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Abstract
We present novel extensions of the Periodic Event Scheduling Problem (PESP) that integrate the
assignment of activities to infrastructure elements. An application of this is railway timetabling, as
station and platform capacities are limited and need to be taken into account. We show that an
assignment of activities to platforms can always be made periodic, and that it can be beneficial to
allow larger periods for the assignment than for the timetable. We present mixed-integer programming
formulations for the general problem, as well as for the practically relevant case when multiple
platforms can be considered equivalent, for which we present a bipartite matching approach. We
finally test and compare these models on real-world instances.
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1 Introduction

Out of the many interacting pieces of public transportation services, a key determinant in
the puzzle is the timetable. This is an omnipresent yet flexible concern in the operators’
minds [3], as well as one of the data of most interest to passengers [14]. These are but two
of the reasons for which timetabling and in particular periodic timetabling has received
substantial attention in the past. The modeling framework of the Periodic Event Scheduling
Problem (PESP) was initially formulated by Serafini and Ukovich [16], quickly found to
have rich and interesting underlying structures [1, 9, 12, 13], and studied ever since, also in
integration with various other problems, such as [5, 10, 11, 15, 17].

Of special interest in this work is the question of solving PESP while making sure that
the produced timetable accounts for various infrastructural constraints of high practical
interest in railway operations, involving safety of operations and physical occupation of
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tracks. In particular, we focus on what is called track occupation problem in [11], which
entails ensuring that no two vehicles are ever scheduled to occupy the same point in time
and space. This is of particular interest, for example, when planning dwelling activities of
trains at the same platform. The need to respect a given association of the activities to be
scheduled to infrastructure elements led to Infrastructure-Aware PESP (IPESP), which can
be formulated as a mixed-integer linear program, by using well-known PESP constraints as
foundation [2, 11].

We present two main contributions: At first, we generalize IPESP to Infrastructure-Aware
PESP with Assignment (IPESPA), by integrating the assignment of activities to infrastructure
elements into the periodic timetabling problem. We show that such an assignment can always
be made periodic, without impact on the timetable, and highlight how it can be advantageous
for the period of such an infrastructure assignment to be larger than the one of the timetable,
with an elucidatory example. We then also present a mixed-integer programming formulation
for IPESPA, that generalizes the so-called Q0-constraints of [11].

The setting above is for the general case, in which we allow any map of activities to
sets of infrastructure elements. In a second step, we then restrict our inquiry to a more
common and practical use-case, where multiple infrastructure elements can be considered
as equivalent. We then assume that activities can only be assigned to one element, but
this element is allowed to have a capacity larger than one. For example, the two sides of a
platform are oftentimes equivalent options to choose, and we might consider such a platform
as an element with capacity two. The main achievement is a mixed-integer programming
formulation for this Infrastructure-Aware PESP with Capacities (IPESPC), a model much
more compact than the IPESPA model, based on matchings in certain auxiliary bipartite
graphs. Finally, this allows us also to derive two new alternative mixed-integer programming
formulations for standard IPESP, i.e., IPESPC with unit capacities, beyond those of [2, 11].

We compare our new formulations on three realistic instances, both in the case of unit
and larger capacities, and demonstrate their computational feasibility and practical benefit.

Section 2 recalls the Periodic Event Scheduling Problem and its infrastructure-aware
extension IPESP. Section 3 introduces IPESPA, discusses the theory of general infrastructure
assignments, and presents a mixed-integer programming formulation. In Section 4, we
restrict to IPESPC and present a matching-based MIP model, along with the resulting new
formulations for IPESP. We evaluate the computational power of our models in Section 5,
before concluding the paper in Section 6.

The present work is a direct consequence of the fruitful connections and conversations
that were had during ATMOS 2023 [4], and we thereby thank the organizing committee for
fostering the transport optimization community.

2 Periodic Event Scheduling and Infrastructure Awareness

The Periodic Event Scheduling Problem (PESP) is the standard model to compute and
optimize timetables for public transport. It is formulated as follows.

▶ Definition 1 ([16]). Consider a directed graph G with vertex set V (G) and arc set A(G),
together with T ∈ N, vectors ℓ, u ∈ RA(G), and w ∈ RA(G)

≥0 . The Periodic Event Scheduling
Problem (PESP) is to find vectors π ∈ RV (G) and x ∈ RA(G) such that
a) πj − πi ≡ xa mod T for all a = (i, j) ∈ A(G),
b) ℓ ≤ x ≤ u,
c) w⊤x is minimum,
or to decide that no such π and x exist.
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In public transportation practice the directed graph G is oftentimes a so called event-activity
network. There nodes V (G) are the events, typically arrival or departure events, whereas
arcs A(G) are the activities, typically driving from a departure to an arrival, or dwelling
from an arrival to a departure. The number T ∈ N is the period time, and determines
after how long each event should repeat. Then the vectors π and x sought by PESP are
called periodic timetable and periodic tension, respectively, where the former represents
T -periodic timestamps denoting at which point of each period each event should occur, and
the latter instead denotes the duration of the activities in-between events. PESP instances
are commonly denoted as (G, T, ℓ, u, w).

Note that the simultaneous use of timetable and tension variables is primarily for ease
of expression, since one can always be recovered from the other. In fact, given a periodic
timetable π, a corresponding tension is quickly found by setting xa := [πj − πi − ℓa]T + ℓa

for every a = (i, j) ∈ A(G), where [·]T denotes the modulo T operator with values in [0, T ).
Likewise, given a periodic tension, a corresponding timetable is quickly found by a connected
graph traversal [7, Theorem 9.8].

For in-depth analysis of the many properties of PESP, we refer to the literature, starting
with [8]. Multiple mixed-integer program formulations for PESP are known [7]. For simplicity,
here we choose the standard formulation [16], which models PESP by linearizing the modulo
constraints by use of auxiliary integer variables pij , called periodic offsets:

min
∑

(i,j)∈A(G)

wijxij (1a)

s.t. πj − πi + Tpij = xij ∀(i, j) ∈ A(G), (1b)
0 ≤ πi < T ∀i ∈ V (G), (1c)

ℓij ≤ xij ≤ uij ∀(i, j) ∈ A(G), (1d)
pij ∈ Z ∀(i, j) ∈ A(G). (1e)

Now we continue with the basic extension of PESP with infrastructure awareness, as
per [2]. First of all we define an infrastructure map η : A → E, mapping certain arcs
A ⊆ A(G) to a set of infrastructure elements E. This map encodes an assignment of
activities to infrastructure, implying where those activities will physically take place within
the network. We denote Ae := η−1(e), for e ∈ E. For each infrastructure element we also
have a minimum headway time h ∈ RE

≥0, indicating how long this element needs to be
unoccupied between uses of different vehicles. As in [2], we assume that for each e ∈ E either
he > 0 or ℓa > 0 for all a ∈ Ae, to avoid pathological cases.

Considering then arcs a1 = (i1, j1) and a2 = (i2, j2) in A, and such that a1 ̸= a2 and
η(a1) = η(a2), we say that a1 does not h-overlap a2 if it holds that

[πi2 − πi1 ]T ≥ xa1 + he. (2)

The constraint (2) is called Q0-constraint in [11], but there is also another possible equivalent
formulation, namely the Q4-constraint (“butterfly constraint”). These entail, for each pair of
arcs a1 and a2 as above, the addition of auxiliary arcs (j1, i2) and (j2, i1) with lower bound
he and upper bound T − he, and then imposing total tension exactly equal to T along the
4-cycle q(a1, a2) := (i1, j1, i2, j2, i1). That is,∑

a∈q(a1,a2)

xa = T. (3)

Then (3) holds for q(a1, a2) if and only if a1 and a2 do not h-overlap each other [11].

ATMOS 2024
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0 T 2T
a1 a1

a2 a2

a3 a3 a3a3a3

Platform 1

Platform 2

Platform 3

(a) T -periodic platform assignment with 3 platforms.

0 T 2T
a1

a1a2

a2a3

a3a3 a3a3

Platform 1

Platform 2

(b) 2T -periodic platform assignment with 2 platforms.

Figure 1 Two platform assignments of the same three activities.

We say that a set S ⊆ A is h-conflict-free if no arc in S h-overlaps another, and
furthermore xa + he ≤ T for all e ∈ E and all a ∈ S ∩ Ae.

▶ Definition 2 ([2]). Let (G, T, ℓ, u, w) be a PESP instance, let η : A → E be an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP (IPESP) is to find a solution (π, x)
to PESP on (G, T, ℓ, u, w) such that A is h-conflict-free and the solution is optimal, or to
decide that no such solution exists.

The PESP mixed-integer program (1), together with either all necessary Q0-constraints (2)
or Q4-constraints (3), solves Infrastructure-Aware PESP.

This extended form of PESP implicitly assumes two rather strict properties. Firstly, the
map η is, by definition, mapping each arc in A to a single e ∈ E, thereby presuming that
such an infrastructure assignment has already been fixed. This implies that every activity
must repeat every period always on the same infrastructure. However common, this need
not be the case, and as we will see in the next section, it shall not.

3 General Infrastructure Awareness with Flexible Infrastructure Maps

Let us begin by considering the following illustrative example, motivating our work.

▶ Example 3. Consider an IPESP situation where we have T = 30 minutes, and three
dwelling activities ak = (ik, jk) for k ∈ {1, 2, 3}. Suppose further that there are three
platforms e1, e2, e3 with η(ak) = ek for all k ∈ {1, 2, 3}, without headway requirements. Let
πi1 = 0, πi2 = 10, πi3 = 20, and πj1 = 20, πj2 = 0, πj3 = 10, meaning that each dwelling
activity is scheduled for 20 min. In Figure 1a, we see how this would play out. Crucially,
this leaves each platform unoccupied for 10 minutes per period of 30 minutes.

Suppose we were now to allow all activities to be assigned to either platform, and possibly
to different platforms at different periodic repetitions. Then, the configuration of Figure 1b
would be possible. With the same timetable as before, only two platforms are required now.
This enables a more efficient use of the existing infrastructure.

Moreover, IPESP always assumes that no infrastructure element can be occupied for
longer than T . This might however be practically necessary, e.g., due to regulations on
minimum turnaround times.
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3.1 Problem Definition and Periodizability of Assignments
We now present the tools to do timetabling while ensuring efficient use of the underlying
infrastructure. Consider the flexible infrastructure map η : A → E ⊆ 2E , and so having the
option to choose where to have activities occur. Given a periodic timetable π and tension x

on a PESP instance (G, T, ℓ, u, w), we call

I :=
{

I(k)
a

∣∣∣ a ∈ A, k ∈ Z
}

(4)

the realisation of (π, x), where I
(k)
a := [πi + kT, πi + kT + xij ] for k ∈ Z and a = (i, j) ∈ A.

Now, an infrastructure assignment is any map ν : I → E, and we say it is valid if we have
that ν

(
I

(k)
a

)
∈ η(a) for all I

(k)
a ∈ I. Furthermore, for a given infrastructure assignment ν

and an infrastructure element e ∈ E we define

Ie :=
{

[πi + kT, πi + kT + xij + he)
∣∣∣ ∀I(k)

a ∈ I : ν
(

I(k)
a

)
= e
}

, (5)

and we say ν is h-conflict-free if the intervals in Ie are pairwise disjoint for every e ∈ E.
It now comes natural to formulate the following.

▶ Definition 4. Let (G, T, ℓ, u, w) be a PESP instance and η : A → E ⊆ 2E an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP with Assignment (IPESPA) is to
find a solution (π, x) to PESP on (G, T, ℓ, u, w), together with a valid and h-conflict-free
infrastructure assignment ν, such that the solution is optimal, or to decide that no such
solution exists.

It is clear that were η not to be actually flexible, meaning |η(a)| = 1 for every a ∈ A, then
we would fall back into Definition 2 by fixing the only possible assignment ν(I(k)

a ) := η(a) for
all intervals in the realisation. Otherwise, this problem formulation allows for full flexibility
in the choice of infrastructure, which can change after any periodic repetition, within the
limits of η. This lack of structure and predictability may seem to be an issue of design, since
the solutions could even become indescribable in finite terms. Thankfully, this will turn out
not to be an issue. We say an infrastructure assignment ν is ω-periodic, for some ω ∈ N, if

ν(I(k)
a ) = ν(I(k)

a + ωT ), (6)

for every I
(k)
a ∈ I. In such a case, we call ω the infrastructural period of the assignment. As

it turns out, we are always able to restrict to such repeating patterns without losing any
underlying PESP solution.

▶ Theorem 5. Consider an instance (G, T, ℓ, u, w) of IPESPA with η : A → E ⊆ 2E, and a
solution (π, x) together with a valid and h-conflict-free infrastructure assignment ν. Then,
there exist ω ∈ N, with ω ≤ |E||E|, and a valid and h-conflict-free infrastructure assignment
σ such that σ is ω-periodic.

Proof. Let us consider I for the above instance and solution. All activities have a single
representative interval in I whose lower bound is in [pT, pT + T ), with p ∈ Z. This set of
representatives, which we denote by Fp, is finite. Even more so, considering for each e ∈ E

the one interval in Fp that is ν-assigned to e and with the minimum lower bound, there are
at most |E| such leading intervals. There are at most |E||E| ways to assign these intervals,
and so there exists a p′ ∈ Z such that p − |E||E| ≤ p′ ≤ p + |E||E|, and such that ν|Fp′

mirrors ν|Fp on all the leading intervals of Fp. By that, mirroring the whole of ν|Fp on Fp′

can be done without h-conflict. Then, without loss of generality, we assume that p < p′, and

ATMOS 2024
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set ω := p′ − p. By construction ω ≤ |E||E|, and we can construct a valid, h-conflict-free,
and ω-periodic infrastructure assignment σ by setting

σ
(

I(k)
a

)
:= ν

(
I([k−p]ω)

a

)
. (7)

◀

The theorem ensures that IPESPA can be solved by restricting to periodic assignments,
whose maximum period is bounded by the instance. Note that the bound on ω can be
significantly improved if all headways are the same, i.e., he = he′ for any e, e′ ∈ E. In that
case, much along the lines of [6, Theorem 3.1], the bound becomes ω ≤ |E|!.

3.2 Pattern Functions and Conflict-Freeness
We will now construct a finitely described object from which a periodic infrastructure
assignment can be derived, and conclude this chapter by showing how to use said object to
formulate IPESPA as a mixed-integer program. As in Definition 4 we have a PESP instance,
an infrastructure map, and a vector of headways. Choosing some maximum infrastructural
period M ∈ N>0, we construct a pattern function H : A → P, that assigns to each arc in A
a pattern in

P :=
⋃
i|M

Ei = {(e1, . . . , ei) | e1, . . . , ei ∈ E and i divides M} . (8)

A pattern function is said to be valid if every image H(a) only contains elements of η(a). The
prescribed pattern is intended to be repeated ad infinitum. A corresponding infrastructure
assignment νH is quickly extracted from a pattern function H, by setting

νH

(
I(k)

a

)
:= H(a)[k]ma

∀a ∈ A, ∀k ∈ Z, (9)

where ma is the length of H(a), i.e., the number of entries. So constructed, νH is periodic, of
period at most M . Note that the choice of M is up to the planner and the model becomes
more flexible the more M is divisible.

▶ Example 6. Let us consider again Example 3 in the case where we allow to assign each
activity to each platform, i.e., η(ak) = {e1, e2} for all k ∈ {1, 2, 3}. The valid pattern
function associated to the infrastructure assignment in Figure 1b is given by H(a1) =
H(a3) = (e1, e2), H(a2) = (e2, e1), so that ma1 = ma2 = ma3 = 2.

We can now use pattern functions to formulate linear modulo constraints, that generalize
the Q0-constraints as presented in (2).

▶ Theorem 7. Consider a PESP instance (G, T, ℓ, u, w), an infrastructure map η : A →
E ⊆ 2E, headways h ∈ RE

≥0, and some PESP solution (π, x). Let H be a pattern function,
and denote by ma the length of the pattern H(a). Then, the infrastructure assignment νH is
h-conflict-free if and only if:
(a) For every arc a ∈ A and infrastructure element e ∈ H(a), we have

xa + he ≤ maT. (10)
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(b) For every a1, a2 ∈ A, with a1 = (i1, j1) and a2 = (i2, j2), with images under H both
containing the same infrastructure element e at indices p1 and p2 respectively, such that
either a1 ̸= a2 or p1 ̸= p2, we have

[πi2 + (p2 + k2ma2) T − πi1 − (p1 + k1ma1) T ]mT ≥ xa1 + he,

∀k1 ∈
{

0, . . . ,
m

ma1

− 1
}

, k2 ∈
{

0, . . . ,
m

ma2

− 1
}

,
(11)

where m := lcm(ma1 , ma2), and the indexing of the patterns starts at 0.

Proof. ( =⇒ ): If (a) is violated, then νH

(
I

(p)
a

)
= e = νH

(
I

(p+ma)
a

)
, for p the index of e in

H(a). Then we find in Ie the intervals

[πi + pT, πi + pT + xij + he) and
[πi + (p + ma)T, πi + (p + ma)T + xij + he),

(12)

which intersect, since πi + pT + xij + he > πi + pT + maT .
Suppose instead (a) holds, and (b) is violated, for some k1 ∈ {0, . . . , m/ma1 − 1} and

k2 ∈ {0, . . . , m/ma2 − 1}. By construction in (9), note that the images under νH of I
(p1+k1ma1 )
a1

and I
(p2+k2ma2 )
a2 are both e, in fact for any integral k1 and k2. Since πv ∈ [0, T ) for every

v ∈ V (G), we have that

[πi2 + (p2 + k2ma2) T − πi1 − (p1 + k1ma1) T ]mT < xa1 + he, (13)

and by construction the content of the modulo operator is either already in [0, mT ), or it is
in [−mT, 0). If it is non-negative, we find in Ie the intervals

[πi1 + (p1 + k1ma1)T, πi1 + (p1 + k1ma1)T + xa1 + he) and
[πi2 + (p2 + k2ma2)T, πi2 + (p2 + k2ma2)T + xa2 + he),

(14)

and they intersect. If instead the content is negative, then the modulo operator will add mT ,
and we find in Ie the intervals

[πi1 + (p1 + k1ma1)T, πi1 + (p1 + k1ma1)T + xa1 + he) and
[πi2 + (p2 + k2ma2 + m)T, πi2 + (p2 + k2ma2 + m)T + xa2 + he),

(15)

and they intersect.
( ⇐= ): Suppose now that νH is not h-conflict-free. There is then an element e ∈ E such

that the set Ie contains two intersecting intervals. Let these be I
(s1)
a1 and I

(s2)
a2 , and without

loss of generality let us assume that min I
(s2)
a2 ∈ I

(s1)
a1 . We then have that

0 ≤ πi2 + s2T − πi1 − s1T < xa1 − he ≤ ma1T, (16)

where the last inequality holds if (a) does. Then, since ma1T ≤ mT , the [·]mT operator is
freely applied, and we have [πi2 + s2T − πi1 − s1T ]mT < xa1 +he. For both intervals, another
way to write si is as pi + kimai

+ βim, with integral βi and minimal positive integral ki,
by which we have [πi2 + (p2 + k2ma2 + β2m)T − πi1 − (p1 + k1ma1 + β1m)T ]mT < xa1 + he.
Then, the two summands β2mT and β1mT can be deleted since they do not affect the modulo
operation, and we have found a violation of (b). ◀

▶ Remark 8. In the IPESP case, i.e., |η(a)| = 1 for all a ∈ A, all patterns Ha have length
ma = 1, so that m = 1. Theorem 7 then states that an infrastructure assignment is h-
conflict-free if and only if xa + he ≤ T for all e ∈ E and a ∈ Ae and the Q0-constraint (2)
holds for all pairs of distinct arcs assigned to the same infrastructure element. Indeed, this
was our definition of h-conflict-freeness in Section 2. In general, the constraints (11) can be
interpreted as Q0-constraints that implicitly capture a time expansion up to period mT .

ATMOS 2024
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a1 a1

a2 a2 a2 a2 a2

Figure 2 Two time expansions over 10 periods, with occurrences of two activities, a1 and a2,
with different pattern lengths. Each arc symbolizes one constraint like (19). Only those highlighted
in black are needed in case there were upper bounds ua1 , ua2 ≤ T .

3.3 A MIP Formulation for IPESPA
We now want to use the platforming period bound of Theorem 5 and the inequalities
of Theorem 7 to extend the PESP mixed-integer program (1) to IPESPA. We model a
pattern function H by introducing binary variables τaρ for all possible a ∈ A and images
ρ ∈ P =

⋃
i|M Ei, whenever ρ is valid for a, i.e., all entries of ρ are in η(a). By the bound

expressed in Theorem 5 we can choose a finite but sufficiently large M , thereby having
finitely many variables τaρ. Exactly one pattern has to be activated for each arc, which we
express by∑

ρ∈P
τaρ = 1, ∀a ∈ A. (17)

We include the inequalities (10), but only activate them if relevant, by having

xa + max
e∈ρ

he ≤ maT + (1 − τaρ)B, (18)

for every variable τaρ. Here maxe∈ρ he and ma are scalars, determined by the pattern ρ, and
B := maxa∈A ua + maxe∈E he is a scalar globally determined by the instance itself. This
way, if H(a) = ρ, then (18) is effective, but otherwise it is trivially satisfied.

To linearize the modulo operation in (11) we also introduce binary variables sρ1ρ2 . These
are analogous to the periodic offsets pij (1e) and can indeed be restricted to {0, 1}, as in this
case the modulo operator is applied to a number in [−mT, mT ). Activating the constraint if
and only if both patterns ρ1 and ρ2 are selected, we have

πi2 +(p2 + k2ma2) T −πi1 −(p1 + k1ma1) T +mTsρ1ρ2 ≥ xa1 +he −(2−τa1ρ1 −τa2ρ2)B, (19)

for every pair of arcs a1, a2 ∈ A, respectively with H-images ρ1, ρ2, of lengths ma1 , ma2 ,
both containing e ∈ E at indices p1, p2 (0-indexed), for every k1 ∈ {0, . . . , m/ma1 − 1} and
k2 ∈ {0, . . . , m/ma2 − 1}, and where m = lcm(ma1 , ma2). Note that pi, mai

, m, and he, here
are all scalars, determined by ρ1 and ρ2.

▶ Example 9. For an illustration of which constraints (19) are applied, we refer to Figure 2.
There we have two activities a1 and a2, assignable to the same infrastructure element, with
p1 = 2, m1 = 5, and p2 = 0, m2 = 2. Each arc symbolizes one constraint like (19), of which
there is two per pairing, i.e., 20 in total. However, in many cases, if p2 +k2ma2 −p1 −k1ma1 >

⌈(ua1 + he)/T⌉, then (11) is always satisfied, and we can exclude it a priori. This means that,
depending on the PESP upper bounds, a significant drop in the number of constraints is
possible. The bold arcs in Figure 2 are the 4 constraints that would be kept if we had, for
instance, ua1 , ua2 ≤ T .
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Including in a PESP mixed-integer program such as (1) these two types of binary variables
τaρ and sρ1ρ2 , together with (17), (18), and (19), yields a mixed-integer program formulation
for IPESPA. In (20) we can see it in full.

min
∑

a∈A(G)

waxa (20a)

s.t. (π, x) solves PESP on G, (20b)∑
ρ∈P

τaρ = 1 ∀a ∈ A, (20c)

xa + max
e∈ρ

he ≤ maT + (1 − τaρ)B
∀a ∈ A and
∀ valid ρ ∈ P,

(20d) πi2 + (p2 + k2ma2) T

−πi1 − (p1 + k1ma1) T

+mTsρ1ρ2

 ≥

(
xa1 + he

−(2−τa1ρ1 − τa2ρ2)B

)
∀a1, a2 s.t. (⋆), (20e)

τaρ ∈ {0, 1}
∀a ∈ A and
∀ valid ρ ∈ P,

(20f)

sρ1ρ2 ∈ {0, 1} ∀ρ1, ρ2 ∈ P, (20g)

where by (⋆) we mean the conditions of (19).
This formulation allows for a great degree of flexibility, giving practitioners a direct

handle on the maximum infrastructural period M . In fact, although fixing M to the bound
proven in Theorem 5 ensures that no PESP solution is excluded, it is entirely possible that
in a practical setting one would want to limit it further, so as to bound the complexity of
the infrastructural assignment. To that same purpose, the formulation also allows to forcibly
forbid individual patterns if desired.

4 Partitionable Infrastructure Maps

In practice, the infrastructure map η : A → E is oftentimes not completely flexible, as shown
in Figure 3a, but instead comes with additional structure. Of particular interest is the
case illustrated in Figure 3b, where E is a partition of all infrastructure elements, i.e., the
infrastructure elements are all grouped and every activity can be freely assigned to all
elements in one of such groups. An omnipresent example is a station with two platforms that
serves lines in two directions, with the lines in each direction having a dedicated platform. It
turns out that when η is partitionable, the IPESPA boils down to a rather compact form.

a1 a2 a3 a4 a5 a6

e1 e2 e3 e4

(a) Non-partitionable η.

a1 a2 a3 a4 a5 a6

e1 e2 e3 e4

(b) Partitionable η.

Figure 3 Two infrastructure maps for an instance with six activities and four infrastructure
elements.
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Formally, we define the following variant of the IPESPA.

▶ Definition 10. Let (G, T, ℓ, u, w) be a PESP instance and η : A → E an infrastructure
map, where E is a partition of E. The Infrastructure-Aware PESP with Capacities (IPESPC)
is to find a solution (π, x) to PESP on (G, T, ℓ, u, w), together with a valid and conflict-free
platform assignment ν, such that the solution is optimal, or to decide that no such solution
exists.

Alternatively, IPESPC is equivalent to IPESP with the additional feature that every e ∈ E

has now a capacity ke ∈ N. In other words, e ∈ E no longer corresponds to a single
infrastructure element, but to a group of ke equivalent elements. For ease of exposition, we
stick to this perspective going forward.

We use a matching-based approach to solve IPESPC. To this end, we expand G with
auxiliary arcs between activities that can use the same group of infrastructure elements.
Formally, let G′ be the graph arising from G by adding for each e ∈ E and a1 = (i1, j1), a2 =
(i2, j2) ∈ Ae a new arc α from j1 to i2. We refer to α as the auxiliary arc from a1 to a2,
and much like the headway arcs aI used in [2] and in the Q4 butterfly constraints (3), we
set ℓα := he, uα := T − he, wα := 0 if a1 ̸= a2, and ℓα := he, uα := T, wα := 0 in the case
a1 = a2. Let A′ denote the set of all auxiliary arcs, let A′

e denote all auxiliary arcs associated
to e, and let G′

e be the subgraph of G′ on the arcs in A′
e. For S ⊆ V (G) × V (G), we will use

the notation G[S] for the graph (V (G), A(G) ∪ S), so that, e.g., G′ = G[A′]. The following
theorem compactly characterizes when a PESP solution admits a feasible infrastructure
assignment in the context of IPESPC:

▶ Theorem 11. Consider a PESP instance (G, T, ℓ, u, w), the expanded graph G′, a par-
titionable infrastructure map η : A → E, headways h ∈ RE

≥0, capacities k ∈ NE, and some
PESP solution (π, x) on G. Then, there exists a valid and h-conflict-free infrastructure
assignment ν if and only if for each e ∈ E there exists a perfect matching M′

e ⊆ A′
e of G′

e

and (π, x) can be extended to a PESP solution on G[M′
e] such that∑

a∈Ae

xa +
∑

a∈M′
e

xa ≤ keT. (21)

Proof. First, assume that there exist perfect matchings M′
e of G′

e satisfying (21) for all
e ∈ E. The matching M′

e together with the arcs Ae forms a set of disjoint directed cycles,
where every cycle consists of arcs that alternatingly belong to Ae and A′

e.
Let then Ce

1 , Ce
2 , . . . , Ce

me
denote the cycles corresponding to e ∈ E, and define pe

j :=
1
T

∑
a∈Ce

j
xa for j = 1, . . . , me. Because the timetable (π, x) is feasible on G[M′

e], pe
j is

integer by the cycle periodicity property [7, Lemma 6.39]. Since it holds that

me∑
j=1

pe
j = 1

T

me∑
j=1

∑
a∈Ce

j

xa = 1
T

∑
a∈Ae

xa +
∑

a∈M′
e

xa

 ≤ ke, (22)

it suffices to show that just the activities appearing in Ce
j can be assigned on a group of

capacity pe
j . The total tension along the cycle is pe

jT , so in a pe
jT -periodic schedule it is

straightforward to fit all the activities in Ce
j ∩ A, simply following the order in which they

appear through the cycle and with timestamps agreeing with π modulo T . Then, having an
available capacity of pe

j , that schedule can be repeated over each of the pe
j equivalent elements,

each time shifted forward by T . This construction implies adherence to the T -periodic
timetable π, and a pe

jT -periodic infrastructure assignment, valid since each η(Ce
j ∩ A) = e,

and h-conflict-free by the bounds on the auxiliary arcs.
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Suppose the contrary instead, that no perfect matching in A′
e respects (21). Notice how,

given that π is fixed and the headway he is the same on all elements in the group e, we can
without loss of generality lengthen all activities in Ae by he and then assume that the new
minimum headway is 0 instead. Now, let M∗ be a minimum tension perfect matching in G′

e.
We then have that for some e ∈ E there is an integer Ke > ke such that∑

a∈Ae

xa +
∑

a∈M∗

xa = KeT > keT. (23)

Now, for t ∈ [0, T ) and S ⊆ Ae ∪ A′
e, let the inventory function Ie(t, S) denote the number

of h-overlapping activities in S at time t. By (23) we have that Ie(t, Ae ∪ M∗) = Ke for
all t ∈ [0, T ). Moreover, since M∗ is a minimum tension perfect matching, then there is a
t∗ ∈ [0, T ) such that Ie(t∗, M∗) = 0. That is because if M∗ = {(e1, f1), . . . , (em, fm)} was
h-overlapping everywhere instead, then without loss of generality we can assume that the
timestamps would be

πe1 < πfm
< πe2 < πf1 < . . . < πem

< πfm−1 , (24)

where a shorter matching is immediately apparent, negating the minimality of M∗. See
[17, Lemma 3] for further details. By the above, we then have that Ie(t∗, Ae) = Ie(t∗, Ae ∪
M∗) − Ie(t∗, M∗) = Ke > ke, implying there are more simultaneous activities than there is
infrastructure capacity to host them. In particular, there is no h-conflict-free infrastructure
assignment. ◀

j1

j2

j3

i1

i2

i3

xj1,i1 = 10

xj2,i2 = 10

xj3,i3 = 10

(a) Matching corresponding to Figure 1a.

j1

j2

j3

i1

i2

i3

x j 1
,i 3

=
0

x
j2 ,i1 = 0

x
j3 ,i2 = 0

(b) Matching corresponding to Figure 1b.

Figure 4 The two matchings corresponding to Example 3.

▶ Example 12. We illustrate on the basis of Example 3 how matchings relate to infrastructure
assignments in Figure 4. In the IPESPA situation of Figure 1a, we have three infrastructure
elements e1, e2, e3 of capacity one each. For each element ek, the matching in Figure 4a
creates a directed cycle of tension 1 · T = 30 containing the dwelling activity ak = (ik, jk)
and the auxiliary arc (jk, ik). Figure 1b is an IPESPC situation with one infrastructure
element e. Here, the matching in Figure 4b induces a directed cycle of tension 2 · T = 60, we
hence use a capacity of two. The cycle encodes that each platform is used by a1, a3, a2 in
this cyclic order.
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Theorem 11 allows formulating IPESPC very compactly compared to IPESPA. Introducing
matching variables as binary decision variables ya for all a ∈ A′, we have the following MIP:

min
∑

a∈A(G)

waxa (25a)

s.t. (π, x) solves PESP on G, (25b)∑
a∈δ−

G′
e

(i)

ya = 1 ∀e ∈ E, ∀(i, j) ∈ Ae, (25c)

∑
a∈δ+

G′
e

(j)

ya = 1 ∀e ∈ E, ∀(i, j) ∈ Ae, (25d)

∑
a∈Ae

xa +
∑

a∈A′
e

xaya ≤ keT ∀e ∈ E, (25e)

πj − πi + Tpa = xa ∀a = (i, j) ∈ A′, (25f)
ℓaya ≤ xa ≤ uaya + (T − 1)(1 − ya) ∀a ∈ A′, (25g)

ya ∈ {0, 1} ∀a ∈ A′. (25h)

Constraints (25c) and (25d) define a unique predecessor and successor for each activity by
requiring that y corresponds to a perfect matching M′

e in A′
e for each e ∈ E. Constraints

(25e) ensure that the total time of the activities scheduled on a platform group and the
selected auxiliary activities is at most the total available time on that platform group. These
constraints can be linearized by introducing for each a ∈ A′ a real variable za, with bounds
0 ≤ za ≤ ua, and constrained as xa − (1 − ya)ua ≤ za ≤ xa, so that it is equal to the product
xaya. The constraints (25f) tie the tensions xa on the auxiliary activities a ∈ A′ to the
timetable π. Finally, (25g) ensures that those tensions adhere to their bounds when they are
part of the selected matching, and impose no restrictions otherwise.

There is a clear resemblance between (25) and the formulation [17] proposes for jointly
optimizing a periodic timetable and vehicle circulation. This is no coincidence: as long as
the corresponding mapping from activities to resources is a partition, any resource schedule
associated to a periodic timetable can be described by a matching. In [17] the resources are
vehicles, whereas in the present paper infrastructure elements, e.g., platforms. It immediately
follows that the results established in [17] carry over to our setting. Most notably, given
a feasible timetable, a greedy algorithm can actually be used to find an infrastructure
assignment with the minimum number of required infrastructure elements.

For groups consisting of a single element, i.e., ke = 1, the matching formulation can be
enhanced using the surprising insight that in this case it is not necessary to compute the
matching explicitly. We have the following theorem:

▶ Theorem 13. Suppose ke = 1 and let (π, x) be a PESP solution on G. Then Ae is
h-conflict-free if and only if (π, x) extends to a PESP solution on G′

e such that

∑
a∈Ae

xa +

 1
|Ae|

∑
a∈A′

e

xa

 = |Ae| + 1
2 T. (26)

Proof. Suppose that Ae is h-conflict-free. This means that for any as = (is, js), at = (it, jt) ∈
Ae with as ̸= at the Q4-constraints (3) must hold, namely

xis,js + x′
js,it

+ xit,jt + x′
jt,is

= T, (27)

where we use the notation x′
a := [πj − πi − ℓa]t + ℓa to indicate tensions on an auxiliary arc

a = (i, j).
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Let q(as, at) denote the butterfly-shaped 4-cycle given by (is, js, it, jt, is). There are∑|Ae|−1
i=1 i = |Ae|(|Ae| − 1)/2 many such butterfly cycles, each auxiliary arc (js, it) ∈ A′

e with
s ̸= t is in exactly one such cycle, while each arc (is, js) ∈ Ae is in |Ae| − 1 many of them.
Moreover, there are exactly |Ae| auxiliary arcs of the form (js, is), for which holds that

he ≤ xis,js + x′
js,is

≤ 2T − he, (28)

since he ≤ x′
js,is

≤ T and h-conflict freeness implies xis,js ≤ T − he. Due to the cycle
periodicity property,

xis,js + x′
js,is

= T, (29)

unless he = 0, but then we can subtract T from x′
js,is

= T and maintain the feasibility of
(π, x) on G′

e.
Summing up over all butterfly constraints (27) for each pair of activities and all the

self-cycles (29) of each activity in Ae, we obtain

|Ae|
|Ae|∑
s=1

xis,js
+
∑

a∈A′
e

x′
a =

(
|Ae|(|Ae| − 1)

2 + |Ae|
)

T = |Ae|(|Ae| + 1)
2 T. (30)

For the other direction, suppose that A′
e is not h-conflict free, but (π, x) extends to PESP

solution on G′
e. Then one of (27) or (29) must be violated. Let q(as, at) be a butterfly cycle

with as = (is, js) and at = (it, jt). Then

xis,js + x′
js,it

+ xit,jt + x′
jt,is

≥ ℓis,js + ℓit,jt + 2he > 0 (31)

since we assumed that at least lower bounds or minimum headway times are positive. Due
to the cycle periodicity property of periodic timetables,

xis,js + x′
js,it

+ xit,jt + x′
jt,is

≥ T. (32)

Moreover, considering the cycles comprised of (is, js) ∈ Ae and the auxiliary arc (js, is) ∈ A′
e,

we have

xis,js + x′
js,is

≥ ℓis,js + he > 0, (33)

so that

xis,js + x′
js,is

≥ T. (34)

Therefore, if one of (27) or (29) is violated, we must have a strict inequality in (32) or (34).
Taking the sum,

|Ae|
|Ae|∑
s=1

xis,js +
∑

a∈A′
e

x′
a >

(
|Ae|(|Ae| − 1)

2 + |Ae|
)

T = |Ae|(|Ae| + 1)
2 T, (35)

so (26) cannot hold. ◀

A direct implication of Theorem 13 is a new formulation for IPESP, provided that all
infrastructure elements have unit capacities:

min
∑

a∈A(G)

waxa (36a)

s.t. (π, x) solves PESP on G′, (36b)∑
a∈Ae

xa + 1
|Ae|

∑
a∈A′

e

xa = |Ae| + 1
2 T ∀e ∈ E. (36c)
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In contrast to the original formulation proposed in [2] and to the matching approach (25),
formulation (36) introduces neither additional integer variables nor quadratic terms.

5 Experiments

In the sequel, we will evaluate different formulations for IPESP and IPESPC on a set of
realistic instances. We omit the IPESPA model, as for our datasets there hardly is added
value compared to IPESPC. We use Gurobi 11 as a MIP solver on an Intel Xeon E3-1270
3.80 GHz CPU with 32 GB RAM.

5.1 Instances
We evaluate our models on instances we constructed based on publicly available timetable
information, platform usage, and track data. Additionally, some track information was
provided to us by DB InfraGO AG. The instances are:

S-Bahn, the full network of S-Bahn Berlin, a suburban commuter rail network with 16
lines. On several sections, there are as much as 7 trains per track and direction within
the period time of 20 minutes. Our IPESP instance is based on the annual timetable,
assuming fixed driving times, but flexible dwelling and turnaround times. However, there
are several places in the network where multiple platforms are available, and this builds
our corresponding IPESPC instance.
Tram, the full tram network of Berlin, comprising 22 lines operated with a period
time of 20 minutes, with frequencies ranging between 1 and 6. The difficulty here
does not lie in associating driving and dwelling times, which are fixed, but in fulfilling
synchronization constraints and deciding infrastructure assignments at the terminal
stations: The turnaround times are flexible and capacities in the turning loops are scarce.
This is inherently an IPESPC instance, that, in fact, cannot be transformed into a feasible
IPESP instance, since all T -periodic assignments are infeasible.
Corridor, the central longitudinal railway corridor of regional and long-distance trains
in Berlin, as well as a subsection of it, from Ostkreuz to Friedrichstraße, which we denote
as ShortCorridor. Many stations have multiple platforms, and the trains have different
stopping patterns. The period time is 60 minutes, driving, dwelling, and turnaround
times are all variable. This, too, is inherently an IPESPC instance, from which we created
an IPESP instance based on the annual timetable.

We use only a simple objective function for the timetabling part: Driving and dwelling
activities are weighted by 2, turnarounds by 1, and all other arcs by 0. Additionally, note that
we do not include any transfer arcs, in part because we have no data available regarding the
flow of passengers, and in part because the scope of this work rather focuses on operational
capabilities instead.

5.2 IPESP Experiments
For the unit capacity case of IPESP, we have now several formulations at hand: The Q4
butterfly constraints (3), the matching model (25), and the special formulation (36). We
test these formulations and their combinations on the S-Bahn and Corridor instance, with
a wall time limit of one hour. We further include versions where the matching variables y

are relaxed to be continuous. Our results are collected in Table 1.
On S-Bahn, not all formulations found a solution, but those that did also managed to

prove optimality within the time limit. All such formulations contain the Q4 butterfly
constraints (3), and none of them use binary matching variables. The combination of Q4
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with the special sum constraint (36) worked best, followed by pure Q4. When initialized
with the optimal solution as MIP start, almost all formulations proved its optimality within
the time frame of one hour, or managed a very thin optimality gap.

On Corridor, no formulation found solutions, and no attempt at providing initial partial
solutions was successful. On ShortCorridor all formulations quickly found a primal solution
within seconds, and an optimal solution within minutes, but none managed to prove that
optimality within one hour. Only when starting ShortCorridor with the best solution
found so far, a proof to optimality was reached, and only by the formulation using (25), i.e.,
matching with binary variables, together with the special constraints (36c). This was also
the fastest formulation to reach optimality to begin with.

Table 1 Timed results for IPESP tests on S-Bahn and Corridor, expressed in seconds. Tests
denoted with Q4 use Q4-constraints as in (3). Tests denoted with M use matching constraints as
in (25), with capacity set to 1. Tests denoted with Mc use the same constraints as M, but with
relaxed continuous variables instead. Tests denoted with S use constraints as in (36). The first
column details the time to the first primal solution that was found, the second column the time to
the optimal objective value (3058 for S-Bahn and 10 for Corridor), and the third column the time
to fully close the optimality gap. The last column details the time needed to prove optimality when
given the optimal solution from the beginning. The time limit was 1 hour per configuration.

S-Bahn s to primal s to optimal s to proof s to proof (warm)
Q4 64 227 227 95
Q4+M – – – 1221
Q4+Mc 338 1672 1672 140
Q4+S 40 156 156 150
Q4+M+S – – – – (.58%)
Q4+Mc+S 172 738 738 766
M – – – – (.61%)
S – – – 595
M+S – – – 2952
Mc+S – – – 1402
ShortCorridor s to primal s to optimal s to proof s to proof (warm)
Q4 0 110 – –
Q4+M 5 87 – –
Q4+Mc 0 82 – –
Q4+S 2 48 – –
Q4+M+S 1 15 – –
Q4+Mc+S 0 23 – –
M 0 44 – –
S 1 576 – –
M+S 4 11 – 3268
Mc+S 6 50 – –

5.3 IPESPC Experiments
For the instances with capacities larger than one we used formulation (25). To aid the
solution process, all infrastructure that still had capacity one has been modelled using Q4
constraints, and used the matching variables where necessary, i.e., for all larger infrastructure.
We tested this formulation on the S-Bahn, the Tram, and the Corridor instance, with a time
limit of four hours.
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On S-Bahn no primal solution was found, but we were able to warm start the models with
solutions found in the corresponding IPESP tests instead. In that case, the more flexible
IPESPC within seconds improved the optimal IPESP solution (albeit by a measly 1.1%),
and within approximately 4 more minutes reached the final primal value. In the course of
the first hour, Gurobi managed to reduce the optimality gap to 0.2%, where it remained
until the time limit.

On Tram proven optimality was reached within 10 seconds. Notably, however quick to
solve this instance was, it is infeasible to formulate with simple IPESP. Only using the higher
capacities enabled by IPESPC it was at all possible to generate a feasible solution.

On Corridor, again, no solution was found, but providing a partial starting solution on
just the section of ShortCorridor was enough to be completed to a full solution for the
whole network, which then was improved to proven optimality in only 2 minutes and 25
seconds. On ShortCorridor the first primal was found in under 10 minutes and was directly
proven to be optimal. Notably, its objective value was better than the IPESP case, now
reaching 0 slack. Starting the same test with a solution from the IPESP case reached proven
optimality in 3 seconds.

6 Conclusion

This work extends the Infrastructure-Aware PESP (IPESP) framework. One of our new
problem formulations, Infrastructure-Aware PESP with Assignment (IPESPA), does so by
integrating the choice of the infrastructure assignment within IPESP, allowing for more
flexible use of the available infrastructure. In fact, this flexibility can lead to higher efficiency,
as well as improved timetables. Although extremely general in its assumptions, we prove
that IPESPA can be formulated as a mixed integer linear program (20).

Moving on to a more restricted, but highly realistic scenario, we consider the case when
infrastructure elements can be effectively considered as equivalent, and formulate this special
version of IPESPA as well, namely Infrastructure-Aware PESP with Capacities (IPESPC).
In this case the assignment structure is of note, since it can be seen as a matching problem
on a complete bipartite graph, connecting the ends of activities to the starts of the next ones.
This gives us not only a compact mixed integer linear program formulation (25), but also
novel formulations for IPESP itself, seen as a case of IPESPC with only unit capacities.

Finally, on the practical side, we tested the new matching-based IPESP formulations, as
well as the IPESPC formulation. On the unit capacity side, our tests went through various
combinations of approaches, and although caution is advised when drawing conclusions,
it seems that on the S-Bahn instance the Q4-based formulations fared better, whereas on
ShortCorridor, which has a higher density of larger infrastructure elements to deal with,
matching-based formulations had more success. With instances of larger capacity, instead,
our tests show that our modelling approach can be of interest in real-world scenarios.

For future work, on the theoretical side we suggest proving tighter bounds on the maximum
platforming period, as well as trying to generalize the Q4-constraints much like we here
generalized the Q0-constraints. On the practical side, we suggest an iterative approach that
uses a separate matching solver to concurrently feed the main model with partial solutions,
and to develop heuristic approaches to quickly generate initial solutions.
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