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Abstract
This work deals with a problem of assigning periodic tasks to employees in such a way that each
employee performs each task with the same frequency in the long term. The motivation comes from
a collaboration with the main French railway company, the SNCF. An almost complete solution is
provided under the form of a necessary and sufficient condition that can be checked in polynomial
time. A complementary discussion about possible extensions is also proposed.
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1 Introduction

1.1 Context
The problem studied in this paper was suggested to the authors through a collaboration with
the SNCF, the main French railway company. The schedules of their freight train drivers
are always periodic: a collection of round trips is repeated every week, with each round
trip performed at the same time within the week. Such schedules are often termed “cyclic
rosters” in the literature. One motivation for this periodicity is that such schedules are easily
understood and memorized by the employees. Another motivation is that these schedules
balance experience: in the long term, each round trip is performed the same number of times
by each employee. This ensures fairness and also maintains a similar level of proficiency
among the employees.

More generally, in the transport sector, periodicity is an important requirement, to which
a full body of research is devoted; see, e.g., [5, 7, 8]. Based on the authors’ experience and
the literature, the concern of balancing experience among employees, given tasks that must
be performed periodically, is not only present at the SNCF but also in many other companies.
For instance, in an article by Breugem, Dollevoet, and Huisman [2], the same motivations as
described in the previous paragraph apply, justifying the use of cyclic rosters among teams
of employees (grouped by characteristics) for the Netherlands Railways. Another example,
this time for bus drivers, is studied in an article by Xie and Suhl [10].

This raises a natural mathematical question: given tasks that need to be repeated every
week and a group of employees, under what conditions is it possible to create (not necessarily
periodic) schedules ensuring that in the long term each task is performed the same number
of times by each employee?
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5:2 Balanced Assignments of Periodic Tasks

In this paper, we propose an almost complete solution to this problem. To the authors’
knowledge, this problem has not been addressed in the literature. Nevertheless, problems
with almost the same input but where the “balancedness” criterion is replaced by a more
standard optimization criterion, such as minimizing the number of employees, have been
studied in various papers. As an example, Korst, Aarts, Lenstra, and Wessels [4] consider
the problem of assigning periodic operations, with fixed starting times and different periods,
to a minimal number of processors.

1.2 Problem formulation
Consider a collection of tasks that have to be performed periodically (typically every week in
an industrial setting), and a group of indistinguishable employees who will perform them.
Formally, we are given

a collection of n intervals [ai, bi) ⊂ (−1, 1), with bi ∈ (0, 1] and bi − ai ⩽ 1.
a positive integer q.

Each interval of this collection represents a task: the rth occurrence of task i (r ∈ Z>0)
takes place over the time interval [ai + r, bi + r). The number q corresponds to the number
of employees, whom we identify from now on with the set [q]. Every occurrence of each
task has to be assigned to an employee. Such an assignment is feasible if no employee is
assigned two occurrences overlapping within R>0. Such an assignment is balanced if each
task is performed by each employee every q periods in the long term average.

In symbols, consider an assignment f : [n] × Z>0 → [q], where f(i, r) = j means that the
rth occurrence of task i is assigned to employee j. It is feasible if

[ai + r, bi + r) ∩ [ai′ + r′, bi′ + r′) ̸= ∅ =⇒ f(i, r) ̸= f(i′, r′) (1)

for all i ̸= i′ and all r, r′. (Remark that the left-hand side holds only if |r − r′| ⩽ 1.) It is
balanced if

lim
t→+∞

1
t

∣∣{r ∈ [t] : f(i, r) = j}
∣∣ = 1

q
, (2)

for all i ∈ [n] and all j ∈ [q]. An illustration is given in Figure 1.
We aim at identifying conditions under which there exists a balanced feasible assignment

and at studying the related algorithmic question.
A few comments are in order. First, remark that there exists a feasible assignment if and

only if there is no point in R contained in more than q intervals [ai + r, bi + r). (This has also
been noted by Korst, Aarts, Lenstra, and Wessels [4, Theorem 2.3], in a more general setting.)
This means that for our problem, feasibility is not the challenge. Second, when there is a
point of [0, 1) contained in no interval [ai + r, bi + r), then the construction of a balanced
feasible assignment is trivial: without loss of generality, this point is 0, and any feasible
assignment f and any cyclic permutation π of [q] provides a balanced feasible assignment g,
periodic with period q, defined by g(i, r) := (πr ◦ f)(i, 1) for i ∈ [n] and r ∈ Z>0. Finally,
there are feasible assignments for which the limit in (2) is not well-defined. By definition, if
the limit is not well-defined, then the assignment is not balanced.

1.3 Main results
Clearly, a necessary condition for the existence of a balanced feasible assignment is that there
is a feasible assignment in which an employee performs each task at least once. Our first
main result states the following surprising fact: this condition is actually sufficient.
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▶ Theorem 1. There exists a balanced feasible assignment if and only if there exists a feasible
assignment with an employee performing each task at least once. Moreover, if there exists a
balanced feasible assignment, then there exists such an assignment that is periodic.

An assignment f is periodic if there exists h ∈ Z>0 such that f(i, r + h) = f(i, r) for all
i ∈ [n] and r ∈ Z>0. The proof will actually make clear that, in case of the existence of
a balanced feasible assignment, it is always possible to get a period h upper-bounded by
q2 × q!.

The necessary and sufficient condition of Theorem 1 is simple enough to obtain an
algorithmic counterpart. This is the second main result of the paper.

▶ Theorem 2. Deciding whether there exists a balanced feasible assignment can be done in
polynomial time. Moreover, if the number of employees is constant, then such an assignment
can be computed in polynomial time when it exists.

The proofs of these two theorems can be found in Section 3.2. They essentially consist in
reducing the question of existence of a balanced feasible assignment to a problem of pebbles
on an arc-colored Eulerian directed graph. The latter problem is dealt with in Section 2,
which can be read independently of the rest of the paper. Section 3.1 introduces preliminary
results and tools, such as a graph DF built from a well-chosen set F of feasible assignments
and that plays an important role in the proofs. This graph DF is a particular arc-colored
Eulerian directed graph on which we apply the results of Section 2.

2 A problem of pebbles on an arc-colored Eulerian directed graph

This section introduces a problem of pebbles moving on an Eulerian directed graph, which
we believe to be interesting for its own sake. The proof of Theorem 1 will essentially
consist in reducing the problem of existence of a balanced feasible assignment to this pebble
problem. This pebble problem will also be useful for algorithmic discussions, as in the
proof of Theorem 2. From now on, this section does not refer anymore to the question of
assignments and periodic tasks.

Consider an arc-colored Eulerian directed multi-graph D = (V,A) such that each vertex
is the head of exactly one arc of every color, and also the tail of exactly one arc of every
color. (In other words, each color is a collection of vertex disjoint directed cycles covering
the vertex set.) Assume we have a pebble on each vertex. We denote by P the set of pebbles,
and we have thus |P | = |V |.

Now, we explain how a sequence of colors induces a sequence of moves for the pebbles.
Given a sequence c1, c2, . . . of colors, each pebble is first moved along the unique arc of color
c1 leaving the vertex on which it is originally located; then it is moved along the unique arc
of color c2 leaving the vertex it has reached after the first move; and so on. Remark that
each move sends each pebble on a distinct vertex and so after each move, there is again a
pebble on each vertex.

We might ask under which condition there exists an infinite sequence of colors such that
the arc visits are “balanced,” i.e., each pebble visits each arc with the same frequency. Not
only such a sequence always exists but such a sequence can be chosen to be periodic.

▶ Proposition 3. There always exists a periodic sequence of colors making each pebble visit
each arc with the same frequency.

The proof shows a bit more: each pebble actually follows a periodic walk on D which has
the same period as the sequence of colors, and the latter is upper bounded by |A|(|V | − 1)!.

ATMOS 2024



5:4 Balanced Assignments of Periodic Tasks

task 3

task 2

task 1 · · ·

· · ·

· · ·
1 2 3 4

(a) An instance with three tasks (n = 3). The first three occurrences of each task are represented. The
tasks 2 and 3 are in the set {i ∈ [3] : ai ⩽ 0} and their fourth occurrence is represented in lighter color.

employee 3

employee 2

employee 1 · · ·

· · ·

· · ·
1 2 3 4

(b) A feasible assignment f for three employees (q = 3). Assuming that this pattern is repeated along
the horizontal axis, each line represents an employee and the rth occurrence of the task i is on the line
of employee j when f(i, r) = j. This assignment is not balanced: employee 2 works 72% of the time,
employee 3 works 56% of the time, employee 1 does not perform task 3, and employee 3 performs 75% of
the occurrences of task 3.

employee 3

employee 2

employee 1 · · ·

· · ·

· · ·
1 2 3 4

(c) A feasible assignment g for three employees (q = 3). Assuming that this pattern is repeated along the
horizontal axis, the assignment g is feasible and balanced: task 1 is performed equally by employees 1, 2,
and 3, and so are tasks 2 and 3. The assignment g is periodic with period h = 3.

Figure 1 Example of an instance, with two feasible assignments.

The proof of this proposition relies on a larger graph D̃ = (Ṽ , Ã) built as follows. The
vertex set Ṽ is the set of bijections from P to V . For every color c, define the permutation
σc of V by setting σc(i) = i′ whenever there is an arc of color c from i to i′ in D. The set Ã
is built as follows: for each bijection η : P → V and each color c, introduce an arc (η, σc ◦ η),
and color this arc with color c. The indegree and outdegree of every vertex in Ṽ are equal to
the number of colors.

For each pebble j, we introduce a function pj : Ã → A. Given an arc ã = (η, η′) of Ã
with color c, we define pj(ã) as the arc (η(j), η′(j)) of A with color c.

The graph D̃ is an encoding of all possible distributions of the pebbles on V and all possible
transitions between these distributions. More precisely consider any initial distribution η of
the pebbles on V and a sequence of colors c1, c2, . . .. The moves induced by the sequence
of colors translate into a walk on D̃. The corresponding sequence of vertices of D̃ is the
sequence of distributions of the pebbles on V induced by the sequence of colors.

▶ Lemma 4. Let j ∈ P , a ∈ A, and K̃ be a connected component of D̃ (note that weakly
and strongly connected components of D̃ are identical by equality of the in- and outdegrees).
Denoting by κ the number of connected components of D̃, we have

|p−1
j (a) ∩A(K̃)| = (|V | − 1)!

κ
.

In particular, the left-hand term is independent of j, a, and K̃.
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Proof. Denote by c the color of a.
We prove first that every connected component K̃ of D̃ contains at least one arc from

p−1
j (a). Let η be a vertex of such a connected component K̃. Consider any walk W in D

from η(j) to the tail of a, and then traversing a. Such a walk exists because D is strongly
connected. With c1, c2, . . . , c being the sequence of colors of the arcs traversed by the walk,
the sequence

η, σc1 ◦ η, σc2 ◦ σc1 ◦ η, . . . , σc ◦ · · · ◦ σc2 ◦ σc1 ◦ η

forms a walk in K̃ starting from η, whose image by pj is W . Hence, K̃ contains at least one
arc from p−1

j (a).
Second, given two components K̃1 and K̃2 of D̃, we build an injective map ψ : A(K̃1) →

A(K̃2) as follows (actually, it is a bijection but this property is not explicitly used). Pick
ã1 ∈ p−1

j (a) ∩A(K̃1) and ã2 ∈ p−1
j (a) ∩A(K̃2). According to what we have just proved, these

two arcs exist. Write ã1 = (η1, σ
c ◦ η1) and ã2 = (η2, σ

c ◦ η2). Then, for an arc ã ∈ A(K̃1)
with tail vertex η and color d, set ψ(ã) as the arc (η ◦ η−1

1 ◦ η2, σ
d ◦ η ◦ η−1

1 ◦ η2) with color d
(this arc is unique). Checking that ψ is injective is immediate.

Third, we check that ψ maps elements from p−1
j (a) ∩ A(K̃1) to p−1

j (a) ∩ A(K̃2). Let
ã be an arc in p−1

j (a) ∩ A(K̃1). It is of the form (η, σc ◦ η). Its image by ψ is the arc
(η ◦ η−1

1 ◦ η2, σ
c ◦ η ◦ η−1

1 ◦ η2) with color c. Denoting i the tail of a, we have η(j) = η1(j) =
η2(j) = i, which implies immediately that pj

(
ψ(ã)

)
has the same endpoints as a. Since it

has also the same color c, we have pj

(
ψ(ã)

)
= a.

From the previous two paragraphs, we see that for any two components K̃1 and K̃2 of
D̃, we have |p−1

j (a) ∩ A(K̃1)| ⩽ |p−1
j (a) ∩ A(K̃2)|. Since the choices of K̃1 and K̃2 can be

arbitrary, we have actually

|p−1
j (a) ∩A(K̃1)| = |p−1

j (a) ∩A(K̃2)| . (3)

Finally, an arc ã = (η, η′) is mapped to a by pj precisely when ã is colored with color
c, we have η′ = σc ◦ η, and η(j) = i (where i is the tail of a). The number of bijections η
from P to V with η(j) = i is (|V | − 1)!. Hence, |p−1

j (a)| = (|V | − 1)!. Combining this with
equality (3), we get the desired conclusion. ◀

Proof of Proposition 3. Choose any connected component K̃ of D̃. It is Eulerian, since
each vertex of D̃ has equal in- and outdegrees. Consider an arbitrary Eulerian cycle, and
denote by c1, c2, . . . the sequence of colors of the arcs of this cycle. According to Lemma 4,
every pebble j moved according to this sequence of colors follows a closed walk on D visiting
each arc (|V |−1)!

κ times. Repeating infinitely many times this sequence of colors provides the
desired periodic sequence. ◀

3 Proofs of the main results

3.1 Preliminaries
This section introduces preliminary results and a few tools that will be crucial for the proofs
of Theorems 1 and 2 given in Section 3.2. In particular, we show how to introduce fictitious
tasks in a way that will simplify some discussions, we explain how to build a new feasible
assignment from a sequence of feasible assignments, and finally we define a graph DF built
from a set of feasible assignments, which will be useful to cast the problem of existence of
balanced feasible assignments as the pure graph problem of Section 2.

ATMOS 2024



5:6 Balanced Assignments of Periodic Tasks

3.1.1 Making the number of employees and the number of tasks
overlapping 0 equal

Denote by U the set {i ∈ [n] : ai ⩽ 0}. In other words U is the set of tasks that are
overlapping the left endpoint of the interval [0, 1]. We can get |U | = q by adding fictitious
tasks i whose intervals are of the form [0, ε) for an ε > 0 small enough. Just after the proof
of the following lemma, the relevance of this transformation will be highlighted.
▶ Lemma 5. The number ε can be chosen so that the following holds: There exists a feasible
assignment for the original instance if and only if there exists a feasible assignment for the
instance with the fictitious tasks.
Proof. Let ε := min

(
{ai : ai > 0} ∪ {ai + 1: ai ⩽ 0}

)
. Obviously, if there exists a feasible

assignment with the fictitious tasks, then the restriction of this assignment to the original
tasks is feasible. Conversely, suppose there exists a feasible assignment f for the original
instance. We extend it on the fictitious tasks as follows: for each integer time, the assignment
f leaves a number of idle employees equal to the number of fictitious tasks; extending f

arbitrarily on the rth occurrence of these tasks with these employees leads to a feasible
assignment for the instance with the fictitious tasks. (The number ε has been chosen so that
this does not create any conflict.) ◀

Since a balanced feasible assignment for the instance with the fictitious tasks is obviously
balanced and feasible when restricted to the original instance, the assumption |U | = q is
made throughout Section 3. For every feasible assignment f and every r ∈ Z>0, we introduce
the map φf,r : i ∈ U 7→ f(i, r) ∈ [q]. The assumption |U | = q makes φf,r a bijection, which
will turn out to be useful, already in the next paragraph.

3.1.2 Building a new feasible assignment from a sequence of feasible
assignments

In the proofs, we will build new feasible assignments from sequences of feasible assignments.
Let f1, f2, . . . be an infinite sequence of feasible assignments. Define inductively the per-
mutations πr of [q] by the equation πr+1 = πr ◦ φfr,2 ◦ φ−1

fr+1,1, where π1 is an arbitrary
permutation of [q]. This implies in particular

(πr+1 ◦ fr+1)(·, 1) = (πr ◦ fr)(·, 2) . (4)

Notice that if the fr are periodic, then so are the πr. Note also that the period of the πr can
be much larger than that of the fr. (Similar constructions have been used in the work of
Eisenbeis, Lelait, and Marmol [3].)
▶ Lemma 6. The map (i, r) 7→ (πr ◦ fr)(i, 1) is a feasible assignment.
Proof. Let us show that g : (i, r) 7→ (πr ◦ fr)(i, 1) is a feasible assignment by checking the
contrapositive of (1). Consider i, i′ ∈ [n] with i ̸= i′ and r, r′ ∈ Z>0. Suppose g(i, r) = g(i′, r′),
i.e., (πr ◦fr)(i, 1) = (πr′ ◦fr′)(i′, 1). Without loss of generality, suppose that r ⩽ r′. Consider
first the case when r = r′. Since πr is a permutation, we have fr(i, 1) = fr(i′, 1). Since fr is
feasible, then the contrapositive holds for fr, namely, [ai + 1, bi + 1) ∩ [ai′ + 1, bi′ + 1) = ∅,
which is equivalent to [ai + r, bi + r) ∩ [ai′ + r′, bi′ + r′) = ∅, as desired.

Consider now the case when r + 1 = r′. Note first that if i′ /∈ U , then bi + r < ai′ + r + 1
and so [ai +r, bi +r)∩ [ai′ +r′, bi′ +r′) = ∅. Suppose now that i′ ∈ U . Using the definition of
πr+1, we have πr(fr(i, 1)) = πr(fr(i′, 2)). Since πr is a permutation, then fr(i, 1) = fr(i′, 2).
The contrapositive holds for the feasible assignment fr, so [ai +r, bi +r)∩[ai′ +r′, bi′ +r′) = ∅.

Finally, if r+2 ⩽ r′, then [ai + r, bi + r)∩ [ai′ + r′, bi′ + r′) is necessarily empty. Therefore,
g is a feasible assignment. ◀
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3.1.3 Definition of DF

For each i, i′ ∈ U , pick a feasible assignment fii′ such that fii′(i, 1) = fii′(i′, 2) if it exists.
Let F be the set of all these feasible assignments (some fii′ might be equal but only one
representative is kept). The proofs rely on a directed multi-graph DF = (U,AF ), with vertex
set U and whose arcs are defined from the set F . The arc set AF is obtained by introducing
q arcs for each f ∈ F : an arc from i ∈ U to i′ ∈ U whenever f(i, 1) = f(i′, 2) – repetitions
are allowed – ; such an arc is labeled with f .

Note the following properties:
The q arcs labeled with the same feasible assignment f form a collection of vertex-disjoint
directed cycles: each vertex is by construction the head of exactly one arc and the tail of
exactly one arc.
The number of arcs in AF is q|F|.
When DF is weakly connected – i.e., the underlying undirected graph is connected – it is
also strongly connected and Eulerian.

Lemma 6 will be used to retrieve a feasible assignment from a walk on DF . The next
lemma will be useful in that regard.

▶ Lemma 7. The directed graph DF is Eulerian if and only if there exists a feasible assignment
with an employee performing each task at least once.

Proof. Suppose there exists a feasible assignment f with an employee j⋆ performing each
task at least once. For every r such that f(i, r) = j⋆ and f(i′, r + 1) = j⋆ there is an arc
(i, i′) in AF because we can build a feasible assignment from f in which the first occurrence
of i and the second occurrence of i′ are both assigned to employee j⋆. Thus the sequence of
tasks in U performed by employee j⋆ induces in DF a walk visiting all vertices. This implies
that the graph DF is weakly connected and as noted above this implies that DF is Eulerian.

Suppose now that DF is Eulerian. Let a1, a2, . . . be the sequence of arcs of an Eulerian
cycle of DF , visited infinitely many times, and consider the sequence f1, f2, . . . of assignments
labeling this arc sequence. Denote by ir the tail of the arc ar. Let πr be the permutations
defined by equation (4), for this sequence of assignments, with π1 being arbitrary. Let then
g be the feasible assignment as in Lemma 6. Let i ∈ [n]. Define then i′ := φ−1

f1,1(f1(i, 1)). In
particular, we have f1(i, 1) = f1(i′, 1). In other words, i′ is the task in U performed before
the first occurrence of i in the assignment f1. Let r̄ be such that ar̄ leaves the vertex i′ with
label f1, which means that i′ = ir̄ and fr̄ = f1. Such r̄ exists because an Eulerian cycle
visits all arcs and because from every vertex, there is an outgoing arc labeled with f1 by
construction of DF . Thus, we have

g(i, r̄) = πr̄(fr̄(i, 1)) = πr̄(f1(i, 1)) = πr̄(f1(ir̄, 1)) = πr̄(fr̄(ir̄, 1)) .

We have fr(ir, 1) = fr(ir+1, 2) for all r ∈ Z>0 because the arc ar is labeled with fr and ar

goes from ir to ir+1. Then, combining this equality alternatively with the equation (4), we
get

πr̄(fr̄(ir̄, 1)) = πr̄−1(fr̄−1(ir̄, 2)) = πr̄−1(fr̄−1(ir̄−1, 1)) = · · · = π1(f1(i1, 1)) = g(i1, 1) .

Therefore g(i, r̄) = g(i1, 1). Since i was chosen arbitrarily, this means the employee g(i1, 1)
performs each task at least once. ◀

ATMOS 2024



5:8 Balanced Assignments of Periodic Tasks

3.2 Proof of Theorems 1 and 2
This section deals with the proofs of our two main results.

Proof of Theorem 1. As already mentioned, one direction is immediate: if there exists a
balanced feasible assignment, then this assignment is such that every employee performs
each task at least once. We prove now the opposite direction.

Suppose there exists a feasible assignment with an employee performing each task at least
once. By Lemma 7, DF is Eulerian. Locate one pebble on each vertex of DF . Applying
Proposition 3 on DF , with each feasible assignment in F identified with a color, we get a
periodic sequence f1, f2, . . . of feasible assignments. Denote by g the resulting periodic feasible
assignment given by Lemma 6 for this sequence, with π1 being an arbitrary permutation.

Number j = g(i, 1) the pebble initially located on vertex i ∈ U . This makes sure that
each pebble gets a distinct number in [q] (by the bijectivity of φg,1). We establish now the
following claim: For every i ∈ U and every j ∈ [q], pebble j is on vertex i after its (r − 1)th
move if and only if g(i, r) = j.

Let us proceed by induction on r ∈ Z>0. This is true for r = 1 by the definition of the
numbering of the pebbles. Suppose now that the claim if true for some r ∈ Z>0. Consider
pebble j and assume it is located on i after its rth move. This means that the pebble j was
on vertex i′ after its (r − 1)th move then moved along the arc from i′ to i labeled with fr.
Then, using equation (4) and the fact that fr(i, 2) = fr(i′, 1) by definition of DF ,

g(i, r + 1) = πr+1(fr+1(i, 1)) = πr(fr(i, 2)) = πr(fr(i′, 1)) = g(i′, r) = j , (5)

as desired. Conversely, assume that g(i, r + 1) = j. Denote by i′ the tail of the arc of head i
and label fr. Then equation (5) holds as well, meaning that g(i′, r) = j. By induction, the
pebble j was located on vertex i′ after its (r − 1)th move. It then moves along the arc from
i′ to i with label fr, which concludes the proof of the claim.

We check that g is balanced. According to Proposition 3, for every i ∈ U , every j ∈ [q],
and every f ∈ F , we have

lim
t→+∞

1
t

∣∣{r ∈ [t] : pebble j leaves i along arc labeled f for its (r − 1)th move}
∣∣ = 1

|AF |
.

With the claim, this equality becomes

lim
t→+∞

1
t

∣∣{r ∈ [t] : fr = f and g(i, r) = j}
∣∣ = 1

|AF |
.

This equality is actually also true when U is replaced by the larger set [n]. Indeed, given
i ∈ [n] and f ∈ F , the bijectivity of φf,r ensures that there exists a unique u(i, f) in U

such that f(u(i, f), r) = f(i, r) and we have g(i, r) = g(u(i, fr), r) = j for every r ∈ Z>0, by
definition of g and u(i, fr). Therefore, for all i ∈ [n]

lim
t→+∞

1
t

∣∣{r ∈ [t] : g(i, r) = j}
∣∣ =

∑
f∈F

lim
t→+∞

1
t

∣∣{r ∈ [t] : fr = f and g(i, r) = j}
∣∣ = |F|

|AF | = 1
q

,

as desired. ◀

The proof actually shows that the period of the periodic balanced feasible assignment
g built within the proof is upper bounded by q2 × q!. Indeed, with the comment following
Proposition 3, each vertex i is visited by each pebble every h moves (with h the period of the
fr), where h is bounded by |AF |(q− 1)! ⩽ q2 × q!. Using the claim in the proof of Theorem 1,
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for each i ∈ U and r ∈ Z>0, we have g(i, r) = g(i, r + h). Extending this relation to all
i ∈ [n] as in the proof of Theorem 1 (since the sequence of the fr also has period h), the
period of g is bounded by q2 × q!.

The proof of Theorem 2 combines this remark, Theorem 1, Lemma 7, and the following
lemma.

▶ Lemma 8. Let i, i′ be two tasks of U . Deciding whether there exists a feasible assignment
f such that f(i, 1) = f(i′, 2) and building such an assignment if it exists can be done in
polynomial time.

Proof. Let G be the interval graph built from all the intervals [ak, bk) for k ∈ [n] together
with the intervals [ak +1, bk +1) for k ∈ U . Deciding whether there exists a feasible assignment
f such that f(i, 1) = f(i′, 2) is equivalent to deciding whether there is a proper q-coloring of
G with the intervals [ai, bi) and [ai′ +1, bi′ +1) colored the same color. (Indeed, such a feasible
assignment translates into a proper q-coloring of G with the desired property and conversely
such a q-coloring provides a “partial” feasible assignment which can be extended into a
feasible one easily.) This is equivalent in turn to the problem of deciding the q-colorability
of G with [ai, bi) and all intervals intersecting [ai′ + 1, bi′ + 1) (the latter interval excluded)
colored with pairwise distinct colors. Here, we use the fact that |U | = q, i.e., there are q − 1
intervals intersecting [ai′ + 1, bi′ + 1). The problem of deciding whether a partial coloring of
an interval graph can be extended to a proper q-coloring can be done in polynomial time
when the partial coloring contains at most one occurrence of each color (this is a result by
Biró, Hujter, and Tuza [1]). If such a partial coloring extension exists, then it can be built in
polynomial time as well. ◀

Proof of Theorem 2. According to Lemma 8, the graph DF can be built in polynomial time
(since |F| ⩽ q2). Deciding whether a graph is strongly connected can be done in polynomial
time, and DF being strongly connected means it is Eulerian. Therefore, using Theorem 1
along with Lemma 7, deciding whether there exists a balanced feasible assignment can be
done in polynomial time.

Moreover, Theorem 1 provides a construction of a periodic balanced feasible assignment
g (if it exists). By expliciting the arguments, the construction consists first in building the
graph D̃ of Lemma 4, and then in computing an Eulerian cycle in an arbitrary connected
component of this graph (as done in the proof of Proposition 3), which provides a periodic
sequence of feasible assignments f1, f2, . . .. The size of D̃ and the period of this sequence are
both polynomial when q is fixed. In other words, the sequence can be described in polynomial
time when q is fixed. This allows a polynomial description of g when q is fixed according to
the comment following the proof of Theorem 1. ◀

4 Concluding remarks

4.1 All feasible assignments are balanced (Almost)
If we are just interested in the existence of a balanced feasible assignment, and not on the
periodicity of such an assignment or its computability, we can replace Proposition 3 by the
following lemma in the proof of Theorem 1. We keep the same setting of an arc-colored
Eulerian directed multi-graph D = (V,A) with a distribution of pebbles on its vertices, as in
the beginning of Section 3.2.

▶ Lemma 9. Consider an infinite sequence of independent random colors drawn uniformly.
Then, almost surely, this sequence makes each pebble visit each arc with the same frequency.

ATMOS 2024
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In particular there are infinitely many color sequences making each pebble visit each arc
with the same frequency. The proof relies on basic properties of Markov chains. (A standard
reference on Markov chains is the book by Norris [6].) The proof does not show how to
construct such a sequence of colors. It is not even clear that the proof could be modified in
that regard. So the proof shows that almost all color sequences have the desired property,
but does not explain how to construct a single such sequence. Although this might sound
surprising, this phenomenon is quite common. Normal numbers form an example: (almost)
all numbers are normal but not a single one has been described explicitely [9].

The proof of Proposition 3 actually provides an alternative proof of the existence of
sequences of colors making each pebble visit each arc with the same frequency, with an
explicit construction. However, the latter proof does not show that almost all sequences
are actually like that. (In counterpart, it shows that such a sequence can be chosen to be
periodic.)

Proof of Lemma 9. Any realization of this random sequence of colors defines a sequence
of moves for the pebbles, as described above. Consider an arbitrary pebble. The random
sequence of colors translates thus into a random walk of the pebble on the graph D. Denote
by Xk the arc along which the pebble performs its kth move. The Xk’s form a finite Markov
chain. Since the graph is Eulerian, this Markov chain is irreducible, and hence there exists a
unique invariant distribution λ such that λ⊤ = λ⊤M , where M is the transition matrix of
the Markov chain.

We claim that λ is actually the vector 1
|A|e, where e is the all-one vector. By the uniqueness

of the invariant distribution, it is enough to check that e is a left eigenvector of M with
eigenvalue equal to 1. The entry Ma,a′ of the transition matrix (row a, column a′), which
corresponds to the probability of moving along a′ just after moving along a, is equal to 1/α if
the head of a is the tail of a′, and 0 otherwise. The indegree of each vertex being α, we have∑

a∈A

Ma,a′ = α
1
α

= 1 ,

and therefore e⊤M = e⊤.
According to the ergodic theorem, for almost all realizations of the random sequence of

colors, the pebble visits any arc a with a frequency equal to the corresponding entry in λ,
which is equal to 1

|A| for all arcs since it is a probability distribution proportional to the
all-one vector. The previous discussion does not depend on the considered pebble, which
implies the desired result: for almost all realizations of the random sequence of colors, every
pebble visits every arc with a frequency equal to 1

|A| . ◀

Similarly to the proof of Theorem 1, using a much larger set of feasible assignments
F ′ (typically one for each feasible “pattern” on [1, 2]), Lemma 9 could translate into the
following statement: If there is at least one balanced feasible assignment, then almost all
feasible assignments are balanced.

4.2 Tasks with different periods
Suppose now that each task i ∈ [n] comes with a period τi ⩾ bi − ai: the rth occurrence
of task i takes place over the time interval [ai + rτi, bi + rτi). In this more general setting,
it is not clear under which extra condition Theorem 1 and Theorem 2 are verified. When
some periods are irrational, the equivalence stated by Theorem 1 does not necessarily hold.
Figure 2 provides an example where there exists a feasible assignment with one employee
performing all the tasks at least once but no feasible assignment is balanced.
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task 3

task 2

task 1

1 − π 1 1 + π

· · ·

1 − e 1 1 + e

· · ·

e

1 + e

2 + e

· · ·

(a) An instance with three tasks (n = 3). The task 3 has interval [1 − π, 1) and period π, the task 2 has
interval [1 − e, 1) and period e and the task 1 has interval [e − 3, e − 2) and period 1.

employee 3

employee 2

employee 1

1 − π 1

1 + π

· · ·

1 − e 1

1 + e

1 + 2e

· · ·

1 + e

· · ·

(b) A feasible assignment f for three employees (q = 3). Assuming that this pattern is extended along the
horizontal axis, the employee 3 performs each task at least once.

Figure 2 Example of an instance with irrational periods, for q = 3, with a feasible assignment
where an employee performs each task at least once but with no balanced feasible assignment: after
time 1 + e, there is no possible swap of the tasks between the employees.

However, the authors do not know what happens when all the periods are rational. In the
latter case, there is a natural way to associate to the original instance a new instance, with
all tasks of period 1 and with the same number of employees. This goes as follows. Write the
τi as fractions of integers with the same denominator, and denote by pi the numerator. Let
p be a common multiplier of the pi. For every i ∈ [n] interpret the p/pi first occurrences of
tasks i as the first occurrence of p/pi new tasks that replace the original task i. Then, scale
the time with a factor 1/p so as to get a common period of 1. Clearly, a balanced assignment
for this new instance translates into a balanced one for the original instance, but it is not
clear whether things go the other way around. Moreover, the construction described above is
not polynomial and extending Theorem 2 along these lines seems even more elusive.

4.3 When the number of employees is part of the instance

Theorem 2 states that when the number of employees q is constant, a balanced feasible
assignment (if it exists) can be built in polynomial time. However, the proof exhibits a
period bounded by q2 × q! for this balanced feasible assignment. Therefore, when q is part
of the instance, it is not clear whether the construction of a balanced feasible assignment
(under condition of existence) is polynomial.

▶ Question. When the number q of employees is part of the instance, what is the complexity
status of the construction of a balanced feasible assignment (if it exists)?
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