
Indexing Graphs for Shortest Beer Path Queries
David Coudert #

Université Côte d’Azur, Inria, I3S, CNRS, Sophia Antipolis, France

Andrea D’Ascenzo1 #

Luiss University, Rome, Italy

Mattia D’Emidio #

University of L’Aquila, Italy

Abstract
A beer graph is an edge-weighted graph G = (V, E, ω) with beer vertices B ⊆ V . A beer path between
two vertices s and t of a beer graph is a path that connects s and t and visits at least one vertex
in B. The beer distance between two vertices is the weight of a shortest beer path, i.e. a beer path
having minimum total weight. A graph indexing scheme is a two-phase method that constructs an
index data structure by a one-time preprocessing of an input graph and then exploits it to compute
(or accelerate the computation of) answers to queries on structures of the graph dataset. In the last
decade, such indexing schemes have been designed to perform, effectively, many relevant types of
queries, e.g. on reachability, and have gained significant popularity in essentially all data-intensive
application domains where large number of queries have to be routinely answered (e.g. journey
planners), since they have been shown, through many experimental studies, to offer extremely low
query times at the price of limited preprocessing time and space overheads.

In this paper, we showcase that an indexing scheme, to efficiently execute queries on beer
distances or shortest beer paths for pairs of vertices of a beer graph, can be obtained by adapting the
highway labeling, a recently introduced indexing method to accelerate the computation of classical
shortest paths. We design a preprocessing algorithm to build a whl index, i.e. a weighted highway
labeling of a beer graph, and show how it can be queried to compute beer distances and shortest
beer paths. Through extensive experimentation on real networks, we empirically demonstrate its
practical effectiveness and superiority, in terms of offered trade-off between preprocessing time, space
overhead and query time, with respect to the state-of-the-art.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Shortest paths; Information systems → Information systems applications

Keywords and phrases Graph Algorithms, Indexing Schemes, Beer Distances, Algorithms Engineering

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.2

Supplementary Material
Software (Source Code): https://github.com/D-hash/ShortestBeerDistanceQueries [9]

Funding Work partially supported by: (i) Italian Ministry of University and Research through
Project “EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic
Networked Data” (PRIN grant n. 2022TS4Y3N), funded by the European Union - Next Generation
EU; (ii) Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-
INdAM); (iii) Project EMERGE, innovation agreement between MiSE, Abruzzo Region, Radiolabs,
Elital, Leonardo, Telespazio, University of L’Aquila and Centre of EXcellence EX-Emerge (Grant
n. 70/2017); (iv) European Union under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001 -
program RESTART), project MoVeOver/SCHEDULE (“Smart interseCtions witH connEcteD and
aUtonomous vehicLEs”, PE00000001, CUP J33C22002880001); (v) French government, through
the UCAjedi Investments in the Future project managed by the National Research Agency (ANR,
reference number ANR-15-IDEX-01.)

1 Corresponding author.

© David Coudert, Andrea D’Ascenzo, and Mattia D’Emidio;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 2; pp. 2:1–2:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.coudert@inria.fr
https://orcid.org/0000-0002-3306-8314
mailto:adascenzo@luiss.it
https://orcid.org/0000-0001-5612-0798
mailto:mattia.demidio@univaq.it
https://orcid.org/0000-0001-7833-9520
https://doi.org/10.4230/OASIcs.ATMOS.2024.2
https://github.com/D-hash/ShortestBeerDistanceQueries
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Indexing Graphs for Shortest Beer Path Queries

Acknowledgements Part of Andrea D’Ascenzo’s work was carried out during his Ph.D. studies at
University of L’Aquila.

1 Introduction

Determining detours constitutes a major decision process in our daily lives and in modern
computing systems: whenever moving from point A to point B, we might need to deviate
from the main itinerary in order to stop to a gas station or to buy a beer not to show up
empty-handed to a friend one is going to visit. Similarly, in multi-agent systems, we might
be interested in planning paths for agents that traverse one of any location of a certain type,
for instance to pick-up a specific tool. Finally, in multi-hop communication networks, it
might be useful to route data packets through nodes with certain characteristics, e.g. to
achieve some form of resiliency. What is the fastest way to accomplish these goals? To model
such decision processes from a computational viewpoint, Bacic et al. [3, 4] introduced the
notions of beer graph and beer paths, and defined corresponding optimization problems. A
beer graph is a graph G = (V, E, ω), with weight function ω : E 7→ R+ on the edges, where a
set of special vertices B ⊆ V , called beer vertices, is given. A beer path, between two vertices
s and t of a beer graph, is any path of G from s to t that visits at least one vertex in B

whereas a shortest beer path for two vertices s and t is a beer path having minimum total
weight (called the beer distance), i.e. minimizing the sum of the weights of its edges.

Surprisingly, while determining shortest beer paths (and corresponding distances) is a
computational problem that arises naturally in a wide range of modern applications, and
notwithstanding the fact that such problem can be seen as a special case of the generalized
shortest path problem [29, 35], algorithmic issues related to such problem have been only
recently formalized and investigated [3, 4, 11,22,23]. In more details, although a beer path
may be a non-simple path (i.e. it might self-intersect), it can be easily shown that any
shortest beer path, for a given pair of vertices s, t, always consists of two shortest paths: one
from s to a beer vertex, say w, and one from w to t. In other terms, a beer distance can
be always determined by finding the minimum, overall beer vertices wi ∈ B, of the sums of
the shortest path distances from s to wi and from wi to t. This characterization provides
a baseline algorithm for determining shortest beer paths and beer distances for a pair s, t,
namely: grow two shortest path trees by Dijkstra’s algorithm [16] rooted, respectively, at
s and t, and select the beer vertex that minimizes the sum of the distances from s and to
t [3, 4]. Unfortunately, while this strategy is simple and considered efficient, as Dijkstra’s
algorithm runs in almost linear time in the size of the graph [16], many experimental works
in the past two decades have shown how employing Dijkstra’s algorithm is impractical in
many real-world contexts where either the algorithm has to be executed on an interactive
basis or when moderately to massively sized networks have to be handled since, in such
contexts, it can take up to seconds to compute even a few shortest paths [1, 25,32].

Practical limitations of shortest path algorithms have motivated the design of several
so-called graph indexing schemes for shortest paths, i.e. two-phase methods that: (i) perform
an offline, one-time preprocessing phase on the graph to compute auxiliary data, generally
stored in a data structure called index; (ii) exploit the index, in an online phase and upon
query, for very fast retrieval of shortest paths for (possibly many) pairs of vertices. Due to the
excellent performance in practice, combining extremely low query times to find shortest paths
(orders of magnitude smaller than methods without indexing) with limited preprocessing
time and space overheads (even in large graphs) [1, 2], these schemes have gained significant
popularity and have become the state-of-the-art for shortest paths retrieval in all application

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:3

domains where large number of queries have to be routinely answered (e.g. journey planners
or network analytics software) [5, 6, 13–15, 20]. Moreover, such popularity has inspired
the development of similar schemes to support, with comparable effectiveness, many other
relevant types of queries on graphs (e.g. on reachability [31], on top-k shortest paths [12], on
path counts [33], or on communities [34]).

Indexing schemes for queries on beer distances or shortest beer paths have been only very
recently considered in the literature. Specifically, some schemes with theoretical guarantees,
either on the space occupancy of the index or on preprocessing and query times, have been
designed only for special graph classes [4,11,23]. For general graphs, instead, no indexing
scheme able to support the computation of beer distances or shortest beer paths faster
than the baseline, neither theoretically nor in practice, has been developed. To this end, a
straightforward way to index a graph for accelerating queries on beer distances and shortest
beer paths could be precomputing and storing, into a matrix, distances (or corresponding
shortest paths) from all beer vertices to all other vertices of the graph. This approach, which
we call b2all, translates into a simple and fast query algorithm which can retrieve, (i) the
beer distance in O(|B|) time, by finding the beer vertex minimizing the sum of distances to
the two queried vertices; (ii) a shortest beer path of weight ℓ in O(|B|ℓ) time, by unrolling
the path that minimizes the sum of the distances. An alternative to the above method,
worth being considered, is adapting one of the many indexing schemes designed for the more
general and complex problem of determining generalized shortest paths, i.e. paths having
minimum weight among those which traverse at least one vertex for each of a set of vertex
categories [17,24,27,29,30,35]. To apply such methods to beer distances and shortest beer
paths, in fact, it suffices to restrict vertex categories to be a single category that contains
all beer vertices. For instance, by applying this restriction to the indexing scheme k-sky,
given in [24], one of the best in terms of offered trade-off between preprocessing cost and
query performance for generalized shortest paths, one could obtain an algorithm that takes
O(|B|2n) (O(|B|2nℓ), respectively) time to answer a query on the beer distance (on a shortest
beer path, respectively), per vertex pair.

However, while both above strategies are appealing in terms of query performance,
significantly better than that of two executions of Dijkstra’s, it remains unclear whether they
are applicable in real-world data-intensive scenarios, due to their high preprocessing time
and space occupancy overheads. In both cases, in fact, the preprocessing step takes O(n2|B|)
time while the resulting index data structure has size Ω(n|B|) and O(n|B|), respectively, for
any n-vertex graph. To the best of our knowledge, no experimental study has been concerned
with the assessment of the average performance of existing indexing methods to support
queries on beer distances or shortest beer paths, for both general graphs and special graph
classes.

Our Contribution. In this paper, we move in this direction and advance the state-of-the-art
with respect to graph indexing methods for queries on beer distances and shortest beer paths
in general beer graphs. In particular, we first showcase that an indexing scheme, to efficiently
execute such queries, can be obtained by adapting the highway labeling, a recently introduced
indexing method to accelerate the computation of classical shortest paths [20]. We propose a
preprocessing algorithm, similar but more intuitive than that in [20] for unweighted graphs,
to build a whl index, i.e. a weighted highway labeling of a beer graph; we adapt the query
algorithm of [20] to retrieve beer distances or shortest beer paths by only accessing said
index. Differently from [20], once the whl index is computed, our method is oblivious to the
graph, in the sense it does need to access it to answer queries. We prove the correctness and
analyze the time and space complexities of our methodology.

ATMOS 2024

2:4 Indexing Graphs for Shortest Beer Path Queries

Then, through extensive experimentation on real networks, we empirically demonstrate
its practical effectiveness and superiority, in terms of offered trade-off between preprocessing
time, space overhead and query time, with respect to the state-of-the-art. In particular,
our experiments show that our query algorithm answers to queries on beer distances, on
average, within microseconds per vertex pair, even for very large networks. This is: (i) orders
of magnitude faster than both the baseline and the adaptation of the k-sky method; (ii)
comparable to the b2all method. At the same time, on the one hand our preprocessing
routine preprocesses even very large beer graphs very quickly (within an hour), which is faster
than any known indexing scheme for fast beer distance/shortest beer path query answering;
on the other hand, our index is compact in size (few hundreds of MBs even for very large
networks), with a space occupancy that is up to orders of magnitude smaller than any known
index computed for queries on beer distances and shortest beer paths.

Related Works. Bacic et al. [4] have designed a preprocessing-based method that, for
outerplanar graphs, computes in O(n) time an index of size O(n) that allows to find, for a
pair of vertices, the beer distance d in O(α(n)) time, where α(n) is the inverse Ackermann
function, and a corresponding shortest beer path in O(d) time. Similarly, Das et al. [11]
introduced a data structure for interval graphs, occupying 2n log n + O(n) + O(|B| log n) bits
of space, which allows to compute the beer distance d in O(logϵ(n)) time, for any constant
ϵ > 0 and a corresponding shortest beer path in O(logϵ(n) + d) time. The same authors
also show that, if one restricts the input to be a proper interval graphs, worst case running
time and space occupancy can be further slightly improved [11]. Finally, on a similar line of
research it is worth mentioning: (i) the method of Hanaka et al. [23] which, by computing a
suited graph decomposition, achieves optimal query time on series-parallel graphs and linear
preprocessing time on graphs having bounded-size triconnected components; (ii) the work of
Gudmundsson and Sha [22] which showed how a graph with bounded treewidth t can be
preprocessed in O(t3n) time to guarantee the retrieval of the beer distance d in O(t3α(n))
time and of the corresponding shortest beer path in O(dt3α(n)) time.

2 Notation and Definitions

We are given a weighted graph G = (V, E, ω), with n = |V | vertices, m = |E| edges and
a weight function ω : E 7→ R+ that assigns a positive, real value to each edge of G. A
path P = (s = v1, v2, . . . , t = vη) in G, connecting a pair of vertices s, t ∈ V , is a sequence
of η vertices such that {vi, vi+1} ∈ E for all i ∈ [1, η − 1]. The weight ω(P) of a path P

is the sum of the weights of the edges in P . For non-simple paths, path weights include
multiplicities of occurrences of a same edge. A shortest path Pst, for a pair s, t ∈ V , is a
path having minimum weight among all those in G that connect s and t. The distance d(s, t)
between s and t is the weight of a shortest path Pst. A subpath (vi, vi+1, . . . , vj−1, vj) of a
path P = (v1, . . . , vi, vi+1, . . . , vj−1, vj , . . . , vη) is denoted by P [vi, vj], for each 0 ≤ i < j ≤ η.
Given a vertex v ∈ V , we denote by N(v) = {u ∈ V |{v, u} ∈ E} the set of neighbors of v.
Given a set of vertices S ⊆ V of a graph G = (V, E, ω), G[S] denotes the subgraph of G

induced by S, i.e., E(G[S]) = {{u, v} ∈ E | u, v ∈ S}. A beer graph is a weighted graph
G = (V, E, ω) having a set of beer vertices B ⊆ V . A beer path between two vertices s

and t of a beer graph is a path that connects s and t and includes at least one vertex in
B. A shortest beer path for two vertices s and t is any beer path having minimum weight.
The weight of a shortest beer path is called the beer distance. In what follows, for the sake
of simplicity, we describe our approaches by assuming, w.l.o.g., that the given graph G is

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:5

connected and undirected. All methods, described in this paper, can be used with digraphs
by considering edge orientations and corresponding partitions of the neighbors of a vertex
into outgoing and incoming neighbors.

2-Hop-Cover and Highway Labeling. The 2-hop-cover distance labeling is a graph indexing
scheme, originally introduced in [7] and heuristically improved in [1]. It is based on the
precomputation of an index, called 2-hop-cover distance labeling, that can be used to answer
to queries on classical shortest paths and distances, as follows. Given a weighted graph
G = (V, E, ω) and a subset H ⊆ V of its vertices, called hubs, a 2-hop-cover distance labeling
L of G is a collection of labels L(v), one per vertex v ∈ V such that: (i) a label L(v) is a
set of entries (u, d(u, v)) where u ∈ H; (ii) for each pair of vertices s, t, labels L(s) and L(t)
store a set of entries that suffice to compute the distance d(s, t) for any pair of vertices s, t of
the graph, that is d(s, t) can be obtained by a function δL : V × V 7→ R+ that takes L(s)
and L(t). Note that, it is known that computing a 2-hop-cover distance labeling of minimum
size (i.e. number of label entries) is an NP-Hard problem [10].

The highway labeling is an hybrid indexing scheme that generalizes the 2-hop-cover
distance labeling, introduced in [20] with the purpose of reducing the preprocessing time and
space requirements of the approach of [1], at the price of a slight increase in the average query
time. It is considered an hybrid indexing scheme in the sense that queries cannot be solved
by accessing only the precomputed data structure and a search of the graph, even if bounded,
must be employed to guarantee the correctness of the returned output. Given a graph
G = (V, E, ω), and a subset of its vertices R ⊆ V , called landmarks, a highway H(R, δH) of
G with landmarks R ⊆ V is a pair (R, δH), where δH is a distance decoding function, i.e. a
function δH : R × R 7→ R+ such that, for any pair ri, rj ∈ R, we have δH(ri, rj) = d(ri, rj).
In other words, a highway H is a data structure that stores the distance in G for any two
landmarks in R in the form of a function δH (e.g. a look-up table). Given a vertex r ∈ R ⊆ V

and two vertices s, t ∈ V \ R, an r-constrained shortest path P r
st from s to t in G is a path

that passes through r (i.e. r ∈ P r
st) and has minimum weight (called r-constrained distance)

among all paths that connect s and t in G and include r.
Let H(R, δH) be a highway for a graph G with landmarks R ⊆ V . A highway cover

distance labeling (or simply highway labeling) of G is a pair (H(R, δH), L) where H is a
highway and L is a labeling i.e. a collection of labels L(v), one per vertex v ∈ V such that:
(i) a label L(v) consists of a set of entries in the form (ri, d(ri, v)) where ri ∈ R; (ii) for
any two vertices s, t ∈ V \ R, and for any r ∈ R, labels L(s) and L(t) store entries that
suffice to compute the r-constrained distance dr(s, t). In other terms, any r-constrained
distance between two vertices s and t can be found using only the labels of these two
vertices. In more details, the latter condition, called highway cover property is guaranteed
if, for any two vertices s, t ∈ V \ R and for any r ∈ R, there exist (ri, d(ri, s)) ∈ L(s)
and (rj , d(rj , t)) ∈ L(t) such that ri ∈ Prs, for some shortest path Prs from s to t, and
rj ∈ Prt, for some shortest path Prt from r to t, where ri and rj may be equal to r. We say
H(R, δH) covers G when the highway cover property holds. Moreover, if the label of a vertex
v contains an entry (r, d(r, v)) for some r ∈ R we say that vertex v is covered by landmark
r in the (highway) labeling. Given any two vertices s and t, a highway labelling L can be
used to find any r-constrained distance dr(s, t) by computing d(ri, s) + δH(ri, rj) + d(rj , t)
where ri = r or rj = r and for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). Moreover,
an upper bound dT (s, t) on the shortest path distance from s to t is given by dT (s, t) =
min{d(ri, s) + δH(ri, rj) + d(rj , t)|(ri, d(ri, s)) ∈ L(s), (rj , d(rj , t)) ∈ L(t)}. Observe that
such upper bound corresponds to the weight of a shortest path from s to t passing through

ATMOS 2024

2:6 Indexing Graphs for Shortest Beer Path Queries

landmarks ri and rj which is exploited by the query routine [20] to compute the true distance
d(s, t) by running a distance-bounded bidirectional search on the subgraph G[V \ R]. In
Figure 1 we show an example of highway labeling (H, L) of a graph G, taken from [20].
Consider the graph in the figure (left), the highway H has three landmarks, i.e. R = {1, 5, 9}.
We have that ⟨11, 1, 4⟩ is a shortest path between vertices 11 and 4 constrained by landmark
1, i.e. it is 1-constrained shortest path between 11 and 4. In contrast, neither of the paths
⟨11, 10, 9, 1, 4⟩ and ⟨11, 4⟩ is a 1-constrained shortest path between 11 and 4. In Figure 1
(middle), the outgoing arrows from each landmark point to vertices in G that are covered by
this landmark in the highway. The distance labelling in Figure 1 (right) satisfies the highway
cover property because for any two vertices that are not landmarks and any landmark
r ∈ R = {1, 5, 9}, we can find the r-constrained shortest path distance between these two
vertices using their labels and the highway.

Figure 1 Example of Highway Labeling of a graph [20].

3 Indexing Scheme for Beer Distance Queries

In this section, we describe a graph indexing scheme to support queries on beer distances
and shortest beer paths. Specifically, we first introduce an algorithm that preprocesses a
beer graph to compute a whl index, a data structure that can be used through a dedicated
query algorithm, also given here, to compute beer distances and shortest beer paths. W.l.o.g,
and for the sake of simplicity, we describe our method to support the execution of beer
distance (BD, for short) queries only. All given approaches can be easily extended to return
a corresponding shortest beer paths by the strategies similar to those used for shortest paths,
e.g. by storing predecessors (see, e.g., [10, 14]).

Our methodology is based on the work of Farhan et al. [20]. The key idea is, given a
beer graph G = (V, E, ω) with beer vertices B, to compute a highway labeling X = (H, L)
that is; (i) weighted; (ii) considers, as set of landmarks R, the set of beer vertices B; (iii)
covers G. In fact, it is easy to show that a highway labeling that satisfies the above three
properties can be used to retrieve beer distances for any pair of vertices of the given beer
graph by the following observations. Specifically, while using this structure alone does not
suffice to compute shortest path distances (see Section 2), it is easy to see that, under the
above assumptions, the beer distance, for any pair of vertices s, t ∈ V , is returned in O(|B|2)
time by the following query routine:

Q(s, t, X) = min
bi,bj∈B

{d(bi, s)+δH(bi, bj)+d(bj , t)|(bi, d(bi, s)) ∈ L(s), (bj , d(bj , t)) ∈ L(t)} (1)

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:7

Indeed, by the highway cover property, any r-constrained distance dr(s, t) for landmark
r ∈ R can be found by computing d(ri, s) + δH(ri, rj) + d(rj , t) where ri = r or rj = r and
for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). Thus, the weight of a shortest beer path
that includes a beer vertex b ∈ B can be found by determining d(ri, s) + δH(ri, rj) + d(rj , t)
where ri = b or rj = b and for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). It follows that the
upper bound dT (s, t) on the shortest path distance from s to t, provided by the labeling as
dT (s, t) = min{d(ri, s) + δH(ri, rj) + d(rj , t)|(ri, d(ri, s)) ∈ L(s), (rj , d(rj , t)) ∈ L(t)}, is the
minimum of the weights of all r-constrained shortest paths, for each r ∈ B, which corresponds
to the minimum of the weights of the shortest paths that include a beer vertex b ∈ B for all
beer vertices of B, which is the beer distance. We call a weighted highway labeling built on
beer vertices, that satisfies the above equivalency, a whl index.

Now, Farhan et al. [20] have shown that a highway labeling can be found in linear time
for unweighted graphs by running |R| modified breadth-first search (BFS) visits, one per
landmark, and by incrementally constructing labels that satisfy the following. Whenever
a vertex v is extracted from the queue of the BFS, rooted at landmark ri ∈ R, if we call
Priv the shortest path from ri to v traversed by the search, and d(ri, v) its weight, then: (i)
if vertex v ∈ V \ R, an entry (ri, d(ri, v)), for some ri ∈ R, is added to L(v) if and only if
there does not exist any other landmark in Priv, i.e. Priv ∩ R = {ri}; (ii) if v is a landmark
r ∈ R \ {ri}, then d(ri, v) is added to the highway, i.e. to δH(ri, v) to build the distance
decoding function (e.g. in the form of a table). Unfortunately, no strategy for efficiently
building a weighted highway labeling covering a weighted graph is given in [20]. In subsequent
works, namely [18, 19], the authors claim that the construction of [20] can be adapted to
weighted graphs by replacing the modified BFS with Dijkstra’s algorithm. Differently from
an unweighted one, in fact, both the label entries of a weighted highway labeling and the
associated distance decoding function must store weights of shortest paths (i.e. sums of
weights of edges), rather than path lengths (i.e. number of edges). However, no details on the
extension are given in [18,19] and adapting the approach from unweighted to weighted inputs
seems to be all but straightforward. More specifically, in the unweighted version, each visit,
rooted at a given vertex ri, employs two queues, called Qlabel and Qprune. The former is used
for paths to vertices that do not traverse landmarks other than ri, while the latter for paths
that traverse at least one landmarks rj , j ∈ R \ {ri}. When an element is extracted from
Qlabel with some priority δ, all neighbors of the terminal vertex of the path are enqueued ,
with priority δ + 1 into Qlabel (if they are not landmarks) or into Qprune (otherwise). In the
latter case, elements in Qprune having priority δ are all extracted, and neighboring vertices are
enqueued in the same queue with priority δ + 1. If the graph is unweighted, this mechanism
guarantees that a vertex is never added to both queues. However, it is easy to see that this
would not be true if the treated input graph is weighted, with simultaneous occurrences
of a same vertex in both queues leading to unnecessary queue operations that have to be
managed by the algorithm. Therefore, in what follows, we introduce a novel algorithm, called
BuildWhl, to efficiently compute a whl index, i.e. a weighted highway labeling with beer
vertices as landmarks that covers a beer graph, using only one priority-queue.

Algorithm BuildWhl works as follows. Starting from each beer vertex in B as root, we
run a modified version of Dijkstra’s algorithm that searches the graph by relying on a single
one-level priority queue (e.g. a min-heap). For each root r ∈ B, the algorithm assigns, to
each vertex v ∈ V : a flag flag[v] initially false; a tentative distance d[v] initially equal to
some infinity default value. Then, the visit starts by enqueueing the root with zero priority
and, whenever a vertex v is dequeued, say with associated priority δ, two cases can occur.
If v is a beer vertex v ̸= r, first its flag is set to true, to trace the fact that a path from

ATMOS 2024

2:8 Indexing Graphs for Shortest Beer Path Queries

the root to such vertex traverses a beer vertex. Then, the associated value δ, corresponding
to the weight d(r, v) of a shortest path from r to v, is stored in the highway H (i.e. the
distance decoding function is built). Moreover, regardless of whether v is a beer vertex or
not, if the value of its flag is true, then value δ, which equals distance d(r, v), is discarded
(since the shortest path inducing such distance traverses a beer vertex). Viceversa, if the
flag of v is false, we have that value δ is the distance from r to v induced by a shortest
path, say Prv, that does not traverse any beer vertex, thus entry (r, δ) is added to L(v).
Finally, a distance relaxation operation is performed on the neighbors of v. In details, for
each w ∈ N(v), we check if d[w] > δ + ω(v, w), i.e. if the weight of the path from r to v plus
the weight of edge (v, w) is less than the tentative distance d[w]. In the affirmative case, it
follows that the path Prv to v combined with edge (v, w) has weight that is smaller than any
previously discovered path to w. Hence, we update d[w] = δ + ω(v, w) and either enqueue w

with priority d[w] or decrease its current priority to d[w]. Contextually, we update the flag
of w to that of v, to keep trace of traversal of beer vertices. Viceversa, the path from r to
w through v is either not a shortest path to w or a shortest path of equal weight, hence it
is not considered. The pseudo-code of BuildWhl is given in Algorithm 1. We next state

Algorithm 1 Algorithm BuildWhl.
Input: A beer graph G = (V, E, ω) with beer vertices B ⊆ V .
Output: A whl index (H, L).

1 foreach r ∈ R do
2 foreach v ∈ V do
3 d[v]←∞;
4 flag[v]← false;
5 P Q← ∅; // P Q is a priority queue, e.g. min-heap

6 Enqueue vertex r into P Q with priority 0;
7 while P Q ̸= ∅ do
8 Dequeue from P Q vertex v having minimum priority δ; // Here d[v] = δ

9 if v ∈ B \ {r} then
10 flag[v]← true;
11 δH(r, v)← δ; // Store δ into entry δH(r, v) of the highway H

12 if flag[v] is false then
13 Add (r, δ) to L(v);
14 foreach w ∈ N(v) do
15 if d[w] > δ + ω(v, w) then
16 flag[w]← flag[v];
17 d[w]← δ + ω(v, w);
18 if d[w] =∞ then Enqueue vertex w into P Q with priority d[w];
19 else Decrease priority of vertex w in P Q to d[w];

the correctness and the running time of procedure BuildWhl. In particular, we are able
to prove that algorithm BuildWhl computes a weighted highway labeling that covers the
input graph with landmarks B. This implies that the query routine of Eq. 1 on said labeling
returns the beer distance for every pair of vertices.

▶ Lemma 1. Algorithm 1 adds entry (r, δ) to label L(v) of a vertex v ∈ V \ B if and only if
r ∈ B is the only beer vertex in the shortest path Prv inducing δ = d(r, v).

Proof. Suppose that Prv ∩ B ̸= {r}, i.e. there exists at least a beer vertex r′ ∈ B \ {r} in
the shortest path Prv between r and v that causes v to be enqueued (i.e. path having weight
δ = d(r, v)). Since r′ lies in Prv, it must be extracted from the priority queue before v, and

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:9

Line 10 in Algorithm 1 sets the flag of r′ to true. By the subpaths optimality property of
shortest paths, it follows that flag of r′ is propagated in each distance relaxation operation
of any vertex v′ ∈ Prv[r′, v] (cf. Lines 15-16). Therefore, when v is extracted from the
priority queue, its flag is equal to true, and Line 13 is not executed. On the other hand, if
Algorithm 1 inserts (r, δ) in L(v) in Line 13, then we have Prv ∩ B = {r}. In fact, Line 13
is executed only if the flag of vertex v is set to false, which happens if and only if each
distance relaxation applied on the vertices v′ ∈ Prv was not induced by a path traversing a
landmark r′ ̸= r. ◀

By Lemma 1 we can derive a corollary similar to that given in [20] for unweighted graphs.

▶ Corollary 2. Let r ∈ B be a beer vertex and let v ∈ V \ B be a non-beer vertex. Let (H, L)
be a labeling constructed by Algorithm 1. If (r, d(r, v)) /∈ L(v), then there must exist a beer
vertex rj such that (rj , d(rj , v)) ∈ L(v), and d(r, v) = d(rj , v) + δH(rj , r).

Finally, we can prove that the labeling computed by BuildWhl covers the given graph.

▶ Theorem 3. The highway labeling (H, L) constructed by Algorithm 1 on a beer graph
G = (V, E, ω) satisfies the highway cover property for G.

Proof. We need to show that, for any two vertices s, t ∈ V \ B and any r ∈ B, there exist
(ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t) such that ri ∈ Prs and rj ∈ Prt. To that aim,
we can apply Corollary 2 to the following four cases: (i) r covers both s and t; (ii) r covers
s but not t; (iii) t is covered by r, while s is not; (iv) neither s nor t is covered by r. For
the sake of completeness, we also give it here. With a slight abuse of notation, in what
follows we use r′ ∈ L(v) to denote that landmark r′ covers a vertex v, i.e. that there exists
an entry (r′, d(r′, v)) in L(v). In Case (i), we have r ∈ L(s) and r ∈ L(t), thus r = ri = rj .
Case (ii): ri = r, while Corollary 2 ensures the existence of another landmark rj such that
rj is in the shortest path between t and r and rj ∈ L(t). Case (iii) is treated similarly to
the previous case. Finally, again by Corollary 2 applied to Case (iv), we know that there
exist two landmarks ri, rj such that ri (rj , respectively) is in the shortest path between s (t,
respectively) and r, and (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). ◀

▶ Theorem 4. Algorithm 1 runs in O(|B|(m + n log n)) time.

Proof. Observe that, for each landmark r ∈ B, the algorithm performs a call to a Dijkstra-like
algorithm for each landmark. During the execution of such routine, rooted at a landmark r,
the algorithm update the flags of the vertices. The initialization of the flags takes O(n) time.
Then, when a vertex v is extracted from the min-heap data structure PQ, if v ∈ B \ {r}, the
flag of v is set to true and the algorithm inserts distance δ into highway H in constant time.
Otherwise, the algorithm adds entry (r, δ) to label L(v), which again can be done in constant
time. Finally, the algorithm checks if value d[w] can be decreased for neighbors w of v. In
the affirmative case, the flag of w is set to the flag of v and a queue operation is performed,
in O(log n) time. Overall, the maintenance of the flags requires O(m + n) constant time
operations while queue operations account for O(n log n) time. Furthermore, the algorithm
performs |B| − 1 insertions into the highway H and at most n − |B| insertions into the labels
of the vertices, so overall O(n) insertions operations, each taking O(1) time. Therefore, the
time complexity per landmark r ∈ B is O(m + n log n) and the claim follows. ◀

4 Experimental Evaluation

In this section, we present the results of an experimental evaluation we conducted to assess
the effectiveness of our new graph indexing method for BD queries.

ATMOS 2024

2:10 Indexing Graphs for Shortest Beer Path Queries

Setup and Executed Tests. We implemented: (i) algorithm BuildBM that precomputes
and stores, in a corresponding b2all matrix, all distances from beer vertices to other vertices
of the graph; (ii) the corresponding query algorithm, called QueryBM, that solves a BD
query for a pair of vertices by determining the minimum of the sums of the distances between
all beer vertices and the two queried vertices; (iii) our method BuildWhl to compute a
whl index; (iv) the corresponding query algorithm, denoted by QueryWhl, that computes
the BD for a pair of vertices by accessing the index as per Eq. 1; (v) the baseline method,
denoted by BaseLine, which executes Dijkstra’s algorithm twice to compute the shortest
path trees rooted at the two queried vertices s, t and selects the beer vertex providing the
minimum sum of distances from s and to t. All our code is written in C++, compiled with
GCC 10.5 with opt. level O3. All tests have been executed on a workstation equipped with
an Intel Xeon© CPU E5-2643, clocked at 3.40 GHz, and 96 GB of RAM, running Ubuntu
Linux.

Input Instances. As inputs to our experiments we considered real-world road graphs taken
from publicly available repositories [26]. Details on used inputs, including number of vertices
|V | and edges |E|, average vertex degree, and size of the graph file |G| are reported in
Table 1. Graphs are sorted from top to bottom by |V | + |E|. Concerning the number of

Table 1 Overview of Input Graphs.

Graph |V | |E| Avg. Deg. |G|
lux 30 647 37 773 2.46 1.1 MB
ny 264 346 365 050 2.76 13 MB
bay 321 270 397 415 2.47 14 MB
col 435 666 521 200 2.39 19 MB
dnk 469 110 545 019 2.32 18 MB
fla 1 070,376 1 343 951 2.51 48 MB
nw 1 207 945 1 410 387 2.33 52 MB
ne 1 524 453 1 934 010 2.53 71 MB
cal 1 890 815 2 315 222 2.44 87 MB
ita 2 077 709 2 589 431 2.49 91 MB
deu 4 047 577 4 907 447 2.42 178 MB
usa 23 947 347 28 854 312 2.40 1.2 GB

beer vertices b, to study the scalability properties of the proposed approach, as suggested
in [28], we measure and report performance indicators for doubling values of parameter b

that are relevant to the domain, i.e. for b ∈ {25, 50, 100, 200, 400}. Beer vertices are placed
in each graph by a strategy called distance-δ bounded dominating set, a policy that is often
considered in network design problems, and adopted in real-world scenarios, to identify a
subset of important vertices that have to be traversed by paths between other vertices (e.g.
routers responsible for specific messages) [21]. For each input graph and value of b, we:
(i) run BuildWhl to construct a whl index; (ii) execute BuildBM to precompute the
b2all matrix. We measure the running times of both BuildWhl and BuildBM (denoted
by PTwhl and PTb2all, respectively), and the space occupancy, in MB, of the whl index
(which includes both the distance deconding function and the label entries) and the b2all
matrix (denoted by ISwhl and ISb2all, respectively). Note that, in all our experiments, we
represent distances and landmarks/beer vertices as 32-bit integers. Moreover, we execute
QueryWhl and QueryBM to solve 105 BD queries for randomly selected vertex pairs
and measure their average execution time (denoted by QTwhl and QTb2all, respectively).
Finally, we run algorithm BaseLine for a subset of 104 of the aforementioned vertex pairs,
and measure the average execution time. Such reduction is necessary due to the moderately
large running time per query of BaseLine.

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:11

Analysis. The results of our experimentation are summarized in Tables 2–4. For both
performance indicators indexing time and space occupancy, in Tables 2–4 we give the ratio of
the value achieved by b2all and that achieved by whl. In terms of indexing/preprocessing
time, our data show that algorithms BuildWhl and BuildBM are comparable and both
can be considered reasonably practical since both average execution times range from less
than half a second in the smallest instance (i.e. lux with b = 25) to around one hour in
the largest one (i.e. usa with b = 400). However, we notice that BuildWhl is always

Table 2 Results of the experimentation with b = 25 beer vertices.

Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

lux 0.12 0.13 1.09 0.13 2.92 22.46 1.2 · 10−7 1.1 · 10−7 0.01
ny 1.65 1.78 1.08 3.80 25.21 6.63 4.5 · 10−7 3.2 · 10−7 0.10
bay 1.94 2.40 1.24 2.59 30.64 11.83 4.3 · 10−7 3.7 · 10−7 0.13
col 2.39 2.96 1.24 1.77 41.55 23.47 3.5 · 10−7 3.3 · 10−7 0.18
dnk 2.56 3.30 1.29 5.36 44.74 8.35 4.1 · 10−7 3.8 · 10−7 0.17
fla 6.95 7.40 1.07 12.36 102.08 8.26 4.4 · 10−7 3.4 · 10−7 0.43
nw 7.25 8.43 1.16 8.30 115.20 13.88 4.2 · 10−7 3.5 · 10−7 0.51
ne 11.04 12.41 1.12 21.63 145.38 6.72 4.6 · 10−7 3.9 · 10−7 0.70
cal 13.63 15.43 1.13 15.44 180.32 11.68 5.2 · 10−7 4.3 · 10−7 0.87
ita 10.56 12.62 1.19 7.93 198.15 24.99 4.9 · 10−7 5.1 · 10−7 0.72
deu 26.81 31.80 1.19 48.44 386.01 7.97 6.9 · 10−7 5.2 · 10−7 1.63
usa 246.94 280.49 1.14 91.35 2283.80 25.00 9.7 · 10−7 6.7 · 10−7 10.90

faster than BuildBM, by factors that span in the orders of tens of percentage points (see
PTb2all/PTwhl column in Tables 2–4). This is most likely due to the fact that BuildWhl
stores label entries only when the flag of a vertex is false, i.e. when the root r is the only beer
vertex lying on the path found by the visit. Furthermore, to characterize of the scalability
properties of BuildWhl, in Fig 2 (left) and 3 (left) we plot its running time as a function
of b for all inputs. Our data suggest a linear trend of the indexing time with respect to to b,
which matches our analysis of Theorem 4. On top of that, Figures 2 (middle) and 3 (middle)
suggest that BuildWhl scales better with respect to b than BuildBM, in terms of running
time, with the ratio between the execution times of the two algorithms increasing with b.

25 50 100 200 40010 1

100

101

102

25 50 100 200 4000.0

0.5

1.0

LUX NY BAY COL DNK FLA NW NE CAL ITA DEU

25 50 100 200 400

101

102

Figure 2 Running time (in seconds) of BuildWhl (left); ratio of the running time of BuildWhl
to that of BuildBM (middle); ratio of the space occupancy of the b2all matrix index to that of
the whl (right), for all graphs, except usa, as a function of b (x-axis).

Concerning the sizes of the whl index and the b2all matrix, instead, we observe that
our new scheme significantly outperforms method b2all. In fact, BuildWhl computes very
compact whl indices, even for large graphs, with an average space occupancy that is up
to orders of magnitude smaller than that of b2all matrices, which contain precisely one
distance value per beer vertex and for all vertices of the graph (cf. column “Space Occupancy”
of Tables 2-4). In details, we observe that, even in the largest considered graph, i.e. usa (see

ATMOS 2024

2:12 Indexing Graphs for Shortest Beer Path Queries

Table 3 Results of the experimentation with b ∈ {50, 100} beer vertices.

b Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

50

lux 0.25 0.34 1.34 0.27 5.85 21.67 1.5 · 10−7 1.4 · 10−7 0.01
ny 3.11 3.77 1.21 5.34 50.42 9.44 3.5 · 10−7 3.4 · 10−7 0.11
bay 3.68 4.41 1.20 4.59 61.28 13.35 3.3 · 10−7 2.2 · 10−7 0.13
col 4.77 5.89 1.23 1.78 83.10 46.69 4.9 · 10−7 2.2 · 10−7 0.17
dnk 5.97 7.14 1.20 7.08 89.48 12.64 3.8 · 10−7 2.4 · 10−7 0.21
fla 12.82 15.59 1.22 11.14 204.16 18.33 4.2 · 10−7 2.5 · 10−7 0.46
nw 14.67 17.79 1.21 11.37 230.40 20.26 4.3 · 10−7 2.7 · 10−7 0.55
ne 19.29 23.46 1.22 30.37 290.77 9.57 4.4 · 10−7 2.6 · 10−7 0.71
cal 23.86 29.27 1.23 21.17 360.64 17.04 4.5 · 10−7 2.7 · 10−7 0.88
ita 25.47 30.61 1.20 23.73 396.29 16.70 4.6 · 10−7 2.9 · 10−7 0.96
deu 57.03 66.62 1.17 49.37 772.01 15.64 6.0 · 10−7 3.5 · 10−7 2.05
usa 412.75 469.48 1.13 161.71 4 567.59 28.24 5.7 · 10−7 3.3 · 10−7 13.91

100

lux 0.49 0.55 1.13 0.29 11.69 40.31 1.4 · 10−7 1.7 · 10−7 0.01
ny 6.25 7.68 1.23 6.31 100.84 15.98 3.7 · 10−7 2.9 · 10−7 0.11
bay 7.16 8.83 1.23 4.09 122.55 29.96 3.4 · 10−7 2.9 · 10−7 0.13
col 9.60 12.03 1.25 2.52 166.19 65.95 4.1 · 10−7 3.0 · 10−7 0.18
dnk 11.11 13.71 1.23 3.67 178.95 48.76 3.8 · 10−7 3.0 · 10−7 0.20
fla 25.08 31.12 1.24 11.34 408.32 36.01 4.3 · 10−7 3.4 · 10−7 0.46
nw 29.08 35.90 1.23 14.89 460.79 30.95 4.4 · 10−7 3.7 · 10−7 0.55
ne 38.17 47.12 1.23 37.89 581.53 15.35 4.7 · 10−7 3.6 · 10−7 0.71
cal 47.01 58.20 1.24 34.96 721.29 20.63 4.9 · 10−7 3.6 · 10−7 0.88
ita 48.14 58.72 1.22 15.98 792.58 49.60 4.8 · 10−7 3.6 · 10−7 0.92
deu 107.30 130.06 1.21 77.34 1 544.03 19.96 5.2 · 10−7 3.8 · 10−7 1.98
usa 836.25 981.31 1.17 341.28 9 135.19 26.76 6.5 · 10−7 4.2 · 10−7 13.81

Table 4 Results of the experimentation with b ∈ {200, 400} beer vertices.

b Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

200

lux 0.97 1.11 1.14 0.66 23.38 35.42 1.7 · 10−7 2.9 · 10−7 0.01
ny 12.46 15.56 1.25 6.61 201.68 30.51 4.4 · 10−7 4.0 · 10−7 0.11
bay 14.33 17.95 1.25 6.32 245.11 38.78 3.7 · 10−7 4.1 · 10−7 0.13
col 19.00 24.28 1.28 6.37 332.39 52.18 4.1 · 10−7 4.2 · 10−7 0.17
dnk 22.15 27.77 1.25 12.65 357.90 28.29 4.2 · 10−7 4.3 · 10−7 0.20
fla 49.94 62.58 1.25 23.84 816.63 34.25 4.9 · 10−7 4.5 · 10−7 0.46
nw 57.63 72.91 1.27 9.60 921.59 96.00 4.7 · 10−7 4.8 · 10−7 0.55
ne 74.85 94.99 1.27 32.77 1 163.07 35.49 4.9 · 10−7 4.6 · 10−7 0.71
cal 93.64 117.93 1.26 60.73 1 442.58 23.75 5.6 · 10−7 4.6 · 10−7 0.88
ita 96.81 120.30 1.24 16.08 1 585.17 98.58 4.9 · 10−7 4.6 · 10−7 0.94
deu 212.27 264.37 1.25 69.28 3 088.06 44.75 5.4 · 10−7 4.8 · 10−7 1.98
usa 1 658.4 1 967.24 1.18 529.48 18 270.38 34.50 6.8 · 10−7 5.3 · 10−7 13.88

400

lux 1.96 2.19 1.12 1.47 46.76 31.81 2.6 · 10−7 4.5 · 10−7 0.01
ny 24.54 31.71 1.29 14.97 403.36 26.94 6.5 · 10−7 5.7 · 10−7 0.11
bay 28.33 36.30 1.28 13.90 490.22 35.27 5.4 · 10−7 5.7 · 10−7 0.13
col 38.41 50.56 1.32 7.27 664.77 91.44 4.5 · 10−7 5.8 · 10−7 0.17
dnk 44.66 56.75 1.27 18.47 715.81 38.76 4.6 · 10−7 5.8 · 10−7 0.21
fla 99.92 127.31 1.27 42.71 1 633.26 38.24 6.0 · 10−7 5.9 · 10−7 0.46
nw 115.23 147.90 1.28 36.33 1 843.18 50.73 5.3 · 10−7 6.0 · 10−7 0.53
ne 150.59 194.48 1.29 63.70 2 326.13 36.52 6.1 · 10−7 6.7 · 10−7 0.73
cal 192.78 248.61 1.29 83.07 2 885.15 34.73 6.3 · 10−7 6.4 · 10−7 0.91
ita 192.47 242.78 1.26 49.50 3 170.33 64.05 5.2 · 10−7 6.1 · 10−7 0.92
deu 423.58 539.66 1.27 62.38 6 176.11 99.01 5.7 · 10−7 6.6 · 10−7 2.02
usa 3 178.94 3 962.77 1.24 692.82 36 540.75 52.74 7.5 · 10−7 6.9 · 10−7 13.95

Table 4), the space occupancy of the whl index, with b = 400, is less than 700 MB, which
can be considered a negligible amount of memory for modern commodity hardware. On the
contrary, the space occupancy of the b2all matrix is more than 36 GB of data, roughly
50 times more than the whl index. Moreover, as shown in Figures 2 (right) and 3 (right)
the gap between the two occupancies tends to increase with b, which suggests that the whl
schemes scales better in terms of space occupancy with respect to b. Even more remarkably,
the space to store whl index is often lower than the space occupancy of the input graph (cf.
column |G| of Table 1 and column ISwhl of Tables 2–4) and always lower for large graphs and

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:13

25 50 100 200 400101

102

103

104

25 50 100 200 4000.0
0.2
0.4
0.6
0.8
1.0
1.2

25 50 100 200 4000
10
20
30
40
50

Figure 3 Running time of BuildWhl (left, in seconds); ratio of the running time of BuildWhl
to that of BuildBM (middle); ratio of the space occupied by the b2all matrix index to that
occupied by the whl (right) for graph usa, as a function of b (x-axis).

values of b. Note that, differently from previously indexing strategies based on the highway
labeling [18–20], our scheme is oblivious of the graph topology, that is, once the whl index
is built, algorithm QueryWhl does not need to access the underlying graph to answer BD
queries. This is an interesting feature with respect to both space efficiency (the whl index
can be seen as a compressed representation of all pairs beer distances) and usage of the index
in a distributed environment (distances can be computed by only accessing the labels of the
queried vertices and the distance decoding function [8]).

For the sake of completeness, in Figures 4 and 5, we provide measures of number of label
entries stored by algorithm BuildWhl in the labeling part of the computed whl index.
Despite, in the worst case, a whl stores an entry per beer vertex in each label, here we
observe that, in practice, the amount of entries is generally around two orders of magnitude
lower than such a worst case.

25 50 100 200 400
0
2
4
6
8

10
12
14 LUX

NY
BAY
COL
DNK
FLA
NW
NE
CAL
ITA
DEU

Figure 4 Average number of label entries per vertex (y-axis) stored by algorithm BuildWhl into
the labeling part of the whl index, for each of the considered graphs, except usa, as a function of
the number b of beer vertices (x-axis).

25 50 100 200 4000
1
2
3
4
5
6
7

Figure 5 Average number of label entries per vertex (y-axis) stored by algorithm BuildWhl into
the labeling part of the whl index, for graph usa, as a function of the number b of beer vertices
(x-axis)

ATMOS 2024

2:14 Indexing Graphs for Shortest Beer Path Queries

Such behavior is reflected into the low space occupancy requirements discussed above and
shows how our preprocessing algorithm, and the highway labeling properties, allow to compute
compact representations of shortest beer paths. In this regard, we leave the problem of
evaluating whether such effectiveness is influenced by the centrality of beer vertices open for
future investigation.

Concerning query times, our experiments highlight that both QueryWhl and QueryBM
are extremely fast at answering BD queries (few hundreds of nanoseconds even for large
graphs and values of b, cf. column “Query” of Tables 2-4). As expected, QueryWhl is
slightly slower than QueryBM, since the query algorithm must consider distances between
beer vertices (cf. second term of Eq. 1). Nonetheless, both strategies are competitive under
such measure and suited for the requirements of modern data-intensive applications. Our
data also confirm the poor performance of BaseLine in this sense: the algorithm does not
scale well with both the graph size and b. Indeed, BaseLine’s average running time ranges
from around 0.01 seconds, on the smallest considered graph and value of b, to 14 seconds
on the largest graph and value of b (see Tables 2-4, cf. column BaseLine). In order to
give further insights on the effectiveness of employing a whl index for BD queries, in what
follows, we provide a cumulative analysis that compares BaseLine, the best known approach
without indexing, and our method. In particular, we design and run an experiment where, on
the one hand, we execute BaseLine to solve 105 queries for randomly selected vertex pairs
and measure the total running time. We call this quantity CMTbsl the cumulative running
time of BaseLine. On the other hand, we execute BuildWhl to build a whl index and
run QueryWhl to answer the same set of queries. We measure the preprocessing time and
sum it to the time for executing QueryWhl for all queries. We call this quantity CMTwhl
the cumulative running time of whl. The purpose of this experiment is to assess whether
the time taken by BuildWhl to construct the index is amortized by the time saved by
running QueryWhl to answer BD queries instead of BaseLine, hence to determine the
most effective solution in terms of amortized running time.

In Table 5 we present the results of the cumulative experiment for a subset of the
considered inputs and values of b. Results for other graphs and values of b are similar and
hence omitted. Our data show that the cumulative running time of whl is almost three

Table 5 Cumulative running time of whl and BaseLine to answer to 105 BD queries with
b = 200.

Graph CMTwhl (s) CMTbsl (s) CMTbsl/ CMTwhl

bay 1.4 · 101 1.3 · 104 9.2 · 102

dnk 2.2 · 101 2.0 · 104 9.3 · 102

cal 9.3 · 101 8.8 · 104 9.4 · 102

ita 9.6 · 101 9.4 · 104 9.7 · 102

deu 2.1 · 102 1.9 · 105 9.3 · 102

orders of magnitude lower than that of BaseLine on any combination of graph and number
of beer vertices. This is a remarkable result, especially if one considers that the time for
precomputing the highway labeling via BuildWhl can be as high as around two hours on
usa, and represents a strong experimental evidence of the fact that whl is the most effective
framework in practical contexts to answer BD queries, even when large graphs and volumes
of queries have to be managed.

Comparison against Frameworks for Generalized Shortest Paths. In this section we
complete the experimental evaluation of our framework for BD queries by comparing it with
the indexing scheme k-sky of [24], which is considered the best performing method to answer

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:15

queries on generalized shortest paths, where the aim is computing minimum-weighted paths
that traverse at least one vertex for each of k vertex categories. Answering to queries on beer
distances or shortest beer paths is equivalent to the special case of generalized shortest paths
where k = 1. For the purpose, method k-sky preprocesses the graph to store both a 2-hop
cover distance labeling and, for each vertex, a so-called keyword-skyline. Upon query, the
former is exploited to compute quickly shortest paths while the latter, which is a collection
of sets of vertices, one per category, is used to reduce the computation of distances toward
vertices of each sought category (see [24] for more details). In order to compare k-sky and
whl, we implemented k-sky by considering a single POI category (set B) and executed it
in the same settings considered for whl in the previous section. For k-sky we measure: (i)
the running time to build the 2-hop cover distance labeling and to populate the keyword
skyline (PTk-sky); (ii) the space occupancy to store such two data structures (ISk-sky); (iii)
the average execution time to answer 105 BD queries for randomly generated vertex pairs
(QTk-sky). For whl, we measured the same performance indicators discussed in the previous
part of the experimentation. Clearly, QueryWhl is run with the same set of queries.

An excerpt of the results of the above experiment is given in Table 6. Data for other
graphs and values of b are omitted due to space limitations. The main conclusion that can
be drawn from our experimental data is that our method whl outperforms method k-sky
with respect to all performance metrics. Specifically, the preprocessing time of k-sky is
orders of magnitude larger than the running time of BuildWhl, as it runs for more than
one hour even for small inputs. This is expected, since the index constructed by BuildWhl
can be seen as a compact version of the 2-hop cover labeling. Also from a space occupancy
viewpoint, k-sky stores at least two orders of magnitude more information with respect to
the whl index. Finally, the average query time offered by k-sky is always around 3 orders
of magnitude larger than that of QueryWhl.

Table 6 Performance of whl and k-sky on graphs ny, bay, col with b ∈ {50, 100} beer vertices.

b Graph Preprocessing (s) Space Occupancy (MB) Query (s)
PTwhl PTk-sky ISwhl ISk-sky QTwhl QTk-sky

50
ny 3.11 > 3600 5.34 795.02 3.5 · 10−7 1.3 · 10−4

bay 3.68 > 3600 4.59 1385.53 3.3 · 10−7 1.6 · 10−4

col 4.77 > 3600 1.78 1982.95 4.9 · 10−7 1.5 · 10−4

100
ny 6.25 > 3600 6.31 1467.21 3.7 · 10−7 2.6 · 10−4

bay 7.16 > 3600 4.09 2726.54 3.4 · 10−7 3.3 · 10−4

col 9.60 > 3600 2.52 3794.05 4.1 · 10−7 3.0 · 10−4

5 Conclusion and Future Work

We have showcased that an indexing scheme, to efficiently execute queries on beer distances or
shortest beer paths for pairs of vertices of a beer graph, can be built by adapting the highway
labeling. Through extensive experimentation on real-world graphs, we have empirically
demonstrated its practical effectiveness and superiority, in terms of offered trade-off between
preprocessing time, space occupancy and query time, with respect to the state-of-the-art.
Our work leaves several questions open for future investigation. First and foremost, it would
be interesting to understand whether an indexing method with a space/computational time
trade-off better than those mentioned in this paper (either empirically or in the worst case),
can be designed for general graphs. Another relevant direction to explore would be extending
the experimental comparison of whl, b2all k-sky given here to digraphs and to queries on
shortest beer paths. A more challenging, but certainly of interest, objective to pursue would
be designing a dynamic algorithm to maintain the whl index under changes of the set B.

ATMOS 2024

2:16 Indexing Graphs for Shortest Beer Path Queries

References
1 Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries

on large networks by pruned landmark labeling. In Kenneth A. Ross, Divesh Srivastava,
and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, USA, pages 349–360. ACM, 2013.
doi:10.1145/2463676.2465315.

2 Shikha Anirban, Junhu Wang, and Md. Saiful Islam. Experimental evaluation of indexing
techniques for shortest distance queries on road networks. In 39th IEEE International
Conference on Data Engineering (ICDE 2023) Anaheim, USA, pages 624–636. IEEE, 2023.
doi:10.1109/ICDE55515.2023.00054.

3 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar
graphs. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on
Algorithms and Computation (ISAAC 2021), Fukuoka, Japan, volume 212 of LIPIcs, pages
62:1–62:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
ISAAC.2021.62.

4 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar
graphs. Algorithmica, 85(6):1679–1705, 2023. doi:10.1007/S00453-022-01045-4.

5 Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf. Customizable Con-
traction Hierarchies with Turn Costs. In Dennis Huisman and Christos D. Zaroliagis, editors,
20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2020), volume 85 of Open Access Series in Informatics (OASIcs),
pages 9:1–9:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ATMOS.2020.9.

6 Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, Kalliopi Gi-
annakopoulou, Andreas Paraskevopoulos, and Christos D. Zaroliagis. Engineering graph-
based models for dynamic timetable information systems. In Stefan Funke and Matús
Mihalák, editors, 14th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, ATMOS 2014, September 11, 2014, Wroclaw, Poland, vol-
ume 42 of OASIcs, pages 46–61. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/OASICS.ATMOS.2014.46.

7 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003. doi:10.1137/S0097539702403098.

8 Feliciano Colella, Mattia D’Emidio, and Guido Proietti. Simple and practically efficient
fault-tolerant 2-hop cover labelings. In Dario Della Monica, Aniello Murano, Sasha Rubin, and
Luigi Sauro, editors, Joint Proceedings of the 18th Italian Conference on Theoretical Computer
Science (ICTCS 2017) and the 32nd Italian Conference on Computational Logic (CILC 2017),
Naples, Italy, volume 1949 of CEUR Workshop Proceedings, pages 51–62. CEUR-WS.org, 2017.

9 David Coudert, Andrea D’Ascenzo, and Mattia D’Emidio. D-
hash/ShortestBeerDistanceQueries. Software (visited on 2024-09-20). URL:
https://github.com/D-hash/ShortestBeerDistanceQueries.

10 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic 2-hop cover
labeling. ACM J. Exp. Algorithmics, 24(1):1.6:1–1.6:36, 2019. doi:10.1145/3299901.

11 Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu
Wu. Shortest beer path queries in interval graphs. In Sang Won Bae and Heejin Park, editors,
33rd International Symposium on Algorithms and Computation (ISAAC 2022), Seoul, Korea,
volume 248 of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPICS.ISAAC.2022.59.

12 Andrea D’Ascenzo and Mattia D’Emidio. Top-k distance queries on large time-evolving graphs.
IEEE Access, 11:102228–102242, 2023. doi:10.1109/ACCESS.2023.3316602.

13 Daniel Delling, Julian Dibbelt, Thomas Pajor, and Tobias Zündorf. Faster Transit Routing by
Hyper Partitioning. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS

https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1109/ICDE55515.2023.00054
https://doi.org/10.4230/LIPICS.ISAAC.2021.62
https://doi.org/10.4230/LIPICS.ISAAC.2021.62
https://doi.org/10.1007/S00453-022-01045-4
https://doi.org/10.4230/OASIcs.ATMOS.2020.9
https://doi.org/10.4230/OASICS.ATMOS.2014.46
https://doi.org/10.1137/S0097539702403098
https://github.com/D-hash/ShortestBeerDistanceQueries
https://doi.org/10.1145/3299901
https://doi.org/10.4230/LIPICS.ISAAC.2022.59
https://doi.org/10.1109/ACCESS.2023.3316602

D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:17

2017), volume 59 of Open Access Series in Informatics (OASIcs), pages 8:1–8:14, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ATMOS.2017.8.

14 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Robust
distance queries on massive networks. In Andreas S. Schulz and Dorothea Wagner, editors,
Proceedings of the 22th Annual European Symposium on Algorithms (ESA 2014), Wroclaw,
Poland, volume 8737 of Lecture Notes in Computer Science, pages 321–333. Springer, 2014.
doi:10.1007/978-3-662-44777-2_27.

15 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection scan algorithm.
ACM J. Exp. Algorithmics, 23, 2018. doi:10.1145/3274661.

16 Edsger W. Dijkstra. A note on two problems in connexion with graphs. In Krzysztof R. Apt and
Tony Hoare, editors, Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of ACM
Books, pages 287–290. ACM / Morgan & Claypool, 2022. doi:10.1145/3544585.3544600.

17 Jochen Eisner and Stefan Funke. Sequenced route queries: getting things done on the way
back home. In Proceedings of the 20th International Conference on Advances in Geographic
Information Systems, SIGSPATIAL 2012, pages 502–505, New York, NY, USA, 2012. ACM.
doi:10.1145/2424321.2424400.

18 Muhammad Farhan, Koehler Henning, and Qing Wang. BatchHL+: batch dynamic labelling
for distance queries on large-scale networks. The VLDB Journal, pages 1–29, 2023. doi:
10.1007/s00778-023-00799-9.

19 Muhammad Farhan and Qing Wang. Efficient maintenance of highway cover labelling for
distance queries on large dynamic graphs. World Wide Web (WWW), 26(5):2427–2452, 2023.
doi:10.1007/S11280-023-01146-2.

20 Muhammad Farhan, Qing Wang, Yu Lin, and Brendan D. McKay. A highly scalable labelling
approach for exact distance queries in complex networks. In Melanie Herschel, Helena
Galhardas, Berthold Reinwald, Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi, editors,
Proceedings of 22nd International Conference on Extending Database Technology (EDBT 2019),
Lisbon, Portugal, pages 13–24. OpenProceedings.org, 2019. doi:10.5441/002/EDBT.2019.03.

21 Roy Friedman and Alex Kogan. Deterministic dominating set construction in networks with
bounded degree. In Marcos K. Aguilera, Haifeng Yu, Nitin H. Vaidya, Vikram Srinivasan, and
Romit Roy Choudhury, editors, Distributed Computing and Networking, pages 65–76, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

22 Joachim Gudmundsson and Yuan Sha. Shortest beer path queries in digraphs with bounded
treewidth. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium
on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume
283 of LIPIcs, pages 35:1–35:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ISAAC.2023.35.

23 Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama. Shortest beer
path queries based on graph decomposition. In Satoru Iwata and Naonori Kakimura, editors,
34th International Symposium on Algorithms and Computation (ISAAC 2023), Kyoto, Japan,
volume 283 of LIPIcs, pages 37:1–37:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.ISAAC.2023.37.

24 Vassilis Kaffes, Alexandros Belesiotis, Dimitrios Skoutas, and Spiros Skiadopoulos. Finding
shortest keyword covering routes in road networks. In Proceedings of the 30th International
Conference on Scientific and Statistical Database Management, pages 1–12, 2018.

25 Vassilissa Lehoux and Christelle Loiodice. Faster preprocessing for the trip-based public
transit routing algorithm. In Dennis Huisman and Christos D. Zaroliagis, editors, 20th
Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, ATMOS 2020, September 7-8, 2020, Pisa, Italy (Virtual Conference), volume 85
of OASIcs, pages 3:1–3:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/OASICS.ATMOS.2020.3.

ATMOS 2024

https://doi.org/10.4230/OASIcs.ATMOS.2017.8
https://doi.org/10.4230/OASIcs.ATMOS.2017.8
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1145/3274661
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1145/2424321.2424400
https://doi.org/10.1007/s00778-023-00799-9
https://doi.org/10.1007/s00778-023-00799-9
https://doi.org/10.1007/S11280-023-01146-2
https://doi.org/10.5441/002/EDBT.2019.03
https://doi.org/10.4230/LIPICS.ISAAC.2023.35
https://doi.org/10.4230/LIPICS.ISAAC.2023.37
https://doi.org/10.4230/OASICS.ATMOS.2020.3
https://doi.org/10.4230/OASICS.ATMOS.2020.3

2:18 Indexing Graphs for Shortest Beer Path Queries

26 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM Trans. Intell. Syst. Technol., 8(1), July 2016. doi:10.1145/2898361.

27 Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. Finding top-k optimal sequenced routes.
In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April
16-19, 2018, pages 569–580. IEEE Computer Society, 2018. doi:10.1109/ICDE.2018.00058.

28 Catherine C. McGeoch. A Guide to Experimental Algorithmics. Cambridge University Press,
2012.

29 Michael N. Rice and Vassilis J. Tsotras. Engineering generalized shortest path queries. In
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou, editors, 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12,
2013, pages 949–960. IEEE Computer Society, 2013. doi:10.1109/ICDE.2013.6544888.

30 Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. The optimal sequenced
route query. The VLDB journal, 17:765–787, 2008.

31 Chao Zhang, Angela Bonifati, and M. Tamer Özsu. An overview of reachability indexes on
graphs. In Companion of the 2023 International Conference on Management of Data, SIGMOD
2023, pages 61–68, New York, NY, USA, 2023. ACM. doi:10.1145/3555041.3589408.

32 Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, Ying Zhang, and Wenjie Zhang. Label-
constrained shortest path query processing on road networks. The VLDB Journal, 33:569–593,
2024. doi:10.1007/s00778-023-00825-w.

33 Yikai Zhang and Jeffrey Xu Yu. Hub labeling for shortest path counting. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD
2020, pages 1813–1828, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3318464.3389737.

34 Zibin Zheng, Fanghua Ye, Rong-Hua Li, Guohui Ling, and Tan Jin. Finding weighted k-truss
communities in large networks. Information Sciences, 417:344–360, 2017. doi:10.1016/j.ins.
2017.07.012.

35 Huaijie Zhu, Wenbin Li, Wei Liu, Jian Yin, and Jianliang Xu. Top k optimal se-
quenced route query with POI preferences. Data Sci. Eng., 7(1):3–15, 2022. doi:10.1007/
S41019-022-00177-5.

https://doi.org/10.1145/2898361
https://doi.org/10.1109/ICDE.2018.00058
https://doi.org/10.1109/ICDE.2013.6544888
https://doi.org/10.1145/3555041.3589408
https://doi.org/10.1007/s00778-023-00825-w
https://doi.org/10.1145/3318464.3389737
https://doi.org/10.1016/j.ins.2017.07.012
https://doi.org/10.1016/j.ins.2017.07.012
https://doi.org/10.1007/S41019-022-00177-5
https://doi.org/10.1007/S41019-022-00177-5

	1 Introduction
	2 Notation and Definitions
	3 Indexing Scheme for Beer Distance Queries
	4 Experimental Evaluation
	5 Conclusion and Future Work

