
Pricing for the EVRPTW with Piecewise Linear
Charging by a Bounding-Based Labeling Algorithm
Jenny Enerbäck
Department of Mathematics, Linköping University, Sweden
Scania CV AB, Södertälje, Sweden

Lukas Eveborn1 #Ñ

Department of Mathematics, Linköping University, Sweden

Elina Rönnberg #Ñ

Department of Mathematics, Linköping University, Sweden

Abstract
The elementary shortest path problem with resource constraints (ESPPRC) is a common problem
that often arises as a pricing problem when solving vehicle routing problems with a column generation
approach. One way of solving the ESPPRC is to use a labeling algorithm. In this paper, we focus on
how different bounding strategies for labeling algorithms can be adapted and strengthened for the
ESPPRC that arises from the Electric Vehicle Routing Problem with Time Windows and Piecewise
Linear Recharging function (EVRPTW-PLR). We present a new completion bound method that
takes charging times into account, and show how the completion bound can be combined with
ng-routes. Computational experiments show that the new completion bound combined with ng-routes
significantly improves the performance compared to a basic labeling algorithm.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Graph algorithms; Applied computing → Transportation; Mathematics of computing
→ Mathematical software

Keywords and phrases ESPPRC, EVRP, Bounding, Labeling Algorithm

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.3

Supplementary Material
Software (Public Repo): https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr

Funding This work was funded by the Swedish Energy Agency within the program FFI, For-
donsstrategisk Forskning och Innovation, under the grant Condore (P2022-00952).
Lukas Eveborn: This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Acknowledgements The Condore project is an important platform for this research as it provides
close collaborations with the industrial partners Scania and Ragn-Sells as well as the Vehicular
Systems division at Linköping University. We also want to thank the reviewers for useful feedback
and especially the reviewer that pointed out an issue related to the combination of ng-routes and
bounding.

1 Introduction

The interest in using electrical vehicles for transportation has been steadily increasing in the
last years. One of the main reasons is the positive environmental aspects compared to using
traditional combustion vehicles. As for the traditional vehicles, the routing and scheduling
of the electric vehicles is a crucial aspect to consider. This has created a new type of vehicle
routing problem, the Electric Vehicle Routing Problem (EVRP).

1 Corresponding author
© Jenny Enerbäck, Lukas Eveborn, and Elina Rönnberg;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 3; pp. 3:1–3:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lukas.eveborn@liu.se
https://liu.se/en/employee/lukev81
https://orcid.org/0009-0001-1880-8302
mailto:elina.ronnberg@liu.se
https://liu.se/en/employee/eliro15
https://orcid.org/0000-0002-2081-2888
https://doi.org/10.4230/OASIcs.ATMOS.2024.3
https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

As for traditional routing problems, a common way of solving the EVRP is to use a column
generation approach. Given a path representation of the routes, the column generation pricing
problem can be represented as a shortest path problem. In such a setting, the performance of
the pricing problem is crucial for the overall performance of the column generation approach.
In this paper we are interested in the pricing problem for the EVRP with Time Windows,
Piecewise Linear Recharging function and partial recharging (EVRPTW-PLR). This pricing
problem can be represented as an elementary shortest path problem with resource constraints
(ESPPRC). The ESPPRC can be solved in several ways, one of them is to use a labeling
algorithm [9] which is the method we will be using.

Compared to traditional routing problems, the electrical routing problems come with a
new set of challenges, the main one being the need to plan for recharging of the vehicles. This
changes the characteristics of the ESPPRC and the labeling algorithm needs to be adapted
to handle this, something that has been previously studied (see e.g. [5]). Another challenge is
to model the recharging realistically, for which a piecewise linear function has been proven to
be a good choice [11]. This does further complicate the ESPPRC and necessitates adaptions
of the labeling algorithm, as done in e.g. [10] and [2].

How well a labeling algorithm performs is highly dependent on the different acceleration
strategies that are used. Some of the most common acceleration strategies are bidirectional
labeling [14], ng-routes [1] and bounding (see e.g. [3, 14]). The implementation of ng-routes
is not affected by the piecewise linear charging function and can easily be implemented in
a standard way. For bidirectional labeling, the case is different, as the standard strategy
cannot be applied for piecewise linear charging functions. To the authors’ best knowledge,
this has not yet been done, and we find it hard to see how it can be done efficiently. For this
reason, we consider bounding to be an important type of acceleration strategy in labeling
algorithms for piecewise linear charging functions. Bounding builds on the idea to discard
unpromising labels. There are several ways to do this, one is the resource bounding, which is
a way to discard labels that cannot be completed to a feasible solution. Another way is the
completion bounding, which is a way to discard labels that cannot be completed to a better
solution than the best found so far.

In this paper, we focus on how different bounding strategies can be adapted and
strengthened for the ESPPRC that arises from the EVRPTW-PLR. The paper extends the
result of the master thesis [7] that introduced a bounding-based labeling algorithm for the
EVRPTW with linear and partial recharging. The main contributions of this paper are:

A new time-based completion bound method that takes charging times into account.

Integration of completion bounds and ng-routes that handles the assumption of element-
arity in completion bounds with the relaxation of elementarity in ng-paths.

Publicly available labeling algorithm solving the ESPPRC for the EVRPTW-PLR (avail-
able at: https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr).

The rest of this paper is structured as follows. In Section 2, the problem statement and
model will be presented. A short explanation of the foundations of the labeling algorithm
will be presented in Section 3. The implemented bounding methods will then be presented
in Section 4. Experimental results will be presented in Section 5 comparing the effect of
the different bounding methods implemented, and finally the conclusions are presented in
Section 6.

https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr


J. Enerbäck, L. Eveborn, and E. Rönnberg 3:3

0; 0

0,62 ; 13,6
0,77 ; 15,2

1,01 ; 16

0

2

4

6

8

10

12

14

16

18

0 0,2 0,4 0,6 0,8 1 1,2

Ba
tte

ry 
Le

ve
l

Charging Time

Figure 1 The piecewise linear charging curve used in this paper, with data from [11].

2 Problem Statement and Model

The problem considered is the ESPPRC that arises as a pricing problem from solving the
EVRPTW-PLR within a column generation approach. In the EVRPTW-PLR, a fleet of
electric vehicles with limited load and battery capacity should visit a set of customers, where
each customer has a given time window and a given demand, while minimizing the total cost.
Furthermore, the vehicles start and end at a depot, and can recharge at charging stations.
The recharging rate is given by a piecewise linear function.

Inspired by the notation used in [5], we formulate the ESPPRC on a directed graph
G(V, A), where V denotes the set of nodes, and A denotes the set of arcs connecting the
nodes. The set of nodes V consists of customer nodes, given by the set N , charging nodes,
given by the set R, a start node o, and an end node d.

An arc between node i ∈ V and node j ∈ V is associated with three parameters: the
cost cij of the arc, the energy consumption rij for traversing the arc, and the travel time tij ,
where also the service time at i is included if i ∈ N , i.e. i is a customer node. We assume
that the triangle inequality holds for the time and energy consumption, i.e. tij ≤ tik + tkj

and rij ≤ rik + rkj for all i, j, k ∈ V . Each customer node i ∈ N is associated with a service
time window [ei, li], during which the service can start. The vehicle is allowed to arrive
early at a customer but has to wait until the start time to start service. Each customer node
i ∈ N is associated with a demand qi, which since we are solving the pricing problem, only
needs to be satisfied if the customer is visited.

The vehicle has a maximum load C and a maximum battery capacity Q. It can recharge
at charging nodes where partial recharging is allowed. The battery level cannot go below 0.

The charging curve is given by a piecewise linear function, and we define it as in [10] where
the charging curve is given by a set of pieces P = {1 . . . W}. Each piece p ∈ P is defined by
a start and end battery level τp−1 and τp, and a recharging rate ρp (energy per timestep). In
reality, the charging function is often concave since the charging rate decreases as the battery
level increases [11]. With these assumptions, it holds that 0 = τ0 ≤ τ1 ≤ . . . ≤ τW = Q and
ρ1 ≥ ρ2 ≥ . . . ≥ ρW > 0. An example is shown in Figure 1.

The vehicle starts at the start node at time 0 with a full battery and must return to
the end node before the max time, Tmax. It can visit a customer node at most once, while
charging nodes can be visited multiple times. The objective is to find a route that minimizes

ATMOS 2024



3:4 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

the total cost of the arcs travelled, while satisfying the constraints. Because we are in a
column generation setting, the arc costs are in fact reduced costs and as such they can become
negative. In the EVRPTW-PLR, we assume the initial costs to be positive, and customers
to be associated with dual variables, leading to that the outgoing arcs from customers can
become negative, while the other arcs have their initial cost.

3 Labeling Algorithm

The basic version of the labeling algorithm is presented in Algorithm 1. The algorithm is
implemented with a priority queue Γ of labels waiting to be extended and continues until
there is no label to be extended from this queue. In order to find a good complete path early,
the priority queue is ordered by increasing costs and the label with the lowest cost is first
extended. This is especially important when using completion bounds, since the strength
of the completion bounds depend on the quality of the incumbent upper bound. A label
is denoted by Li and represents a partial path o → i ∈ N . Each label contains a number
of resources, such as the cost of the partial path and the battery level. When extending a
label Li to a node j the function Extend(Li, j) updates the label resources given by the
defined Resource Extension Functions (REFs) and verifies the feasibility of the extension of
the path. All neighbours that can be reached from node i are denoted by ∆i. The function
Dominance(Λj , Lj) checks dominance between the new label Lj and all labels in Λj , which
is a bucket containing all labels ending at node j, given the decided dominance criteria. All
labels that Lj dominates are discarded, and the Dominance(Λj , Lj) returns false if Lj is
dominated, whereupon Lj is discarded. The shortest path can, at the end of execution, be
selected from the set of labels at the end node.

Algorithm 1 Basic labeling algorithm.

1 // Initialization of priority queue Γ with a start label Λo

2 Γ← Λo

3 while Γ ̸= ∅ do
4 // Get next label to extend
5 Li ← pop(Γ)
6 // Try to extend label to all outgoing neighbours of i

7 for j ∈ ∆i do
8 // Try to extend label to node j

9 if Lj ← Extend(Li, j) then
10 // If label finishes at end node, it is not added to priority queue
11 if j = d then
12 Λd ← Lj

13 // Else check dominance between new label and all labels at node j

14 else if Dominance(Λj , Lj) then
15 Γ← Lj

16 Λj ← Lj

17 end
18 end
19 end
20 end



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:5

The resources of label Li are defined as suggested by Lam et al. [10], with the notation
of Desaulnier et al. [5], and presented below.

T cost
i : Cost of the partial path o→ i.

T load
i : Delivered load along the partial path.

T time
i : Earliest service start time at node i that ensures time window and battery

feasibility along the path.
T energy

i : Battery level at i, assuming that minimal recharges have been performed at
all visited charging stations.

T
mrtp

i : Available charging time at each charging piece p ∈ P that can be added at
previous charging stops while ensuring time window feasibility.

T custn
i : Indicates if a customer n ∈ N cannot be visited in the extension of the path.

This can either be because they already are visited or because they are
unreachable from the path ending at node j.

A label Li at node i ∈ N is extended to a node j ∈ N along the arc (i, j) ∈ A by a
number of Resource Extension Functions (REFs) that update the resources of the label,
creating a new label Lj . The REFs are defined as suggested by Lam et al. [10], with the
notation of Desaulnier et al. [5]. The REFs for the cost of the partial path and the delivered
load are defined by (1) and (2).

T cost
j = T cost

i + cij (1)
T load

j = T load
i + qj (2)

To update the time of the partial path and the energy level, we need to define some new
concepts. Whenever a vehicle can arrive early at a customer, i.e. T time

i + tij < ej , a slack
time is introduced, denoted Wij . This slack time is given by Wij = max{0, ej − T time

i − tij},
which represents how much later it is possible to leave node i without delaying service start
time at node j. If charging stations have been visited previous to node j, the slack time can
be used for charging to the extent allowed by the available charging time T

mrtp

i , p ∈ P . We
assume that all available slack time, in the extent that it is possible, is used for charging and
denote the energy charged during slack time by Sij . Since the charging curve is piecewise
linear, we have several charging pieces p ∈ P . In order to calculate Sij , we therefore need
to calculate the amount of time we can recharge at each charging piece, which we denote
by δslack

pij . This is calculated for each piece p ∈ P in decreasing order of charging rate by
δslack

pij = max{0, min{Wij −
∑p−1

µ=1 δslack
µij , T

mrtp

i }}. In this formula T
mrtp

i is, as mentioned, the
available charging time at charging piece p from previous charging stops, and Wij−

∑p−1
µ=1 δslack

µij

is the remaining available slack time for charging at piece p, given the charging time at
previous, more advantageous, pieces. The energy charged during slack time is then given by
Sij =

∑
p∈P ρpδslack

pij where ρp is the charging rate at piece p.
If the energy charged during slack time together with the initial energy is not enough

to cover the energy consumption rij of the arc (i, j), i.e. T energy
i − rij + Sij < 0, additional

charging is required. The required additional charging energy is denoted by Zij and the
time for this additional charging is denoted Xij . Similarly to how the energy charged during
slack time was calculated, we need to calculate the amount of time δextra

pij we recharge at each
charging piece p ∈ P . This is calculated for each piece p ∈ P in decreasing order of charging
rate by δextra

pij = max{0, min{T mrtp

i − δslack
pij , (−T energy

i + rij − Sij −
∑p−1

µ=1 ρµδextra
µij )/ρp}}. In

this formula T
mrtp

i − δslack
pij is the remaining available charging time for charging at piece

p after slack charging has been done and (−T energy
i + rij − Sij −

∑p−1
µ=1 ρµδextra

µij )/ρp is the

ATMOS 2024



3:6 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

remaining time, given the piece p charging rate, needed to be recharged after slack charging
has been done and additional charging has been done at previous, more advantageous,
pieces. The additional charging time and energy are then given by Xij =

∑
p∈P δextra

pij and
Zij =

∑
p∈P δextra

pij ρp, respectively.
The REF for time can now be given in (3), where, as stated, Xij is the required additional

charging time and ej is the earliest allowed arrival at node j. The energy level is updated
according to the REF defined in (4), where, as stated, rij is the energy consumption of the
arc, Sij is the energy charged during slack time, and Zij is the additional energy charged.

T time
j = max{T time

i + tij + Xij , ej} (3)
T energy

j = T energy
i − rij + Sij + Zij (4)

The REF for the available charging time is calculated for each piece p ∈ P in decreasing
order of charging rate, where τp is the end battery level of piece p ∈ P . It is given in (5)
and calculated differently depending on whether j is a charging station or not. If a charging
station, the time is calculated as the minimum of the maximum charging time at the piece p

and the time needed to reach the end battery level at the piece p given current battery level
T energy

j . If not a charging station, it is calculated as the minimum of available charging time,
after slack and additional charging has been added, and available time until the end of the
time window after available charging time at more advantageous pieces has been added.

T
mrtp

j =
{

min{(τp − τp−1)/ρp, max{(τp − T energy
j )/ρp, 0}}, if j ∈ R

min{T mrtp

i − δslack
pij − δextra

pij , lj − T time
j −

∑p−1
µ=1 T

mrtµ

j }, if j ∈ V \R
(5)

Finally, customer reachability is updated in REF (6), either if they are visited or if
they are unreachable from the path ending at node j. A node n ∈ N \ {j} is marked as
unreachable from the path ending at node j in the function R(T load

j , T time
j ) by the value 1

if T load
j + qn > C or T time

j + tjn > ln holds. This method of marking unreachable nodes as
already visited was initially suggested by Feillet et al. [8].

T custn
j =

{
T custn

i + 1, if j = n,

max{T custn
i , R(T load

j , T time
j )} j ∈ N \ {n}

(6)

After the resources of the label have been updated, the feasibility of the extension is
verified. As defined by [10], an extended label is feasible if the following four inequalities
hold: T load

j ≤ C, T time
j ≤ lj , T energy

j ≥ 0, and (T custn
j ) ≤ 1 for all n ∈ N .

Once a label has been feasibly extended to node j, dominance is checked on the other
labels finishing in node j. For a label L̃j at j to dominate another label L̂j at j, the criteria
given by Equations (7) through (11) must hold as defined by [10]. If L̃j dominates L̂j , L̂j is
discarded.

T̃ cost
j ≤ T̂ cost

j (7)

T̃ load
j ≤ T̂ load

j (8)

T̃ time
j ≤ T̂ time

j (9)

T̃ custn
j ≤ T̂ custn

j , n ∈ N (10)

f̃ energy
j (t) ≥ f̂ energy

j (t), t ∈ [T̂ time
j , lj ] (11)

In Equation (11), battery levels are compared given a later arrival time at j with the
help of the function f energy

j (t) which outputs the battery level given an arrival time t. This
has to be done because T energy

j is only the energy level given a minimal recharge, but since



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:7

the extensions are unknown at the time of dominance checking, it might be needed to arrive
later but with a higher battery level. So in order for the label L̃j to dominate L̂j , it has
to be able to achieve a higher battery level for every possible arrival time at node j of L̂j .
The possible arrival times are all the times between T̂ time

j and the latest service start time
at node j, lj . However, since the charging curves are piecewise linear, it suffices to verify
this at start points, breakpoints and endpoints of the charging curves. For a more thorough
explanation and definition of this function, we refer to Lam et al. [10].

4 Bounding Methods

A well-known challenge when applying labeling algorithms is that in the late iterations, a
huge number of labels have been generated and a large portion of those cannot be completed
into a solution of interest. To avoid this, or at least discard some unpromising ones along
the way, bounding methods can be used. Bounding methods use optimistic bounds on the
completion of a path to discard labels that cannot yield a best solution. This can be done in
different ways, but common for all is that the methods need to rely on fast computations to
contribute to computational efficiency. For that reason the methods can often be greedy and
do not necessarily use the network structure or all information in the problem. Furthermore,
it is often important to use the problem structure to make the bounding methods even more
efficient. We choose to implement two types of bounding methods, resource bounds and
completion bounds, to improve the computational time of the labeling algorithm. These are
presented in Section 4.1 and 4.2, respectively.

4.1 Resource Bounds
The main idea behind resource bounds is that if there is not enough resources left to reach
the end node, a label can be discarded – even if there still are resource feasible extensions to
some nodes. We implement resource bounds for battery feasibility and time feasibility, as
they are the only resources that directly can prevent feasible completions of a path. The
resource bounds are implemented in the Extend(Li, j) function.

When formulating our resource bounds, inspiration is taken from the criterion W r + wr
ij +

wr
jd > W r

max suggested by Boland et al. [3], where W r is the consumption of resource r

along the partial path, wij the consumption on the arc (i, j), and wr
jd a lower bound on the

resource consumption from node j to the depot.
Starting with battery feasibility, it is checked that the partial path can reach the end

node or a charger without emptying the battery. For a node j ∈ V , let rjξ be the energy
consumption to travel from j to the closest node that is either a charger or the end node,
i.e. ξ ∈ R ∪ {d}. If the current battery level together with the available charging time is
not enough to reach ξ, the label can be discarded. This is done by checking if T energy

j +∑
p∈P ρpT

mrtp

j − rjξ < 0.
For time feasibility, we generate an optimistic bound on the time it takes to reach the

end node and use this to check that the end node can be reached within the max time limit.
Beyond travel time we also consider possible extra charging time that is needed to reach
the end node. In order to make sure it is an optimistic bound, i.e. no labels are discarded
wrongly, it is assumed that charging can be done “on the road” i.e. discarding the possible
extra travel time and energy it takes to reach a charging station. For the same reason it is
also assumed that the recharge is done at the fastest charging rate, ρ1. To formulate the
condition, we first need to calculate the possible required additional energy to reach the end

ATMOS 2024



3:8 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

node, which is given by Yj = max{0, rjd − T energy
j }, where rjd is the energy consumption

to reach the depot from current node j ∈ N . The feasibility check can then be done by
T time

j + tjd + Yj/ρ1 > Tend. If the inequality holds, the label is discarded.

4.2 Completion Bounds
For completion bounds, the idea is to discard labels that are guaranteed to not be completed
to a better solution than the current best solution. This is done by generating an optimistic
bound on the cost of completion of the path, denoted zLB. A label Lj with current cost
T cost

j , can then be discarded if T cost
j + zLB > UB, where UB is the current upper bound

on the cost for a finished path. We choose to calculate two completion bounds, one by
solving a knapsack problem with respect to the vehicle load constraint and one by solving a
problem that takes both travel time and charging time into account. Both are inspired by
the knapsack bound formulation of Righini and Salani [14].

For the load-based bound, the implementation is similar to the formulation of [14], but
with some adjustments to our problem. They do not have charging nodes, but as it turns
out, the charging nodes can be disregarded in the calculation of the bound. The reason for
this is twofold, firstly, the battery constraints are relaxed in the bound, so visits to chargers
are not required for feasibility reasons. Secondly, in a standard column generation context,
the dual variables of the charging nodes are non-existent as there are no master constraints
related to them, and it can therefore never be profitable to visit chargers assuming positive
initial costs. With this in mind, let then S be the set of already visited customers. We can
then define the continuous decision variable yk ∈ [0, 1], k ∈ V \ S that state how much a
customer is visited.

We define the cost of visiting a node i ∈ N as the cost of its cheapest outgoing arc,
i.e. ui = minl∈N\R cil. This is used to get the cost of visiting a customer in the case when
i ∈ N \ S which we only would want to do if ui is negative. It is also used to get the cost
of leaving the current node j in the case when i = j, which is necessary to get the right
number of arcs in the solution. Compared to [14], we consider the outgoing arcs from the
nodes k ∈ N instead of the incoming arcs to calculate the least cost since the service time
in our case is included in the outgoing arcs and not the incoming arcs. Note also that to
calculate the cost for visiting a customer, outgoing arcs to charging nodes are disregarded,
which is valid thanks to the relaxed battery constraints and the non-profitability of visiting
charging nodes. This strengthens the bound in the case where the closest node to a customer
node is a charging station since the arc between them would then be the arc with the least
cost. The load-based completion bound for a label Lj is presented in Equation (12).

zL = min
∑

k∈N\S

ukyk + uj

s.t. T load
j +

∑
k∈N\S

qkyk ≤ C (12)

0 ≤ yk ≤ 1, ∀k ∈ N \ S

Another important adjustment compared to the formulation of Righini and Salani
[14] is that when selecting the cheapest outgoing arc for a node, all arcs to customer
nodes are considered, not just arcs to not visited customers, i.e. minl∈N\R ckl instead of
minl∈N\(S∪R) ckl. Although the second formulation of the two generates a stronger bound, it
is more computationally expensive, since the least arc costs must be computed each time the



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:9

bounding method is used. With our formulation, however, the least cost arc of a node, and
further the least time and least energy consumption arc, which will be used in the second
bound, can be precomputed.

The time-based bound can be seen as an extended version of a knapsack problem on
maximal route time. It considers arc travel time and, to make sure that the battery level
stays positive, the possible extra required charging time. To obtain a lower bound, the same
assumptions as in the resource bounds are made, i.e. it is assumed that the charging can be
done “on the road” and at the fastest charging rate, ρ1. Most of the notation is the same as
in the vehicle load bound, but some new parameters and variables need to be introduced. To
handle the extra potential charging time, a new continuous variable ζ is introduced, which is
the total extra charging energy that needs to be added in order to ensure battery feasibility.
We also introduce the minimum energy consumption ri of visiting a node i ∈ V , and the
minimum travel time ti to visit a node, i ∈ V . Both are calculated in the same manner as
the lowest cost, ui, by finding the cheapest outgoing arc from a node i ∈ V for energy and
time respectively, i.e. ri = minl∈N\R ril and ti = minl∈N\R til. The time-based completion
bound for a label Lj is presented in Equation (13).

zT = min
∑

k∈N\S

ukyk + uj

s.t. T time
j + tj + ζ/ρ1 +

∑
k∈N\S

tkyk ≤ Tmax

rj +
∑

k∈N\S

rkyk ≤ ζ + T energy
j (13)

0 ≤ yk ≤ 1, ∀k ∈ N \ S

0 ≤ ζ

Even if zT generates a good bound, it is not as straightforward to calculate efficiently as
zL. It can always be solved with an LP-solver, but that would not be that effective. However,
if we assume that the problem instance has the properties that t1 ≥ t2 ⇒ r1 ≥ r2, then
we can use a greedy algorithm to calculate the bound, presented in Algorithm 2. Note
that this assumption holds for the instances tested in this paper, the EVRPTW dataset
of Schneider et al. [15], where the relation between travel time and energy consumption
is linear, and the service time are same for all customers in one instance. As input to the
algorithm we precompute the most profitable customers and add them to a list, denoted K,
which is ordered by increasing value of the quotients uk

tk+rk/ρ1
. The algorithm then iterates

over the nodes in this order and adds the most profitable nodes to the path as long as the
max time limit is not violated.

4.2.1 Integration of ng-routes with Completion Bounds
Another popular acceleration strategy for a labeling algorithm is ng-routes, first suggested
by [1]. In ng-routes, the elementarity constraints on the paths are partly relaxed allowing
revisits to a customer as long as the customer is not in the ng-set of the current node. The
ng-set is unique for each node and contains the nodes for which elementarity is checked
when extending a label. If a customer is not in the ng-set of the node we are extending
the label from, it can be added to the path even if it has been visited before, allowing
for subtours. The size of the ng-set, n, is set according to what fits the problem and is
often chosen to be the n closest customers to the node, including itself. This is also the
approach we have chosen to use. One of the benefits of using ng-routes is that if the best

ATMOS 2024



3:10 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

Algorithm 2 Completion bound with time and battery constraints.

1 C ← 0 // Initial cost
2 σ ← max{0, (rj − T energy)/ρ1}+ tj // Time needed to leave j

3 T ← T end − T time
j − σ // Time left

4 E ← max{0, T energy
j − rj} // Remaining energy

5 i← 0
6 while T ≥ 0 do
7 // Find the most profitable customer to add
8 k ← K[i]
9 // Check that the customer can be added and have a positive effect

10 if T cust
j [k ] = 0 ∧ uk < 0 then

11 // Time needed to add customer k

12 σ ← max{0, (rk − E)/ρ1}+ tk

13 // Check if customer can be fully added, else add partially
14 if T − σ ≥ 0 then
15 C ← C + uk

16 T ← T − σ

17 E ← max{0, E − rj}
18 else
19 // Percentage that can be added
20 λ← (σ − T )/σ

21 C ← C + λuk

22 T ← T − λσ

23 E ← E + λrk

24 end
25 end
26 i++
27 end

path is elementary when finishing the labeling algorithm, it will be also be an optimal
elementary path. Using ng-routes is a powerful acceleration strategy. It can, however, not be
used directly with the implemented completion bounds. The reason for this complication
is that the implemented completion bounds create elementary completions to the partial
paths, which are not necessarily optimistic completions to an ng-route. Since subtours are
allowed for ng-routes, it has to be considered that a node can be added multiple times to
the completion of the path, and the calculation of completion bounds need to be adjusted
accordingly.

There are some existing approaches to combine ng-routes with completion bounds in the
literature, but none really fits with our problem. For implementations where each problem is
solved several times to find elementarity, i.e. iteratively extending the size of the ng-set until
the optimal path is elementary, labels from the previous iteration can be used to compute
lower bounds on the reduced cost of the completion of a path (used by [13, 4, 12]). Another
approach to use completion bounds in the ng-route ESPPRC was suggested by Baldacci et
al. [1], and was applied to the electric ng-route SPPRC by Duman et al. [6]. They use the
completion bounds as a big part of the solution method starting each solving process by,
for each customer, running an exact labeling algorithm with the customer as a start node



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:11

and with tstart = Tmax −∆t as the start time. The results from these runs are then used as
lower bounds when solving again, but with the start time tstart = Tmax − 2∆t. This is then
repeated until the full problem is solved.

However, we want to integrate completion bounds with ng-routes without significant
changes to the algorithm. When computing the completion bound we therefore assume that
there are no elementary constraints, to ensure it to be an optimistic bound on the solutions
also in the case of using ng-routes. However, by considering other constraints, the bound
can be strengthened. Firstly a customer cannot be added at all if it is not reachable from
the current node, i.e. if T time

j + tjl < ll. Secondly, given it is reachable, an upper bound on
the total number of times a node can be added to the path can be calculated. Provided the
least time outgoing arc tmin

lk from node l and the least time incoming arc tmin
kl to node l, then

tmin
lk + tmin

kl is the minimum time required to leave and come back to node l. Furthermore, the
earliest arrival at the node l can be calculated as T start

l = max{T time
j + tjl, el}, comparing

the earliest allowed arrival el with the possible earliest arrival given the label T time
j at node

j and the travel time tjl. Using both of these, an upper bound on the number of visits at
node l can be calculated by

⌊
ll−T start

l

tmin
lk

+tmin
kl

+ 1
⌋
.

To further strengthen the upper bound on the number of visits, the elementary constraints
that exist in an ng-routes setting can be taken into consideration as follows. In order to be
allowed to come back to a node l that already has been visited, the route must be extended
from a node k for which l is not in its ng-set. Provided the least time outgoing arc from
node l to a node for which l is not in its ng-set t

minng
lk and the least time incoming arc from a

node for which l is not in its ng-set to node l, t
minng
kl , then t

minng
lk + t

minng
kl can be used instead

as the minimum time required to leave and come back to node l. The strengthened upper
bound on the number of visits at node l can hence be calculated as⌊

ll − T start
l

t
minng
lk + t

minng
kl

+ 1
⌋

.

In practice this adaption to make completion bounds work with ng-routes is implemented
by adding nodes to the path in order of decreasing profitability given that it is reachable
and that the multiplicity is not violated. Note that in order to ensure an optimistic bound,
given the ng-setting, a node can be added multiple times in a row as long as the multiplicity
constraint is not violated and that there is place left in the knapsack.

5 Experimental Results

The performance of the labeling algorithm with the suggested acceleration strategies is
evaluated using the EVRPTW benchmark data set of Schneider et al. [15] which is based on
Solomon’s benchmark instances for the VRPTW [16]. Tests are performed on all 29 instances
from the groups C100, RC100, and R100, that have 100 customer nodes with narrow time
windows and 20 charging nodes with no time windows. Each instance is tested in three
different simulated column generation environments, resulting in a total of 3 × 27 = 89
instances.

To simulate a column generation environment, values of the dual variables for customers,
πi, i ∈ N , are generated as random integer variables from a uniform distribution on the
interval {0, . . . , 20} as suggested by Feillet et al. [8]. These are used to update the arc costs
of outgoing arcs from customers nodes i ∈ N : cij = dij − πi, where dij is the Euclidean
distance between node i and node j. For all other nodes i ∈ V \N the outgoing arc costs
are set to cij = dij . The generated dual values are available in the public repo (available at
https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr).

ATMOS 2024

https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr


3:12 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

Table 1 Number of instances solved for each group and acceleration strategy

Series basic ng-routes bounds load bounds time ng-routes+bounds
C100 21/27 27/27 (20) 21/27 21/27 27/27 (20)

RC100 21/24 24/24 (19) 23/24 24/24 24/24 (19)
R100 18/36 25/36 (16) 20/36 21/36 29/36 (17)
Total 60/87 76/87 (55) 64/87 66/87 80/87 (56)

Table 2 Aggregated results for each group and acceleration strategy

Series basic ng-routes bounds load bounds time ng-routes+bounds
t̄ t̄ ∆t[%] t̄ ∆t[%] t̄ ∆t[%] t̄ ∆t[%]

C100 15.11 3.09 -79.60 9.06 -40.07 1.80 -88.06 0.74 -95.11
RC100 24.33 12.69 -47.87 14.15 -41.84 11.83 -51.38 6.17 -74.64
R100 620.67 515.09 -17.01 417.23 -32.79 256.75 -58.63 165.01 -73.41

In the dataset for EVRPTW it is assumed that the charging curve is linear, where the
battery capacity Q and the inverse recharging rate ω is unique for each instance. To adapt
the dataset to a piecewise linear charging function, we fit the charging curve in Figure 1, by
scaling the time of breakpoints by ωQ told

1.01 and the battery levels by Q eold
16 . From this it is

then easy to calculate, for each instance, the set of pieces in the piecewise linear charging
function with its corresponding breakpoints and recharging rates which are available in our
public repo.

Before running the algorithm the graph is reduced by removing infeasible arcs, i.e. arcs
between nodes i ∈ V and j ∈ V such that ei + tij > lj , qi + qj > C or rij > Q.

The algorithm was implemented in C++ and compiled with GCC 11.4.0. It was tested on
a PC with AMD Ryzen Pro565OU CPU at 2.301 GHz, 32 GB RAM on Ubuntu with WSL.

We report results of each instance solved using (i) no acceleration strategy, (ii) ng-routes,
(iii) resource bounds + load-based completion bound, (iv) resource bounds + time-based
completion bound. Finally, a combination of all acceleration strategies is tested (v): ng-
routes + resource bounds + load-based completion bound + time-based completion bound.
A maximum time of 1 hour was set for each instance.

To minimize unnecessary computational effort, the completion bounds are only computed
if the resource consumption for the constrained resource exceeds 20% of the total resource
availability. This threshold was chosen from pretrial tests (Figure 2 in Appendix A) of
different thresholds on resource consumption. In the combined setting, the time-based bound
is computed first and if T cost

j + zT > UB the label is discarded straight away. Otherwise,
the load-based bound is computed to check if T cost

j + zL > UB.
The size of the ng-sets were set to 10 (C100), 15 (RC100), and 20 (R100) nodes respectively.

For each group of instances, these were the smallest sizes of multiples of 5 of the ng-sets for
which the optimal solutions of at least half of the instances were elementary.

In Table 1, we report how many instances from each group were solved to optimality
within the 1-hour time limit. For the acceleration strategies using ng-routes, it is reported in
parentheses how many of the optimal paths were elementary. It is worth to remember that
in a column generation environment, as long as there is one elementary path with negative
reduced cost among the finished paths, the result is useful. Full results for each instance and
acceleration strategy can be found in Table 3–Table 5 in Appendix B.



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:13

Table 2 shows aggregated time results per group and acceleration strategy. To make a
fair comparison, only instances that were solved with an elementary optimal solution by all
acceleration strategies within the 1-hour limit are included in the calculation. Deviation for
a strategy x and group y is calculated compared to the basic version by ∆t̄y

x = 100 · (t̄y
x −

t̄y
basic)/t̄y

basic.
Comparing the results in Table 1 and Table 2, we can state that the combination of

ng-routes and completion bounds (v) is the most effective acceleration strategy. It solves
the largest number of instances within the time limit, and achieves the largest reduction
in computational time compared to the basic version, from −73% to −95% in average,
depending on the instance group. When it comes to the computational time, the pattern for
the instances not included in the aggregated results is the same as for the instances included,
i.e. the combination of ng-routes and completion bounds is the most effective strategy.

Comparing the two implemented completion bounds, the time-based bound (iv) is on
average more efficient than the load-based bound (iii) for all groups of instances, and for
some the difference is significant. This indicates that the vehicle load is not as often a binding
constraint as the time constraint for the instances tested, at least when taking charging time
into account.

Looking a bit closer at the full results, Table 3–Table 5 in Appendix B, it can be seen
that the main difference in computational time between the other acceleration strategies and
acceleration strategy (v) shows on the more difficult instances. On instances that are easier
to solve, the difference in computational time between the strategies is not as large, and often
one of the plain bounding strategies is the most effective. The reason for this is most likely
that completion bounds generated when combining it with ng-routes is weaker compared to
when not combined with ng-routes, and the usage of ng-routes does not compensate for this
on easier instances.

6 Conclusion

In this paper, we propose bounding methods to accelerate a labelling algorithm used for
solving the ESPPRC as the pricing problem of the EVRPTW with a piecewise linear charging
curve and partial recharging. Two types of bounding methods are implemented, resource
bounds and completion bounds. For completion bounds we implemented two versions, one
load based and one time based. The latter is a new stronger completion bound that takes
travel time as well as charging time into account. A strength of both the completion bounds
is that they are cheap to compute, since the information required can be preprocessed.
Furthermore, we propose a way to integrate the bounding methods with ng-routes, another
popular acceleration strategy.

Experimental results show that the combination of ng-routes and bounding methods was
most efficient, reducing the computational time from −73% to −95% in average, depending
on the instance group, compared to a basic labelling algorithm on benchmark instances with
100 customers and 20 chargers. The results also show that the time-based completion bound
was more efficient than the load-based completion bound for all groups of instances.

Our efficient way of computing the time-based completion bound uses a specific relation
between travel time and energy consumption. Of interest for future work is to investigate
efficient ways of computing this time-based completion bound when these assumptions do
not hold.

ATMOS 2024



3:14 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

References
1 Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New route relaxation and pricing

strategies for the vehicle routing problem. Oper. Res., 59(5):1269–1283, 2011. doi:10.1287/
OPRE.1110.0975.

2 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. CoRR, abs/1910.09812, 2019.
arXiv:1910.09812.

3 Natashia Boland, John Dethridge, and Irina Dumitrescu. Accelerated label setting algorithms
for the elementary resource constrained shortest path problem. Oper. Res. Lett., 34(1):58–68,
2006. doi:10.1016/J.ORL.2004.11.011.

4 Claudio Contardo and Rafael Martinelli. A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discret. Optim., 12:129–146,
2014. doi:10.1016/J.DISOPT.2014.03.001.

5 Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider. Exact algorithms
for electric vehicle-routing problems with time windows. Oper. Res., 64(6):1388–1405, 2016.
doi:10.1287/OPRE.2016.1535.

6 Ece Naz Duman, Duygu Tas, and Bülent Çatay. Branch-and-price-and-cut methods for the
electric vehicle routing problem with time windows. Int. J. Prod. Res., 60(17):5332–5353, 2022.
doi:10.1080/00207543.2021.1955995.

7 Jenny Enerbäck. A labelling algorithm for the resource constrained elementary shortest path
problem. Master Thesis, Linköping University, 2024. URL: urn:nbn:se:liu:diva-205286.

8 Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algorithm
for the elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44(3):216–229, 2004. doi:10.1002/NET.20033.

9 Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In
Column generation, pages 33–65. Springer, 2005.

10 Edward Lam, Guy Desaulniers, and Peter J. Stuckey. Branch-and-cut-and-price for the
electric vehicle routing problem with time windows, piecewise-linear recharging and capacitated
recharging stations. Comput. Oper. Res., 145:105870, 2022. doi:10.1016/J.COR.2022.105870.

11 Alejandro Montoya, Christelle Guéret, Jorge E. Mendoza, and Juan G. Villegas. The electric
vehicle routing problem with nonlinear charging function. Transportation Research Part B:
Methodological, 103:87–110, 2017. doi:10.1016/j.trb.2017.02.004.

12 Diego Pecin, Artur Alves Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-
cut-and-price for capacitated vehicle routing. Math. Program. Comput., 9(1):61–100, 2017.
doi:10.1007/S12532-016-0108-8.

13 Rafael Martinelli Pinto. Exact algorithms for arc and node routing problems. These de
doctorat, Pontifcia Universidade Católica do Rio de Janeiro, 2012.

14 Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints. Discret.
Optim., 3(3):255–273, 2006. doi:10.1016/J.DISOPT.2006.05.007.

15 Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transp. Sci., 48(4):500–520, 2014. doi:10.1287/
TRSC.2013.0490.

16 Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Oper. Res., 35(2):254–265, 1987. doi:10.1287/OPRE.35.2.254.

A Pretrial results

In Figure 2 we present the average computation time of instances in C100 (c101, c105, c106,
c107, c108), RC100 (rc101, rc102, rc105, rc106, rc107) and R100 (r101, r105, r109) using
different starting thresholds of resource consumption for the two completion bounds.

https://doi.org/10.1287/OPRE.1110.0975
https://doi.org/10.1287/OPRE.1110.0975
https://arxiv.org/abs/1910.09812
https://doi.org/10.1016/J.ORL.2004.11.011
https://doi.org/10.1016/J.DISOPT.2014.03.001
https://doi.org/10.1287/OPRE.2016.1535
https://doi.org/10.1080/00207543.2021.1955995
urn:nbn:se:liu:diva-205286
https://doi.org/10.1002/NET.20033
https://doi.org/10.1016/J.COR.2022.105870
https://doi.org/10.1016/j.trb.2017.02.004
https://doi.org/10.1007/S12532-016-0108-8
https://doi.org/10.1016/J.DISOPT.2006.05.007
https://doi.org/10.1287/TRSC.2013.0490
https://doi.org/10.1287/TRSC.2013.0490
https://doi.org/10.1287/OPRE.35.2.254


J. Enerbäck, L. Eveborn, and E. Rönnberg 3:15

Figure 2 Average computation times using different bounding thresholds.

0 0.2 0.4 0.6 0.8 1
Bounding threshold

0

5

10

15

20
Av

er
ag

e 
co

m
pu

ta
tio

n 
tim

e

c100,time bound
rc100,time bound
r100,time bound
c100 capacity bound
rc100, capacity bound
r100, capacity bound

B Results

We report results of each instance in Table 3–Table 5, divided by the three simulated
column generation environments, solved using (i) no acceleration strategy, (ii) ng-routes,
(iii) resource bounds + load-based completion bound, (iv) resource bounds + time-based
completion bound and (v): ng-routes + resource bounds + load-based completion bound +
time-based completion bound. For each instance and strategy we report the solving time
in seconds, and how many non-dominated labels were left at the end of the algorithm, in
thousands. We indicate for the results using ng-routes with a star which instances did not
have an elementary optimal solution. The ng-set size was set to 10, 15, and 20 for the
instance groups C100, RC100, and R100, respectively. The instances that could not be
solved within the 1-hour time limit are indicated with ’-’.

ATMOS 2024



3:16 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

Table 3 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. First simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 10.57 0.72 13.64 1.06 7.02 0.38 6.64 0.26 6.91 0.33
c102 292.68 1639.79 61.19* 20.03* 257.23 828.44 153.99 156.62 41.22* 7.04*
c103 - - 187.81 450.61 - - - - 122.50 81.83
c104 - - 300.45* 1136.58* - - - - 237.44* 509.01*
c105 13.75 1.22 16.81 1.49 11.00 0.76 7.28 0.38 8.65 0.42
c106 22.98 2.72 25.80 2.97 19.07 1.65 8.87 0.48 9.04 0.39
c107 16.64 1.76 19.37 2.21 14.03 1.20 8.73 0.54 10.00 0.57
c108 32.11 5.03 34.28 4.65 27.84 3.05 15.90 1.01 15.64 0.85
c109 70.44 21.13 58.71 12.37 63.35 11.06 39.55 3.57 29.65 2.34
rc101 9.92 0.23 16.29 0.70 6.19 0.15 5.42 0.13 7.46 0.19
rc102 56.39 4.33 41.89* 2.77* 48.15 2.75 46.68 2.56 31.40* 1.33*
rc103 331.06 182.51 124.35 24.99 277.25 94.08 257.62 74.68 100.38 10.83
rc104 - - 232.14 93.65 - - 1013.24 2355.03 182.59 34.67
rc105 32.25 1.67 42.00 3.69 26.43 1.08 25.69 1.03 29.92 1.34
rc106 26.83 1.08 38.22 2.91 22.44 0.76 21.59 0.71 26.95 1.02
rc107 128.75 18.88 127.96 21.16 114.46 12.95 113.12 10.91 107.04 10.32
rc108 284.19 100.13 223.03 72.62 254.82 62.64 250.77 52.10 190.37 33.86
r101 9.96 0.24 30.10 2.85 4.08 0.08 1.86 0.05 2.66 0.07
r102 268.04 455.46 192.05* 676.26* 187.85 152.03 165.44 105.60 89.49* 76.10*
r103 - - 580.34* 3383.36* - - - - 375.53* 847.43*
r104 - - - - - - - - - -
r105 32.35 2.15 79.55 26.84 13.14 0.50 8.39 0.32 10.85 0.51
r106 361.49 1957.72 258.61* 1365.62* 252.39 659.79 221.34 563.77 127.36* 171.22*
r107 - - - - - - - - 250.37* 1364.76*
r108 - - - - - - - - - -
r109 77.27 11.18 124.72 57.29 45.36 3.40 28.16 2.07 35.72 3.38
r110 609.45 1034.56 454.91 773.58 528.69 620.33 388.87 423.37 284.19 241.75
r111 617.17 1218.69 408.33 996.71 538.91 709.02 398.09 509.14 268.08 323.70
r112 - - - - - - - - 788.28 3323.50



J. Enerbäck, L. Eveborn, and E. Rönnberg 3:17

Table 4 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. Second simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 6.26 0.30 8.07 0.30 4.15 0.17 3.04 0.10 3.60 0.12
c102 262.03 993.25 41.29* 5.61* 232.83 516.59 129.38 64.23 22.86* 2.10*
c103 - - 129.01* 82.20* - - - - 96.60* 26.76*
c104 - - 133.37* 229.87* - - - - 104.75* 80.61*
c105 9.80 0.58 12.32 0.67 7.69 0.41 5.69 0.22 6.75 0.25
c106 16.49 1.41 18.35 1.31 13.99 0.91 8.88 0.38 10.74 0.44
c107 10.33 0.78 12.41 0.81 8.78 0.58 6.56 0.32 7.36 0.34
c108 23.15 2.71 24.61 2.18 20.09 1.70 13.79 0.79 15.04 0.78
c109 46.66 10.22 36.66 5.27 43.07 6.25 32.68 2.81 26.32 2.00
rc101 9.22 0.25 14.67 0.63 4.92 0.13 4.04 0.12 5.29 0.16
rc102 63.35 5.80 50.94 4.69 42.70 2.34 39.28 1.96 33.93 2.67
rc103 233.18 97.14 135.98* 28.09* 179.02 42.10 175.89 43.30 105.43* 13.47*
rc104 - - 231.74 85.70 1254.22 2238.00 1077.48 1492.99 185.34 37.29
rc105 23.85 0.89 33.49 1.98 18.26 0.54 17.52 0.53 21.51 0.73
rc106 21.40 0.81 31.36 1.76 16.33 0.51 15.46 0.51 19.52 0.68
rc107 78.47 8.19 88.11 11.74 68.98 5.24 67.85 4.96 71.19 5.23
rc108 161.45 39.18 135.66 24.69 140.67 19.64 135.28 19.30 107.70 10.69
r101 5.49 0.11 14.35 0.65 3.24 0.07 1.94 0.05 2.73 0.07
r102 509.03 1610.95 264.09 672.55 415.35 873.40 341.72 547.88 177.42 201.77
r103 - - 388.42* 1165.05* - - - - 219.83* 232.07*
r104 - - - - - - - - - -
r105 15.31 0.56 36.57 4.35 8.11 0.24 6.22 0.19 8.18 0.29
r106 - - 411.79* 1755.61* - - 714.61 2795.80 289.07* 652.41*
r107 - - 519.23* 2438.46* - - - - 304.52* 571.81*
r108 - - - - - - - - - -
r109 64.95 13.62 107.91 72.88 48.34 5.45 41.61 4.12 52.29 6.84
r110 379.97 612.04 335.82 628.84 332.98 317.98 290.90 200.27 237.60 146.19
r111 415.15 640.51 339.85 546.87 370.74 274.64 332.89 270.65 250.83 178.28
r112 - - 808.89* 3512.37* - - - - 645.10* 1889.91*

ATMOS 2024



3:18 Bounding-Based Labeling Algorithm for the EVRPTW-PLR

Table 5 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. Third simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 10.74 0.56 14.58 0.68 6.35 0.25 5.26 0.20 6.28 0.25
c102 189.41 212.56 43.98 4.73 158.19 126.25 89.23 18.95 23.85 1.50
c103 - - 145.53* 120.09* - - - - 88.56* 37.24*
c104 - - 250.34* 347.26* - - - - 177.54* 130.94*
c105 14.92 0.81 19.44 1.11 11.21 0.53 7.25 0.28 8.65 0.31
c106 24.54 1.81 28.38 2.02 20.27 1.25 10.23 0.42 9.86 0.41
c107 16.19 1.03 20.00 1.29 13.48 0.75 9.10 0.39 10.46 0.50
c108 33.56 4.07 35.73 3.97 28.20 2.55 15.52 0.84 13.28 0.58
c109 67.46 17.71 54.62 9.49 59.27 12.37 36.37 3.24 22.81 1.65
rc101 8.72 0.18 14.43 0.50 5.70 0.12 5.05 0.12 7.06 0.19
rc102 81.43 10.20 42.28* 2.91* 69.06 6.66 65.75 6.87 31.21* 1.61*
rc103 277.02 170.70 94.47* 11.93* 228.45 118.19 213.85 102.08 69.46* 5.94*
rc104 - - 202.47* 54.83* 1212.49 2985.51 1078.13 2329.54 169.58* 32.54*
rc105 26.29 1.04 34.30 2.21 20.42 0.70 19.25 0.68 23.30 0.94
rc106 23.22 0.75 31.87 1.56 17.90 0.51 16.92 0.51 21.42 0.72
rc107 105.39 10.72 110.37 13.92 90.57 8.16 87.71 7.46 88.95 8.26
rc108 198.30 41.37 163.56 25.93 175.65 31.02 169.05 25.43 135.59 18.03
r101 8.48 0.28 22.52 2.25 3.79 0.09 1.50 0.05 2.01 0.07
r102 - - 235.24* 1178.80* 291.00 1939.15 193.89 891.05 117.96* 266.17*
r103 - - - - - - - - 343.92* 3242.89*
r104 - - - - - - - - - -
r105 26.81 1.96 59.52 15.06 12.38 0.61 5.68 0.29 7.25 0.45
r106 - - 278.71* 1272.39* 332.47 2962.30 217.65 1046.66 134.17* 244.67*
r107 - - - - - - - - 284.58* 2133.11*
r108 - - - - - - - - - -
r109 82.11 32.52 129.89 196.64 51.20 11.44 26.56 4.59 36.29 9.02
r110 653.41 1482.01 456.48 1007.39 563.37 1211.10 400.06 791.16 260.14 332.05
r111 848.99 3269.41 615.19 3239.52 730.46 2548.20 481.84 1353.81 376.60 1195.76
r112 - - - - - - - - - -


	1 Introduction
	2 Problem Statement and Model
	3 Labeling Algorithm
	4 Bounding Methods
	4.1 Resource Bounds
	4.2 Completion Bounds
	4.2.1 Integration of ng-routes with Completion Bounds


	5 Experimental Results
	6 Conclusion
	A Pretrial results
	B Results

