.6% for Stuttgart. In Figure 3, we
compare the vehicle load of normal capacities (left) and unlimited capacities (right). The
color coding is relative to the seat capacity. The value 2.0 corresponds to full capacity and 1.0
to full seat capacity. Values above 2.0 indicate overload. We observe that similar segments
of the network have high loads in both cases, but considering capacities avoids overloading.

5 Conclusions and Outlook

We presented a fine-grained framework for a dynamic agent-based simulation of traffic
assignment in public transit networks. This model is extendible to include real-time delay
information or real-time load rates. First experimental studies with our prototype prove to
be highly efficient for simulation tests with medium-sized metropolitan regions. As part of
future work, further case studies are needed to assess the model validity and scalability to
even larger networks as well as to calibrate model parameters.
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(a) normal vehicle capacities. (b) unlimited vehicle capacities.

Figure 3 Small excerpt from the Stuttgart network. Comparison of vehicle loads: normal (left)
vs. unlimited vehicle capacities (right). The maximum capacity utilization on the respective segment
is shown. The color coding is relative to the seat capacity. The value 2.0 corresponds to full capacity
and 1.0 to full seat capacity.
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