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Abstract
The Vehicle Routing Problem with pickups, deliveries and spatiotemporal service constraints
(VRPPDSTC) is a quite challenging algorithmic problem that can be dealt with in either an off-
line or an online fashion. In this work, we focus on a generalization, called VRPPDSTCtd, in which
the travel-time metric is time-dependent: the traversal-time per road segment (represented as a
directed arc) is determined by some function of the departure-time from its tail towards its head.
Time-dependence makes things much more complicated, even for the simpler problem of computing
earliest-arrival-time paths which is a crucial subroutine to be solved (numerous times) by VRPPDSTCtd

schedulers. We propose two online schedulers of requests to workers, one which is a time-dependent
variant of the classical Plain-Insertion heuristic, and an extension of it trying to digest some
sort of forecasts for future demands for service. We enrich these two online schedulers with two
additional heuristics, one targeting for distance-balanced assignments of work loads to the workers
and another that makes local-search-improvements to the produced solutions. We conduct a careful
experimental evaluation of the proposed algorithms on a real-world instance, with or without these
heuristics, and compare their quality with human-curated assignments provided by professional
experts (human operators at actual pickup-and-delivery control centers), and also with feasible
solutions constructed from a relaxed MILP formulation of VRPPDSTCtd, which is also introduced in
this paper. Our findings are quite encouraging, demonstrating that the proposed algorithms produce
solutions which (i) are significant improvements over the human-curated assignments, and (ii) have
overall quality pretty close to that of the (extremely time-consuming) solutions provided by an exact
solver for the MILP formulation.
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1 Introduction

The vehicle routing problem with pickups, deliveries and spatiotemporal service constraints,
VRPPDSTC, concerns the utilization of a fleet of workers (e.g., drivers, couriers, etc.) with their
own work-shifts and capacitated vehicles, for the provision of one-to-one delivery services of
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9:2 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

commodities (e.g., parcels, food, individuals, etc.) from their origins (pickup points) to their
destinations (delivery points) within certain hard time-windows which are determined by
earliest pickup-times and latest delivery-times per commodity. The primary goal is to have a
maximum number of served commodity-delivery requests by the fleet of workers, respecting all
spatiotemporal constraints (i.e., vehicle capacities, work shifts, and servicing time-windows),
with a secondary objective that the workers commute in an underlying road network of a
(typically large-scale) urban area in such a way that a specific aggregate service-cost function
(e.g., total travel-time, total-distance of the entire fleet, etc.) is minimized.

An even more complicated generalization of the problem, VRPPDSTCtd, considers instances
in which the traversal-times of the road segments (which are represented as directed arcs),
rather than being scalars, are time-dependent, i.e., they are determined by given arc-traversal-
time functions of the departure-times from their tails towards their heads. Such a travel-time
metric is typical when computing earliest-arrival-time paths for private vehicles commuting
within road networks, but unfortunately makes the problem of computing earliest-arrival-time
paths much harder (cf. [11] and references therein). Since this is a typical subroutine that
must be used numerous times when solving an instance of VRPPDSTCtd, it is clear that this
generalization of the vehicle routing problem becomes even harder as well.

The problem can be dealt with either offline, i.e., having at the solver’s disposal the entire
instance of delivery requests to be served and the fleet of workers, or online, i.e., when the
requests for commodities to be delivered appear in real-time and/or the workers are activated
at will. For VRPPDSTC, typical approaches for the offline case such as the consideration of an
appropriate mixed-integer linear programming formulation and the use of state-of-the-art
MILP solvers, are well-known but also extremely demanding in computational resources,
since the problem is NP-hard to solve. Unfortunately, for VRPPDSTCtd the situation becomes
even more complicated, since there is no MILP formulation to solve (the travel-time metric
is not constant but time-dependent).

Therefore, our focus is mainly on the efficient construction of suboptimal solutions in an
online scenario where the work-shifts are predetermined and a priori known to the scheduler,
but the requests are revealed in real-time and the scheduler has to always maintain a feasible
solution for a maximal number of the active requests by the currently operational workers.
As it is not obvious how classical constructive and improvement heuristics for VRP can be
adapted when the service requests come in pickup-delivery pairs (one per served commodity),
the literature for VRPPDSTC has mainly focused on simple online solvers, namely some
well-known constructive heuristics such as the Neighborhood and the Insertion heuristics.
In particular, Insertion is a popular online algorithm, heavily used and experimented in
the past, e.g., in [3, 16] for VRPPDSTC, which simply constructs incrementally a feasible
solution by allocating in a locally-optimal way each emergent request to one of the existing
routes (creating a new route also being an option, provided there exist active workers still
awaiting their first assignment) in such a way that the relative order of the already assigned
requests remains intact and the incremental cost in the value of the objective function is
minimized. Typically this heuristic requires cubic time, but there are also some quite efficient
(even linear-time) implementations based on dynamic programming [16]. Incorporating a
time-dependent travel-time metric in such heuristics is already a challenge. On the other
hand, the adaptation of well-known exact polynomial-size MILP formulations for VRPPDSTC

to VRPPDSTCtd, to be fed to an offline solver, seems to be very hard because the point-to-point
travel-times are now time-dependent variables rather than scalars.

In this work, we propose, implement, engineer, and experimentally evaluate two insertion-
based algorithms for VRPPDSTCtd: The TD-Insertion and the TD-Prophet. Our implement-
ation of TD-Insertion, apart from the typical greedy criterion (the minimization of the
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additive cost for fitting a new request in the subtour of a worker) for accommodating an
emergent commodity to some active worker, also considers an alternative local-optimization
criterion, which essentially attempts to keep a rough balance in the aggregate lengths of the
workers’ subtours. This criterion was inspired by [1] who observed, in the most elementary
variant of VRPC only with vehicle capacities, that in optimal solutions some subtours cor-
respond to much longer routes than others. Trying to avoid this kind of unfairness among
the workers’ actual commodity-servicing tasks, they proposed to compute the scores (i.e.,
marginal increases in route lengths) of the candidate pairs using the difference of squared costs
(the ℓ2-scoring criterion), rather than just the difference of the route costs (the ℓ1-scoring
criterion). We implement and experimentally evaluate for VRPPDSTCtd the local-optimization
analogue of the ℓ2-scoring criterion for our TD-Insertion heuristic. As an alternative, we
also try to hard-code fairness in the workers’ subtour lengths when considering the classical
ℓ1-scoring criterion, via an additional heuristic feature that we may opt to use in our scheduler,
called the Work Balancer heuristic.

Our TD-Prophet algorithm was inspired by the Prophet-Insertion algorithm of [16]
and works similarly with TD-Insertion, but also tries to account for some sort of forecasts
for near-future requests and handles them exactly as the actual requests. Apart from
the consideration of the time-dependent travel-time metric, another difference from the
Prophet-Insertion algorithm of [16] is that TD-Prophet does not have the workers always
on the move just because of predictions for the entire period (as Prophet-Insertion does
in the static case); it just fits a small number of short-term predictions (e.g., only within the
next hour of operation) to their actual assignment of real requests that appear online to the
system, and simply shortcuts the coverage of delivery points of those predictions that were
not eventually verified in real-time at their pickup points.

Apart from implementing and engineering our online algorithms for VRPPDSTCtd, we
also evaluate the efficiency of a local-search improvement heuristic, namely, the repetitive
Relocation of already assigned but not yet served routes right after handling a new (real or
predicted) request, towards improving the solutions produced by the two algorithms.

As it would be too expensive to have an exact mixed-integer linear programming (MILP)
formulation for VRPPDSTCtd

1, we also propose a heuristic construction of some “baseline”
solutions, using a relaxed MILP formulation of polynomial size. This MILP considers a scalar
travel-time metric for interconnecting routes of service points of the requests which, rather
than being just the average travel-times or the (optimistic) free-flow travel-times or the
(pessimistic) full-congestion metric, are deduced by some “educated” estimations (scalars) of
the actual time-dependent travel-times, depending on when these interconnecting routes are
most likely to be used by any worker. Well-known MILP solvers are then used to create,
within bounded execution time, a small set of solutions which are then tested for feasibility
w.r.t. the temporal constraints, under the actual (time-dependent) travel-time metric. This
way we get some “baseline solutions” with which the solutions of our online algorithms are
compared. Of course, even an optimal solution for the relaxed MILP is not necessarily an
optimal solution for the time-dependent instance at hand, and its cost does not necessarily
constitute some guaranteed lower-bound of the optimal cost. Of course, this MILP-based
method is rather unrealistic for our online scenario, due to both the assumption of a priori
knowing all delivery requests and its need for extremely demanding computational resources.

1 One could possibly consider a set-partitioning formulation using all feasible routes, but this would
require exponentially many variables.
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9:4 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

Finally, we conduct a thorough experimental evaluation of our online algorithms for
VRPPDSTCtd, with or without the heuristic improvements, on a real-world instance of food and
supermarket delivery requests in an urban environment, which is fed with synthetic demand
forecasts of varying accuracy. It is mentioned at this point that although high-quality demand
forecasting is of paramount importance, it is not the subject of the present work. This is why,
for the purposes of our experimental evaluation only, we created synthetic forecasting data
of varying accuracy. As a measure of comparison for our produced solutions, we use both
the feasible solutions constructed by the relaxed MILP formulation and the actual solution
that was determined by experienced human operators in our real-world dataset. Our results
demonstrate a significant prevalence of both our online algorithms over the human-curated
solution, up to 49% in total length and travel time, and also the prevalence of TD-Prophet
over TD-Insertion, up to 4%, on finding better pickup-delivery scheduling solutions.

2 Problem Statement and Related Work

We are given a sequence R = ⟨r1, r2, . . . , r|R|⟩ of pickup-and-delivery requests. Each request is
a tuple r =

(
χpic

r , tep
r , tpsrv

r , χdel
r , tld

r , tdsrv
r , qr, hr

)
∈ R, where: tep

r (tld
r ) is the earliest-pickup-

time (latest-delivery-time) that a worker may receive (leave) the commodity from (at) the
pickup point χpic

r (delivery point χdel
r ), assuming that tep

r < tld
r ; tpsrv

r (tdsrv
r ) is the anticipated

service-time for the worker that is responsible for commodity r, at the corresponding (pickup
or delivery) location (χpic

r or χdel
r ); qr is the volume/weight of the commodity to be transferred,

that is consumed from the corresponding vehicle’s capacity; and hr ⊆ H is the subset of
eligible vehicle-types for the good to be transferred (e.g., bicycle, motorcycle, car, with a
cooler or heated box, etc.). Vpic = {(r, χpic

r ) : r ∈ R} and Vdel = {(r, χdel
r ) : r ∈ R} are the

sets of pickup and delivery events, respectively, for all the active requests in R. It is noted
that, even if two requests r ̸= r′ share some (geographical) service point, e.g., χpic

r = χdel
r′ or

χpic
r = χpic

r′ , the pairs (r, χpic
r ), (r, χdel

r ), (r′, χpic
r′ ), (r′, χdel

r′ ) are distinct.
There is also a set W =

{
w1, w2, . . . , w|W|

}
of active workers (e.g., operational couriers dur-

ing a work-shift), each of them represented by a tuple w = (χstart
w , tstart

w , χend
w , tend

w , Qw, Hw)
where: χstart

w and tstart
w (χend

w and tend
w ) are the initial (final) location and opening (closing)

time, respectively, of w’s work-shift; Hw ∈ H is the type of the particular vehicle used by w

(e.g., bicycle, motorcycle, car, etc); Qw is the maximum volume/weight of storage, for the
vehicle used by w. Vstart = {(w, χstart

w ) : w ∈ W} and Vend = {(w, χend
w ) : w ∈ W} are the

sets of work-shift starting and finishing locations, for all the active workers.
Each worker w ∈ W may be assigned an arbitrary subset of requests Rw ⊆ R which

are eligible for them to serve. The whole task for w is represented as a sequence of all the
corresponding pickup and delivery points for requests of Rw, called his/her subtour. Then,
w is assumed to move within an urban area along earliest-arrival-time subpaths connecting
consecutive points in the subtour, in order to serve them. The area is represented by a
directed graph G = (V, E), whose arcs correspond to unidirectional road segments and
vertices represent intersections and intermediate points (corresponding to distinct postal
addresses) of these road segments. Each arc e = uv ∈ E comes with a scalar arc-length, λ[e],
and a periodic arc-travel-time function τh[e](t) : [0, T ) 7→ R≥0 for evaluating the traversal-
time of e when using a vehicle of type h ∈ H, depending on the departure-time from u. For
succinctness in its representation, this function is assumed to be continuous and piecewise
linear (pwl), represented as a constant-size sequence of breakpoints. It is also assumed
to satisfy the FIFO property, as is typical for individually moving private vehicles within
road networks. The FIFO property implies that the corresponding arc-arrival-time function
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ah[e](t) = t+τh[e](t) for e when using h is non-decreasing. In a similar fashion, we inductively
define the notions of travel-time and arrival-time functions for paths which are perceived as
sequences of incident arcs: For each k ≥ 0, a path π = ⟨e1 = (i0, i1), . . . , ek = (ik−1, ik)⟩ and
an arc ek+1 = (ik, ik+1), the path π ⊕ ek+1 is constructed by appending ek+1 at the end of π.
It then holds that λ[π ⊕ek+1] = λ[π]+λ[ek+1], ah[π ⊕ek+1](t) = ah[π](t)+τh[ek+1](ah[π](t)),
and τh[π ⊕ ek+1](t) = ah[π ⊕ ek+1](t) − t. Furthermore, τh[o, d](to) denotes the minimum
path-travel-time, when departing at time to from o ∈ V towards d ∈ V , using a vehicle of
type h, and the earliest arrival-time at d is denoted as ah[o, d](t) = τh[o, d](t) + t. The scalar
λ[o, d] denotes the minimum path-length from o to d.

A feasible solution for an instance of VRPPDSTCtd is described as a collection {Sw : w ∈ W}
of subtours (i.e., sequences of service points for all the requests assigned to them), one per
worker, such that each request belongs to at most one subtour and, along each subtour Sw,
there is no violation of a temporal constraint or a vehicle capacity constraint as w moves with
his/her vehicle between consecutive service points along Sw across interconnecting paths of
the road graph G. The primary goal is to find a feasible solution that maximizes the number
of served (i.e., assigned) requests, and a secondary goal is to minimize a global cost objective
value (e.g., total travel-time or total-length, for all workers).

For convenience, we consider a special graph, the pickup-and-delivery (PD) graph GP D =
(V, E) (cf. Figure 1), whose node set V contains four subsets of nodes corresponding to
distinct events: The green and orange nodes correspond to workers-shift starting and ending
events from Vstart and Vend, respectively. The purple and blue nodes correspond to pickup
and delivery events from Vpic and Vdel, respectively. As for the arc set E , nodes from Vstart

are connected to all nodes in Vpic, nodes from Vdel are connected to each node in Vend,
and (roughly) a complete subgraph is induced by Vpic ∪ Vdel, excluding only arcs from each
delivery event to the pickup event of the same request, as they cannot be part of any solution.

For each u ∈ Vpic ∪ Vdel, ρ(u) ∈ R denotes the corresponding request. For each
v ∈ Vstart ∪ Vend, γ(v) ∈ W denotes the corresponding worker for the work-shift v. Within
GP D, each subtour Sw = ⟨v0, v1, . . . , vk+1⟩ can be seen as a (simple) path where v0 = χstart

w ,
vk+1 = χend

w , and ∀i ∈ {1, 2 . . . , k}, vi ∈ Vpic ∪ Vdel (service point for some request).
For each arc uv ∈ E , there is a minimum-length path πλ

u,v (and possibly suboptimal
travel-time), and a minimum-travel-time path πτ

u,v(tu), dependent on the departure-time
tu (and possibly suboptimal length) in the underlying road graph G connecting u and v.
Each subtour (i.e., simple path in GP D) Sw of a worker can then be translated within the
road graph G into a route by using either a distance-optimizing route Πλ

w (prioritizing the
usage of length-optimal interconnecting paths), or a travel-time-optimizing route Πτ

w(tstart
w )

(prioritizing the usage of length-optimal interconnecting paths), that interconnects all the
consecutive points in Sw. For some route Πw =

(
v0 = χstart

w , v1, . . . , vk+1 = χend
w

)
for worker

w ∈ W, we denote by Πu:v
w the subroute starting at node u and ending at node v. For a

given departure-time t, we associate each node vi ∈ Πw with the following labels:
1. arrival-time: a(vi) = a[Πv0:vi

w ](t);

2. earliest departure-time: d(vi) =


max{a(vi), tep

ρ(vi)} + tpsrv
ρ(vi), vi ∈ Vpic

a(vi) + tdsrv
ρ(vi), vi ∈ Vdel

a(vi), otherwise
3. waiting-time: b(vi) = max{tep

ρ(vi) − a(vi), 0} for vi ∈ Vpic, and b(vi) = 0 otherwise; and

4. current-load: C(v0) = 0; ∀i ≥ 1, C(vi) =


C(vi−1) + qρ(vi), vi ∈ Vpic

C(vi−1) − qρ(vi), vi ∈ Vdel

C(vi−1), otherwise

ATMOS 2024



9:6 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

When considering to insert a new service point u in Sw right after some existing point
vi, all the subsequent subpaths interconnecting consecutive nodes of Sw after vi must be
recomputed, to account for the updated departure and arrival times along Πw. Due to the
time-dependent nature of the travel-time metric, this is a non-trivial task to execute, prior
to assessing the effectiveness of positioning the new event at a particular place within Πw.

An instance of VRPPDSTCtd is represented by a directed graph G = (V, E), scalar arc-
lengths λ : E 7→ R>0, (periodic, continuous and piecewise-linear) arc-travel-time functions
(τh[e] : [0, T ) 7→ R>0)h∈H,e∈E , a sequence of requests R, and a set of workers W. As
previously mentioned, we also construct the auxiliary graph GP D. Because there may be
nodes in V whose geo-locations do not coincide with vertices in V , some road-pedestrian
connections are added between them by finding the nearest-neighbor pairs (x, v), for each
x ∈ V and v ∈ V. The nearest-point search is done efficiently using an R-tree [6]. We
also conduct sequentially shortest-path-tree computations for any involved vehicle type,
to provide a set of (one-to-many) minimum-length paths and minimum-travel-time paths
among geo-locations for elements of V ∪ V . For the (scalar) length metric we simply employ
executions of Dijkstra’s algorithm [4]. As for the time-dependent travel-time metric, the
earliest-arrival-time computations are efficiently performed “on the fly”, using the query
algorithm CFCA of the CFLAT oracle [9] for time-dependent shortest paths, exactly when an
arc in the PD graph GP D is to be used by some worker. This is something that can be done
efficiently by an online algorithm that only tries to fit into an existing solution a single new
delivery request. On the contrary, the consideration of time-dependent travel-times renders
impossible the construction of an exact MILP formulation; therefore, even the time-consuming
construction of an optimal solution via MILP solvers becomes quite more challenging in this
case. Section A in the appendix provides an approximate MILP formulation for VRPPDSTCtd

that considers some carefully selected scalar travel-time values for entire paths (rather than
just arcs), exactly when they could be possibly used by some (any) feasible solution.

𝑠|𝑊|

𝑠2

𝑠1

𝑓|𝑊|

𝑓2

𝑓1

𝑝|𝑅| 𝑑|𝑅|

𝑝4 𝑑4

𝑝3 𝑑3

𝑝2 𝑑2

... ..
.

..
.

..
.

𝑝1 𝑑1

Figure 1 The pickup-and-delivery (PD) graph.

3 Insertion-based Schedulers for VRPPDSTCtd

The purpose of an insertion heuristic is to assign each request r to a worker w in a cost-optimal
way, so that the new subtour S′

w (after adding the two service points of r) maintains the
same relative order for the service points in Sw. The main reasons for such a requirement are
simplicity and computational efficiency, since the consideration of all possible subtours for
R′

w = Rw ∪ {r} would require the examination of an exponential number of subtours [14].
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▶ Definition 1 (Insertion-Based Heuristics). Given a collection of subtours Sw for serving
the subsets Rw of requests assigned to each operational worker w ∈ W, and a new request
r, an Insertion-Based heuristic determines for each w ∈ W a candidate subtour S′

w for
R′

w = Rw ∪ {r}, which achieves a minimum increase in w’s contribution to some global-
objective value, and leaves intact the relative order of the service points already in Sw.
Eventually, r is assigned to the worker achieving the minimum increase, among all workers.

The Plain-Insertion algorithm is well known in the literature of VRP-related prob-
lems. A naïve implementation of such a heuristic would require quadratic, or even cubic
computational time. A linear-time implementation of Plain-Insertion for VRPPDSTC was
recently proposed [16], which is based on a preprocessing step and on dynamic programming
for computing the workers’ scores (i.e., the marginal increases in cost if they were assigned
the new request), for a scalar travel-time metric. We introduce in this section a variant of
Plain-Insertion, called TD-Insertion for VRPPDSTC, which follows the main idea of the
preprocessing of workers’ paths in [16], so as to achieve early pruning of infeasible solutions,
but with some major modifications so as to deal with the time-dependent travel-time metric
and the consideration of earliest pickup-times for each request. The primary objective is
to maximize the number of assigned requests. As a secondary objective, our algorithm
considers two alternatives, as was previously explained: either the sum (i.e., ℓ1-norm), or
the sum-of-squares (i.e., ℓ2-norm) of the workers’ costs (distances, or travel-times). The
ℓ2-scoring criterion was inspired by [1], as an indirect means of inducing more balanced
allocations of requests to the workers. We then incorporate in TD-Insertion the heuristic
Workload Balancer (WB), which enforces some balance among the workers’ assignments.
We also consider a local-search improvement heuristic which post-processes the solutions
provided by TD-Insertion, exploring among single-request relocation attempts for better
solutions. Finally, we introduce TD-Prophet, a variant of TD-Insertion that, apart from
actual requests, also includes in the produced subtours some short-term forecasts for future
requests.

(a) Description of TD-Insertion

We denote as TD-Insertionκ,ν the variant of TD-Insertion that assumes a cost metric
κ ∈ {τ, λ} (τ for travel-times and λ for distances) and a norm ℓν ∈ {ℓ1, ℓ2} for assessing
the scores of candidate insertion pairs of each new request. It is assumed inductively that:
(i) each worker w ∈ W has already been assigned a subset of requests Rw, to be served
according to the subtour (i.e., sequence) Sw of the corresponding service points; (ii) Sw

has already been translated into some particular route Πκ
w, depending on the particular

cost metric κ ∈ {τ, λ} that we consider as primary. It should be noted at this point that
Πτ

w is indeed a route of minimum-travel-time interconnecting subtours. On the other hand,
Πλ

w is not necessarily a route of minimum-length interconnecting subtours. In particular,
some minimum-travel-time interconnecting paths may also have been used in Πλ

w for some
pairs of consecutive points in Sw, only as contingency interconnecting routes for the case
that the insertion of a service point with length-optimal interconnecting paths has lead to
a violation of some temporal constraint of the subsequent service points. More about this
issue is discussed in Subsection A.3.

Let a(vi) and d(vi) denote the arrival-time at vi and the departure-time from vi, respect-
ively, as w moves along Πκ

w. In a nutshell, the steps of TD-Insertionκ,ℓν
for κ ∈ {τ, λ} and

ν ∈ {1, 2} are the following: For each new request r, at release-time trel
r , we test the insertion

of r within the subtour Sw = ⟨v0 = χstart
w , v1, v2, . . . , v|Sw|−1 = χend

w ⟩ by iteratively placing

ATMOS 2024



9:8 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

the pickup node χpic
r right after position i ∈ {0 . . . , |Sw| − 2} and the delivery node χdel

r right
after position j ∈ {i, . . . , |Sw| − 2}. We also require that trel

r ≤ d(vi+1), i.e., r cannot precede
a service point whose departure time is already before r’s release time. This insertion would
result in the expanded subtour S′

w = ⟨v0, v1, . . . , vi, χpic
r , vi+1, . . . , vj , χdel

r , vj+1, . . . , v|Sw|−1⟩
and the corresponding route Π′

w from Πκ
w with the appropriate cost-optimizing interconnect-

ing paths. For each pair (i, j) of candidate positions for the service points of r, a feasibility
check of the spatial- and (time-dependent) temporal-constraints is performed along the
suffix-subroute of Π′

w starting at node vi. If all these service points are still feasible, then
a marginal-increase value Scoreκ,λν

(Πw, i, j, r) is computed, to assess the impact on w’s
servicing cost of accepting the candidate positions (i, j) of Sw for serving r. In case of
infeasibility, when κ = τ the candidate pair (i, j) is immediately rejected. When κ = λ,
we alternatively construct the route Π′′

w from Πw with the appropriate travel-time-optimal
interconnecting paths (only for the detours of r’s service points). We provide now a detailed
description of exactly how this is done.

(a.i) Preprocessing check-constraint indicators for candidate insertions
As in [16], given the (κ, ℓν) pair of cost-metric and scoring-criterion that we consider, we
use two check-constraint indicators for the service nodes of Sw, as w moves along the
corresponding route Πw (for simplicity, we slightly abuse notation by skipping the metric-
dependent exponent, and the worker’s shift-start-time):

slack(vi) is the maximum tolerable time for inserting a detour between vi and vi+1,
without violating any of the (temporal) latest-delivery-times for nodes in Πvi+1:v|Sw|−1

w .
ddl(vi) is an upper bound on the ultimate arrival-time at vi so that neither the deadline
for serving the request ρ(vi), nor the work-shift end of the carrying worker are violated.

For each arc e = vivi+1 ∈ Sw ∩ E , the travel-time τ [e](t), of the path πe = ⟨vi, vi+1⟩ in G

associated with e, can be either increased or decreased as a function of the departure-time t

from vi. Nevertheless, due to the FIFO property, the arrival-time function is non-decreasing:
∀t < t′, a[e](t) ≤ a[e](t′). Inserting χpic

r between vi and vi+1 will give a new arrival-time
a′(vi+1) ≥ a(vi+1). Therefore, the current arrival-time value a(vi+1) is a lower-bound whereas
slack(vi) is an upper bound on the arrival time at vi+1, and their difference is an upper
bound for the delay that may occur (due to some detours for adding new service points)
between vi and vi+1. In order to incorporate earliest pickup-times in the slack(vi) and ddl(vi)
indicators, the following dynamic-programming approach is adopted, as we move backwards
along Πw, from the end v|Sw|−1 = χend

w towards vi:
1. ddl(vi) values:

for the work-shift end node, ddl(χend
w ) = tend

w ;
for a commodity-delivery node vi ∈ Vdel ∩ Sw, ddl(vi) = tld

ρ(vi);
for a commodity-pickup node vi ∈ Vpic ∩ Sw : vj ∈ Vdel ∧ r = ρ(vi) = ρ(vj),

ddl(vi) = tld
r −

∑
i≤k<j

[(a(vk+1) − d(vk)) + tk − b(vk)]

where tk =


tpsrv
ρ(vk), vk ∈ Vpic

tdsrv
ρ(vk), vk ∈ Vdel

0, otherwise
2. slack(vi) values: slack(vk) = min { ddl(vk+1) − a(vk+1), slack(vk+1) + b(vk+1) } for k

ranging from |Sw| − 1 down to i.
Recall that b(v) represents the required waiting-time at a service node v, or just the
resulting idle-time (only at pickup nodes), when r imposes an earliest pickup-time tep

r .
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It should be noted that, compared to a brute-force implementation of Plain-Insertion,
the exploitation of these two auxiliary variables by our online algorithms allows the pruning
without checking of many insertion-candidates, which has lead to a significant improvement
of our implementations’ execution times by at least 60%.

(a.ii) Efficient rejection of infeasible candidate insertions
The procedure is as follows: Assume for a new request r and a subtour Sw that we consider
for insertion the candidate pair (i, j), for 0 ≤ i ≤ j ≤ |Sw| − 2. If [a′(vi+1) − a(vi+1) >

slack(vi)] ∨ [C(vi) + qr > Qw] i.e., the resulting increase on the arrival-time at vi+1 exceeds
the slack of vi, or the resulting vehicle-load after picking up r at vi causes a violation in the
vehicle capacity, then the candidate pair (i, j) can be safely rejected. Moreover, if either of
these two types of violation constraints occurs and i < j, i.e., only the pickup node of r is
checked for insertion right after vi, then all the candidate pairs (i, m) : i ≤ m ≤ j can be
safely rejected.

It should be noted at this point that, since the slack times are only upper-bounds, even if
the above checks are passed, we still need to check for potential violations in latest-delivery-
times of requests or in the work-shift end-time along the suffix of the new subtour S′

w that
we create, under the time-dependent travel-time metric. Therefore, the time complexity to
obtain all the feasible insertion-pairs for a new request along Sw is O(|Sw|2), due to the
unavoidable time-dependent travel-time updates when checking for these potential violations.

(a.iii) Computation of scores for feasible candidate insertion-pairs per
route Πw

For a new request r, fix an arbitrary worker w whose vehicle-type is eligible for r: Hw ∈ hr.
Recall that we consider some arc-cost metric κ ∈ {τ, λ} (i.e., traversal-times, or distances)
for all the arcs in the auxiliary PD graph. As for the assessment of the scores for candidate
insertion pairs, as already mentioned, we consider that it is specified by the norm ℓν ∈ {ℓ1, ℓ2}.
For example, TD-Insertionτ,ℓ1 uses the travel-times cost metric for the routes and assesses
the overhead of each candidate path according to the ℓ1 norm, whereas TD-Insertionλ,ℓ2

uses the arc-lengths metric for the routes and the overhead of each candidate path according
to the ℓ2 norm. For TD-Insertion we need to compute one of the following path-costs for
worker w’s subroute Πw:

For distance-metric: Costλ(Πw) =
∑

e=uv∈Πw
(λe).

For travel-times metric: Costτ (Πw) =
∑

e=uv∈Πw
[a(v) − d(u)].

Given Πw and a particular candidate insertion pair (i, j) for a new request r, Πw(i, j, r) is
the resultant candidate subroute from Πw in which χpic

r is positioned right after vi and χdel
r

is positioned right after vj (and after χpic
r , in case that i = j). The scores (i.e., marginal

costs) of this subroute are calculated as follows, for κ ∈ {λ, τ} and ν ∈ {1, 2}:

Scoreκ,ℓν
(Πw, i, j, r) =

{
[Costκ(Πw(i, j, r))]ν − [Costκ(Πw)]ν , if Πw(i, j, r) is feasible

∞, if Πw(i, j, r) is infeasible

The score of w for hosting r is then Scoreκ,ℓν
(w, r) = min0≤i≤j≤|Sw|−2 Scoreκ,ℓν

(Πw, i, j, r).
Eventually, r is assigned to a worker ŵ of minimum score: ŵ ∈ arg minw∈W Scoreκ,ℓν

(w, r).
Note that during step (a.ii), for each feasible pair (i, j), the score can be computed in

parallel with the constraint-checking process. When a feasible pair (i, j) is verified, its (finite)
score is compared to the minimum score discovered so far. Then, (i, j) is rejected immediately
when the calculation of its score already gives a value larger than the current minimum score.
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A particular attention should be given when working with distances: If some (i, j)
leads to an eventually infeasible route Π′

w := Πw(w, i, j, r), because of violations of temporal
constraints, then we repeat the process using travel-time-optimal (instead of distance-optimal)
interconnecting paths for pairs of consecutive service points along Πw (corresponding to
arcs in the PD graph). This approach guarantees that, if there is any feasible solution
at all for the new request, then the request will at least be allocated to some subroute
Π′′

w of finite score, even if having to use distance-suboptimal interconnecting paths. For
TD-Insertion we considered two distinct contingency plans when facing such infeasibilities
with the distance metric: (i) either construct Π′′

w separately for each (i, j) whose Π′
w is

time-infeasible, interconnecting with distance-suboptimal subtours r’s service points within
Πw, or (ii) recompute from scratch an assignment for r, under the travel-time objective this
time, but only when all the candidate pairs under the distance metric provided temporally
infeasible routes. Eventually our decision for the experimental evaluation of TD-Insertion
was to adopt the former contingency plan, as it adopts the travel-time metric not for each
and every candidate pair but only for the problematic detours.

(b) Workload Balancer Heuristic (WB)
When running the experiments, it was observed that the optimal solutions provided by
TD-Insertion involved only a few workers that shouldered the majority of the requests,
while the rest of the workers did much less work, or were even not assigned any request at
all. Towards providing more fair assignments for all the operational workers, we consider
a threshold θ ≥ 1 and a penalty factor µ ≥ 1 and we introduce a bias for new requests
in favor of workers with lighter (by means of traveled distance) workloads, even though
some other workers might serve them with smaller marginal service costs. This bias is
achieved by our Workload Balancer (WB) heuristic, which considers a slightly different
scoring step for TD-Insertion for determining the winning worker per new request. In
particular, upon the release of a new request r, let Wo be the set of the currently operational
workers, and Costκ,ν(Πw) be the cost of some worker w ∈ Wo for a given metric κ ∈ {τ, λ}
and objective ν ∈ {ℓ1, ℓ2}. The total cost of the current solution (before serving r) is
Costκ,ν(Wo) =

∑
w∈Wo

Costκ,ν(Πw). Then, each operational worker w ∈ Wo whose subroute-
cost exceeds the average subroute-length in Wo by more than θ, gets a penalized score by a
multiplicative factor µ > 0: ∀w ∈ Wo, ∀κ ∈ {τ, λ}, ∀ν ∈ {ℓ1, ℓ2},

Scorewb
κ,ν(Πw, i, j, r) :=

1 + µ · I{
Costλ,ℓ1 (Πw)>θ·

Costλ,ℓ1 (Wo)
|Wo|

} · Scoreκ,ν(Πw, i, j, r)

(c) Request Relocation Improvement Heuristic (RR)
A weakness of insertion-based heuristics is that they forbid changes in the assignment and the
relative service order of the active requests, except for the new request. Towards amplifying
this drawback, as in [7], we introduce the Request-Relocation Improvement (RR) heuristic,
which conducts a sequence of local-search improvement attempts to the current solution
as follows: For each w ∈ Wo, and each r ∈ Rw that has not been picked up yet by w,
χpic

r ∈ Vpic and χdel
r ∈ Vdel are removed from Πw, making the appropriate shortcutting to

Πw so as to be a feasible subroute for Rw \ {r}. By the FIFO property, this may cause
no violation of a spatiotemporal constraint in Πw and does not affect the routes of other
workers. Consequently, r is relocated by TD-Insertion, either at a better position within
Πw or within the route of another operational worker.
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(d) Digesting Demand Forcasts with TD-Prophet

In the typical online scenario, the request sequence R is initially unknown and is gradually
revealed (per request) to the request scheduler. This knowledge gap is an important drawback
for preparing a better and more organized scheduling plan. Apart from the higher risk of
adopting suboptimal assignments, another significant burden is the necessity of the workers
making large detours to serve newly revealed requests. Inspired by the Prophet-Insertion
scheduler in [16], we introduce here a variant of TD-Insertion, called the TD-Prophet, which
takes into account some sort of short-term forecasts for future requests and deals with them
exactly as (virtual) requests with pickup/delivery points and spatiotemporal constraints.
These virtual requests are a priori scheduled in the front of the request sequence to be handled
by the scheduler, so as to be assigned to (initially idle) operational workers. This assignment
is done using TD-Insertion. Consequently, their spatiotemporal constraints are deactivated
(i.e., qr = 0, tld

r = ∞), so as not to cause unnecessary infeasibilities for the workers’ subroutes.
The major difference of TD-Prophet from Prophet-Insertion in [16], apart of handling
time-dependent travel-times, is that, after determining the assignment of the predictions to
the workers, the delivery nodes of predictions of low appearance probability (below 80%) are
removed (to better deal with any forecast inaccuracy). Also, when TD-Insertion decides to
place the service nodes of a new request, say, at positions i and j respectively, any virtual
pickup node (corresponding to a forecast) with low appearance probability (below 80%)
between i and j is simply ignored. It should be noted that the demand-forecasting task is
beyond the scope of this work and we consider this information to be provided as input to
TD-Prophet. Nevertheless, Section B in the full version of the paper [10] describes exactly
how this forecasting task is simulated for the real-world data set that we use for the needs of
our experimentation.

4 Experimental Evaluation

We evaluated our algorithms using a real-world data set with records of pickup-and-delivery
food and shopping orders during 3 consecutive working days, at the midium-sized city of
Ptolemaida, Greece. In our experiments we assess the performance of our online schedulers
for the actual request-sequence against two baseline solutions: (1) human-curated solutions
provided by operators in the control room of a middleware platform mastering the service
of food-order and shopping-delivery requests in Ptolemaida; and (2) optimal solutions to
the MILP formulation for a relaxation (a carefully constructed instance of VRPPDSTC) of the
actual instance of VRPPDSTCtd (the detailed description of this relaxation, the proposed MILP
formulation and the adopted solution method, are provided in Section A of the Appendix).

(a) Experimental Setup
The algorithms are in C++ (GNU GCC v.11.3.0). The experiments were conducted on an
AMD EPYC 7552 48-Core 2.2GHz Processor with 256GB RAM and Ubuntu (22.04 LTS).

(b) Experimental Dataset
The dataset contains a pair (W, R) of a worker set and a request sequence, with actual
pickup/delivery-times for the requests and work-shift intervals for the workers, within a
period from Monday, July 3 2023 to Wednesday, July 5 2023, in the city of Ptolemaida in
Northern Greece. All workers involved in this particular data set have used a single type
of vehicle (scooters with a fixed-size storage). The human-curated service subtours were
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decided in real-time by well-experienced operators at the control center of a middleware
platform providing couriers to food and shopping enterprises. The actual (GPS-recorded)
service routes of the couriers were extracted from the pilot-phase event-logging database in
the framework of a research project in which our group participated in the past [8]. These
routes are already of high quality, since they were based on the long-term experience of
the human operators, especially in the medium-size of the operational area (Ptolemaida).
The construction of the road graph G was based on an OpenStreetMap dataset for Greece’s
road network [12]. The travel-time metric is provided by the OpenStreetMap service and
the request-demand predictions were provided as input. G contains |V | = 2547 nodes
and |E| = 9514 arcs. In the real data set some spatiotemporal restrictions were missing.
In order to carry out a more realistic experimental evaluation, we adopted the following
constraint scenario: Each request was assumed to have one-unit load and a duration of
40min between the latest-delivery-time and and the earliest-pickup-time, and service times
of 1.5min; and each worker uses a vehicle with a total capacity of 3 units. I.e., ∀r ∈
R

(
qr = 1 ∧ tld

r = tep
r + 40min ∧ tpsrv

r = tdsrv
r = 1.5min

)
∧ ∀w ∈ W ( Qw = 3 ) .

(c) Analysis of Experimental Results
We executed three experiments, one per working day (Mon,Tue,Wed). Our online al-
gorithms created the full sequences of worker subtours per day, starting from initially
empty subtours. We experimented, exactly on the same instances, for an online algorithm
alg ∈ {TD-Insertionheur

κ,ν , TD-Prophetheur
κ,ν : heur ∈ { { }, {wb}, {rr}, {wb, rr} }, κ ∈

{τ, λ}, ν ∈ {ℓ1, ℓ2}} where heur indicates whether specific heuristics are activated, κ determ-
ines the cost metric and ν specifies the type of the global objective.

Each variant of TD-Prophetκ,ν works as follows: first we appended at the beginning of
the request sequence a subset of predictions for virtual requests, which were then assigned to
workers with TD-Insertionwb

κ,ν . The remaining sequence (of the real requests) were handled
then sequentially, exactly as they appeared, by TD-Insertionκ,ν . Each real request was
assumed to be visible to the scheduler only after its release time. Upon the release of a
new (real) request r ∈ R at time trel

r , each variant of our algorithms executes the following
substeps: r ∈ R is first assigned to a “moving” worker w ∈ W with the minimum score value,
w.r.t. the objective function. Then, a detour event takes place, if the worker is instructed
to change destination. Consequently, w’s route is expanded by adding the service nodes
of the new request. Finally, the new time-dependent interconnecting paths are computed,
to (re)construct the route also covering the service points of the new request. As for
preprocessing, in both the offline and the online scenarios, some common tasks are executed:
(a) The preprocessing phase of CFLAT was executed by computing optimal trees, so that the
interpolation of the travel-times at destinations constitutes an (1 + ϵ)-approximation of the
unknown time-dependent minimum-travel-time functions τh[o, d](to) : L × V × T 7→ R≥0,
where ϵ = 0.1, L is a subset of nodes (landmarks), h = scooter, and T is a one-week period.
In principle we could use the query algorithm CFCA to approximately compute time-dependent
distances “on the fly”. Nevertheless, since the graph size is small, we set L = V so as to avoid
executing CFCA and to improve the approximation guarantees of the provided travel-time
values. (b) Minimum distances λ[o, d] : V × V 7→ R≥0 are computed with Dijkstra calls from
all the nodes in GP D, under the distance metric λ.

The detailed presentation of the experimental results is deferred to the full version of
the paper [10]. We demonstrate some indicative results in Table 1, which focuses on the
distance metric and the ℓ1 objective. The reported execution times of the online algorithms
are average times per request. The table captures the resources spent: total travel-time (h)
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and total-length (km) traveled by the workers to serve requests, average (PathLen Avg) and
variance (PathLen Var) of the workloads (measured in km) assigned to the workers. For the
sake of a fair comparison, the human-curated subtours were translated into routes in such a
way that all the interconnection paths are indeed distance-optimal paths, even if some of
them are infeasible due to temporal constraint violations. This only works in favor of the
baseline solutions. For the WB heuristic, we set θ = 1.5 and µ = 2. As shown in Table 1,
against the quality of the human-curated assignments, there is a clear improvement of all
variants of TD-Insertionheur

λ,ℓ1
, varying from 14.6% up to 49.1% decrease in total-length,

and from 13.5% up to 48.9% decrease in total travel-time. The variants of TD-Prophetheur
λ,ℓ1

provide an additional improvement over the corresponding variants TD-Insertionheur
λ,ℓ1

by
roughly 4%. The picture is similar also for the ℓ2 objective, as shown in Table 2 in the full
version of the paper [10]. Remarkably, ℓ2 does not necessarily provide better solutions, but
it guarantees much less variance in the workloads, without the need of the WB heuristic.

As for the solutions of the relaxed MILP formulation of VRPPDSTCtd, as shown in Table 5
in the full version of the paper, the involved solvers take hours to construct optimal solutions,
even for small instances, whereas TD-Insertion finds very good solutions within amortized
time per request that is smaller by several orders of magnitude. E.g., for 12 requests and
8 workers, the branch-and-cut method of SCIP spending up to 6 hours to find 31 feasible
solutions and, via them, in the next phase, the best time-dependent metric converted solution
which is only 0.64% better than the best of them in total-distance, within only 69ms per
request.

Table 1 Experimentation of TD-Insertionλ,ℓ1 and TD-Prophetλ,ℓ1 .
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5 Concluding Remarks

In this paper we introduced, implemented and engineered two insertion-based online schedulers
for the time-dependent variant VRPPDSTCtd of VRPPDSTC, which were also experimentally
evaluated on a real-world instance of food and shopping orders. In the future we plan
to extend our online schedulers with more advanced local-search improvement heuristics,
exploit them also by well known metaheuristics that are efficient for VRP, such as the ALNS
metaheuristic, and also to explore in more depth offline solvers which are custom-tailored to
this particular problem.
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A Construction of a Relaxed MILP Formulation for VRPPDSTCtd

Recall that each assignment of requests to workers for an instance of VRPPDSTCtd is represented
as a collection {Sw : w ∈ W} of vertex-disjoint (simple) paths in GP D = (V, E). Of course, in
order to actually have a feasible solution in the end, we should translate each assignment Sw

into a (not necessarily simple) walk Πw to be followed by w in the underlying road network
G = (V, E), by substituting each pair of consecutive points in Sw (i.e., an arc in GP D)
with some cost-minimal interconnecting path of G. At this point, there are two options for
the interconnection of the endpoints of each arc e = uv ∈ E : Use in the road network G

either a travel-time-optimal (and distance-suboptimal) (u, v)-path, or a distance-optimal
(and travel-time-suboptimal) (u, v)-path. When the cost-objective is based on the travel-time
metric, all interconnecting paths for arcs of E are naturally minimum-travel-time paths in G,
mainly due to the FIFO property of the metric. On the other hand, when the cost-objective
is based on the distance metric, although the interconnecting paths for arcs of E should
ideally be minimum-distance paths in G, such a choice might lead to infeasible solutions.
We explain in subsection A.3 how we resolve this issue in such a way that, to the least,
whenever there is a feasible solution of a given maximum number of serviced requests, one
such solution should be found (even if it is suboptimal in the cost-objective).

Before that, we first consider a simplified situation (cf. A.1) where the travel-time metric
consists of scalar values for the arcs in G (i.e., it is time-independent). We then perceive all the
temporal parameters (e.g., travel-times, arrival-times) as scalars, which can be precomputed.
Abusing slightly the notation for the sake of simplicity, we use only the names of the temporal
functions, without their explicit dependence on departure-time values from the tail of an arc
or from the origin of a path, as the corresponding constants. For example, we write τ [Πw]
for the scalar approximation of the time-dependent path-travel-time function τ [Πw](tstart

w ).
Given those (constant) travel-time values, in subsection A.2) we provide a MILP formulation
for the (time-independent) relaxation of the actual instance of VRPPDSTCtd that we wish
to solve. This MILP is then fed to several MILP solvers for providing an offline solution
(cf. A.4), to act as alternative baseline solutions for quantifying the quality of the provided
heuristic solutions by our online solvers. Of course, even the solutions provided by the offline
solvers for the MILP relaxation are suboptimal solutions to the VRPPDSTCtd instance at hand.
The challenge is exactly to adopt a time-independent travel-time metric which is somehow
more informative than just considering the average, or the freef-flow arc-traversal times of
the road segments and thus renders offline solutions closer to optimality.

A.1 Approximating Time-Dependent Travel-Times
This subsection concerns the determination of scalar travel-time values to all the arcs in
the PD-graph GP D, when the global objective to consider is the minimization of (sums,
or sums-of-squares of) travel-time along the actual servicing paths of the workers. In this
case, each arc of GP D actually represents a minimum-travel-time interconnecting path for
its endpoints, in the underlying road network G.

Rather than simply considering only average (or, free-flow) travel-time values per arc in
G and then conducting shortest-path computations between the endpoints of arcs in GP D,
as is typically the case, we construct a more meaningful static travel-time metric for the
arcs of GP D, which tries to be as close as possible to the actual time-dependent travel-time
metric in G, taking into account that specific connections may only appear at specific parts
of the workers’ subtours. In particular, we construct relaxated time-indepdenent travel-times
for all the arcs in GP D in three consecutive phases,
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Phase 1: We compute the actual earliest arrival-times (and thus, also the minimum travel-
times) from the starting location of each worker to every of the pickup point, under the
time-dependent metric. In particular, fix an arbitrary arc e = (u = χstart

w , v = χpic
r ) ∈

Vstart × Vpic from some worker’s shift-start point to some request’s pickup point. The
departure-time is definitely tstart

w . Therefore, using the query algorithm CFCA of the
CFLAT oracle, we can determine a (1 + ϵ)-approximation of the minimum travel-time value
τ [Πu:v

w ](tstart
w ). The eventual scalar travel-time approximation for e (when considered as

candidate for first arc in some subtour) is defined as τe,hw = τhw [Πu:v
w ](tstart

w ) + tpsrv
r , i.e.,

we add to the actual travel-time value the service-time at the pickup point χpic
r .

Phase 2: We consider all the arcs of GP D emanating from pickup points, towards other
pickup points or delivery points (acting as candidates for second, or even later arcs within
subtours). To compute scalar approximations of their travel-times, we make calls of
CFCA from each pickup point χpic

r and each vehicle-type h ∈ Hr, towards all destinations
in Vpic ∪ Vdel. As departure-times from χpic

r we consider the maximum of its earliest
pickup-time tep

r and its earliest arrival-time from any worker with the specific vehicle
type. The resulting (time-dependent) minimum travel-time values at the destinations,
plus the service times at the destinations, determine the scalar approximations τe,h, for
all the arcs (χpic

r , v) ∈ E ∩ Vpic × (Vpic ∪ Vdel) and vehicle types h ∈ Hr.
Phase 3: We consider all the arcs of GP D emanating from delivery points, towards other

pickup points, delivery points, or work-shift ending points (as candidates for third, or even
later arcs within subtours). To compute scalar approximations of their travel-times, we
make again calls of CFCA from any delivery point χdel

r ∈ Vdel towards all destinations in
v ∈ Vpic ∪ Vdel ∪ Vend. As departure-time from χdel

r we consider the earliest arrival-time,
among all eligible vehicle types h ∈ Hr, from the corresponding pickup point χpic

r , as it
was computed in the second phase, since it definitely has to precede that delivery point.
The resulting minimum arrival-times computed by these calls plus the service times (if
any) at the destinations, determine the scalar approximations τe,h of the travel-times
that we consider, for all the arcs (χdel

r , v) ∈ E ∩ Vdel × (Vpic ∪ Vdel ∪ Vend) and eligible
vehicle-type h ∈ Hr.

A.2 MILP Formulation for Relaxation of VRPPDSTCtd

With the above mentioned static travel-time metric at hand, we may proceed with the con-
struction of the relaxed MILP formulation of VRPPDSTCtd. Recall that each arc (χstart

w1
, χpic

r1
) ∈

Vstart × Vpic and each arc (χdel
r2

, χend
w2

) ∈ Vdel × Vend may be “traversed” by workers w1
and w2 if and only if r1 and r2 were assigned to them, respectively. The rest of the arcs
in E may be “traversed” by any worker whose vehicle is eligible for the serviced requests
at its endpoint(s). Therefore, some binary decision variables are employed to indicate
the traversal of arcs by workers and the assignment of requests to workers: For each arc
e ∈ E ∩ ((Vpic ∪ Vdel) × (Vpic ∪ Vdel)), each request r ∈ R, and each worker w ∈ W, xe,w

indicates whether w traverses e, and xr,w indicates whether r is assigned to w.
We proceed with the definition of some constants for earliest arrival-times at nodes in V

and modifications in vehicle-loads, as some worker w traverses an arc e = uv ∈ Sw towards
a service node v ∈ Vpic ∪ Vdel. Recall that any feasible solution is a collection of subtours
{Sw : w ∈ W} which correspond to vertex-disjoint paths in GP D. In particular, for each
edge e = uv ∈ E , the constant qe represents the change in a vehicle’s load, when traversing
e: if v = χpic

r ∈ Vpic then qe = qr; if v = χdel
r ∈ Vdel, then qe = −qr; otherwise, qe = 0.

Moreover, each request r ∈ R comes with a (large positive) profit σr, to be considered only
when r is assigned to some worker for its service. Finally, for each node v ∈ V , the continuous
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variable av captures either the arrival-time of the unique worker (if any) who serves the
corresponding request r along its assigned route, when v ∈ {χpic

r , χdel
r ⊆ Vpic ∪ Vdel; or a

worker’s shift starting time tstart
w , when v = χstart

w ∈ Vstart is its shift-starting node; or, the
eventual arrival-time at the end of the entire route Πw of a worker, when v = χend ∈ Vend

is its shift-ending node. Along each arc e = uv ∈ E , the values of the variables au and av

should be compliant with the required time for the moving worker (with a particular vehicle
type) to traverse e.

For the sake of simplicity, we make here the assumption that all workers possess the same
vehicle type, as is the case in our real-world data set. The proposed relaxed mixed integer
linear program (MILP) for VRPPDSTCtd is shown in Figure 2. It can be easily extended to
also cover the case of more vehicle types for the workers.

min
∑

e∈E,w∈W
ce,wxe,w −

∑
r∈R

σr

∑
w∈W

xr,w

s.t.

0 ≤
∑

v∈Vpic

xuv,γ(u) ≤ 1, ∀u ∈ Vstart (1),

∑
uv∈E:u=χpic

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (2),

∑
uv∈E:v=χpic

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (3),

∑
uv∈E:u=χdel

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (4),

∑
uv∈E:v=χdel

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (5),

0 ≤
∑

w∈W
xr,w ≤ 1, ∀r ∈ R (6),

tstart
v ≤ av ≤ tend

v , ∀v ∈ V (7),
aχpic

r
≤ aχdel

r
, ∀r ∈ R (8),

|av − au −
∑

w∈W
(Tmax + τuv,w)xuv,w| ≤ Tmax, ∀uv ∈ E (9),

|qv − qu −
∑

w∈W
(Qmax + quv)xuv,w| ≤ Qmax, ∀uv ∈ E (10),

0 ≤ qv ≤
∑

r∈R,w∈W
xr,wQw, ∀v ∈ VP (11),

xe,w, xr,w ∈ {0, 1}, ∀e : uv ∈ E , w ∈ W, r ∈ R (12),
qv = 0, v ∈ Vstart ∪ Vend; 0 ≤ qv ≤ Qmax, v ∈ Vpic ∪ Vdel (13)

Figure 2 The relaxed MILP formulation of VRPPDSTCtd.

The objective function seeks as a primary goal to maximize the number of served requests
(recall the large positive values for the σr parameters) and, as a secondary goal, to minimize
the aggregate travel cost for having the selected requests served by the workers. Towards
this direction, we construct the objective as the sum of two terms. The first term accounts
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for the aggregate cost to serve all the accepted requests, as determined by the sum of costs
ce,w · xe,w for those arcs of GP D which are used in the solution. The value of the coefficient
ce,w depends on the metric that is considered for the objective, i.e., it is associated with
either the arc-length λe, or with the (approximate) arc-travel-time τe,w (but excluding the
embedded service times). The second term determines the negative of the aggregate profit for
serving requests: For each request r ∈ R, the coefficient σr denotes the “profit” for having
r served by some worker. These coefficients are set to a sufficiently large value (based on
an upper bound to the worst possible path-travel-time or to the maximum length from any
origin towards any destination), so as to enforce the service of as many requests as possible.
The sum of profits for all the served requests is then subtracted from the overall service cost.

As for the constraints of the MILP: (1) ensures that any worker’s subtour may start
with a move towards at most one pickup point. (2-5) enforce that each worker may depart
from / enter the pickup / delivery) point of some request towards / from any other node,
only if the corresponding request is assigned to her. (6) ensures that any request r is served
by at most one worker. (7) enforces the arrival time av at each node v is in the allowable
time window, where: (a) for v ∈ {χstart

w , χend
w }, tstart

v = tstart
w and tend

v = tend
w ; and (b) for

v ∈ {χpic
r , χdel

r }, tstart
v = tep

r and tend
v = tld

r . (8) ensures that the pickup-time point of r

precedes the delivery-time point of r. (9) stipulates that if an arc e = uvE is traversed by
some worker w, then the arrival time av at v must be the result of the arrival-time au at
u plus w’s travel-time τe,w along e. (10) stipulates that if an arc e = uv ∈ E is traversed
by some worker w, then the change of w’s vehicle-load qv at v results from the vehicle-load
qu at u plus the pickup-load / minus the delivery-load qρ(v) = |qe| that corresponds to the
request ρ(v). (11) ensures that the vehicle’s load at any pickup-node v assigned to w, never
exceeds the vehicle’s maximum capacity Qw. The constants Tmax and Qmax are the result
of applying the big-M linearization method, and their values, in direct dependence on the
problem instance, are selected as the maximum distance |av − au|, |qv − qu|, ∀uv ∈ E , e.g. a
loose bound could be Tmax = maxw∈W(tend

w − tstart
w ) and Qmax = maxw∈W Qw. Note that in

(9) and (10) only the lower bounds are tight; the upper bounds are relaxed, Tmax and Qmax

theoretically can also be perceived as ∞. Their actual values are determined in relation
to the rest of the constraints. This is done on purpose, especially for the arrival decision
variables, because those variables in pickup-nodes have to be increased to reach the earliest
pickup-times in the case of a non-zero buffer time.

A.3 Translating Assignments to Routes under the Distance Metric
It is important to note at this point that for the MILP formulation provided in Figure 2, which
was constructed on top of the PD graph with arc-costs equal to the minimum travel-times
of their endpoints in the underlying road graph G, the optimal solutions indeed maximize
the aggregate profit for serving the accepted requests and, at the same time, minimize the
aggregate service cost for having the workers on the move, when the cost for each arc uv ∈ E
is indeed measured by the total travel-time of the workers from u to v in the underlying road
graph G.

Unfortunately, when the secondary objective (the aggregate service cost) is measured
by the total distance traveled by the workers, it is no longer true that the consideration
of a route of consecutive distance-optimal paths for implementing a given subtour is the
right choice for implementing a worker’s subtour. This then causes a crucial dilemma: which
weights should be considered for the arcs of E? For example, in Figure 3 the worker can
move from u to v along one of two uv-routes in the underlying road network G, but the
upper route is distance-optimal but time-infeasible and the lower route is travel-time optimal
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but distance-suboptimal. Then, for the unique arc uv ∈ E , using the distance-optimal (but
travel-time-suboptimal) weights would lead to a MILP formulation where the single request is
impossible to serve, whereas using the travel-time-optimal (but distance-suboptimal) weights
for the arcs in the PD graph would certainly provide a feasible solution, whose distance-
related service cost may be far from being optimal. Recall that our primary objective is to
have a maximum profit by the accepted requests for service (e.g., to have as many requests
served, as possible). Nevertheless, we wish (given that) to move towards optimizing also the
distance-related service cost, even though we cannot possibly reach it. Towards this direction,
we change the PD graph as follows: For each e = uv ∈ E , we attach two Pareto-optimal routes
in the underlying road graph G, a distance-optimal (but travel-time-suboptimal) uv-route
πl

u,v, and a travel-time-optimal (but distance-suboptimal) uv-route πτ
u,v, per type of vehicle.

This way, our (updated for the distance-optimal service cost objective) MILP formulation
tries to find either a distance-optimal and spatiotemporally feasible solution, or at least a
distance-suboptimal feasible solution that employs the cheapest (w.r.t. extra distance to
be traveled) subset of travel-time optimal connections so as to guarantee feasibility. Of
course, this is still not the required distance-optimal solution for the maximum profit for
the accepted requests, because it might be the case that some connecting paths in the road
graph which are suboptimal for both distance and travel-time criteria might be preferable.
Nevertheless, the primary goal of maximing the profit of accepted requests is now achieved.

𝑢 𝑣 𝑡𝑙𝑑 ≤ 8:30
arrival deadline

π𝑢,𝑣
𝑙

π𝑢,𝑣
𝑡

[4km, 45mins]

[5km, 27mins]

departure 
8:00

ℎ: motorbike

Figure 3 Finding a feasible solution to minimize distance while respecting the time constraints.
The worker arrives at u at 8:00. The arrival-time at node v via the distance-optimal path πl

u,v is
8:45, i.e., too late w.r.t. the latest-delivery-time deadline (8:30). On the other hand, the arrival-time
at v via the travel-time optimal path πt

u,v is 8:27, i.e., catching up the delivery deadline, at the cost
of a slightly longer distance to travel.

A.4 Offline Solvers for Relaxed MILP Formulation of VRPPDSTCtd

The core method used for solving the MILP formulation of VRPPDSTC is based on built-in
implementations in SCIP [2, 15] and Gurobi [5] of the branch-and-cut method [13]. Since the
produced solution has taken into account, not the actual time-dependent travel-time metric,
but a time-independent approximation metric for it, as was already explained in Section A.1,
we have to cross-check that the produced solution indeed respects all the spatiotemporal
constraints of the instance. This is done as follows: We examine up to 10 of the best feasible
solutions found from the MILP solver. Each solution is a set of subtours {Sw : w ∈ W}. For
each worker w ∈ W and the corresponding subtour Sw which dictates the visiting order of
the service points for all the requests assigned to her, we recompute the (now time-dependent)
optimal interconnecting paths for consecutive points of Sw. The spatial constraints (relating
to vehicle capacities) are certainly preserved. As for the temporal constraints, we recheck
along the subtour if any arrival-time at a delivery service or shift-ending node now violates
a temporal constraint, thus rendering the particular subtour infeasible. In such a case, we
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try to “repair” the route of Sw in the following way: at each vx ∈ Πw ∩ {Vdel ∪ Vend},
where α(vx) > tld

ρ(vx) or α(vx) > tend
w (i.e. a latest delivery or shift-ending deadline is

violated), we traverse the route Πv1:vx
w backwards, i.e. from vx up to v1, and successively

any contained intermediate subpath in Πw that was computed for length-minimization is
replaced by a corresponding optimal subpath that minimizes the travel-time. If there is no
length-optimal path or the applied replacements eventually are not enough to deal with the
deadline violations, then the whole solution is rejected, and an additional constraint to block
the selection of the infeasible subtours in GP D is added to the MILP formulation (Figure 2).
This process is applied to any MILP solver’s examined feasible solution. At the end, if
there is no time-dependent-metric converted feasible solution, then there is the possibility to
use the new MILP formulation (with the added constraints) to solve the problem again for
computing new solutions that will hopefully overcome the deadline violations.


	1 Introduction
	2 Problem Statement and Related Work
	3 Insertion-based Schedulers for VRP {PDSTCtd} {}
	4 Experimental Evaluation
	5 Concluding Remarks
	A Construction of a Relaxed MILP Formulation for VRP {PDSTCtd}
	A.1 Approximating Time-Dependent Travel-Times
	A.2 MILP Formulation for Relaxation of VRP {PDSTCtd}
	A.3 Translating Assignments to Routes under the Distance Metric
	A.4 Offline Solvers for Relaxed MILP Formulation of VRP {PDSTCtd}


