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Abstract
We revisit the Segmented Best Path (sbp) algorithm for online DARP in an offline setting with
revenues and a time limit. The goal is to find a subset of the inputted ride requests that can
be served within the time limit while maximizing the total revenue earned. sbp divides the time
into segments and greedily chooses the highest-revenue path of requests to serve within each time
segment. We show that sbp’s performance has an upper bound of 5. Further, while sbp is a
tight 4-approximation in the uniform-revenue case, we find that with non-uniform revenues, the
approximation ratio of sbp has a lower bound strictly greater than 4; in particular, we provide a
lower bound of (

√
e + 1)/(

√
e − 1) ≈ 4.08299, which we show can be generalized to instances with

ratio greater than 4.278.
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1 Introduction

We study the Dial-a-Ride Problem in an offline setting with revenues and a time limit T .
The goal is to find a subset of the inputted ride requests that can be served within the time
limit while maximizing the total revenue earned. We consider the Segmented Best Path (sbp)
algorithm, originally proposed in [6] for an online variant of DARP. It was later adapted
by [1] for the offline setting where revenues are uniform and the goal is to maximize the
number of requests served. We present sbp in a form that applies to our offline non-uniform
revenue setting. This modified sbp algorithm starts by partitioning the total time limit into
time windows, where each window (except possibly the last) is split into two equal time
segments. The algorithm uses the first segment of each window to determine a maximum
revenue set of requests that can be served within a segment, moving (if needed) to this set.
It then uses the second segment of each window to serve the requests in this set.

For a literature review of some of the numerous DARP variants, see a recent survey by
Ho et al. [8]. DARP problems are generalizations of the Traveling Salesperson Problem
(TSP), so we mention TSP work that is most closely related to the time-limited variant of
DARP that we study in this paper. Balas [2] first introduced the Prize Collecting Traveling
Salesperson Problem (PCTSP), in which the server earns a prize (similar to our revenues)
for each location visited, with the goal of collecting a prescribed amount of prize money
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8:2 Performance of SBP for DARP with Revenues

while minimizing travel costs and penalties. Bienstock et al. [3] gave the first approximation
algorithm for PCTSP with ratio 2.5. Recently, Blauth and Nägele [4] achieved a significant
improvement, obtaining an approximation guarantee of 1.774. Blum et al. [5] provide a
constant-factor approximation algorithm for the Orienteering Problem (OP), another special
case of the DARP problem we study. The goal of OP is, given a weighted graph with rewards
on the nodes, to maximize the total reward collected on a path of a predefined maximum
length. Our problem generalizes OP (and TSP), since in DARP we must visit pairs of points,
rather than single points. The limit on the path length for OP is analogous to the time limit
T in our DARP setting.

In this work, we highlight how sbp’s performance changes when the revenues switch from
uniform to non-uniform. Previously, we showed that an adapted version of the sbp algorithm
which enforced an even number of time segments gave an approximation ratio of 4 in the
uniform-revenue setting [1]. In this work we show that when revenues are non-uniform, sbp
approximates the optimal revenue that can be earned within the time limit to within a factor
of 5. We then show that when the number of time segments is odd, the approximation ratio
of sbp is no better than 5, before showing that when the number of time segments is even,
the ratio is strictly greater than 4.

2 New Upper and Lower Bounds

We formally define RDARP, the Revenue-Dial-a-Ride-Problem, as follows. The input to
RDARP is a complete weighted graph, a set of requests given as source-destination node-pairs
where each request has an associated revenue, and a time limit T > 0. We note that any
simple, connected, weighted graph is allowed as input, with the simple preprocessing step of
adding an edge wherever one is not present whose weight is the length of the shortest path
between its two endpoints. We further note that the input can be regarded as a metric space
if the graph is undirected and the edge weights satisfy triangle inequality. We treat the edge
weights as travel-times, but for expository convenience may also refer to them as distances.
Let tmax denote the maximum length of an edge in the graph.

Algorithm 1 Segmented Best Path (sbp) Algorithm as adapted from [6]. Input: time
limit T > 0, a complete graph with T ≥ 2tmax, and a set of requests with associated revenues.

1: Let t1, t2, . . . tf denote time segments of length X = T/f ending at times
T/f, 2T/f, . . . , T , respectively, where f = ⌊T/tmax⌋.

2: Let i = 1.
3: while i < f and there are still unserved requests do
4: At the start of ti, find the max-revenue-sequence, R.
5: Move to the source location of the first request in R.
6: At the start of ti+1, serve the requests in R.
7: Let i = i + 2.
8: end while

We begin by adapting the sbp algorithm for online DARP to the offline RDARP setting.
In the online setting, sbp was shown in [6] to have competitive ratio 6, which was then
improved to 5 and shown to be tight [7]. At the beginning of sbp (see Algorithm 1), set f ,
the number of time segments, to ⌊T/tmax⌋. Let X = T/f be the length of a time segment;
note X ≥ tmax. Let every pair of consecutive time segments, starting from the first time
segment t1, form a time window. A max-revenue-sequence, R, is a sequence of requests of
maximum total revenue that can be served within one time segment of length T/f .
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We use the term drive to refer to any move of the server from one point to another,
whether or not there is a request being served during the move. We use opt to denote an
optimal solution: a sequence of requests that maximizes total revenue that can be served
within the time limit T . We let |opt(I)| denote the total revenue earned by the optimal
solution on an instance I of RDARP.

2.1 Upper bound
In what follows, we allow opt to choose its desired position at time 0. We will show that
even with this extra flexibility, sbp is a 5-approximation.

▶ Lemma 1. Let r denote the revenue of all requests that opt begins serving by the end of
the first time window, and s denote the revenue earned by sbp within the first time window.
Then s ≥ r/4.

Proof. Consider the initial subpath of opt that contains the first time window and any
requests opt begins serving by the end of the first time window. This subpath thus has
revenue r. We subdivide this subpath into four further subpaths:
1. The subpath that is entirely contained in the time interval [0, X].
2. The subpath that is entirely contained in the time interval [X, 2X].
3. The drive (not necessarily a request), if any, between (1) and (2).
4. The drive (not necessarily a request), if any, that comes after (2) and overlaps time 2X.
Each of these four subpaths has total length no greater than X. Because their collective
revenue is r, at least one of the four subpaths must have revenue at least r/4. Since sbp could
have greedily chosen any of these four subpaths, sbp must thus earn revenue s ≥ r/4. ◀

▶ Theorem 2. For the offline general metric with nonuniform revenues and time limit
T ≥ 2tmax, we have |opt| ≤ 5|sbp|.

Proof. We will show by induction on the number of time windows that |sbp| ≥ |opt|/5.
Base case 1: There is only one time window, so T = 2X. (T ≥ 2X since T ≥ 2tmax by

assumption, so f ≥ 2.) Using Lemma 1, |opt| = r ≤ 4s = 4|sbp| ≤ 5|sbp|.
Base case 2: T = 3X. For this case, consider the above proof of Lemma 1, but add one

more subdivision so that there are 5 subpaths instead of 4. The fifth subpath is the subpath
of opt that is entirely contained within the time interval [2X, 3X]. We now redefine r to be
the revenue earned by opt by time 3X. The rest of the proof remains the same, except we
divide into five subpaths instead of four, so |opt| = r ≤ 5s = 5|sbp|.

For the inductive step, we may now assume T ≥ 4X, with the theorem holding for any
smaller time limit than T . Let I refer to the original input instance. We want to show that
|sbp(I)| ≥ |opt(I)|/5. We consider the smaller instance after sbp has completed its first
time window. This smaller instance, I ′, has time limit T − 2X, and the requests served by
sbp in the first time window are removed.

Consider the path in I ′ formed by taking the opt path in I and removing the initial
part that earned revenue r; this path has length at most T − 2X, and revenue at least
|opt(I)| − r − s. In essence, it is the opt path with the first portion removed and potentially
some ‘holes’ from requests that are not present in I ′. By the inductive hypothesis, sbp(I ′)
would have revenue at least |opt(I ′)|/5 ≥ (|opt(I)| − r − s)/5.

Thus, using the inductive hypothesis and Lemma 1, we have |sbp(I)| = s + |sbp(I ′)| ≥
s + (|opt(I)| − r − s)/5 = (|opt(I)| − r + 4s)/5 ≥ (|opt(I)| − r + r)/5 = |opt(I)|/5,
completing the induction. ◀

ATMOS 2024
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Figure 1 A small instance with a = 4 and b = 2 that illustrates the overall structure of the lower
bound (but does not yield a ratio greater than 4). Requests are shown in color with distances and
revenues as indicated. Gray dashed edges are empty drives of distance ϵ. All edges not shown have
distance 1, including the reverse of existing directed edges.

2.2 Tight lower bound when the number of time segments is odd

Consider an instance with T = 6, tmax = 2, and five (or more) requests of unit revenue and
length 1 + δ, for some small δ > 0, so f = ⌊T/tmax⌋ = 3. These requests are such that opt
is able to serve five consecutively until the time limit, earning total revenue of 5. By contrast,
sbp serves only one request: two consecutive requests take time 2 + 2δ > 2 = T/f , so only
one request can be served within a single time segment of length T/f , and the first segment
of each window is used, by definition of sbp, to move. Thus, we achieve a ratio of 5 which
matches base case 2 of Theorem 2.

In [1] we proposed a version of sbp that ensured f , the number of time segments, was
even. There we showed that version of sbp earned a (tight) approximation ratio of 4; however,
in what follows we show that even if the number of time segments is even in Algorithm 1, we
cannot guarantee an upper bound of 4 on the ratio.

2.3 Lower bound when the number of time segments is even

We describe how to construct instances with an even number of time segments that have a
lower bound greater than 4. We note that these instances are not metric spaces, as they lack
symmetry. Let a, b be positive integers with b ≤ a. Let tmax = 1 and T = 2a, resulting in
f = 2a and X = 1. See Figure 1 for a representative example with a = 4 and b = 2.

Let the opt path consist of P1, E1, P2, E2, ..., P2a−1, E2a−1, P2a where each Pi (depicted
in Fig. 1 as vertical paths oriented upward) is a path of up to 2b + 1 requests with total
distance less than 1/(2a) and total revenue 1, and each Ei (depicted as a green downward
diagonal edge in the figure) is a request of distance 1 and revenue c that we will specify later.
These are the only requests in the input. Hence, the opt path has total distance at most
2a/(2a) + 2a − 1 = 2a, and the optimal solution can be completed in time T .



B. M. Anthony, C. Chung, A. Das, and D. Yuen 8:5

Figure 2 Instance with a = 6, b = 3. Requests are shown in color with distances and revenues as
indicated. Gray dashed edges are empty drives of distance ϵ. All edges not shown have distance 1,
including the reverse of existing directed edges.

All other distances between nodes will be 1 except that specific nodes of each Pi are
very close to nodes in Pi+1 so that there are paths Q1, Q2, . . . , Qb defined as follows. Q1
(depicted in Figures 1 and 2 as the red and gray staircase pattern) starts with a request in P1
of revenue 1/(2a) and then cuts through P2, P3, . . . P2a, serving a request of revenue 1/(2a)
from each Pi, followed by an empty drive (gray dashed edges) of a sufficiently small distance
ϵ > 0 after each request, accruing a total revenue of 1. (Note: ϵ must be small enough so
that Q1 can be served within one time segment.)

Setting c ≤ 1, no paths of total distance 1 or less have revenue larger than 1, so we can
assume that sbp will move to and then drive along Q1 during the first two time segments.
At time t = 2, each path Pi now has remaining revenue (1 − 1

2a ), which we denote by ρ.
Now suppose we have path Q2 (depicted as the magenta and gray staircase in the figures)

that similarly cuts through P2, P3, . . . , P2a, P1, serving a request of revenue ρ/(2a) each, so
that Q2 has total revenue ρ. Again, as long as c ≤ ρ, no path of length 1 or less has revenue
more than 1 at time t = 0, and no path of length 1 or less has revenue more than ρ at time
t = 2. So we can assume that sbp moves to and serves Q2 from time t = 2 to time t = 4.

In general, define Qi for i = 1 . . . b as a path that cuts through Pi, Pi+1 . . . P2a, P1 . . . Pi−1,
serving a request of revenue ρi−1/(2a) each, so that Qi has a total revenue of ρi−1. To ensure
that sbp chooses Qi in time segment [2i − 2, 2i], we need c ≤ ρi−1, for all i = 1 . . . b. Note
that each Qi, 1 ≤ i ≤ b, consists of 4a − 1 drives: 2a requests with an empty drive of distance
ϵ between each pair for a total of 2a − 1 empty drives.

After time t = 2b, the remnants of each path Pi have revenue ρb. (After sbp serves Qi

for i = 1 . . . b, the remaining revenue of each Pi shrinks by a factor of ρ.) If c ≥ ρb, sbp may
serve paths of revenue c for the remainder of time. We choose c = ρb, so sbp serves a − b

paths of revenue ρb for the remainder of time. Summarizing,

|opt| = 2a + (2a − 1)ρb = 2a + (2a − 1)
(

1 − 1
2a

)b

and since 1 − ρ = 1/(2a),

|sbp| = 1 + ρ + ρ2 + . . . ρb−1 + (a − b)ρb = (1 − ρb)/(1 − ρ) + (a − b)ρb

= 2a(1 − ρb) + (a − b)ρb = 2a − ρb(a + b) = 2a −
(

1 − 1
2a

)b

(a + b).

ATMOS 2024
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Table 1 Some sample instance parameters and their corresponding ratios.

b a |opt|/|sbp|
2 6 4.025
3 6 4.03985
3 10 4.09867

1000000 1877946 4.27805

If a = b, we can take the limit as a → ∞ to get ρb = (1 − 1
2a )a is 1/

√
e. Then |opt|/|sbp|

has a limit of (
√

e + 1)/(
√

e − 1) ≈ 4.08299.
Table 1 shows some sample instance parameters and their corresponding ratios. The

instance shown in Figure 2 is reflected in the second row. Thus far, preliminary testing
suggests that a ratio much greater than 4.27805 (in the final row of the table) is unachievable.

Since our upper bound is tight only when f is odd, we continue to investigate a version
of the sbp algorithm that enforces an even number of time segments. An open question is if
the upper bound of 5 is no longer tight for this adjusted algorithm, and whether the true
upper bound matches the above family of instances, or can be shown to be strictly below 5.

References
1 Barbara M. Anthony, Ananya D. Christman, Christine Chung, and David Yuen. Serving Rides

of Equal Importance for Time-Limited Dial-a-Ride. In Panos Pardalos, Michael Khachay,
and Alexander Kazakov, editors, Mathematical Optimization Theory and Operations Research,
pages 35–50. Springer International Publishing, 2021. doi:10.1007/978-3-030-77876-7_3.

2 Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
doi:10.1002/net.3230190602.

3 Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David Williamson. A note on
the prize collecting traveling salesman problem. Mathematical programming, 59(1-3):413–420,
1993. doi:10.1007/BF01581256.

4 Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting
TSP. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, pages 1848–1861, New York, NY, USA, 2023. doi:10.1145/3564246.3585159.

5 Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM
Journal on Computing, 37(2):653–670, 2007. doi:10.1137/050645464.

6 Ananya Christman, Christine Chung, Nicholas Jaczko, Marina Milan, Anna Vasilchenko,
and Scott Westvold. Revenue Maximization in Online Dial-A-Ride. In 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59, pages 1:1–1:15, Dagstuhl, Germany, 2017. doi:10.4230/OASIcs.ATMOS.
2017.1.

7 Ananya D. Christman, Christine Chung, Nicholas Jaczko, Tianzhi Li, Scott Westvold, Xinyue
Xu, and David Yuen. Improved Bounds for Revenue Maximization in Time-Limited Online
Dial-a-Ride. SN Operations Research Forum, 2(3):1–38, September 2021. doi:10.1007/
S43069-021-00076-X.

8 Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and Ter-
ence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B: Methodological, 111:395–421, 2018.

https://doi.org/10.1007/978-3-030-77876-7_3
https://doi.org/10.1002/net.3230190602
https://doi.org/10.1007/BF01581256
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1137/050645464
https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.1007/S43069-021-00076-X
https://doi.org/10.1007/S43069-021-00076-X

	1 Introduction
	2 New Upper and Lower Bounds
	2.1 Upper bound
	2.2 Tight lower bound when the number of time segments is odd
	2.3 Lower bound when the number of time segments is even


