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Abstract
We study the Capacitated Team Orienteering Problem, where a fleet of vehicles with capacities
have to meet customers with known demands and prizes for a single commodity. The objective is to
maximize the total prize and to assign a sequence of customers to each vehicle while keeping the
total distance traveled within a given budget and such that the total demand served by each vehicle
does not exceed its capacity. The problem has been widely studied both from a theoretical and a
practical point of view. The contribution of this paper is twofold: (1) We advance the theoretical
knowledge on the problem by providing new approximation algorithms that achieve, under some
natural assumption, improved approximation ratios compared to the current best algorithms; (2)
We propose four efficient heuristics that outperform the current state-of-the-art practical methods
in the sense that they compute solutions that collect nearly the same prize in a significantly smaller
running time. We also experimentally test the scalability of the new heuristics, showing that their
running time increases approximately linearly with the size of the input, allowing us to process large
graphs which were not possible to analyze before.
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7:2 Improved Algorithms for the Capacitated Team Orienteering Problem

1 Introduction

The Capacitated Orienteering Problem (c-op) is an NP-hard combinatorial optimization
problem belonging to the wide class of Vehicle Routing Problems (VRPs), which has received
much attention in the literature on algorithms and operation research [2,6,8,13,16–19,22,25,26].
In c-op, we are given a complete graph, with edge lengths, where each node represents a
customer that is assigned a profit/prize and a demand/size. Given two nodes s and t the
goal is to find a path from s to t that maximizes the total prize, and respects both a capacity
constraint on the total size of the nodes on the s-t path and a budget constraint on the total
length of the s-t path. c-op is a natural generalization of two very well-known problems,
namely the Knapsack Problem [27], which is a special case of c-op where the length of all
edges is zero, and the Orienteering Problem (op) [9,10], which is a variant of c-op where the
size of all nodes is zero. A generalization of c-op is the case in which the goal is to find s-t
paths for a fleet of K homogeneous, capacitated vehicles that can be used to collect prizes.
This problem is known as the Capacitated Team Orienteering Problem (c-top) and has been
defined by Archetti et al. [2], originally in the flavor when s = t, i.e. when the aim is finding
tours centered at a depot node, rather than paths.

From a theoretical viewpoint, the best known approximation algorithms for c-op and
c-top, that run in polynomial time, are due to Bock and Sanità, who achieved approximation
factors of (3 + ε), for any ε > 0, and 3.53, respectively [8]. From a practical perspective,
for both c-op and c-top, several heuristics without guarantees on the achieved quality
of solution and exact algorithms with exponentially large worst-case running times have
been introduced and experimentally evaluated with the aim of characterizing their practical
effectiveness and applicability, i.e. evaluating the quality of the computed solutions and the
running time necessary to achieve such solutions (see [1, 2, 6, 16, 17, 19, 22, 25, 26]). In all
benchmark instances for the c-op and c-top problems considered in such works, the prize
of each node is fixed to be at least equal to half of its size. Specifically, the prize of each
node v with size r(v) is assigned to be equal to π(v) = (h + 0.5)r(v), where h is a random
number uniformly generated within interval [0, 1] [2, 26]. This implies that, for two nodes u

and v with r(u) ≥ r(v), we have π(u) ≥ π(v)/3. Motivated by this observation, we consider
problems c-op and c-top under the natural assumption that choosing subsets of nodes with
larger sizes results in achieving (almost) more prizes. In more detail, we assume that any
subset S of nodes collects an overall prize that is at least equal to a multiplicative factor
λ ∈ (0, 1] times the prize collected by any subset of nodes whose sum of sizes is lower than
the sum of the sizes of nodes in S (see Assumption 2.1 for a formal definition).

Our Contribution. The contribution of this paper is both theoretical and experimental. From
the theoretical viewpoint, we improve over the state-of-the art by providing approximation
algorithms, for c-op and c-top, that guarantees an approximation ratio which, under
particular assumptions, is smaller than the best approximation ratio known so far. In
particular, we propose a max{α, 2

λ }-approximation algorithm for c-op and a (1 − e− 1
β )−1-

approximation algorithm for c-top, where α is the approximation factor of an algorithm
for op, β = max{α, 2

λ }, and λ is the parameter of Assumption 2.1. Observe that, the best
known approximation algorithm for op is that given by Chekuri et al. [9], which guarantees
an approximation factor of 2 + ε, for any ε > 0. When λ ∈ [ 2

3 , 1], our algorithms for c-op and
c-top achieve approximation factors in the intervals [2 + ε, 3] and [2.55, 3.53), respectively,
for any ε > 0. These improve over the long-standing results by Bock and Sanità [8] who
achieved factors 3 + ε and 3.53 for c-op and c-top, respectively, for any ε > 0.
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Since our algorithms with theoretical guarantees have high computational complexity, we
propose four efficient heuristic algorithms that do not give any proven guarantee on the quality
of the computed solution but achieve good performance in practice. We experimentally
evaluate our heuristics in benchmark instances from the literature and show that two of them
produce solutions that are comparable to the best solutions known from the literature in
terms of collected prize, but outperform all the state-of-the art algorithms in terms of running
time. In particular, our heuristics require less than a second on the small instances (at most
100 nodes) and two orders of magnitude less time than other algorithms on large instances
(at most 577 nodes), while achieving the same prize in most cases, a slightly worse prize in a
few cases, and even a better prize in a few cases. To assess how the time performance of our
heuristics scales with the input size, we also generated new instances with up to 15 500 nodes,
starting from real-world road networks. Our experiments in these instances suggest that the
running time of two of our algorithms tends to grow approximately linearly with the input
size and highlight that, on the largest instance, such two algorithms take below one minute
on average, whereas previous algorithms are not able to handle such large input graphs.

Related Work. Blum et al. [7] gave the first constant factor approximation algorithm for
op with approximation ratio of 4 when s = t and showed that: (i) no polynomial-time
approximation algorithm can achieve a factor better than 1481

1480 ; (ii) op is APX-hard. Bansal et
al. [5] improved the bound of [7] by designing a 3-approximation algorithm for the case where
s = t while Chekuri et al. [9] proposed a (2 + ε)-approximation algorithm that works for any
positive constant ε. Friggstad and Swamy [15] designed, via LP-rounding, a 3-approximation
algorithm when s = t. Paul et al. [23], gave a 2-approximation algorithms for op when s and
t are not given in advance. Finally, Chen and Har-Peled [10] gave a PTAS for the case where
the points lie in a constant-dimensional Euclidean metric space.

A natural generalization of op is the Team Orienteering Problem (top) where we are
asked to find K ≥ 1 paths from s to t that maximize the total prize, accumulated by all the K

paths, and such that each path respects the budget B. Blum et al. [7] studied top under the
name of Multi-Path Orienteering problem (m-op) and showed that: (i) any α approximation
for op, when s = t, can be translated into a 1/(1 − e−α) approximation for m-op; (ii) their
algorithm for m-op has a factor of α + 1 when the starting point of each vehicle is arbitrary.
Friggstad et al. [14] studied a variant of m-op in the case where each vehicle needs to find
a tour and each node has a cost. The goal is to find K tours so that the minimum total
prize among all tours is maximized, i.e. to find P ′ : π(P ′) = max minP π(P ). They called
this problem max-min orienteering and showed that any α-approximation algorithm for
op results in an (α + 2)-approximation for max-min orienteering. Xu et al. [28] studied a
variant of top in which the prize function is a special submodular function and showed
the existence of a 1/(1 − e−α)-approximation algorithm for such variant, where α is an
approximation factor to op. Finally, Xu et al. [29] focused on top when s = t, they call
this variant the monitoring reward maximization problem and presented a 3-approximation
algorithm. Clearly, c-op is a generalization of op in which we also consider node demands
r : V → N and a capacity bound C. Gupta et al. [18] showed that, given an α-approximation
algorithm for op, it is possible to derive a 2α-approximation algorithm for c-op. By using
the (2 + ε)-approximation algorithm for op [9], this leads to a (4 + ε)-approximation for c-op.
Bock and Sanità [8] improved this result by giving a (1 + α + ε)-approximation algorithm for
c-op and by presenting a PTAS on trees and a PTAS on Euclidean metrics. Again, using
the (2 + ε)-approximation algorithm for op, results in a (3 + ε)-approximation for c-op. For
c-top, Bock and Sanità [8] designed a (1 − e

1
β )-approximation algorithm, where β is an

approximation factor for c-op. Using β = 3 + ε this leads to a 3.53-approximation algorithm
for c-top.

ATMOS 2024
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2 Notation and Definitions

We are given an undirected complete graph G = (V, E) with n = |V | vertices and m = |E|
edges, respectively. Let l : E → R≥0 be a metric length function on edges, let π : V → R≥0
be a prize function on the nodes, let r : V → R≥0 be a size function on the nodes, and let
g : V → R≥0 be a service time function on the nodes. For any subgraph G′ of G, we denote
by V (G′) and E(G′) the set of nodes and edges in G′, respectively. Given a subset S ⊆ V ,
G[S] denotes the subgraph of G induced by S, i.e., E(G[S]) = {{u, v} ∈ E | u, v ∈ S}.

For an integer k, let [k] := {1, 2, . . . , k}. A path Puv from node u to node v is a graph
made of a sequence of distinct nodes {v1 = u, . . . , vk = v} and a sequence of edges {vi, vi+1},
where i ∈ [k−1]. The cost of a path Puv in G is the sum of the lengths of its edges and service
times of its nodes, i.e.,

∑
e∈E(Puv) l(e) +

∑
v∈V (Puv) g(v). Given a path P = (s, v2, v3, . . . , t)

and a subset S = {vi1 , vi2 . . . , vik
} of k ≥ 1 nodes in V (P )\{s, t} with ij < ij+1 for j ∈ [k−1],

we call P [S] the subpath of P induced by S which is the path made of nodes {s, t} ∪ S and
edges {{s, vi1}, {vik

, t}} ∪ {{vij
, vij+1} : j ∈ [k − 1]}.

In the Capacitated Orienteering Problem (c-op), we are given two distinguished nodes
s, t ∈ V , a cost budget B ∈ R≥0 and a capacity bound C ∈ R≥0 on the sizes, and the goal
is to find a path Pst from s to t in G that maximizes the prize π(Pst) =

∑
v∈V (Pst) π(v)

and that satisfies both l(Pst) + g(Pst) =
∑

e∈E(Pst) l(e) +
∑

v∈V (Pst) g(v) ≤ B and r(Pst) =∑
v∈V (Pst) r(v) ≤ C. W.l.o.g. we assume that r(v) ≤ C, for any v ∈ V , and that r(s) =

r(t) = 0. The Capacitated Team Orienteering Problem (c-top) is a generalization of c-op in
which we are asked to find K ≥ 1 vertex-disjoint paths that maximize the total collected prize
and each path respects both the capacity and the budget constraints. Formally, in c-top, the
goal is to find K paths P 1

st, . . . , P K
st from s to t that maximize

∑K
k=1

∑
v∈P k

st
π(v), and such

that l(P k
st)+g(P k

st) =
∑

e∈E(P k
st) l(e)+

∑
v∈V (P k

st) g(v) ≤ B and r(P k
st) =

∑
v∈V (P k

st) r(v) ≤ C

for any k ∈ [K].
In the remainder of the paper, we assume w.l.o.g. that the service times of s and t are

equal to 0, that is g(s) = g(t) = 0. This implies that we can ignore the cost of service time
by moving it to the edge length function. More formally, we redefine the length and service
time functions as follows: the length is l′(e) = l(e) + g(v)+g(u)

2 , for each edge e = (u, v) ∈ E,
while the service time is g′(v) = 0 for each node v ∈ V . The cost of any path Pst, with the
new functions, is therefore equal to

∑
e∈E(Pst) l′(e) =

∑
e=(u,v)∈E(Pst)

(
l(e) + g(v)+g(u)

2

)
=∑

e∈E(Pst) l(e) +
∑

v∈V (Pst) g(v). This implies that under this transformation: (1) the cost of
any path is equal to the length of the path, and (2) clearly, the triangle inequality property
is preserved. Thanks to this transformation, for the sake of simplicity and w.l.o.g., from
now on we assume that any graph with node service times is converted to an equivalent
graph with zero node service times. For the sake of readability, the obtained length l′ will be
denoted by l.

Given a subset of nodes V ′ ⊆ V , let r(V ′) =
∑

v∈V ′ r(v) and π(V ′) =
∑

v∈V ′ π(v). In all
the benchmark instances that have been considered in the literature on c-op, we observe
that node size is positively correlated to node prize. In fact, in such real-world inspired
instances, the prize of a node v is equal to π(v) = (0.5 + h)r(v), where h is a random
value in [0, 1] (see [2, 25]). This implies that, for any two subsets of nodes V1, V2 ⊆ V with
r(V1) ≥ r(V2), we have π(V1) ≥ 1

3 π(V2), since π(V1) ≥ 1
2 r(V1) and π(V2) ≤ 3

2 r(V2) ≤ 3
2 r(V1).

Indeed, in many practical applications we have that the prize of a subset of nodes increases
as its size increases, that is for two subsets of nodes V1, V2 ⊆ V with r(V1) ≥ r(V2), we have
π(V1) ≥ λπ(V2), for some λ ∈ (0, 1]. Therefore, in this paper we consider c-op and c-top
under the following natural assumption.
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Algorithm 1
Input: I = ⟨G = (V, E), s, t, π, l, B, r, C⟩.
Output: An (s− t) path Pst s.t. l(Pst) ≤ B and r(Pst) ≤ C.

1 Let I ′ = ⟨G = (V, E), s, t, π, l, B⟩ be an instance of op;
2 Apply an Aop to I ′; let Pα be the returned solution;
3 if r(Pα) ≤ C then Pst ← Pα ;
4 else // r(Pα) > C

5 Choose a subset of nodes S ⊆ V (Pα) \ {s, t} with r(S) ≥ C such that, for some v ∈ S,
we have r(S \ {v}) ≤ C;

6 if r(S) = C then Pst ← Pα[S];
7 else // r(S) > C

8 Let v be a node in S such that r(S \ {v}) ≤ C;
9 Partition S into two subsets S1 = S \ {v} and S2 = {v};

10 Let S′ = arg maxA∈{S1,S2} π(A);
11 Pst ← Pα[S′];
12 return Pst;

▶ Assumption 2.1. Let λ ∈ (0, 1] be a parameter to be fixed. For any two subsets of nodes
V1, V2 ⊆ V with r(V1) ≥ r(V2), we have π(V1) ≥ λπ(V2).

Note that, Assumption 2.1 implies that selecting subsets of nodes with larger sizes results in
collecting more prize, besides a multiplicative factor λ.

3 Approximation Algorithms with Theoretical Guarantees

In this section, we introduce some polynomial time algorithms for c-op and c-top that
guarantee bounded approximation ratios under Assumption 2.1. We first focus on c-op
under that assumption and introduce a polynomial time max{α, 2

λ }-approximation algorithm
where α is the approximation ratio guaranteed by an algorithm Aop for op that is used
as a subroutine while λ ∈ (0, 1] is the parameter of Assumption 2.1. Then, we show that
this result implies, under some particular conditions, an improvement over the best known
approximation ratio for c-op. Finally, we show how to use this algorithm to approximate
c-top.

Our main algorithm, whose pseudo-code is summarized in Algorithm 1, takes as input an
instance I = ⟨G = (V, E), s, t, π, l, B, r, C⟩ of c-op. Starting from I, Algorithm 1 defines an
op instance I ′ with I ′ = ⟨G = (V, E), s, t, π, l, B⟩ and executes algorithm Aop onto it. Let Pα

be the solution returned by Aop when applied to I ′. An optimal solution OPTI′ to instance
I ′ of op has value at least π(OPTI′) ≥ π(OPTI), where OPTI is an optimal solution to the
instance I of c-op. It follows that, if r(Pα) ≤ C, then Pα is an α-approximation also for I.
Therefore, if r(Pα) ≤ C, Algorithm 1 returns Pα as a solution. If r(Pα) > C, Algorithm 1
chooses a subset of nodes S ⊆ V (Pα) \ {s, t} such that r(S) ≥ C and, for some v ∈ S,
we have r(S \ {v}) ≤ C. Now if r(S) = C, then Algorithm 1 returns Pα[S], the subpath
of Pα induced by S, as a solution. Otherwise, it partitions S into two subsets of nodes
S1 = S \ {v} and S2 = {v}, where v is a node in S such that r(S1) ≤ C. Note that r(v) ≤ C

and hence both S1 and S2 are feasible solutions for I. Finally, Algorithm 1 selects the set
with the maximum prize between S1 and S2, denoted by S′ = arg maxA∈{S1,S2} π(A), and
returns Pα[S′] as a solution. In the next theorem, we show that Algorithm 1 guarantees a
max{α, 2

λ }-approximation algorithm for c-op under Assumption 2.1.

ATMOS 2024
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▶ Theorem 1. Algorithm 1 is a polynomial time max{α, 2
λ }-approximation algorithm for

c-op under Assumption 2.1, where α denotes the approximation ratio for op and λ ∈ (0, 1].

Proof. If r(Pα) ≤ C, then Algorithm 1 returns solution Pα. By the feasibility of Pα for
instance I ′, we have that l(Pα) ≤ B and hence Pα is feasible for instance I of c-op. Moreover,
π(Pα) ≥ 1

α π(OPTI′) ≥ 1
α π(OPTI), and hence Pα provides an α-approximation for I. If

r(Pα) > C, then Algorithm 1 selects a set S ⊆ V (Pα) \ {s, t} with r(S) ≥ C such that there
exists a node v ∈ S for which r(S \ {v}) ≤ C. We distinguish between two cases.
1. r(S) = C. In this case, Algorithm 1 returns Pα[S] as a solution. Since l(Pα) ≤ B,

then, by triangle inequality, we have l(Pα[S]) ≤ B. Moreover, r(Pα[S]) = r(S) = C, as
r(s) = r(t) = 0, and hence Pα[S] is feasible for I. By Assumption 2.1, it follows that
π(S) ≥ λπ(OPTI), since r(S) = C and r(OPTI) ≤ C. Hence, Pα[S] is a 1

λ -approximation
for I.

2. r(S) > C. In this case, Algorithm 1 partitions S into two subsets S1 = S \ {v} and
S2 = {v}, with r(S1) ≤ C, selects the set with the maximum prize between S1 and S2,
say S′, and returns Pα[S′] as solution. Since l(Pα) ≤ B, then, by triangle inequality, it
follows that l(Pα[S′]) ≤ B. Moreover, both r(S1) and r(S2) are upper bounded by C

and hence Pα[S′] is feasible for I. Regarding the approximation factor of Pα[S′], we have
π(S′) ≥ 1

2 π(S) ≥ λ
2 π(OPTI), where the first inequality holds as S′ is the set with the

maximum prize between two sets S1, S2 ⊆ S with S1 ∪ S2 = S and S1 ∩ S2 = ∅, and the
second inequality follows by Assumption 2.1, as r(S) ≥ C and r(OPTI) ≤ C. Therefore,
Pα[S′] is a 2

λ -approximation for I. ◀
Theorem 1, along with the (2 + ε)-approximation algorithm for op given by Chekuri et al. [9]
implies the following result.

▶ Corollary 2. For any fixed ε > 0, Algorithm 1 is a max{2 + ε, 2
λ }-approximation algorithm

for c-op, under Assumption 2.1 where λ ∈ (0, 1].

When λ ≥ 2
3 in Assumption 2.1, then 2

λ ≤ 3 and hence the above corollary implies that the
approximation factor of Algorithm 1 is in the interval [2 + ε, 3], for any ε ∈ (0, 1]. This is an
improvement on the approximation of c-op under Assumption 2.1 over the factor 3 + ε by
Bock and Sanità [8].

▶ Corollary 3. For any fixed ε ∈ (0, 1], Algorithm 1 is a β-approximation algorithm with
β ∈ [2 + ε, 3] for c-op, under Assumption 2.1 where λ ∈ [ 2

3 , 1].

Another interesting implication of Theorem 1 is that an α-approximation algorithm for op
results in an α-approximation for c-op, under Assumption 2.1, when λ ≥ 2

α . In particular,
under this hypothesis, Algorithm 1 is a (2 + ε)-approximation algorithm for c-op, by using
the result by Chekuri et al. [9].

▶ Corollary 4. For any fixed ε > 0, Algorithm 1 is a (2 + ε)-approximation algorithm for
c-op, under Assumption 1 where λ ≥ 2

2+ε .

A β-approximation algorithm alg for c-op can be used as a black-box, to obtain a (1 −
e− 1

β )−1-approximation algorithm for c-top [8], using the following greedy strategy (named
GenStra):
1. For i = 1 to K do:

a. Run the β-approximation algorithm for c-op to obtain a path Pi on G = (V, E).
b. Remove all covered nodes V (Pi) from G.

2. Return P1, . . . , PK .

Using this result, we can generalize our result for c-op to c-top under Assumption 2.1.
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▶ Theorem 5. Under Assumption 2.1, there exists a polynomial time (1−e− 1
β )−1-approxima-

tion algorithm for c-top, where β = max{2 + ε, 2
λ } for any fixed ε > 0.

Proof. The theorem follows from Theorem 1 and the fact that any β-approximation algorithm
for c-op can be used as a subroutine in GenStra to achieve a (1 − e− 1

β )−1-approximation
factor for c-top [8]. ◀

Theorem 5 implies that when λ ≥ 2
3 in Assumption 2.1, one can achieve a ρ-approximation

algorithm for c-top, where ρ ∈ [(1 − e− 1
2+ε )−1, (1 − e− 1

3 )−1], for any ε ∈ (0, 1), where
(1 − e− 1

2 )−1 > 2.55 and (1 − e− 1
3 )−1 < 3.53. This is an improvement for c-top under

Assumption 2.1 over the factor (1 − e− 1
3+ε )−1, for ε > 0, by Bock and Sanità [8].

▶ Corollary 6. For any fixed ε ∈ (0, 1), under Assumption 2.1 with λ > 2
3 , c-top admits a

ρ-approximation algorithm, where ρ ∈ [2.55, 3.53).

4 Heuristic Algorithms

The running time of Algorithm 1 presented in Section 3 is dominated by the time required
to run an approximation algorithm for op at line 2. If we use the (2 + ε)-approximation
algorithm by Chekuri et al. [9] for this purpose, this step requires O(nO(1/ε2)) time, for any
ε > 0. In this section, motivated by such high computational time, we design four efficient
heuristic algorithms that have low computational time but do not guarantee any bound on
the quality of the computed solution. In Section 5, we experimentally evaluate the proposed
heuristics on relevant sets of instances of c-top, showing that they also produce high-quality
solutions. In particular we show that our heuristics require small computational time and
that the value of the computed solutions is comparable to that achieved by state-of-the-art
methods. Both in this section and in Section 5, we assume that s = t in c-op and c-top,
that is we need to find a tour instead of a path. We refer to node s as depot.

In what follows, we describe our heuristics for c-op. Each algorithm alg for c-op can
be generalized to be used for c-top by applying GenStra stated in Section 3, where we use
alg instead of a β-approximation algorithm for c-op, and we set s = t.

Our heuristic algorithms for c-op exploit a procedure, named dproc, to produce solutions
that respect the capacity constraints starting from a set of nodes S ⊆ V . Such procedure
works as follows: first, it computes a subset of nodes S′ ⊆ S that maximizes the prize π(S′)
and has size at most r(S′) ≤ C by using the well-known dynamic programming for the
Knapsack problem [27]. Then, it determines a tour T that includes the depot s and all
nodes in S′ using an approximation algorithm for the Traveling Salesman Problem (TSP).
Specifically, for all algorithms we consider two versions of dproc, which use either the 3/2-
or 2-approximation for TSP [27], respectively, and, in Section 5, we will specify how the
two versions are used in the experiments. Finally, dproc returns T as output. We remark
that the input graph is complete and metric. In the following, we denote the application
of procedure dproc with input S by dproc(S). Now, for any two nodes u and v, let
w(u, v) = l(e) · r(v), be the weight of edge e = (u, v). Our heuristic algorithms for c-op are
as follows. In Section 5, we will extend each algorithm for c-op to c-top by using procedure
GenStra and, we call its extension with the same name for c-op.

sqrB-ApxA (SBAA). This algorithm is inspired by the algorithms given by Kuo et al. [21]
and by D’Angelo et al. [12] for the problem of finding a rooted out-tree in a directed graph
that maximizes the sum of prizes associated to the nodes, subject to a budget constraint.
Specifically, for each node u ∈ V , we compute a candidate set Su and, at the end of the
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algorithm, we consider a set SM that maximizes the prize, i.e. SM := arg maxu∈V π(Su)
and output dproc(SM ). In details, the candidate set Su of a node u ∈ V is computed as
follows. We first sort all nodes v ∈ V in non-increasing order of π(v)/w(u, v) or π(v). In
Section 5 we will describe how the two sorting strategies are used in the experiments. Then,
we consider two integers x and y and, for each pair (x, y) ∈ {0, 1, 2} × [50], we compute:
(i) the set Sx

y containing the first yB1−x/2 nodes in the ordering that have a distance at
most Bx/2 from u; (ii) a tour T x

y = dproc(Sx
y ) and check if l(T x

y ) ≤ B. Then, set Su is
selected as a set that produces a feasible tour in the previous step and maximizes the prize,
i.e. Su := arg max{π(Sx

y ) : l(T x
y ) ≤ B, (x, y) ∈ {0, 1, 2} × [50]}. To improve the running time,

we exploit the monotonicity of function π, iterate through the values of y from y = 50 to
y = 1 and stop as soon as we find a feasible tour. The values for x and y have been chosen
after a preliminary pilot experimental study on the algorithm’s performance.

4-ApxA (4AA). This heuristic is based on the idea of Gupta et al. [18] who showed that, given
an α-approximation algorithm for op, it is possible to derive a 2α-approximation algorithm
for c-op. So, we use the best approximation algorithm for the unrooted version of op in which
there is no specified root node s that must be spanned, which is the 2-approximation algorithm
proposed by Paul et al. [23]. In particular, given an instance I = ⟨G = (V, E), s, π, r, l, B, C⟩
of c-op, we define an op instance I ′ with I ′ = ⟨G = (V, E), s, π′, l, B⟩ in which for any
v ∈ V , π′(v) = π(v) − ηr(v), where η ≥ OPT/(2C) and OPT is an optimal solution to
c-op. As OPT is not known, we guess it through a binary search over the range [πmin, TP ],
where πmin be the minimum positive prize of a node and TP is the total prize of vertices.
We know that OPT ≤ TP . We estimate the value of OPT by guessing N possible values,
where N is the smallest integer for which πmin2N−1 ≥ TP . For the instances considered in
Section 5, we set η using this binary search. For each η, we compute the solution returned
by the 2-approximation algorithm by Paul et al. [23] on the obtained instance I ′ and we let
Sη be the nodes in this solution. By definition of op, set Sη satisfies the budgeted constraint
but it is not guaranteed to satisfy the capacity. Therefore, we compute Tη = dproc(Sη)
to obtain a tour that satisfies the capacity constraint. Finally we output the tour TM that
maximizes the prize, i.e. TM := arg max{π(Tη)}, where η is set based on the binary search
to find OPT . Note that for any v, in case π′(v) = π(v) − ηr(v) < 1, we set π′(v) = 1.

GreedyRandom-ApxA (GRA). This is a modification of the randomized algorithm proposed
by Arora and Scherer [4]. The following randomized algorithm is repeated multiple times
and the solution with best prize is selected (in the experiments we repeat for 10 times). We
keep a solution S, initially equal to the empty set. For 3|V | times we repeat the following
loop. We sample a node v uniformly at random and we check if v ∈ S. If so, we remove it
from S. Otherwise, we add it to S. Then, we compute T = dproc(S) and check if l(T ) ≤ B

and π(T ) > π(S). In the affirmative case, we set S := V (T ) and repeat the loop.

Greedy-ApxA (GA). Like for SBAA, we compute a candidate set Su, for each node u ∈ V ,
we select a set SM that maximizes the prize, i.e. SM := arg maxu∈V π(Su), and output
dproc(SM ). For each node u ∈ V , the candidate set Su is computed as follows. We first
sort all nodes v ∈ V in non-increasing order of π(v)/w(u, v) or π(v). In Section 5 we will
specify the used sorting strategy. We initialize Su as Su := {u}. Then, we iterate over the
nodes v ∈ V \ {u}, according to the sorting. At each iteration we check whether adding to
Su the next node v in the sorting induces a feasible solution with better prize of the current
solution. Specifically, we compute T = dproc(Su ∪ {v}) and check whether l(T ) ≤ B and
π(T ) > π(Su). In the affirmative case, we set Su := V (T ) and iterate to the next node in
the ordering.
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Note that SBAA, 4AA, GA and GreedyRandom-ApxA are pseudo-poly algorithms as we
use the well-known dynamic programming for the Knapsack problem. However, one can use
the well-known FPTAS for the knapsack problem [27].

5 Experiments

In this section, we present and analyze the results of an extensive experimental evaluation on
the performance of the heuristics proposed in Section 4. We design two experiments, named
respectively comparison and scalability, with the objective of answering to different
experimental questions.

The aim of experiment comparison (see Section 5.1), is comparing the performance of
the four proposed heuristic algorithms against methods of the literature that are considered
the state-of-the-art for c-top. Among them, based on the most recent experimental results
on the problem (see [19]), we identify the most effective/competitive w.r.t. solution quality
and running time, that is algorithms: VNS, TSF, TSA [2]; BiFFf and BiFFs [25]; VSS-Tb and
VSS-SA [6]; HALNS [19]. We do not consider, instead, algorithms ADEPT-RD [22], SA-ILS [17],
and LNS/NLNS [20] since they have been tested only on a subset of the benchmark instances and,
in terms of performance, they are dominated by or comparable to HALNS [19]; Furthermore,
ILS [16] provided the average results on each set instead of giving their result on each
instance.

The aim of experiment scalability (see Section 5.2), is assessing the scalability properties
of our newly introduced heuristics, i.e. to study how the performance of our heuristics change
with the input size, and specifically if our algorithms can process larger instances than those
that have been considered in past literature on the problem. For all experiments, we use
implementations of the four heuristics of Section 4 we developed for the purpose. All our
code is written in C++ (available at https://shorturl.at/bMYNb) and compiled with GCC 9.4.0
with optimization level O3; all our tests have been executed on a workstation equipped with
an Intel© Xeon© processor, clocked at 2.30GHz, running Ubuntu Linux.

5.1 comparison Experiment
In this experiment, we test implementations of SBAA, 4AA, GRA, and GA on two publicly
available datasets of benchmark inputs for c-top, defined in [2] and [25], respectively, derived
from instances of TSP and considered reference instances for assessing the performance of
algorithms for c-top.

Input Data. The details of such datasets, which we call small-case and large-case
inputs, respectively, are summarized in what follows:
small-case: this set contains 130 instances (divided into three subsets, named sc-1, sc-2 and

sc-3 and having 10, 90 and 30 instances, resp.) defined in [2] by suitably manipulating
the instances given in [11] for TSP. The number of nodes of graphs in this set is n ∈
{51, 76, 101, 121, 151, 200}; instances are generated by considering different combinations
of fleet size K ∈ {2, 3, 4, 10, 15, 20}, budget B ∈ {50, 75, 100, 160, 200, 230, 720, 1040} and
capacity C ∈ {50, 75, 100, 140, 160, 200}.

large-case: this set contains 130 instances (divided in three subsets, named lc-1, lc-2,
and lc-3 and having 10, 90, and 30 instances, resp.) developed in [25] by modifying
the inputs to the Periodic Vehicle Routing Problem of [24]. The number of nodes in
this set is n ∈ {337, 361, 385, 433, 481, 529, 505, 577} while other parameters are K ∈
{6, 7, 8, 14, 15, 16, 18, 20, 21, 22, 24}, B ∈ {100, 200, 400, 660, 668, 675, 683, 705, 713, 720}
and C ∈ {75, 150, 200, 330, 335, 340, 345, 350, 360, 365, 375}.
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Each of the above instances, in what follows, is identified by a unique string following the
format base-n-K-C-B, where base is the name of the original TSP instance from either [11]
or [24], while n is the number of nodes, K is the number of vehicles, C is the capacity and B

is the budget. Note that, for both small-case and large-case instances, the prize of each
node v having size r(v) is assigned to be equal to π(v) = (h + 0.5)r(v), where h is a random
number uniformly generated within interval [0, 1]. This implies that for any instance having
capacity C and number of vehicles K, the optimum for the instance is upper bounded by
(h + 0.5)KC ≤ 3KC

2 in c-top.

Executed Tests. For all mentioned inputs, we run all four heuristics and measure both
running time (column t, in seconds) and solution quality (i.e. achieved prize, column p).
We then compare observed measures with the results obtained, on the same instances, by
reference methods of the literature mentioned above, as summarized in Tables 1–4.

Table 1 Results of experiment comparison for small-case inputs, subset sc-1.

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-15-200-200 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 904 362 35.84 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 2 0.00 1409 < 1 0.00

06-51-10-160-200 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 191 73 74.90 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00

07-76-20-140-160 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1238 146 6.70 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 1 0.00 1327 < 1 0.00

08-101-15-200-230 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 916 391 34.98 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 1 0.00 1409 < 1 0.00

09-151-10-200-200 2063 < 1 0.09 2064 < 1 0.04 2057 < 1 0.38 1586 1255 0.00 2064 3600 0.00 2061 163 0.00 2062 127 0.00 2065 2 0.00 2065 2 0.00 2065 39 0.00 2065 120 0.00 2065 1 0.00

10-200-20-200-200 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 2828 4218 7.21 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 11 0.00 3048 < 1 0.00

13-121-15-200-720 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 417 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 2 0.00 1287 < 1 0.00

14-101-10-200-1040 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 3 0.00 1710 < 1 0.00

15-151-15-200-200 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 1450 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 7 0.00 2159 < 1 0.00

16-200-15-200-200 2965 < 1 0.13 2965 < 1 0.13 2966 < 1 0.10 2941 3829 0.94 2968 3600 0.03 2965 270 0.13 2967 377 0.06 - - - - - - 2969 61 0.00 2969 254 0.00 2969 76 0.00

Observe that, for subsets of inputs sc-2, sc-3, lc-2 and lc-3, which have a large number
of instances, we report a meaningful selection of the results of our tests, while full data will
appear in a longer version of the paper. Besides running time and prize, for each algorithm
A and for each instance, we report the gap gA between the solution SolA computed by A

and the best known solution for the instance, obtained by any of the algorithm in the set X

of considered algorithms, i.e. gA = BKS−SolA

BKS · 100, where BKS = max
A′∈X

SolA′ . Algorithms
achieving the maximum solution quality, for each instance, are highlighted in bold. For the
sake of fairness, we remark that all the considered algorithms from the literature have a
randomized nature and have been evaluated by following a measurement strategy commonly
referred to as Time-To-Best, which consists of: (i) running a given algorithm 10 times; (ii)
selecting the run that performs best in terms of solution quality (prize); (iii) reporting solution
quality and running time only of such run of the algorithm (see [19] and references therein).
While this measurement strategy is reasonable when one compares only randomized solutions,
it appears to be not well suited to be applied in comparisons that include deterministic
algorithms, such as ours GA, SBAA or 4AA, which output the same solution even if they are
executed multiple times. Indeed, a more empirically appropriate assessment strategy would
require to measure, for randomized approaches, the sum of the running times of the all
executions, since that represents the actual time the algorithm have to run to obtain the best
solution, and compare such time with that of deterministic algorithms. Therefore, running
times reported for algorithms from the literature might likely be underestimations of the
actual average running time.

Note that, procedure dproc, used by all our heuristics, considers different possibilities for
computing a tour on a subset of the nodes, namely the 3/2- and 2-approximation algorithms
for TSP [27]. Moreover, heuristics SBAA and GA use two different node sorting strategies,
based on the prize or on the ratio between prize and weight. After a preliminary experimental
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Table 2 Excerpt of the results of experiment comparison for subsets sc-2 (top) and sc-3
(bottom).

Subset sc-2

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-4-100-100 510 < 1 4.13 523 < 1 1.69 516 < 1 3.00 501 257 5.82 529 963 0.56 531 317 0.18 529 357 0.56 531 7 0.18 532 42 0.00 532 27 0.00 532 12 0.00 532 21 0.00

06-51-4-100-100 450 < 1 5.49 470 < 1 2.48 472 < 1 2.07 388 21 19.50 481 135 0.20 482 25 0.00 482 26 0.00 482 < 1 0.00 482 < 1 0.00 482 < 1 0.00 482 2 0.00 482 2 0.00

07-76-4-100-100 510 < 1 1.72 510 < 1 2.11 514 < 1 1.34 451 107 13.43 521 342 0.00 521 25 0.00 514 26 1.34 518 < 1 0.57 521 < 1 0.00 521 < 1 0.00 521 2 0.00 521 2 0.00

08-101-4-100-100 514 < 1 2.06 523 < 1 1.69 516 < 1 3.00 501 107 5.82 529 963 0.56 531 317 0.18 529 357 0.56 531 7 0.18 532 41 0.00 532 29 0.00 532 20 0.00 532 31 0.00

09-151-4-100-100 532 < 1 1.64 542 < 1 0.73 539 < 1 1.26 506 1074 7.32 545 2934 0.18 539 924 1.28 536 959 1.83 545 51 0.18 546 38 0.00 546 53 0.00 546 31 0.00 546 31 0.00

10-200-4-100-100 544 < 1 1.80 548 < 1 0.90 550 < 1 0.54 522 2969 5.60 548 3600 0.90 549 2077 0.72 550 3232 0.54 553 183 0.00 553 243 0.00 553 11 0.00 553 40 0.00 553 43 0.00

13-121-4-100-100 415 < 1 1.19 415 < 1 0.95 417 < 1 0.47 383 23 8.59 419 179 0.00 419 24 0.00 419 48 0.00 419 < 1 0.00 419 < 1 0.00 419 < 1 0.00 419 1 0.00 419 1 0.00

14-101-4-100-100 511 < 1 3.04 522 < 1 0.57 521 < 1 0.76 488 212 7.04 525 670 0.00 523 210 0.38 525 292 0.00 525 < 1 0.00 525 < 1 0.00 525 5 0.00 525 1 0.00 525 5 0.00

15-151-4-100-100 542 < 1 1.27 545 < 1 0.72 544 < 1 0.91 518 1077 5.64 548 2828 0.18 549 1252 0.00 545 1015 0.72 548 10 0.18 549 206 0.00 549 66 0.00 549 49 0.00 549 87 0.00

16-200-4-100-100 553 < 1 0.53 555 < 1 0.53 554 < 1 0.71 538 3009 3.58 554 3600 0.71 554 2124 0.71 553 3559 0.89 556 3 0.35 558 67 0.00 558 5 0.00 558 79 0.00 558 36 0.00

Subset sc-3

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-4-200-200 936 < 1 1.47 938 < 1 1.26 939 < 1 1.15 914 927 3.78 950 961 0.00 946 110 0.42 947 42 0.31 950 < 1 0.00 950 < 1 0.00 950 16 0.00 950 11 0.00 950 10 0.00

06-51-4-160-200 681 < 1 0.29 682 < 1 0.14 680 < 1 0.43 648 82 5.12 683 53 0.00 683 5 0.00 682 4 0.14 683 < 1 0.00 683 < 1 0.00 683 < 1 0.00 683 1 0.00 683 1 0.00

07-76-4-140-160 705 < 1 0.28 705 < 1 0.28 704 < 1 0.42 686 376 2.97 707 296 0.00 707 44 0.00 702 39 0.70 707 2 0.00 707 5 0.00 707 2 0.00 707 1 0.00 707 < 1 0.00

08-101-4-200-230 947 < 1 0.31 949 < 1 0.10 946 < 1 0.42 924 916 2.73 950 726 0.00 949 89 0.10 949 38 0.10 950 1 0.00 950 10 0.00 950 8 0.00 950 8 0.00 950 11 0.00

09-151-4-200-200 1029 < 1 0.38 1031 < 1 0.19 1024 4 0.87 1008 3552 2.42 1033 2903 0.00 1033 480 0.00 1029 254 0.38 1033 2 0.00 1033 2 0.00 1033 44 0.00 1033 11 0.00 1033 16 0.00

10-200-4-200-200 1064 < 1 0.00 1064 < 1 0.00 1062 10 0.18 1060 8854 0.37 1064 3600 0.00 1064 1260 0.00 1063 789 0.09 1064 1 0.00 1064 < 1 0.00 1064 15 0.00 1064 9 0.00 950 11 0.00

13-121-4-200-720 908 < 1 0.00 908 < 1 0.00 908 < 1 0.00 908 1474 0.00 908 954 0.00 907 76 0.11 906 40 0.22 908 < 1 0.00 908 < 1 0.00 908 217 0.00 908 27 0.00 908 6 0.00

14-101-4-200-1040 975 < 1 0.00 975 < 1 0.00 975 < 1 0.00 978 < 1 0.00 975 483 0.00 975 56 0.00 975 38 0.00 975 1 0.00 975 1 0.00 975 < 1 0.00 975 1 0.00 975 < 1 0.00

15-151-4-200-200 1024 < 1 0.67 1027 < 1 0.38 1016 5 1.45 1010 3645 2.03 1031 2832 0.00 1019 618 1.16 1030 276 0.09 1031 3 0.00 1031 3 0.00 1031 262 0.00 1031 58 0.00 1031 7 0.00

16-200-4-200-200 1071 < 1 0.18 1071 < 1 0.18 1068 11 0.46 1062 9171 1.02 1073 3600 0.00 1072 1263 0.09 1071 897 0.18 1073 1 0.00 1073 1 0.00 1073 40 0.00 1073 15 0.00 1073 1 0.00

study, we found out that on instances sc-1, sc-2, and sc-3, on average the algorithms
based on prize ordering performs worse in terms of collected prize than those based on prize-
over-weight ordering. Therefore, for these instances we use the prize-over-weight ordering
and both the 3/2- and 2-approximation algorithms for TSP. We then select the solution
with the highest prize between these two and report the sum of the running times of both
approaches. Similarly, for instances lc-1, lc-2 and lc-3, our preliminary experiments
show that algorithms based on the 2-approximation algorithm for TSP perform worse than
those based on the 3/2-approximation and hence, in these instances, we use only this latter
and both prize and prize-over-weight orders. We then select the solution with the highest
prize and report the sum of the running times of both approaches. Finally, for SBAA we
fix parameter y, determining an upper bound on how many nodes can be assigned to each
vehicle, to 20, whenever the number of vehicles is large enough so that the nodes of graphs
can be divided among vehicles.

Analysis. Our data lead to two main general conclusions: first, the newly introduced
algorithms are competitive with existing ones in terms of solution quality. In fact, they
achieve, in many cases, best known solutions (i.e. have zero gap), and solutions with good
quality, with gaps that are in the order of few percentage points, one or two tens in the worst
cases, in the remaining cases. Second, SBAA, GA and GRA are significantly faster than methods
known in the literature, requiring running times that are up to orders of magnitude smaller
to achieve solutions that have comparable quality (with prizes equal or very close to the best
ones and corresponding small gaps). The only exception to this behavior is algorithm 4AA,
whose running time does not scale well with the graph size, due to using the 2-approximation
algorithm of [23]. For this reason, we omit from the comparison the results of algorithm 4AA
for larger instances, i.e. large-case. In more details, we observe that:
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Table 3 Results of experiment comparison for large-case inputs, subset lc-1.

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

01-337-14-345-720 3836 30 8.05 4139 1 0.79 4014 51 3.78 4172 17 0.00 4172 17 0.00 4172 1 0.37 4172 2 0.00 4172 1 0.00

02-385-16-350-713 4434 43 7.31 4753 < 1 0.64 4605 77 3.74 4784 25 0.00 4784 25 0.00 4784 1 0.37 4784 3 0.00 4784 2 0.00

03-433-18-330-675 4911 59 5.57 5187 < 1 0.26 4949 103 4.84 5201 33 0.00 5201 32 0.00 5201 2 0.37 5201 3 0.00 5201 4 0.00

04-481-20-335-713 5463 85 6.35 5834 2 0.00 5697 155 2.24 5828 48 0.10 5828 47 0.10 5828 1 0.10 5828 3 0.10 5828 3 0.10

05-529-22-340-705 5892 127 8.59 6446 5 1.95 6211 215 3.63 6445 101 0.01 6445 98 0.01 6445 3 0.01 6445 5 0.01 6445 3 0.01

06-577-24-365-683 6709 164 5.26 7082 5 0.00 6937 266 1.89 7071 94 0.15 7071 93 0.15 7071 1 0.15 7071 2 0.15 7071 6 0.15

07-361-15-335-668 3877 41 10.97 4134 < 1 5.07 4122 56 5.35 4355 24 0.00 4355 23 0.00 4355 1 0.37 4355 3 0.00 4355 1 0.00

08-433-18-350-675 4706 74 9.39 5133 2 1.17 4965 122 4.40 5194 51 0.00 5194 49 0.00 5194 2 0.37 5194 4 0.00 5194 1 0.00

09-505-21-360-660 5267 118 14.81 5841 5 5.53 5953 176 3.71 6183 103 0.00 6183 104 0.00 6183 3 0.37 6183 22 0.00 6183 5 0.00

10-577-24-375-675 6601 166 8.88 7245 8 0.00 7132 289 1.47 7239 144 0.08 7239 144 0.08 7239 4 0.08 7239 7 0.08 7239 6 0.08

for small-case instances, algorithms GRA, SBAA and GA outperform all other approaches
in terms of running time by completing their execution always in less than 1 second; at
the same time they compute best solutions in all cases with few exceptions where the gap
is below 5%; in more details, for subset sc-1, algorithms VSS-Tb, VSS-SA and HALNS have
running times up to 254 seconds (with zero gap) while GRA and SBAA, GA take less than 1
second (with gaps below 0.39%); for subset sc-2, similarly, VSS-Tb, VSS-SA and HALNS
have running times up to 100 seconds (with zero gap) while our simple algorithms SBAA
and GRA take always less than 1 second (with gaps below 5% and 7%, resp.); instead, GA
has running time below 4 seconds (while exhibiting gaps below 5%); finally, for subset
sc-3, VSS-Tb, VSS-SA and HALNS have running times up to 300 seconds, while SBAA and
GRA run always for less than 1 second and their gaps are below 1.78% and 3.42%, resp.;
GA has running time up to 11 seconds with gap below 2.00%; Note that for subsets sc-1,
sc-2 and sc-3, 4AA has gap mostly below 15.00% with high running time.

for large-case instances, algorithm SBAA outperforms the literature in 4 out of 10
instances of subset lc-1, in terms of quality of solution, while having running time at
most 8 seconds; in the remaining 6 instances of subset lc-1, method SBAA is competitive
w.r.t. the state-of-the-art, in terms of quality of solution, while achieving a gap that is
always below 5.40%; for subset lc-2, algorithms VSS-Tb, VSS-SA and HALNS have large
running times (up to 3900 seconds) while SBAA and GRA are the best performing in terms
of time, with executions lasting at most 32 seconds (which is at least two orders of
magnitude faster than VSS-Tb, VSS-SA and HALNS); on top of that, the gap obtained by
SBAA and GRA remain below 15% and 20% respectively in most cases, and the gap of
GA is mostly below 15% (with running time up to 132 seconds); finally, for subset lc-3,
algorithms VSS-Tb, VSS-SA and HALNS have huge running times (up to 16000 and 1700
seconds, resp., for VSS-Tb and VSS-SA, while HALNS runs for up to 7000 seconds) while
SBAA and GRA run for at most 56 seconds (meaning that SBAA is at least two orders of
magnitude faster than VSS-Tb, VSS-SA and HALNS) with gap mostly below 8%; similarly,
GRA has running time up to 56 seconds with the gap mostly below 15%, and GA takes
up to 437 seconds to yield gaps that are mostly below 5%; to summarize, the results for
large-case inputs suggest that our very simple algorithms outperform the literature by
far in terms of time (at least an order of magnitude) while having a good gap, and hence
they can be considered more practical.
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Table 4 Excerpt of the results of experiment comparison for subsets lc-2 (top) and lc-3
(bottom).

Subset lc-2

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

81-337-8-200-400 1718 16 15.82 1911 16 6.36 1976 50 3.57 2032 155 0.44 2032 1236 0.44 2039 1286 0.10 2041 763 0.00 2040 1167 0.05

81-337-8-200-400 1757 8 13.91 1911 16 6.36 1976 50 3.57 2032 155 0.44 2032 1236 0.44 2039 1286 0.10 2041 763 0.00 2040 1167 0.05

82-385-8-200-400 1830 8 11.50 1850 15 10.54 2022 55 2.22 2064 1216 0.19 2065 5641 0.15 2066 2121 0.10 2068 1078 0.00 2066 1983 0.10

83-433-8-200-400 1939 16 7.57 2024 10 3.52 2058 77 1.90 2096 574 0.10 2097 3173 0.05 2097 2724 0.05 2098 1649 0.00 2098 1562 0.00

84-481-8-200-400 1876 16 11.96 2014 21 5.49 2075 106 2.62 2127 112 0.19 2127 103 0.19 2130 3317 0.05 2131 1627 0.00 2130 1116 0.05

85-529-8-200-400 1708 20 21.03 2023 24 6.47 2109 111 2.77 2154 1038 0.32 2155 7914 0.37 2162 3764 0.05 2163 2252 0.00 2161 1339 0.09

86-577-8-200-400 1991 24 9.66 2116 19 3.99 2171 132 1.54 2204 7385 0.05 2204 1658 0.05 2205 6426 0.00 2204 2289 0.05 2205 2078 0.00

87-361-8-200-400 1804 8 12.59 1939 16 6.05 1978 55 4.16 2063 1964 0.05 2063 3762 0.05 2063 889 0.05 2064 886 0.00 2064 1329 0.00

88-433-8-200-400 1800 16 13.21 1814 22 12.53 2011 90 3.03 2068 683 0.29 2070 3589 0.19 2072 1974 0.10 2074 2000 0.00 2072 784 0.10

89-505-8-200-400 1718 16 18.88 1942 32 8.30 2051 126 3.03 2115 11022 0.14 2115 17380 0.14 2116 2693 0.09 2118 2515 0.00 2115 2849 0.14

90-577-8-200-400 1961 24 9.75 2077 24 4.41 2139 129 1.56 2168 2168 0.23 2172 15678 0.05 2171 3326 0.09 2173 3197 0.00 2173 2901 0.00

Subset lc-3

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

21-337-8-345-720 2858 19 9.52 2933 26 7.15 2975 135 5.82 3159 927 0.00 3159 1745 0.00 3158 1462 0.03 3159 1576 0.00 3159 824 0.00

22-385-8-350-713 2911 24 11.54 3033 26 7.83 3183 161 3.28 3290 144 0.03 3291 583 0.00 3291 2850 0.03 3291 3018 0.00 3291 1401 0.00

23-433-8-330-675 2970 26 6.89 3058 17 4.13 3143 188 1.47 3190 455 0.00 3190 461 0.00 3190 4288 0.00 3190 3143 0.00 3190 616 0.00

24-481-8-335-713 3038 34 7.63 3144 29 4.40 3218 273 2.15 3289 451 0.00 3289 426 0.00 3289 283 0.00 3289 314 0.00 3289 297 0.00

25-529-8-340-705 3078 41 10.36 3258 31 5.12 3368 295 1.92 3432 1953 0.06 3434 7418 0.00 3434 4145 0.00 3434 4396 0.00 3434 5964 0.00

26-577-8-365-683 3385 51 9.70 3538 33 3.70 3674 406 2.00 3749 997 0.00 3749 1007 0.00 3748 14090 0.03 3748 9342 0.03 3749 1430 0.00

27-361-8-335-668 2738 24 12.15 3916 22 6.44 2947 131 5.45 3116 187 0.03 3116 189 0.03 3117 3090 0.00 3117 2248 0.00 3117 2046 0.00

28-433-8-350-675 2828 33 14.38 3106 40 5.96 3166 235 4.14 3301 1834 0.06 3302 3455 0.03 3303 5691 0.00 3303 5120 0.00 3303 3583 0.00

29-505-8-360-660 2794 45 20.82 3083 55 12.63 3303 373 6.40 3510 2282 0.54 3525 14499 0.11 3528 7370 0.03 3529 11119 0.00 3526 7134 0.09

30-577-8-375-675 3233 56 14.53 3518 48 7.00 3698 437 2.24 3781 2784 0.05 3783 11663 0.00 3781 10154 0.05 3783 9865 0.00 3783 7147 0.00

5.2 scalability Experiment
Here we evaluate how the running times of SBAA, GRA and GA change as the input size
increases.

Input Data. We generate input instances whose size is far larger than that of any of the
available benchmark inputs, with up to 15 500 nodes, by manipulating instance brussels2,
used by Arnold et al. [3], for a version of the capacitated vehicle routing problem where,
given a graph with edge lengths and a set of vehicles with limited capacity, the goal is to
cover all the nodes with minimum total length and in such a way that each vehicle respects
the capacity constraint. We sample uniformly at random 10 subgraphs from brussels2,
each having from 500 nodes to 15 500 nodes with steps of 1 000 nodes. For each subgraph, we
consider K ∈ {2, 4, . . . , 10} and B ∈ {200, 400, 600} while the capacity is fixed to C = 200.
Note that in the original instance, brussels2, the capacity of each vehicle is set to 150.
Similarly to the other benchmark instances, the prize is set to π(v) = (h + 0.5)r(v), for each
node v with size r(v), with h randomly uniformly chosen within [0, 1].
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Executed Tests. For each subgraph and combination of K and B, we ran heuristics SBAA,
GRA, and GA, and measure achieved prize and running time. We omit heuristic 4AA from
this part of the study since its running time is observed to be high even for not so large
input combinations (see Section 5.1). The results of this experiment are summarized in
Figures 1– 3: for each heuristic and for each considered value of B, we report measured
solution quality and running time, averaged over all K.
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Figure 1 Results of the scalability experiment for B = 200.
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Figure 2 Results of the scalability experiment for B = 400.
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Figure 3 Results of the scalability experiment for B = 600.

Analysis. Our experimental data highlight the following general behavior. When B = 200
(see Figure 1), GA and SBAA are extremely fast, with running times smaller than 1 second
even when the number of nodes n approaches 15 500; the running time of GRA is higher than
the first two heuristics and grows faster as n increases, but remains below 10 seconds even
for the largest case of n = 15 500. The latter value is far below the average running times
of algorithms tested in Section 5.1 for smaller graphs. Moreover, despite the low running
time, GA and SBAA on average outperform GRA also w.r.t. achieved prize. When the budget
is increased to 400 (see Figure 2) the observed trends are similar, with the average running
time of GA and SBAA being below 1 second until n is less than 6 500 and remaining below
50 seconds. GA and SBAA outperform GRA w.r.t. both execution time and prize while SBAA
outperforms GA, by small factors, w.r.t. both execution time and prize. Finally, when B is
further increased to 600 (Figure 3), the trend in terms of solution quality appears not to
be affected while the running time of all considered heuristics significantly increases, with
the difference between SBAA, GA and GRA that seems to decrease as n approaches the largest
value of 15 000. In general, our experiments suggest that the running time of SBAA and
GA tends to grow approximately linearly with the input size and highlight that, on the the
largest instance, SBAA and GA take below one minute on average, whereas previous algorithms
are not able to handle such large input graphs. Note that however, we use the dynamic
programming for the knapsack problem in both SBAA and GA, the capacity C in our instances
is less than the number of nodes.

References

1 Claudia Archetti, Nicola Bianchessi, and Maria Grazia Speranza. Optimal solutions for routing
problems with profits. Discret. Appl. Math., 161(4-5):547–557, 2013.

2 Claudia Archetti, Dominique Feillet, Alain Hertz, and Maria Grazia Speranza. The capacitated
team orienteering and profitable tour problems. J. Oper. Res. Soc., 60(6):831–842, 2009.

ATMOS 2024



7:16 Improved Algorithms for the Capacitated Team Orienteering Problem

3 Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale
routing problems. Comput. Oper. Res., 107:32–42, 2019.

4 Sankalp Arora and Sebastian A. Scherer. Randomized algorithm for informative path planning
with budget constraints. In 2017 IEEE International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages 4997–5004. IEEE, 2017.

5 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-tsp and vehicle routing with time-windows. In László Babai, editor, Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 166–174. ACM, 2004.

6 Asma Ben-Said, Racha El-Hajj, and Aziz Moukrim. A variable space search heuristic for the
capacitated team orienteering problem. J. Heuristics, 25(2):273–303, 2019.

7 Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM J.
Comput., 37(2):653–670, 2007.

8 Adrian Bock and Laura Sanità. The capacitated orienteering problem. Discret. Appl. Math.,
195:31–42, 2015.

9 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering and
related problems. ACM Trans. Algorithms, 8(3):23:1–23:27, 2012.

10 Ke Chen and Sariel Har-Peled. The euclidean orienteering problem revisited. SIAM J. Comput.,
38(1):385–397, 2008.

11 Nicos Christofides. The vehicle routing problem. Revue française d’automatique, informatique,
recherche opérationnelle. Recherche opérationnelle, 10(V1):55–70, 1976.

12 Gianlorenzo D’Angelo, Esmaeil Delfaraz, and Hugo Gilbert. Budgeted out-tree maximization
with submodular prizes. In Sang Won Bae and Heejin Park, editors, 33rd International
Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea,
volume 248 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

13 Mattia D’Emidio, Esmaeil Delfaraz, Gabriele Di Stefano, Giannantonio Frittella, and Edgardo
Vittoria. Route planning algorithms for fleets of connected vehicles: State of the art, imple-
mentation, and deployment. Applied Sciences, 14(7), 2024. doi:10.3390/app14072884.

14 Zachary Friggstad, Sreenivas Gollapudi, Kostas Kollias, Tamás Sarlós, Chaitanya Swamy, and
Andrew Tomkins. Orienteering algorithms for generating travel itineraries. In Yi Chang,
Chengxiang Zhai, Yan Liu, and Yoelle Maarek, editors, Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey,
CA, USA, February 5-9, 2018, pages 180–188. ACM, 2018.

15 Zachary Friggstad and Chaitanya Swamy. Compact, provably-good lps for orienteering and
regret-bounded vehicle routing. In Friedrich Eisenbrand and Jochen Könemann, editors,
Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO
2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes
in Computer Science, pages 199–211. Springer, 2017.

16 Aldy Gunawan, Kien Ming Ng, Vincent F Yu, Gordy Adiprasetyo, and Hoong Chuin Lau.
The capacitated team orienteering problem. Proceedings of the 9th International Conference
on Industrial Engineering and Operations ManagementBangkok, Thailand, March 5-7, 2019,
pages 1630–1638, 2019.

17 Aldy Gunawan, Jiahui Zhu, and Kien Ming NG. The capacitated team orienteering problem:
a hybrid simulated annealing and iterated local search approach. In Proceedings of the 13th
International Conference on the Practice and Theory of Automated Timetabling-PATAT,
volume 2, 2021.

18 Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Running
errands in time: Approximation algorithms for stochastic orienteering. Math. Oper. Res.,
40(1):56–79, 2015.

https://doi.org/10.3390/app14072884


G. D’Angelo, M. D’Emidio, E. Delfaraz, and G. Di Stefano 7:17

19 Farouk Hammami. An efficient hybrid adaptive large neighborhood search method for the
capacitated team orienteering problem. Expert Systems with Applications, 249:123561, 2024.

20 André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems.
Artif. Intell., 313:103786, 2022.

21 Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. Maximizing submodular set function
with connectivity constraint: Theory and application to networks. IEEE/ACM Trans. Netw.,
23(2):533–546, 2015.

22 Zhixing Luo, Brenda Cheang, Andrew Lim, and Wenbin Zhu. An adaptive ejection pool with
toggle-rule diversification approach for the capacitated team orienteering problem. Eur. J.
Oper. Res., 229(3):673–682, 2013.

23 Alice Paul, Daniel Freund, Aaron M. Ferber, David B. Shmoys, and David P. Williamson.
Budgeted prize-collecting traveling salesman and minimum spanning tree problems. Math.
Oper. Res., 45(2):576–590, 2020.

24 Sandro Pirkwieser and Günther R. Raidl. Multilevel variable neighborhood search for periodic
routing problems. In Peter I. Cowling and Peter Merz, editors, Evolutionary Computation in
Combinatorial Optimization, 10th European Conference, EvoCOP 2010, Istanbul, Turkey, April
7-9, 2010. Proceedings, volume 6022 of Lecture Notes in Computer Science, pages 226–238.
Springer, 2010.

25 Christos D. Tarantilis, Foteini Stavropoulou, and Panagiotis P. Repoussis. The capacitated
team orienteering problem: A bi-level filter-and-fan method. Eur. J. Oper. Res., 224(1):65–78,
2013.

26 Dimitra Trachanatzi, Manousos Rigakis, Andromachi Taxidou, Magdalene Marinaki, Yannis
Marinakis, and Nikolaos F. Matsatsinis. A novel solution encoding in the differential evolution
algorithm for optimizing tourist trip design problems. In Nikolaos F. Matsatsinis, Yannis
Marinakis, and Panos M. Pardalos, editors, Learning and Intelligent Optimization - 13th
International Conference, LION 13, Chania, Crete, Greece, May 27-31, 2019, Revised Selected
Papers, volume 11968 of Lecture Notes in Computer Science, pages 253–267. Springer, 2019.

27 Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.
28 Wenzheng Xu, Weifa Liang, Zichuan Xu, Jian Peng, Dezhong Peng, Tang Liu, Xiaohua Jia,

and Sajal K. Das. Approximation algorithms for the generalized team orienteering problem
and its applications. IEEE/ACM Trans. Netw., 29(1):176–189, 2021.

29 Wenzheng Xu, Chengxi Wang, Hongbin Xie, Weifa Liang, Haipeng Dai, Zichuan Xu, Ziming
Wang, Bing Guo, and Sajal K Das. Reward maximization for disaster zone monitoring with
heterogeneous uavs. IEEE/ACM Transactions on Networking, 2023.

ATMOS 2024


	1 Introduction
	2 Notation and Definitions
	3 Approximation Algorithms with Theoretical Guarantees
	4 Heuristic Algorithms
	5 Experiments
	5.1 comparison Experiment
	5.2 scalability Experiment


