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Preface

In the ongoing desire to improve, adapt and understand transportation systems, algorithmic
theory and mathematical techniques are essential to develop and solve new models and
optimization problems. Scientific advancements come from various disciplines, including math-
ematical optimization, theoretical computer science, algorithmics, and operations research.
Since the 2000’s, the Algorithmic Approaches for Transportation Modelling, Optimization
and Systems (ATMOS) symposia represent a well-established series of meetings that brings
together researchers and practitioners who are interested in all aspects of algorithmic meth-
ods and models for transportation optimization, providing a forum for the exchange and
dissemination of new ideas and techniques to handle all modes of transportation.

The 24th edition of the Symposium on Algorithmic Approaches for Transportation Model-
ling, Optimization, and Systems (ATMOS 2024) was held on September 5-6 2024, as part of
ALGO 2024, the major annual European event for researchers, students and practitioners in
algorithms, which was hosted by the Royal Holloway, University of London in Egham, United
Kingdom. All optimization problems, models and algorithmic techniques which are related
to transportation systems were regarded as topics of interest for ATMOS 2024, including
but not limited to: charging schemes; electromobility; fairness in schedules; fare structure
design; infrastructure assignment and maintenance; passenger flows; resource-constrained
shortest paths; route planning; (rolling-stock, shift, vehicle, periodic-event) scheduling; time-
dependent travel-times; traffic-assignment; equilibria with side-constraints; vehicle routing
and dial-a-ride problems. Of particular interest were the following techniques which were used
by the papers in this year’s edition of ATMOS: (exact, approximate, heuristic, local-search)
algorithms for transport optimization; algorithmic engineering; algorithmic game theory;
Bayesian inference; labelling and indexing schemes; learning and prediction techniques;
mathematical programming; multi-objective optimization; stochastic simulation.

We received a total of thirty-two submissions from all over the world, twenty-eight
of them being regular papers, and the other four being short papers. All manuscripts
were reviewed by at least three PC members and were evaluated on originality, technical
quality, and relevance to the topics of the symposium. Based on the reviews, the program
committee selected eighteen submissions (sixteen regular papers and two short papers) to
be presented at the symposium. Altogether, they quite remarkably demonstrate the wide
applicability of algorithmic optimization on transportation problems. In addition, Eduardo
Uchoa (Universidade Federal Fluminense, Niteroi, Brazil) kindly agreed to complement the
program with an invited talk “Exact Algorithms for Vehicle Routing: advances, challenges,
and perspectives”, that was presented as one of the keynote talks of ALGO 2024.

We would like to thank: the Steering Committee of ATMOS for giving us the opportunity
to serve as Program Chairs of ATMOS 2024; all the authors who submitted their papers; the
members of the ATMOS 2024 Program Committee and the sub-reviewers for their valuable
work in evaluating all the submissions and selecting the papers appearing in this volume;
Eduardo Uchoa for accepting our invitation to present an invited talk; Argyrios Deligkas
and Eduard Eiben (co-chairs of the ALGO 2024 Organizing Committee) and their team
at the Royal Holloway, University of London for hosting the symposium as part of ALGO
2024. We would also like to acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS 2024 in its OASIcs series.
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0:viii Preface

Finally, we are pleased to announce that, based on the Program Committee’s reviews and
decisions, the authors Justine Cauvi, Ruoying Li and Sabine Storandt have been awarded
this year’s “Best Paper Award of ATMOS 2024” for their paper “Landmark Hub Labeling:
Improved Bounds and Faster Query Answering”.

August 2024

Paul Bouman and Spyros Kontogiannis
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Abstract
Hub Labeling (HL) is a state-of-the-art method for answering shortest-distance queries between node
pairs in weighted graphs. It provides very fast query times but also requires considerable additional
space to store the label information. Recently, a generalization of HL, called Landmark Hub Labeling
(LHL), has been proposed, that conceptionally allows a storage of fewer label information without
compromising the optimality of the query result. However, query answering with LHL was shown to
be slower than with HL, both in theory and practice. Furthermore, it was not clear whether there are
graphs with a substantial space reduction when using LHL instead of HL. In this paper, we describe
a new way of storing label information of an LHL such that query times are significantly reduced and
then asymptotically match those of HL. Thus, we alleviate the so far greatest shortcoming of LHL
compared to HL. Moreover, we show that for the practically relevant hierarchical versions (HHL and
HLHL), there are graphs in which the label size of an optimal HLHL is a factor of Θ(

√
n) smaller

than that of an optimal HHL. We establish further novel bounds between different labeling variants.
Additionally, we provide a comparative experimental study between approximation algorithms for
HL and LHL. We demonstrate that label sizes in an LHL are consistently smaller than those of HL
across diverse benchmark graphs, including road networks.
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1 Introduction

Efficiently determining the shortest path distance between node pairs in a given weighted
graph G(V, E, c) is important for a multitude of applications, including navigation, vehicle
routing, and network design [3, 4, 13, 14, 15]. Using Dijkstra’s algorithm, such distance
queries can be answered in O(n log n + m) with |V | = n and |E| = m. However, if many
queries need to be answered on the same input graph, preprocessing methods can help to
tremendously reduce subsequent query times. One state-of-the-art method is Hub Labeling
(HL) [6]. In a HL, each node v ∈ V gets assigned a node label L(v) ⊆ V , and the shortest
path cost c(π(v, w)) is stored along for each w ∈ L(v). The labels need to fulfill the so called
cover property that demands that ∀s, t ∈ V : ∃v ∈ L(s) ∩ L(t) ∩ π(s, t). In other words, for
each shortest path, its end nodes need to have at least one common node from that path in
their respective labels. The node is then called a hub for s, t.

This allows for a very simple and fast query answering routine: For each v ∈ L(s) ∩ L(t)
compute c(π(s, v)) + c(π(t, v)), with both values being precomputed, and keep track of the
minimum. The resulting value is guaranteed to coincide with the shortest path distance
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Figure 1 Top: Illustration of hub zone (green) and perfect landmark zone (purple) for the node pair
s, t. Bottom: Two LHL query answering scenarios for s, t with L(s)∩L(t) = {v, w}: In the left image
(assuming uniform edge weights), the best lower bound is realized via w with c(π(s, w))−c(π(t, w)) =
3 − 2 = 1 and the best upper bound is realized via v with c(π(s, v)) + c(π(t, v)) = 1 + 1 = 2. Here,
the upper bound is tight. In the right image, the best upper bound via v is 3 + 2 = 5 and the best
lower bound via w is 4 − 2 = 2. Here, the lower bound is tight.

between s and t. If the labels are stored sorted by ID of the contained nodes, the intersection
of two labels can be computed in linear time. Thus, query answering only takes O(|L(s)| +
|L(t)|) ∈ O(Lmax) where Lmax := maxv∈V |L(v)|.

While HL allows for fast query answering, storing labels that meet the cover property often
requires a substantial amount of space. Landmark Hub Labeling (LHL) is a generalization of
HL which uses a weaker cover property and thus potentially allows for smaller label sizes
[16]. The underlying observation is that if s and t both store the distance to a node v that is
not on the shortest path from s to t but on a shortest path from a to b that contains both
s and t, one can still deduce the correct shortest path distance between s and t, now by
computing |c(π(s, v)) − c(π(t, v))|. Such a node v where |c(π(s, v)) − c(π(t, v))| = c(π(s, t))
is also called a perfect landmark for s, t. The relaxed cover property of LHL now demands
that for each s, t ∈ V their label intersection L(s) ∩ L(t) either contains a hub or a perfect
landmark for s, t. The issue is that query answering becomes more intricate with LHL, as
one needs to figure out whether a hub or a perfect landmark leads to the tight distance
bound. To accomplish this, each node in I := L(s) ∩ L(t) is considered in both roles. This
results in an upper bound UB := minv∈I c(π(s, v)) + c(π(t, v)) as well as a lower bound
LB := maxv∈I |c(π(s, v))−c(π(t, v))| on the shortest path distance c(π(s, t)) where either UB

or LB needs to be tight, see Figure 1 for an illustration. To check if LB is tight, one needs to
reconstruct the path from (w.l.o.g.) s to v up to a distance of LB and see whether t is found.
If this is the case, c(π(s, t)) = LB follows, otherwise it is certified that c(π(s, t)) = UB. To
make the path traversal step efficient, a variant of LHL called path-consistent LHL (PC-LHL)
was introduced in [16]. It allows to reconstruct the shortest path from a node s to one of its
stored label nodes v in O(k) where k denotes the number on edges on that shortest path.
However, this still results in distance query times of O(Lmax + D) where D denotes the
diameter of the input graph. Depending on the structure of the input graph, the query time
might thus be significantly larger than the O(Lmax) query time of HL.

In this paper, we show that one can actually answer distance queries with a PC-LHL also
in O(Lmax) by storing and indexing the labels in a novel manner. Furthermore, we show
that both in theory and practice substantial space savings are possible when imposing the
weaker cover property of LHL instead of the stronger one required for HL.
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1.1 Related Work

Hub Labeling (HL) has been studied extensively, both from a theoretical and practical
perspective. Constructing a Hub Labeling (HL) with minimum total or average label size
poses an NP-hard problem [2]. Interestingly, the complexity of computing a HL with minimum
average label size is still open on trees. For this special case, a PTAS was described in [1]. In
general graphs, an approximation algorithm with a factor of O(log n) and a running time of
O(n3 log n) is known [2, 8], as well as an O(log D) approximation algorithm which is based
on a LP-relaxation [1]. For practical applications, however, oftentimes fast heuristics are used
instead of the slower and more intricate approximation algorithms. Usually, those construct
a special type of HL, called a hierarchical HL (HHL) [7, 8, 12]. Here, nodes are ranked by
some notion of importance and the node label of a node v can only contain nodes that have
at least the same rank as v. Approximation algorithms were also studied for HHL, with the
best known guarantee being in O(

√
n log n) [2].

As storing the labels of a HL or a HHL requires a lot of memory, label compression
techniques have been investigated [9]. Recently, Landmark Hub Labeling (LHL) has been
introduced as a complementary way to reduce the label size [16]. It was shown that the
O(log n) approximation algorithm for HL can be adapted to also work for LHL. Furthermore,
a O(log n) approximation algorithm with a running time of O(n6) was proposed for the
path-consistent variant (PC-LHL) as well as a heuristic construction methods that run in
O(n3) [16, 17]. However, the query time analysis as well as a proof-of-concept-study revealed
worse query times when using the PC-LHL framework instead of HL.

1.2 Contribution

In this paper, we provide numerous new structural insights into LHL.
We first carefully study the relationships between different LHL and HL variants. For

example, we prove that for the hierarchical variants (HLHL and HHL), the optimal label size
of the HLHL is always smaller than that of a HHL and there exist graphs where the factor
between the respective label sizes is Θ(

√
n). This label size gap even applies to HHL and

PC-HLHL, where PC-HLHL denotes the practically relevant path-consistent HLHL variant.
We show several further novel gaps and bounds, see Figure 2 for an overview of results on
tree graphs, and Figure 4 for results on general graphs. Our new gaps illustrate the great
potential of reducing the space consumption when using LHL instead of HL.

Next, we prove that computing an optimal PC-HLHL is NP-hard by reduction from HHL,
which itself was proven to be NP-hard in [2]. To nevertheless see whether the theoretical space
improvements we show for (PC-H)LHL over (H)HL also translate into practical improvements,
we describe how to efficiently implement known and novel (approximation) algorithms. In
an experimental study on diverse benchmark graphs, we demonstrate that label sizes of LHL
are indeed consistently smaller than those of HL.

Finally, we tackle the most pronounced weakness of LHL with respect to HL, which is
the query time of O(Lmax + D). The +D term stems from the necessity to conduct a path
traversal in the LHL query in order to check whether the computed lower or upper distance
bound is tight. We describe a new method for storing labels of a (PC-)LHL such that no
path traversal is needed anymore for this check. Accordingly, we can now match the O(Lmax)
query time of HL. We thus establish LHL as a viable alternative to HL, both with respect to
space consumption and query time.

ATMOS 2024
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2 Preliminaries

Throughout the paper, we assume to be given an undirected graph G = (V, E, c) with positive
edge costs c : E → R+ and a unique shortest path between any pair of nodes s, t ∈ V . The
latter property can be ensured via symbolic perturbation of the edge costs. We use π(s, t) to
denote the shortest path between nodes s, t ∈ V and c(π(s, t)) = c(π(t, s)) for its cost.

We already defined Hub labeling (HL) and Landmark Hub labeling (LHL) in the in-
troduction. We now provide additional definitions for the labeling variants which are also
studied in the remainder of the paper.

▶ Definition 1 (Hierarchical Hub Labeling). A HL L is a Hierarchical Hub Labeling (HHL) if
there is a ranking r : V → {1, . . . n}, with n = |V |, such that for every v ∈ V , all w ∈ L(v)
are such that r(w) ≥ r(v).

For a fixed ranking r, one can find in polynomial time the HHL with minimum total label
size which is called the canonical HHL.

▶ Definition 2 (Canonical HHL). Given a node ranking r, the canonical HHL is such that,
for v, w ∈ V , w ∈ L(v) if and only if there is a shortest path starting at v on which w has
the highest rank.

We can also define a hierarchical LHL (HLHL) in the same way as HHL by allowing all nodes
to contain only nodes of higher or equal rank in their label. Another important property on
labelings that we will explore is path-consistency.

▶ Definition 3 (Path-Consistent Labeling). A labeling is path-consistent (PC) if for each
w ∈ L(v), we also have w ∈ L(u) for all u on a shortest path from v to w.

In what follows, we will use PC-(L)HL to refer to a path-consistent (Landmark) Hub
Labeling and PC-H(L)HL to denote a path-consistent hierarchical (Landmark) Hub Labeling.

It was shown in [16] that every canonical HHL is path-consistent. Given a ranking r,
we can also define the canonical PC-HLHL, which is the PC-HLHL respecting r with the
smallest labeling size [16].

▶ Definition 4 (Canonical PC-HLHL). Given a node ranking r, the canonical PC-HLHL is
such that, for v, w ∈ V , w ∈ L(v) if and only if there is a maximal shortest path containing
v and w on which w has the highest rank.

Finally, also the concept of a Landmark Labeling (LL) was defined in [16].

▶ Definition 5 (Landmark Labeling). A Landmark Labeling (LL) is a labeling L : V → 2V

which satisfies the landmark cover property, that is for every pair of nodes s, t ∈ V , there is
a node v ∈ L(s) ∩ L(t) which is a perfect landmark for s, t.

Clearly, LL is a special type of LHL just like HL.

3 Relationships between Labeling Variants

With the plethora of labeling variants that have been proposed in the literature, it is interesting
to investigate how optimal label sizes behave with respect to each other. Obviously, label
sizes of more general variants are at most as large as those of the respective special cases.
But we are also interested in the size of the gaps that can arise between them.

In this section, we provide novel results on trees and general graphs, and summarize the
known gaps between different LL, LHL, and HL classes in relationship diagrams.
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3.1 On Trees
In [1], the authors show that the optimal HL on trees is hierarchical. Based on the same
idea we can show that the optimal PC-LHL on trees is also hierarchical.

▶ Theorem 6. For every tree T = (V, E) and any valid PC-LHL L for T , there exists a
hierarchical PC-LHL L′ such that |L′| ≤ |L|.

Proof. The idea is to construct a hierarchical PC-LHL L′ based on the given L without
increasing the label size.

For each u ∈ V , let L(u) be the label set of u, we define an induced subtree Tu ⊆ T in
the same way as in [1]: Let u be the root of Tu, there is a path π(u, v) ∈ Tu if v ∈ L(u). A
vertex w belongs to Tu if there is a label v ∈ L(u) such that w ∈ π(u, v). We call this tree
the label tree of u on T respects L(u).

We now show that Tu ∩ Tv ̸= ∅, for every u, v ∈ V . Let w ∈ L(u) ∩ L(v), then w ∈ Tu

and w ∈ Tv. Due to Helly Property ([10],[11]), given a family of subtrees of T , if every
two subtrees in the family intersect, then all subtrees intersect on at least one node r. To
construct L′, we first let L′ = L. Secondly, we assign the node r the highest rank and add r

into the label set L′ of every node, then remove the labels w ∈ L′(u) for u ∈ T , such that
r ∈ π(u, w). Now L′ is still a valid PC-LHL with |L′| ≤ |L|.

Let T1, . . . , Tk be the subtrees rooted at the neighbors of r. The shortest paths between
u, v are covered by r, where u ∈ Ti, v ∈ Tj , i, j ∈ {1, . . . , k}, i ̸= j. Therefore, we can deal
with the subtrees T1, . . . , Tk separately. Let Ti be one subtree rooted at the neighbor of r.
Let π(r, w) be the degree two path such that any node on the path, except r and w, has
degree two, and the degree of w is not two. Let u ∈ π(r, w) \ {r, w}, then the shortest path
from any node in T can be covered by r. We, therefore, remove the labels in v ∈ L(u) such
that v ̸= r and v ̸= u. Now L′ is still valid and |L′| ≤ |L|. If Ti for i ∈ {1, . . . , k} is a path,
we assign all nodes in Ti the lowest ranks, then L′[Ti] is a valid hierarchical PC-LHL.

We obtain the subtrees that are not just a path. Let T ′ be a subtree after removing the
degree 2 chain from r. Let l1, . . . , lp be the leaves in T ′. Then r ̸∈ π(li, lj) for i ≠ j. There
exists a node u ∈ L(li) ∩ L(lj), and u ∈ L(w) for all w ∈ π(li, lj). This means all nodes that
lie on the path of two leaves contain a common label. Hence, as a pair of nodes always lies
on a path from a leaf to another leaf, for any u, v ∈ T ′, L(u) ∩ L(v) ̸= ∅. Therefore, the label
trees T ′

u, T ′
v ⊆ T ′ have an intersection. Again according to the Helly Property, all label trees

have a common intersection. We assign the node the next highest rank.
For each subtree, we can apply this construction recursively, and the resulting L′ is

hierarchical and PC with |L′| ≤ |L|. ◀

Since the optimal HHL is canonical and thus also PC, HHL is a special case of PC-HL. Hence,
the optimal labeling of PC-HL on trees has the same size as HHL. It thus follows that it also
has the same size as HL.

In Figure 2, we present the known optimal label size relations between different labelings
on trees, and the blue color highlights the relations of our contribution in this work. On trees,
the optimal LHL has the smallest size of any labeling. For a star graph with n nodes, the
average label size in optimal LL is O(n), where in the optimal LHL it is constant. For a path,
the optimal solution of HL has a maximum label size of O(log n), while the optimal solution
of LHL has a maximum size of O(1). The HLHL is a special labeling of LHL, but whether
the optimal LHL on trees is hierarchical is still open. As we have shown that the optimal
PC-LHL on trees is hierarchical and PC-HLHL is a special case of HLHL, we conclude that
the optimal HLHL is at most as large as PC-LHL, PC-HLHL, and canonical PC-HLHL.

ATMOS 2024
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PC-HLHL
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Figure 2 Relation of optimal solution between different labelings on trees. This diagram consists
of three labelings, LL, LHL, and HL. In particular, we present the relations for optimal solutions
on hierarchical and PC labeling of LHL and HL. The arrows point to the labeling whose optimal
solution is always smaller or equal to the other one. The function classes on the arrow are the largest
known factors of the optimal label size of the larger labeling to the smaller labeling on particular
tree families. Equal means that both labelings have the same optimal label size on trees. The blue
highlighted relations are our contributions.

3.2 On General Graphs
In [2] it was shown that the gap between HHL and HL can be in Ω(

√
n). We prove that the

optimal HL on the same instance satisfies the PC property. Thus, the gap between HHL
to both PC-HL and PC-LHL is also at least a factor of Ω(

√
n). Using the same example,

we show that the gap between hierarchical and non-hierarchical (PC-)LHL is also at least a
factor of Ω(

√
n).

▶ Theorem 7. There is a graph family for which the optimal HLHL size is Ω(
√

n) times
larger than the optimal label size of LHL.

Proof. We take the same example as in [2] (that is the graph in Figure 3 without the bi

nodes) in which they prove that the gap between HL and HHL can be Ω(
√

n). They exhibit a
HL for the considered graph of total labeling size in O(n). Each node has to contain at least
one label in the label set, thus the smallest summed label size of a graph without isolated
nodes is in O(n). Since HL is also an LHL, the optimal LHL size is also in O(n). We show
that the total size of any HLHL is Ω(n 3

2 ). Now we consider a ranking of the nodes on the
clique, let r(c1) < ... < r(ck), and consider pix and cj for i < j and 1 ≤ x ≤ k. The only
shortest path containing pix and cj is (pix, ci, cj). Since ci cannot be in the label of cj , then
either pix is in the label of cj or cj is in the label of pix. This produces at least one label for
each such pair. The total number of such pairs is:

k
k−1∑
i=1

i = k2(k − 1)
2 ∈ Ω(n 3

2 ).

Then the total label size of HLHL is Ω(n 3
2 ). Hence, the gap between the optimal HLHL and

the optimal LHL is Ω(
√

n). ◀
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clique of size k ckc1

s

b1 bk

pkkp11 pk1

Figure 3 Example graph with Θ(
√

n) label size gap between HHL and HLHL.

Now consider the gap between PC-HLHL and PC-LHL. It is easy to verify that the HL
proposed in [2] is PC. Furthermore, PC-HLHL is an HLHL. It follows that in this graph
family, the optimal PC-HLHL size is Ω(

√
n) times larger than the label size of PC-LHL.

Note that the graph in Figure 3 without the bi nodes contains non-unique shortest paths
from ci to s. However, one can assign each {ci, pi1} and each {pi1, s} edge with a cost of 2/3,
and all other edges with a cost of one. Then the graph has unique shortest paths and the
optimal label sizes of the discussed labelings are still the same.

We now modify their example and show the gap between the optimal label size of HHL
and the optimal label size of (PC-)HLHL is Ω(

√
n).

▶ Theorem 8. There is a graph family for which the optimal HHL size is Ω(
√

n) times larger
than the optimal label size of (PC-)HLHL.

Proof. Consider the undirected graph in Figure 3. The graph consists of k stars, denoted
as c1, . . . , ck. Each star has k leaves, denoted as pi1, . . . , pik for a star with center ci. The
centers of the stars form a clique. The leaves of each star connect to another center denoted as
b1, . . . , bk. Finally, all leaves connect to the node s. The total number of nodes is k2 + 2k + 1,
and the length of every edge is 1.

Now consider the following HLHL for this graph. The nodes are sorted according to their
ranking from high to low: s, bk, . . . , b1, ck, . . . , c1, pkk, . . . , p11. The node s is in every label
set. The label bi is in the label set of nodes pi1, . . . , pik, c1, . . . , ck, and bi. And ci is in the
label set of node cj where j ≤ i. Finally, every p node adds itself to its label set. It is easy to
verify the cover property and path consistency holds. Each of node s, b and p has a label size
of O(1). The label size of every c node is in O(k). It follows that the total label size is O(n).

Now we show the optimal HHL size is in Ω(n 3
2 ). W.l.o.g., let r(c1) < r(c2) < · · · < r(ck).

Consider any pix and cj where i < j, the shortest path between them is π(pix, cj) = (pix, ci, cj).
Since ci is not in L(cj), then either pix in L(cj) or cj in L(pix). Due to the same reason as
in Theorem 7, the total label size of HHL is Ω(n 3

2 ). Hence, the gap between the optimal
(PC-)HLHL and the optimal HHL is Ω(

√
n). ◀

In Figure 4, the label size bounds between different labels are shown for general graphs.
Clearly, the gaps are at least as large as those for trees. LHL has the smallest optimal label
size. Between the LHL and HL labels, the optimal HHL is the largest. There exists a graph
family such that every optimal hierarchical labeling of LHL and HL is at least a factor of
Ω(

√
n) larger than the non-hierarchical one. The gap between HHL and (PC-)LHL is at

least a factor of Ω(
√

n) on a graph family that allows multiple shortest paths between two
nodes. For unique shortest paths, the known gap is at least a factor of Ω(log n) on paths.

ATMOS 2024
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Figure 4 Relation of optimal solution between different labelings. The dashed arrows mean that
the gap of the corresponding labelings is found on a graph family with non-unique shortest paths.

4 NP-Completeness of PC-HLHL

In this section, we argue that finding an optimal PC-HLHL is NP-complete by a reduction
from HHL. The reduction takes an instance of HHL consisting of a graph G = (V, E) and an
integer k and constructs a graph G+ and an integer k′ such that the following conditions are
equivalent: (i) There is an HHL of size k in G. (ii) There is an PC-HLHL of size k′ in G+.
We prove the following theorem based on this reduction idea.

▶ Theorem 9. The problem of deciding whether an undirected graph has a PC-HLHL of size
at most k is NP-complete.

Before showing the reduction, we first prove the following useful Lemmas. Note that for
the cover property, we do not consider the pair of (v, v) for v ∈ V . Therefore, a node v is in
its label set if and only if it is in the label set of other nodes.

▶ Lemma 10. Given a graph G = (V, E) in which all nodes in this graph have a degree of at
least 3, and there is a unique shortest path between every two nodes. Let G+ = (V +, E+) be
the graph obtained by connecting one single node to each node in G. Denote v′ ∈ V + \ V as
the node added to the node v ∈ V , called leaf of v. There is an optimal PC-HLHL such that
leaves have lower ranks than non-leaf nodes and no leaf is contained in any label set.

Proof. Any maximal geodesics that v′ lies on contains v too, and v′ is always one of the end
nodes. Let L be one optimal PC-HLHL on G+, with the ranking r which is also a canonical
PC-HLHL. It was shown in [16] that the canonical PC-HLHL is the minimum PC-HLHL
respected to the rank r. We now construct a canonical PC-HLHL ranking r′ such that all
leaves have a lower rank than its neighbor and the respected labeling L′ has a size at most
as the size of L. For any r(u′) > r(u), let r′(u) = r(u′) and r′(u′) = r(u), we now show
the total label set size does not change. Case one: For a node v such that u′ ∈ L(v), its
label set does not increase. Since u lies on all the maximal geodesics that u′ lies on. Then
L′(v) ⊆ L(v) \ {u′} ∪ {u}. Case two: For a node v such that u ̸∈ L(v), its label set does not
increase either. Assume that after the ranking swap, there is a node v that u ̸∈ L(v), but
now u is in L′(v). Then it follows that u has now the highest rank on one maximal geodesic
π′ ∈ π+(v, u), where π+(v, u) is the set of maximal geodesics that contain both u and v. Let
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s, t be the end nodes of the maximal geodesic and π′ = π(s, v) ∪ π(v, u) ∪ π(u, t). Then u has
now the highest rank on the maximal geodesic π(s, u′). Then u′ has the highest rank on it in
the rank r. It follows that u′ must be in L(v). It is a contradiction. Therefore, for a node v,
if u′ ̸∈ L(v), then u ̸∈ L′(v), their label set size does not increase either. We update the rank
for such leaves using the same methods until every leaf has a rank lower than their neighbor,
and |L′| = |L|. It follows that any label set contains no leaf. Furthermore, one can assign r′

in the way that all leaves have lower ranks than the nodes in V and it is still optimal. ◀

▶ Lemma 11. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
Let L be an optimal PC-HLHL such that all leaves have lower ranks than the nodes in V ,
then for a leaf v′, its label set L(v′) = L(v).

Proof. Let L be an optimal PC-HLHL such that all leaves have lower ranks than the nodes
in V . Due to path consistency, for a leaf v′, L(v′) ⊆ L(v). Now we show L(v) ⊆ L(v′).
Assume that there is a label w ∈ L(v) and w ̸∈ L(v′). Since w ̸∈ L(v′), w does not have the
highest rank on any maximal geodesics end by node v′, and any shortest path reaches v is a
part of one maximal geodesics end by v′. Therefore, on any maximal geodesics that contains
v, w does not have the highest rank. According to canonical property, w ̸∈ L(v). This leads
to a contradiction. Therefore L(v) ⊆ L(v′) and L(v) = L(v′). ◀

▶ Lemma 12. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
Let L be an optimal PC-HLHL on G+ such that all leaves have lower ranks than the nodes
in V , and L(G+[G]) be the sublabeling of a PC-HLHL in G+ that is induced by the graph G,
then L(G+[G]) is an HHL for nodes in V .

Proof. Let L be an optimal PC-HLHL such all leaves have lower ranks than non-leaf nodes.
We show that there is no landmark in L(G+[G]). Assume that there is a landmark w ∈ L(u)∩
L(v)∩π+(u, v), and L(u)∩L(v)∩π(u, v) = ∅. It follows L(u′)∩L(v′)∩π(u′, v′) = ∅. However,
L is a valid PC-HLHL. This leads to a contradiction. Therefore, L(u) ∩ L(v) ∩ π(u, v) ̸= ∅
for u, v ∈ V . Hence, L(G+[G]) is an HHL for G. ◀

▶ Lemma 13. Given a graph G = (V, E) and G+ = (V +, E+) as described in Lemma 10.
The graph G has an HHL of size k if and only if G+ has a PC-HLHL of size 2k.

Proof. Let |V | = n, |E| = m. It follows |V +| = 2n and |E+| = m + n. Assume G has
a canonical HHL L of size k with the rank r. We construct a canonical PC-HLHL of G+

as follows. We assign each non-leaf node v in G+ with the rank of r(v) + n. And assign
the rank of leaves randomly from 1 to n. The label set of non-leaf stays the same, and for
each leaf v′ let L(v′) = L(v). Since all maximal geodesics which end by a leaf v′ contain
the node v, and all shortest paths reaching node v are covered in the HHL, therefore all
maximal geodesics are also covered by assigning L(v′) = L(v). And the canonical HHL is
path-consistent. Hence, the constructed labeling is a canonical PC-HLHL with a size of 2k.

Assume that L is an optimal PC-HLHL of G+ of size 2k. Let L be an optimal PC-HLHL L

such all leaves have lower ranks than the nodes in V . According to Lemma 11 and Lemma 12,
L(G+[G]) is an HHL for nodes in V with |L(G+[G])| = k. Assuming that L(G+[G]) is not
an optimal HHL, then we can construct a PC-HLHL for G+ with a smaller HHL, then L is
not optimal. It is a contradiction. Therefore, the optimal HHL size is k. ◀

5 Construction Algorithms

In [6], the authors formulate HL as a weighted set cover problem (U, S) so that one can
use a greedy algorithm to compute an O(log n) approximation of the optimal solution. The
universe U is a set of uncovered node pairs, S is the collection of all subsets of uncovered
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pairs that can be covered by the same node. They introduce the center graph of a node
v for the undirected graph as follows. In the center graph Gv = (V ′, Ev), for all u, w ∈ V

there is an edge between node u and w if and only if they are not yet covered and v lies on
the shortest path between them. The center graph does not contain isolated nodes. The
greedy algorithm chooses the maximal density subgraph (MDS) of all center graphs and
adds the center to the label set of the nodes in the MDS. It removes the covered pairs from
U and repeats until all pairs are covered. This greedy algorithm can also be applied to
LHL [16]. The difference from the HL formulation is that for a center graph Gv, there is an
edge between uncovered pair (u, w), if and only if v lies on some shortest path containing u

and w. The O(log n) approximation factor still holds. We call this algorithm w-LHL.

5.1 Improvements
A naive way to compute the LHL using the greedy algorithm is to precompute all maximal
shortest paths (also called geodesics). To construct the center graph of a node v, one must
check for each uncovered pair (s, t) whether v lies on one of their maximal geodesics. This
can be done by iterating over all maximal geodesics containing v, and checking whether
they also contain s and t. However, this takes linear time to check. This implementation
costs O(n3) space and O(n5) running time. We propose two improvements for computing
the greedy algorithm efficiently. The improved algorithm needs only O(n2) space and has a
running time of O(n4 log n). However, it is faster in practice.

The first improvement is to efficiently check whether a node can cover a pair. Instead
of storing all maximal geodesics, one can use a distance matrix to store only the shortest
path distances. This reduces the space consumption from O(n3) to O(n2). Given a node
v and a pair (s, t), v is a hub or a perfect landmark if and only if c(s, v) + c(v, t) = c(s, t)
or c(s, t) + c(v, t) = c(s, v) or c(s, v) + c(s, t) = c(v, t). Therefore, checking whether a node
covers a pair can be done in constant time. The second improvement is to avoid unnecessary
recomputation of the MDS of a node’s center graph every round by using “lazy updates”.
Note that the MDS of a graph cannot be increased by removing nodes or edges in the graph.
We use a max-heap to store for each node the density of the MDS of its center graph. In
each iteration, a threshold d is initially set to −∞. While the node v at the top has a
corresponding stored density of at least d, we recompute the density md of its new center
graph and update d = max(d, md). Then, the node is pushed back to the heap. Note that
the density may decrease because some pairs may be covered from the last round. Finally, we
cover the pairs in the best MDS with the respective center node. For the nodes with lower
density of the center graph, the MDS is not updated every round to avoid the redundant
calculation. The total running time is now in O(n4 log n).

5.2 PC-Labeling
The resulting label from the greedy algorithm is not necessarily PC. Given a valid LHL, one
can produce a PC-LHL in polynomial time. We run Dijkstra for each node v until it reaches
all nodes w with v ∈ L(w). Then we check for the resulting shortest path tree whether there
is a node u such that v ̸∈ L(u). If so, we add v into the label set of u, thus ensuring PC.

5.3 Hierarchical LHL
In [2], authors propose the weighted greedy HHL algorithm, which selects the whole center
graph of maximum density instead of its MDS. Since every center graph is only chosen
once, the resulting labeling is hierarchical. We now also select the whole center graph for
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hierarchical LHL. This algorithm is called w-HLHL. Another greedy algorithm is selecting
the center graph which has the most edges. We call this g-(H)LHL. Note that w-HLHL and
g-(H)LHL are not necessarily PC. For w-HLHL and g-(H)LHL, one can also apply the “lazy
updates”. The heap now stores the density of the whole center graph for w-HLHL or the
number of edges for g-(H)LHL. The respective running times are in O(n3 log n).

6 Improved Query Answering

In an LHL distance query for nodes s, t ∈ V , we first compute the lower and the upper
distance bound LB and UB and then check whether LB is tight by traversing the path from
(w.l.o.g.) s to the assumed perfect landmark node v up to distance LB. If we detect t, a
path from s to t with cost equal to LB is found and thus this is the correct distance value.
The path traversal from s to v can easily dominate the query time.

To improve the query time, we need a more efficient way to characterize whether v is
indeed a perfect landmark for s, t. To accomplish this, we now assume that the shortest
path tree Tv emerging from v is known. We furthermore denote with LCAv(s, t) the lowest
common ancestor of s and t in the shortest path tree rooted at node v. The following lemma
describes the connection between Tv and the role of v for s, t in an LHL query.

▶ Lemma 14. The node v is a perfect landmark for s, t ∈ V if and only if LCAv(s, t) = s

or LCAv(s, t) = t. The node v is a hub for s, t ∈ V only if LCAv(s, t) = v.

Proof. To be a perfect landmark, there needs to be a shortest path from w.l.o.g. s to v

over t. Thus, in Tv, t has to be an ancestor of s and LCAv(s, t) = t follows. To be a hub,
the shortest path from s to t needs to go over v and thus it follows LCAv(s, t) = v. These
observations hold because we have a unique shortest path between each pair of nodes. ◀

It was shown in [5] that for a given tree graph Tv, an LCA data structure can be computed
in linear space and time that allows to answer LCAv(s, t) queries in O(1). Below, we discuss
how to leverage the lemma and this data structure to improve LHL query times without
increasing the asymptotic space consumption and to efficiently check whether a given labeling
fulfills the weak cover property.

6.1 An Alternative Method for Label Storage
Conventionally, each node simply stores its labels as a list of nodes with corresponding
distance values (sorted by node ID to enable efficient computation of label intersections).
But to make use of Lemma 14, we need a label-centered perspective. We thus propose
the following alternative way to store label information: Each node v ∈ V stores a partial
shortest path tree T ∗

v defined as the smallest subtree of Tv that contains all nodes w with
v ∈ L(w). Shortest path distances are stored along with the tree nodes as well as a pointer
to the root node. For each T ∗

v , we compute an LCA data structure as described above.
The nodes then additionally hold a list of pointers to their positions in these partial

shortest path trees, sorted by the ID of the respective root node. On query time, the lists of
s and t are processed and common root node IDs are identified in linear time. For each such
root node v, we then query the LCA data structure to check whether v is a perfect landmark
for s, t according to Lemma 14. If that is the case, we can immediately abort the procedure
and return the respective distance. Otherwise, we check whether LCAv(s, t) = v and if that
is the case, update the UB value (initially set to ∞) if necessary. If no perfect landmark was
detected, we return the UB value at the end which is now certified to be correct. We thus
get the following corollary.

ATMOS 2024



1:12 Landmark Hub Labeling: Improved Bounds and Faster Query Answering

v

s

t

s

t

s

t

v v vw

Figure 5 In the left image, the shortest path tree from node v (marked red) is depicted and
nodes w with v ∈ L(w) are marked blue. In the three images to its right, the compressed tree is
shown and different query answering scenarios are indicated. In the first, LCAv(s, t) is neither s, t

nor v and thus v is not a perfect landmark or a hub for s, t. In the second, LCAv(s, t) = t and thus
v is a perfect landmark. In the third, LCAv(s, t) = v and thus v is a potential hub for s, t.

▶ Corollary 15. Distance queries can be answered with LHL in O(Lmax).

However, compared to simply storing L(v) with every node v ∈ V , we might have increased
the space consumption significantly by also storing T ∗

v . For PC-LHL, this is luckily not the
case as shown in the next lemma.

▶ Lemma 16. In a PC-LHL, we have
∑

v∈V |L(v)| =
∑

v∈V |T ∗
v |.

Proof. The PC property demands that for a node v ∈ L(w) also all nodes u on the shortest
path from w to v have v in their label L(u). Therefore, if we consider T ∗

v , we know that for
each u ∈ T ∗

v we also have v ∈ L(u). The lemma follows. ◀

Accordingly, the space consumption is at most doubled by the alternative method to store
the label information. But as L(v) is replaced by a list of pointers, it demands at most half
of the space than it takes to store the node ID and the distance explicitly, reducing the
overhead further. Moreover, with T ∗

v being stored, we can also answer path queries very
efficiently by simply traversing the respective tree edges. To answer path queries with (H)HL
efficiently, either substantially larger query times are necessary or additional information
needs to be stored with every label [16]. With our method we can guarantee to answer path
queries in O(Lmax + k) where k denotes the number of edges on the shortest path.

For non-PC LHL, the summed size of the partial shortest path trees T ∗
v might indeed

be much larger than the summed label sizes. However, we can use the same trick as
proposed in [9] (there applied to the labels themselves for later compression) to also ensure∑

v∈V |L(v)| =
∑

v∈V |T ∗
v | as for PC-LHL. The idea is simply to only keep nodes w ∈ T ∗

v

with v ∈ L(w) and insert shortcuts between w, w′ ∈ T ∗
v if the shortest path w, .., w′, ..v is

part of Tv but for all nodes u on the shortest path from w to w′ it yields v /∈ L(u). Figure 5
illustrates this concept as well as how to use the compressed T ∗

v for query answering.
So while for the query answering routine described in [16] the PC-property was vital to

achieve a query time in O(Lmax + D), we can now guarantee query times in O(Lmax) even
for non-PC LHL based on our novel method to store the label information.

6.2 LHL Verification
With our improved query answering routine described above, we can also efficiently check
whether a given labeling L is a feasible LHL. We compute the shortest path trees rooted at
v for all v ∈ V and the respective LCA data structures. For each node pair s, t, we can then
check in Ts the correct distance and compare it to the distance obtained by running the
LHL query algorithm. If these do not match for some pair, L is not a valid LHL. This check
procedure requires O(n2) space, a preprocessing phase in O(nm + n2 log n) and a running
time for the verification in O(n2Lmax).
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Table 1 Benchmark set summary.

Benchmark Set # Instances |V | |E| |E|/|V |

OSM 12 [100, 2000] [99, 2132] 1
PACE 100 [10, 491] [15, 4100] [1, 32]

7 Experiments

We implemented the approximation algorithms described in Section 5 in C++, including
the lazy variants. The primary goal of the evaluation is to compare HL, HHL, (PC-)LHL
and HLHL label sizes in practice. As shown in Table 1, we use road networks extracted
from OpenStreetMap1 (OSM) as well as the PACE challenge 2020 benchmark 2. The PACE
challenge 2020 benchmark contains a diverse set of graphs (100 instances in total) with
number of nodes up to 500 nodes and density up to 32. Due to the large running times
of the approximation algorithms, we restricted our tests to road networks with up to 2000
nodes (12 graphs in total). Experiments were conducted on a single core of an AMD Ryzen
Threadripper 3970X (3.6 GHz) with 128 GB main memory. The time-out was set to 20
minutes per instance.

g-HHL w-HL w-HHL g-HLHL w-LHL PC w-LHL w-HLHL

10−1

100

101

L
−
L
m
in

Figure 6 Label size comparison on the PACE benchmark set. The depicted value is the difference
between the average label size and the minimal average label size among the solutions of all algorithms.
Note the logscale of the y-axis.

Figure 6 and Table 2 show the label size comparison on the PACE benchmark set. In
compliance with our theoretical results, the LHL sizes are in general significantly smaller
than the HL sizes. In 95 out of 100 instances, the smallest label size is returned from one
of the (H)LHL algorithms. The relative difference of HL to LHL size is up to a factor of
34.01 (on a graph with a density of 15). For instances with a density less than 2, w-HLHL
computes on average smaller label sizes than w-LHL, which is somewhat surprising. For
instances with higher density, w-LHL performs best overall. The PC-LHL constructed with
our augmentation algorithm is smaller than w-HL in 51 out of 100 instances but we still
observe that enforcing this property increases the label size significantly compared to the
other LHL variants. Thus, our new query answering routine described in Section 6, which
does no longer rely on the PC-property, is very useful to also keep the label size small.

Figure 7 and Table 3 show the results on the OSM benchmark set. We observe similar
trends as for the PACE instances. The LHL algorithms consistently produce smaller label
sizes. In fact, w-HLHL computes the smallest labeling in all instances. On average, each

1 https://www.openstreetmap.org
2 https://pacechallenge.org/2020/td
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Figure 7 Label size comparison on the OSM benchmark set. The depicted value is the difference
between the average label size and the minimal label size among the solutions of all algorithms.

node has at least two more labels in HLs than in LHLs. While this does not sound like a lot,
we remark that with every decrease of the average label size by 1 we save space proportional
to the size of the graph. The relative difference is up to a factor of 3, even on these rather
small instances. We expect this gap to grow further on larger instances. Again, enforcing
the PC property leads to larger label sizes and thus should be avoided. Alternatively, there
might be other construction algorithms that take the PC property directly into account and
thus produce smaller PC-LHL.

Regarding the construction time, the w-HLHL algorithm without lazy updates could not
compute the result within 20 minutes on the four largest road network instances, while the
engineered one finished in time on all of them. On the large PACE instances, the lazy variant
was up to a factor of 3.75 faster.

8 Conclusions & Future Work

We provided new structural insights into LHL, including label size gaps towards the respective
HL variants, hardness results, and improved query routines. There are several directions for
future work. Our experimental results indicate that w-HLHL performs better than w-LHL
on graphs of low density. It would be interesting to provide a theoretical explanation for
this. From a practical perspective, there is a clear demand for LHL construction algorithms
that scale well with the graph size. Our focus was on approximation algorithms to have a
somewhat fair comparison between label sizes. However, most algorithms used in practice
are fast heuristics. For LHL, so far only heuristics for the path-consistent variant were
investigated [17]. With our alternative method to store labels, there is no longer the need
to ensure the PC property, which should allow for easier construction and smaller label
sizes. Moreover, there is room for further improving the space consumption. The method
for compressing HL described in [9] relies on storing labels as trees and reducing space by
identifying common tree structures. This approach should be transferable to LHL, where
we store inverse label trees instead. Furthermore, our LCA-based query routine allows for
stopping early if a perfect landmark is identified for the query node pair s, t. Thus, assigning
node IDs in an LHL such that perfect landmarks are identified early for many node pairs
could decrease the query time in practice. This is not possible in an HL query, where always
all labels in L(s) and L(t) need to be inspected to ensure that the tightest upper distance
bound is identified.
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A Detailed Experimental Data

Table 2 This table presents a random sample of 30 results, chosen from a total of 100, which
describe the average label sizes |L| and running times t(s) of the output produced by each algorithm
tested on the PACE challenge benchmark set. The largest label size among them is indicated in italic
font, while the smallest label size among them, which is denoted as Lmin in Figure 6, is presented in
bold font. In column w-LHL, the values of PC represent the number of labels that have increased
when the results of w-LHL are transformed into PC w-LHL.

g-HHL w-HL w-HHL g-HLHL w-LHL w-HLHL
|L| t(s) |L| t(s) |L| t(s) |L| t(s) |L| t(s) PC |L| t(s)

e003 4.9 ≤ 1 4.9 ≤ 1 4.9 ≤ 1 4.1 ≤ 1 4.1 ≤ 1 0.2 4.1 ≤ 1
e017 5.5 ≤ 1 5 ≤ 1 5.3 ≤ 1 4.8 ≤ 1 4.9 ≤ 1 0.8 4.8 ≤ 1
e027 5.4 ≤ 1 4.8 ≤ 1 4.7 ≤ 1 5 ≤ 1 4.7 ≤ 1 0.7 4.7 ≤ 1
e029 5.9 ≤ 1 5.8 ≤ 1 5.8 ≤ 1 5 ≤ 1 4.9 ≤ 1 0.1 4.9 ≤ 1
e031 4.6 ≤ 1 4.5 ≤ 1 4.4 ≤ 1 4.2 ≤ 1 4.1 ≤ 1 0.3 4 ≤ 1
e033 5.6 ≤ 1 5.4 ≤ 1 5.1 ≤ 1 5.4 ≤ 1 4.9 ≤ 1 0.3 5.2 ≤ 1
e043 6.8 ≤ 1 6.2 ≤ 1 6.6 ≤ 1 5.9 ≤ 1 5.6 ≤ 1 0.6 5.8 ≤ 1
e047 9.7 ≤ 1 8.4 ≤ 1 8.8 ≤ 1 7.7 ≤ 1 7 ≤ 1 0.9 7.2 ≤ 1
e059 14.8 ≤ 1 11.9 ≤ 1 12.9 ≤ 1 8.3 ≤ 1 7.6 ≤ 1 0.1 8 ≤ 1
e065 6.2 ≤ 1 5.9 ≤ 1 5.8 ≤ 1 5.6 ≤ 1 5.4 ≤ 1 0.8 5.3 ≤ 1
e071 10.2 ≤ 1 6.9 ≤ 1 7.2 ≤ 1 8.5 ≤ 1 6.7 ≤ 1 0.4 7.2 ≤ 1
e073 7.8 ≤ 1 7.2 ≤ 1 7.5 ≤ 1 7.3 ≤ 1 6.7 ≤ 1 1 6.9 ≤ 1
e075 11.4 ≤ 1 9.8 ≤ 1 10.9 ≤ 1 9.4 ≤ 1 8.8 ≤ 1 2.1 9.1 ≤ 1
e083 10.1 ≤ 1 9.1 ≤ 1 9.1 ≤ 1 8.8 ≤ 1 8.3 ≤ 1 1.8 8.6 ≤ 1
e085 8.4 ≤ 1 8.3 ≤ 1 8 ≤ 1 6.9 ≤ 1 7.2 ≤ 1 1.4 6.9 ≤ 1
e087 5.8 ≤ 1 6 ≤ 1 5.8 ≤ 1 5.9 ≤ 1 5.5 ≤ 1 0.2 5.9 ≤ 1
e089 5.4 ≤ 1 5.3 ≤ 1 5.3 ≤ 1 5.1 ≤ 1 4.8 ≤ 1 0.2 5.1 ≤ 1
e111 9.2 ≤ 1 8.1 ≤ 1 8.5 ≤ 1 7.5 ≤ 1 6.8 1 0.6 7 ≤ 1
e117 9.9 ≤ 1 9.4 1 9.4 ≤ 1 9.3 ≤ 1 9 1 1.8 9 ≤ 1
e133 7.5 1 7.5 1 7.4 ≤ 1 6.7 ≤ 1 6.4 1 0.7 6.6 ≤ 1
e137 33.8 1 33.6 2 33.7 1 7.1 1 6.4 2 0.3 6.7 1
e143 8.4 1 8.6 1 8.2 ≤ 1 7.6 ≤ 1 7.6 1 0.9 7.6 ≤ 1
e151 5 ≤ 1 5.5 1 5 ≤ 1 4.5 ≤ 1 4.3 1 0.2 4.5 ≤ 1
e153 7.9 1 8.1 1 7.9 ≤ 1 7.1 1 6.9 2 0.9 6.9 1
e159 8.5 1 8.5 1 8.2 1 7.3 1 7.5 2 0.7 7.3 1
e173 8.5 2 9.1 2 8.4 1 7.2 1 7.4 3 1.1 7.1 1
e183 54.9 19 21.2 8 53.4 2 51.4 6 20.8 12 0.3 50.4 6
e185 9.6 5 9.5 4 9.5 2 7.9 2 7.9 6 1.1 7.8 2
e189 5.3 4 5.4 4 5.3 3 4.6 3 4.7 5 0.3 4.6 3
e193 12.9 26 12.8 13 12.6 6 11.2 7 10.8 20 1.2 11.1 7
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Table 3 This table presents the average label sizes |L| and running times t(s) of the output
produced by each algorithm tested on the benchmark set OSM. The largest label size among them
is indicated in italic font, while the smallest label size among them, which is denoted as Lmin in
Figure 7, is presented in bold font. In column w-LHL, the values of PC represent the number of
labels that have increased when the results of w-LHL are transformed into PC w-LHL.

g-HHL w-HL w-HHL g-HLHL w-LHL w-HLHL
|L| t(s) |L| t(s) |L| t(s) |L| t(s) |L| t(s) PC |L| t(s)

1 5.7 ≤ 1 5.7 ≤ 1 5.7 ≤ 1 2.0 ≤ 1 2.0 1 0 2.0 ≤ 1
2 4.7 ≤ 1 4.8 ≤ 1 4.7 ≤ 1 3.6 ≤ 1 3.6 ≤ 1 0.3 3.5 ≤ 1
3 5.3 ≤ 1 5.5 ≤ 1 5.4 ≤ 1 4.0 ≤ 1 4.0 1 0.7 4.4 ≤ 1
4 5.2 ≤ 1 5.1 ≤ 1 5.1 ≤ 1 2.9 ≤ 1 3.0 1 0.3 3.0 ≤ 1
5 9.5 72 9.9 136 9.4 68 8.1 84 8.5 285 4.7 7.9 82
6 10.3 74 10.4 148 10.2 69 8.5 84 8.9 315 4.2 8.7 84
7 9.4 73 9.5 146 9.3 68 7.7 82 7.5 311 2.8 7.4 83
8 8.9 74 9.2 161 8.7 71 7.1 87 7.1 363 2.4 6.9 88
9 12.3 484 13.6 848 12.0 437 10.8 557 10.5 523
10 12.4 494 13.2 899 12.3 445 11.0 587 10.3 532
11 11.4 475 11.9 856 11.0 438 9.7 541 9.6 530
12 10.0 489 10.4 1019 10.0 461 8.1 584 7.8 572
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Abstract
A beer graph is an edge-weighted graph G = (V, E, ω) with beer vertices B ⊆ V . A beer path between
two vertices s and t of a beer graph is a path that connects s and t and visits at least one vertex
in B. The beer distance between two vertices is the weight of a shortest beer path, i.e. a beer path
having minimum total weight. A graph indexing scheme is a two-phase method that constructs an
index data structure by a one-time preprocessing of an input graph and then exploits it to compute
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decade, such indexing schemes have been designed to perform, effectively, many relevant types of
queries, e.g. on reachability, and have gained significant popularity in essentially all data-intensive
application domains where large number of queries have to be routinely answered (e.g. journey
planners), since they have been shown, through many experimental studies, to offer extremely low
query times at the price of limited preprocessing time and space overheads.

In this paper, we showcase that an indexing scheme, to efficiently execute queries on beer
distances or shortest beer paths for pairs of vertices of a beer graph, can be obtained by adapting the
highway labeling, a recently introduced indexing method to accelerate the computation of classical
shortest paths. We design a preprocessing algorithm to build a whl index, i.e. a weighted highway
labeling of a beer graph, and show how it can be queried to compute beer distances and shortest
beer paths. Through extensive experimentation on real networks, we empirically demonstrate its
practical effectiveness and superiority, in terms of offered trade-off between preprocessing time, space
overhead and query time, with respect to the state-of-the-art.
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1 Introduction

Determining detours constitutes a major decision process in our daily lives and in modern
computing systems: whenever moving from point A to point B, we might need to deviate
from the main itinerary in order to stop to a gas station or to buy a beer not to show up
empty-handed to a friend one is going to visit. Similarly, in multi-agent systems, we might
be interested in planning paths for agents that traverse one of any location of a certain type,
for instance to pick-up a specific tool. Finally, in multi-hop communication networks, it
might be useful to route data packets through nodes with certain characteristics, e.g. to
achieve some form of resiliency. What is the fastest way to accomplish these goals? To model
such decision processes from a computational viewpoint, Bacic et al. [3, 4] introduced the
notions of beer graph and beer paths, and defined corresponding optimization problems. A
beer graph is a graph G = (V, E, ω), with weight function ω : E 7→ R+ on the edges, where a
set of special vertices B ⊆ V , called beer vertices, is given. A beer path, between two vertices
s and t of a beer graph, is any path of G from s to t that visits at least one vertex in B

whereas a shortest beer path for two vertices s and t is a beer path having minimum total
weight (called the beer distance), i.e. minimizing the sum of the weights of its edges.

Surprisingly, while determining shortest beer paths (and corresponding distances) is a
computational problem that arises naturally in a wide range of modern applications, and
notwithstanding the fact that such problem can be seen as a special case of the generalized
shortest path problem [29, 35], algorithmic issues related to such problem have been only
recently formalized and investigated [3, 4, 11,22,23]. In more details, although a beer path
may be a non-simple path (i.e. it might self-intersect), it can be easily shown that any
shortest beer path, for a given pair of vertices s, t, always consists of two shortest paths: one
from s to a beer vertex, say w, and one from w to t. In other terms, a beer distance can
be always determined by finding the minimum, overall beer vertices wi ∈ B, of the sums of
the shortest path distances from s to wi and from wi to t. This characterization provides
a baseline algorithm for determining shortest beer paths and beer distances for a pair s, t,
namely: grow two shortest path trees by Dijkstra’s algorithm [16] rooted, respectively, at
s and t, and select the beer vertex that minimizes the sum of the distances from s and to
t [3, 4]. Unfortunately, while this strategy is simple and considered efficient, as Dijkstra’s
algorithm runs in almost linear time in the size of the graph [16], many experimental works
in the past two decades have shown how employing Dijkstra’s algorithm is impractical in
many real-world contexts where either the algorithm has to be executed on an interactive
basis or when moderately to massively sized networks have to be handled since, in such
contexts, it can take up to seconds to compute even a few shortest paths [1, 25,32].

Practical limitations of shortest path algorithms have motivated the design of several
so-called graph indexing schemes for shortest paths, i.e. two-phase methods that: (i) perform
an offline, one-time preprocessing phase on the graph to compute auxiliary data, generally
stored in a data structure called index ; (ii) exploit the index, in an online phase and upon
query, for very fast retrieval of shortest paths for (possibly many) pairs of vertices. Due to the
excellent performance in practice, combining extremely low query times to find shortest paths
(orders of magnitude smaller than methods without indexing) with limited preprocessing
time and space overheads (even in large graphs) [1, 2], these schemes have gained significant
popularity and have become the state-of-the-art for shortest paths retrieval in all application



D. Coudert, A. D’Ascenzo, and M. D’Emidio 2:3

domains where large number of queries have to be routinely answered (e.g. journey planners
or network analytics software) [5, 6, 13–15, 20]. Moreover, such popularity has inspired
the development of similar schemes to support, with comparable effectiveness, many other
relevant types of queries on graphs (e.g. on reachability [31], on top-k shortest paths [12], on
path counts [33], or on communities [34]).

Indexing schemes for queries on beer distances or shortest beer paths have been only very
recently considered in the literature. Specifically, some schemes with theoretical guarantees,
either on the space occupancy of the index or on preprocessing and query times, have been
designed only for special graph classes [4,11,23]. For general graphs, instead, no indexing
scheme able to support the computation of beer distances or shortest beer paths faster
than the baseline, neither theoretically nor in practice, has been developed. To this end, a
straightforward way to index a graph for accelerating queries on beer distances and shortest
beer paths could be precomputing and storing, into a matrix, distances (or corresponding
shortest paths) from all beer vertices to all other vertices of the graph. This approach, which
we call b2all, translates into a simple and fast query algorithm which can retrieve, (i) the
beer distance in O(|B|) time, by finding the beer vertex minimizing the sum of distances to
the two queried vertices; (ii) a shortest beer path of weight ℓ in O(|B|ℓ) time, by unrolling
the path that minimizes the sum of the distances. An alternative to the above method,
worth being considered, is adapting one of the many indexing schemes designed for the more
general and complex problem of determining generalized shortest paths, i.e. paths having
minimum weight among those which traverse at least one vertex for each of a set of vertex
categories [17,24,27,29,30,35]. To apply such methods to beer distances and shortest beer
paths, in fact, it suffices to restrict vertex categories to be a single category that contains
all beer vertices. For instance, by applying this restriction to the indexing scheme k-sky,
given in [24], one of the best in terms of offered trade-off between preprocessing cost and
query performance for generalized shortest paths, one could obtain an algorithm that takes
O(|B|2n) (O(|B|2nℓ), respectively) time to answer a query on the beer distance (on a shortest
beer path, respectively), per vertex pair.

However, while both above strategies are appealing in terms of query performance,
significantly better than that of two executions of Dijkstra’s, it remains unclear whether they
are applicable in real-world data-intensive scenarios, due to their high preprocessing time
and space occupancy overheads. In both cases, in fact, the preprocessing step takes O(n2|B|)
time while the resulting index data structure has size Ω(n|B|) and O(n|B|), respectively, for
any n-vertex graph. To the best of our knowledge, no experimental study has been concerned
with the assessment of the average performance of existing indexing methods to support
queries on beer distances or shortest beer paths, for both general graphs and special graph
classes.

Our Contribution. In this paper, we move in this direction and advance the state-of-the-art
with respect to graph indexing methods for queries on beer distances and shortest beer paths
in general beer graphs. In particular, we first showcase that an indexing scheme, to efficiently
execute such queries, can be obtained by adapting the highway labeling, a recently introduced
indexing method to accelerate the computation of classical shortest paths [20]. We propose a
preprocessing algorithm, similar but more intuitive than that in [20] for unweighted graphs,
to build a whl index, i.e. a weighted highway labeling of a beer graph; we adapt the query
algorithm of [20] to retrieve beer distances or shortest beer paths by only accessing said
index. Differently from [20], once the whl index is computed, our method is oblivious to the
graph, in the sense it does need to access it to answer queries. We prove the correctness and
analyze the time and space complexities of our methodology.
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Then, through extensive experimentation on real networks, we empirically demonstrate
its practical effectiveness and superiority, in terms of offered trade-off between preprocessing
time, space overhead and query time, with respect to the state-of-the-art. In particular,
our experiments show that our query algorithm answers to queries on beer distances, on
average, within microseconds per vertex pair, even for very large networks. This is: (i) orders
of magnitude faster than both the baseline and the adaptation of the k-sky method; (ii)
comparable to the b2all method. At the same time, on the one hand our preprocessing
routine preprocesses even very large beer graphs very quickly (within an hour), which is faster
than any known indexing scheme for fast beer distance/shortest beer path query answering;
on the other hand, our index is compact in size (few hundreds of MBs even for very large
networks), with a space occupancy that is up to orders of magnitude smaller than any known
index computed for queries on beer distances and shortest beer paths.

Related Works. Bacic et al. [4] have designed a preprocessing-based method that, for
outerplanar graphs, computes in O(n) time an index of size O(n) that allows to find, for a
pair of vertices, the beer distance d in O(α(n)) time, where α(n) is the inverse Ackermann
function, and a corresponding shortest beer path in O(d) time. Similarly, Das et al. [11]
introduced a data structure for interval graphs, occupying 2n log n + O(n) + O(|B| log n) bits
of space, which allows to compute the beer distance d in O(logϵ(n)) time, for any constant
ϵ > 0 and a corresponding shortest beer path in O(logϵ(n) + d) time. The same authors
also show that, if one restricts the input to be a proper interval graphs, worst case running
time and space occupancy can be further slightly improved [11]. Finally, on a similar line of
research it is worth mentioning: (i) the method of Hanaka et al. [23] which, by computing a
suited graph decomposition, achieves optimal query time on series-parallel graphs and linear
preprocessing time on graphs having bounded-size triconnected components; (ii) the work of
Gudmundsson and Sha [22] which showed how a graph with bounded treewidth t can be
preprocessed in O(t3n) time to guarantee the retrieval of the beer distance d in O(t3α(n))
time and of the corresponding shortest beer path in O(dt3α(n)) time.

2 Notation and Definitions

We are given a weighted graph G = (V, E, ω), with n = |V | vertices, m = |E| edges and
a weight function ω : E 7→ R+ that assigns a positive, real value to each edge of G. A
path P = (s = v1, v2, . . . , t = vη) in G, connecting a pair of vertices s, t ∈ V , is a sequence
of η vertices such that {vi, vi+1} ∈ E for all i ∈ [1, η − 1]. The weight ω(P ) of a path P

is the sum of the weights of the edges in P . For non-simple paths, path weights include
multiplicities of occurrences of a same edge. A shortest path Pst, for a pair s, t ∈ V , is a
path having minimum weight among all those in G that connect s and t. The distance d(s, t)
between s and t is the weight of a shortest path Pst. A subpath (vi, vi+1, . . . , vj−1, vj) of a
path P = (v1, . . . , vi, vi+1, . . . , vj−1, vj , . . . , vη) is denoted by P [vi, vj ], for each 0 ≤ i < j ≤ η.
Given a vertex v ∈ V , we denote by N(v) = {u ∈ V |{v, u} ∈ E} the set of neighbors of v.
Given a set of vertices S ⊆ V of a graph G = (V, E, ω), G[S] denotes the subgraph of G

induced by S, i.e., E(G[S]) = {{u, v} ∈ E | u, v ∈ S}. A beer graph is a weighted graph
G = (V, E, ω) having a set of beer vertices B ⊆ V . A beer path between two vertices s

and t of a beer graph is a path that connects s and t and includes at least one vertex in
B. A shortest beer path for two vertices s and t is any beer path having minimum weight.
The weight of a shortest beer path is called the beer distance. In what follows, for the sake
of simplicity, we describe our approaches by assuming, w.l.o.g., that the given graph G is
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connected and undirected. All methods, described in this paper, can be used with digraphs
by considering edge orientations and corresponding partitions of the neighbors of a vertex
into outgoing and incoming neighbors.

2-Hop-Cover and Highway Labeling. The 2-hop-cover distance labeling is a graph indexing
scheme, originally introduced in [7] and heuristically improved in [1]. It is based on the
precomputation of an index, called 2-hop-cover distance labeling, that can be used to answer
to queries on classical shortest paths and distances, as follows. Given a weighted graph
G = (V, E, ω) and a subset H ⊆ V of its vertices, called hubs, a 2-hop-cover distance labeling
L of G is a collection of labels L(v), one per vertex v ∈ V such that: (i) a label L(v) is a
set of entries (u, d(u, v)) where u ∈ H; (ii) for each pair of vertices s, t, labels L(s) and L(t)
store a set of entries that suffice to compute the distance d(s, t) for any pair of vertices s, t of
the graph, that is d(s, t) can be obtained by a function δL : V × V 7→ R+ that takes L(s)
and L(t). Note that, it is known that computing a 2-hop-cover distance labeling of minimum
size (i.e. number of label entries) is an NP-Hard problem [10].

The highway labeling is an hybrid indexing scheme that generalizes the 2-hop-cover
distance labeling, introduced in [20] with the purpose of reducing the preprocessing time and
space requirements of the approach of [1], at the price of a slight increase in the average query
time. It is considered an hybrid indexing scheme in the sense that queries cannot be solved
by accessing only the precomputed data structure and a search of the graph, even if bounded,
must be employed to guarantee the correctness of the returned output. Given a graph
G = (V, E, ω), and a subset of its vertices R ⊆ V , called landmarks, a highway H(R, δH) of
G with landmarks R ⊆ V is a pair (R, δH), where δH is a distance decoding function, i.e. a
function δH : R × R 7→ R+ such that, for any pair ri, rj ∈ R, we have δH(ri, rj) = d(ri, rj).
In other words, a highway H is a data structure that stores the distance in G for any two
landmarks in R in the form of a function δH (e.g. a look-up table). Given a vertex r ∈ R ⊆ V

and two vertices s, t ∈ V \ R, an r-constrained shortest path P r
st from s to t in G is a path

that passes through r (i.e. r ∈ P r
st) and has minimum weight (called r-constrained distance)

among all paths that connect s and t in G and include r.
Let H(R, δH) be a highway for a graph G with landmarks R ⊆ V . A highway cover

distance labeling (or simply highway labeling) of G is a pair (H(R, δH), L) where H is a
highway and L is a labeling i.e. a collection of labels L(v), one per vertex v ∈ V such that:
(i) a label L(v) consists of a set of entries in the form (ri, d(ri, v)) where ri ∈ R; (ii) for
any two vertices s, t ∈ V \ R, and for any r ∈ R, labels L(s) and L(t) store entries that
suffice to compute the r-constrained distance dr(s, t). In other terms, any r-constrained
distance between two vertices s and t can be found using only the labels of these two
vertices. In more details, the latter condition, called highway cover property is guaranteed
if, for any two vertices s, t ∈ V \ R and for any r ∈ R, there exist (ri, d(ri, s)) ∈ L(s)
and (rj , d(rj , t)) ∈ L(t) such that ri ∈ Prs, for some shortest path Prs from s to t, and
rj ∈ Prt, for some shortest path Prt from r to t, where ri and rj may be equal to r. We say
H(R, δH) covers G when the highway cover property holds. Moreover, if the label of a vertex
v contains an entry (r, d(r, v)) for some r ∈ R we say that vertex v is covered by landmark
r in the (highway) labeling. Given any two vertices s and t, a highway labelling L can be
used to find any r-constrained distance dr(s, t) by computing d(ri, s) + δH(ri, rj) + d(rj , t)
where ri = r or rj = r and for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). Moreover,
an upper bound dT (s, t) on the shortest path distance from s to t is given by dT (s, t) =
min{d(ri, s) + δH(ri, rj) + d(rj , t)|(ri, d(ri, s)) ∈ L(s), (rj , d(rj , t)) ∈ L(t)}. Observe that
such upper bound corresponds to the weight of a shortest path from s to t passing through
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landmarks ri and rj which is exploited by the query routine [20] to compute the true distance
d(s, t) by running a distance-bounded bidirectional search on the subgraph G[V \ R]. In
Figure 1 we show an example of highway labeling (H, L) of a graph G, taken from [20].
Consider the graph in the figure (left), the highway H has three landmarks, i.e. R = {1, 5, 9}.
We have that ⟨11, 1, 4⟩ is a shortest path between vertices 11 and 4 constrained by landmark
1, i.e. it is 1-constrained shortest path between 11 and 4. In contrast, neither of the paths
⟨11, 10, 9, 1, 4⟩ and ⟨11, 4⟩ is a 1-constrained shortest path between 11 and 4. In Figure 1
(middle), the outgoing arrows from each landmark point to vertices in G that are covered by
this landmark in the highway. The distance labelling in Figure 1 (right) satisfies the highway
cover property because for any two vertices that are not landmarks and any landmark
r ∈ R = {1, 5, 9}, we can find the r-constrained shortest path distance between these two
vertices using their labels and the highway.

Figure 1 Example of Highway Labeling of a graph [20].

3 Indexing Scheme for Beer Distance Queries

In this section, we describe a graph indexing scheme to support queries on beer distances
and shortest beer paths. Specifically, we first introduce an algorithm that preprocesses a
beer graph to compute a whl index, a data structure that can be used through a dedicated
query algorithm, also given here, to compute beer distances and shortest beer paths. W.l.o.g,
and for the sake of simplicity, we describe our method to support the execution of beer
distance (BD, for short) queries only. All given approaches can be easily extended to return
a corresponding shortest beer paths by the strategies similar to those used for shortest paths,
e.g. by storing predecessors (see, e.g., [10, 14]).

Our methodology is based on the work of Farhan et al. [20]. The key idea is, given a
beer graph G = (V, E, ω) with beer vertices B, to compute a highway labeling X = (H, L)
that is; (i) weighted; (ii) considers, as set of landmarks R, the set of beer vertices B; (iii)
covers G. In fact, it is easy to show that a highway labeling that satisfies the above three
properties can be used to retrieve beer distances for any pair of vertices of the given beer
graph by the following observations. Specifically, while using this structure alone does not
suffice to compute shortest path distances (see Section 2), it is easy to see that, under the
above assumptions, the beer distance, for any pair of vertices s, t ∈ V , is returned in O(|B|2)
time by the following query routine:

Q(s, t, X) = min
bi,bj∈B

{d(bi, s)+δH(bi, bj)+d(bj , t)|(bi, d(bi, s)) ∈ L(s), (bj , d(bj , t)) ∈ L(t)} (1)
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Indeed, by the highway cover property, any r-constrained distance dr(s, t) for landmark
r ∈ R can be found by computing d(ri, s) + δH(ri, rj) + d(rj , t) where ri = r or rj = r and
for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). Thus, the weight of a shortest beer path
that includes a beer vertex b ∈ B can be found by determining d(ri, s) + δH(ri, rj) + d(rj , t)
where ri = b or rj = b and for (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). It follows that the
upper bound dT (s, t) on the shortest path distance from s to t, provided by the labeling as
dT (s, t) = min{d(ri, s) + δH(ri, rj) + d(rj , t)|(ri, d(ri, s)) ∈ L(s), (rj , d(rj , t)) ∈ L(t)}, is the
minimum of the weights of all r-constrained shortest paths, for each r ∈ B, which corresponds
to the minimum of the weights of the shortest paths that include a beer vertex b ∈ B for all
beer vertices of B, which is the beer distance. We call a weighted highway labeling built on
beer vertices, that satisfies the above equivalency, a whl index.

Now, Farhan et al. [20] have shown that a highway labeling can be found in linear time
for unweighted graphs by running |R| modified breadth-first search (BFS) visits, one per
landmark, and by incrementally constructing labels that satisfy the following. Whenever
a vertex v is extracted from the queue of the BFS, rooted at landmark ri ∈ R, if we call
Priv the shortest path from ri to v traversed by the search, and d(ri, v) its weight, then: (i)
if vertex v ∈ V \ R, an entry (ri, d(ri, v)), for some ri ∈ R, is added to L(v) if and only if
there does not exist any other landmark in Priv, i.e. Priv ∩ R = {ri}; (ii) if v is a landmark
r ∈ R \ {ri}, then d(ri, v) is added to the highway, i.e. to δH(ri, v) to build the distance
decoding function (e.g. in the form of a table). Unfortunately, no strategy for efficiently
building a weighted highway labeling covering a weighted graph is given in [20]. In subsequent
works, namely [18, 19], the authors claim that the construction of [20] can be adapted to
weighted graphs by replacing the modified BFS with Dijkstra’s algorithm. Differently from
an unweighted one, in fact, both the label entries of a weighted highway labeling and the
associated distance decoding function must store weights of shortest paths (i.e. sums of
weights of edges), rather than path lengths (i.e. number of edges). However, no details on the
extension are given in [18,19] and adapting the approach from unweighted to weighted inputs
seems to be all but straightforward. More specifically, in the unweighted version, each visit,
rooted at a given vertex ri, employs two queues, called Qlabel and Qprune. The former is used
for paths to vertices that do not traverse landmarks other than ri, while the latter for paths
that traverse at least one landmarks rj , j ∈ R \ {ri}. When an element is extracted from
Qlabel with some priority δ, all neighbors of the terminal vertex of the path are enqueued ,
with priority δ + 1 into Qlabel (if they are not landmarks) or into Qprune (otherwise). In the
latter case, elements in Qprune having priority δ are all extracted, and neighboring vertices are
enqueued in the same queue with priority δ + 1. If the graph is unweighted, this mechanism
guarantees that a vertex is never added to both queues. However, it is easy to see that this
would not be true if the treated input graph is weighted, with simultaneous occurrences
of a same vertex in both queues leading to unnecessary queue operations that have to be
managed by the algorithm. Therefore, in what follows, we introduce a novel algorithm, called
BuildWhl, to efficiently compute a whl index, i.e. a weighted highway labeling with beer
vertices as landmarks that covers a beer graph, using only one priority-queue.

Algorithm BuildWhl works as follows. Starting from each beer vertex in B as root, we
run a modified version of Dijkstra’s algorithm that searches the graph by relying on a single
one-level priority queue (e.g. a min-heap). For each root r ∈ B, the algorithm assigns, to
each vertex v ∈ V : a flag flag[v] initially false; a tentative distance d[v] initially equal to
some infinity default value. Then, the visit starts by enqueueing the root with zero priority
and, whenever a vertex v is dequeued, say with associated priority δ, two cases can occur.
If v is a beer vertex v ̸= r, first its flag is set to true, to trace the fact that a path from
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the root to such vertex traverses a beer vertex. Then, the associated value δ, corresponding
to the weight d(r, v) of a shortest path from r to v, is stored in the highway H (i.e. the
distance decoding function is built). Moreover, regardless of whether v is a beer vertex or
not, if the value of its flag is true, then value δ, which equals distance d(r, v), is discarded
(since the shortest path inducing such distance traverses a beer vertex). Viceversa, if the
flag of v is false, we have that value δ is the distance from r to v induced by a shortest
path, say Prv, that does not traverse any beer vertex, thus entry (r, δ) is added to L(v).
Finally, a distance relaxation operation is performed on the neighbors of v. In details, for
each w ∈ N(v), we check if d[w] > δ + ω(v, w), i.e. if the weight of the path from r to v plus
the weight of edge (v, w) is less than the tentative distance d[w]. In the affirmative case, it
follows that the path Prv to v combined with edge (v, w) has weight that is smaller than any
previously discovered path to w. Hence, we update d[w] = δ + ω(v, w) and either enqueue w

with priority d[w] or decrease its current priority to d[w]. Contextually, we update the flag
of w to that of v, to keep trace of traversal of beer vertices. Viceversa, the path from r to
w through v is either not a shortest path to w or a shortest path of equal weight, hence it
is not considered. The pseudo-code of BuildWhl is given in Algorithm 1. We next state

Algorithm 1 Algorithm BuildWhl.
Input: A beer graph G = (V, E, ω) with beer vertices B ⊆ V .
Output: A whl index (H, L).

1 foreach r ∈ R do
2 foreach v ∈ V do
3 d[v]←∞;
4 flag[v]← false;
5 P Q← ∅; // P Q is a priority queue, e.g. min-heap

6 Enqueue vertex r into P Q with priority 0;
7 while P Q ̸= ∅ do
8 Dequeue from P Q vertex v having minimum priority δ; // Here d[v] = δ

9 if v ∈ B \ {r} then
10 flag[v]← true;
11 δH(r, v)← δ; // Store δ into entry δH (r, v) of the highway H

12 if flag[v] is false then
13 Add (r, δ) to L(v);
14 foreach w ∈ N(v) do
15 if d[w] > δ + ω(v, w) then
16 flag[w]← flag[v];
17 d[w]← δ + ω(v, w);
18 if d[w] =∞ then Enqueue vertex w into P Q with priority d[w];
19 else Decrease priority of vertex w in P Q to d[w];

the correctness and the running time of procedure BuildWhl. In particular, we are able
to prove that algorithm BuildWhl computes a weighted highway labeling that covers the
input graph with landmarks B. This implies that the query routine of Eq. 1 on said labeling
returns the beer distance for every pair of vertices.

▶ Lemma 1. Algorithm 1 adds entry (r, δ) to label L(v) of a vertex v ∈ V \ B if and only if
r ∈ B is the only beer vertex in the shortest path Prv inducing δ = d(r, v).

Proof. Suppose that Prv ∩ B ̸= {r}, i.e. there exists at least a beer vertex r′ ∈ B \ {r} in
the shortest path Prv between r and v that causes v to be enqueued (i.e. path having weight
δ = d(r, v)). Since r′ lies in Prv, it must be extracted from the priority queue before v, and
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Line 10 in Algorithm 1 sets the flag of r′ to true. By the subpaths optimality property of
shortest paths, it follows that flag of r′ is propagated in each distance relaxation operation
of any vertex v′ ∈ Prv[r′, v] (cf. Lines 15-16). Therefore, when v is extracted from the
priority queue, its flag is equal to true, and Line 13 is not executed. On the other hand, if
Algorithm 1 inserts (r, δ) in L(v) in Line 13, then we have Prv ∩ B = {r}. In fact, Line 13
is executed only if the flag of vertex v is set to false, which happens if and only if each
distance relaxation applied on the vertices v′ ∈ Prv was not induced by a path traversing a
landmark r′ ̸= r. ◀

By Lemma 1 we can derive a corollary similar to that given in [20] for unweighted graphs.

▶ Corollary 2. Let r ∈ B be a beer vertex and let v ∈ V \ B be a non-beer vertex. Let (H, L)
be a labeling constructed by Algorithm 1. If (r, d(r, v)) /∈ L(v), then there must exist a beer
vertex rj such that (rj , d(rj , v)) ∈ L(v), and d(r, v) = d(rj , v) + δH(rj , r).

Finally, we can prove that the labeling computed by BuildWhl covers the given graph.

▶ Theorem 3. The highway labeling (H, L) constructed by Algorithm 1 on a beer graph
G = (V, E, ω) satisfies the highway cover property for G.

Proof. We need to show that, for any two vertices s, t ∈ V \ B and any r ∈ B, there exist
(ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t) such that ri ∈ Prs and rj ∈ Prt. To that aim,
we can apply Corollary 2 to the following four cases: (i) r covers both s and t; (ii) r covers
s but not t; (iii) t is covered by r, while s is not; (iv) neither s nor t is covered by r. For
the sake of completeness, we also give it here. With a slight abuse of notation, in what
follows we use r′ ∈ L(v) to denote that landmark r′ covers a vertex v, i.e. that there exists
an entry (r′, d(r′, v)) in L(v). In Case (i), we have r ∈ L(s) and r ∈ L(t), thus r = ri = rj .
Case (ii): ri = r, while Corollary 2 ensures the existence of another landmark rj such that
rj is in the shortest path between t and r and rj ∈ L(t). Case (iii) is treated similarly to
the previous case. Finally, again by Corollary 2 applied to Case (iv), we know that there
exist two landmarks ri, rj such that ri (rj , respectively) is in the shortest path between s (t,
respectively) and r, and (ri, d(ri, s)) ∈ L(s) and (rj , d(rj , t)) ∈ L(t). ◀

▶ Theorem 4. Algorithm 1 runs in O(|B|(m + n log n)) time.

Proof. Observe that, for each landmark r ∈ B, the algorithm performs a call to a Dijkstra-like
algorithm for each landmark. During the execution of such routine, rooted at a landmark r,
the algorithm update the flags of the vertices. The initialization of the flags takes O(n) time.
Then, when a vertex v is extracted from the min-heap data structure PQ, if v ∈ B \ {r}, the
flag of v is set to true and the algorithm inserts distance δ into highway H in constant time.
Otherwise, the algorithm adds entry (r, δ) to label L(v), which again can be done in constant
time. Finally, the algorithm checks if value d[w] can be decreased for neighbors w of v. In
the affirmative case, the flag of w is set to the flag of v and a queue operation is performed,
in O(log n) time. Overall, the maintenance of the flags requires O(m + n) constant time
operations while queue operations account for O(n log n) time. Furthermore, the algorithm
performs |B| − 1 insertions into the highway H and at most n − |B| insertions into the labels
of the vertices, so overall O(n) insertions operations, each taking O(1) time. Therefore, the
time complexity per landmark r ∈ B is O(m + n log n) and the claim follows. ◀

4 Experimental Evaluation

In this section, we present the results of an experimental evaluation we conducted to assess
the effectiveness of our new graph indexing method for BD queries.
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Setup and Executed Tests. We implemented: (i) algorithm BuildBM that precomputes
and stores, in a corresponding b2all matrix, all distances from beer vertices to other vertices
of the graph; (ii) the corresponding query algorithm, called QueryBM, that solves a BD
query for a pair of vertices by determining the minimum of the sums of the distances between
all beer vertices and the two queried vertices; (iii) our method BuildWhl to compute a
whl index; (iv) the corresponding query algorithm, denoted by QueryWhl, that computes
the BD for a pair of vertices by accessing the index as per Eq. 1; (v) the baseline method,
denoted by BaseLine, which executes Dijkstra’s algorithm twice to compute the shortest
path trees rooted at the two queried vertices s, t and selects the beer vertex providing the
minimum sum of distances from s and to t. All our code is written in C++, compiled with
GCC 10.5 with opt. level O3. All tests have been executed on a workstation equipped with
an Intel Xeon© CPU E5-2643, clocked at 3.40 GHz, and 96 GB of RAM, running Ubuntu
Linux.

Input Instances. As inputs to our experiments we considered real-world road graphs taken
from publicly available repositories [26]. Details on used inputs, including number of vertices
|V | and edges |E|, average vertex degree, and size of the graph file |G| are reported in
Table 1. Graphs are sorted from top to bottom by |V | + |E|. Concerning the number of

Table 1 Overview of Input Graphs.

Graph |V | |E| Avg. Deg. |G|
lux 30 647 37 773 2.46 1.1 MB
ny 264 346 365 050 2.76 13 MB
bay 321 270 397 415 2.47 14 MB
col 435 666 521 200 2.39 19 MB
dnk 469 110 545 019 2.32 18 MB
fla 1 070,376 1 343 951 2.51 48 MB
nw 1 207 945 1 410 387 2.33 52 MB
ne 1 524 453 1 934 010 2.53 71 MB
cal 1 890 815 2 315 222 2.44 87 MB
ita 2 077 709 2 589 431 2.49 91 MB
deu 4 047 577 4 907 447 2.42 178 MB
usa 23 947 347 28 854 312 2.40 1.2 GB

beer vertices b, to study the scalability properties of the proposed approach, as suggested
in [28], we measure and report performance indicators for doubling values of parameter b

that are relevant to the domain, i.e. for b ∈ {25, 50, 100, 200, 400}. Beer vertices are placed
in each graph by a strategy called distance-δ bounded dominating set, a policy that is often
considered in network design problems, and adopted in real-world scenarios, to identify a
subset of important vertices that have to be traversed by paths between other vertices (e.g.
routers responsible for specific messages) [21]. For each input graph and value of b, we:
(i) run BuildWhl to construct a whl index; (ii) execute BuildBM to precompute the
b2all matrix. We measure the running times of both BuildWhl and BuildBM (denoted
by PTwhl and PTb2all, respectively), and the space occupancy, in MB, of the whl index
(which includes both the distance deconding function and the label entries) and the b2all
matrix (denoted by ISwhl and ISb2all, respectively). Note that, in all our experiments, we
represent distances and landmarks/beer vertices as 32-bit integers. Moreover, we execute
QueryWhl and QueryBM to solve 105 BD queries for randomly selected vertex pairs
and measure their average execution time (denoted by QTwhl and QTb2all, respectively).
Finally, we run algorithm BaseLine for a subset of 104 of the aforementioned vertex pairs,
and measure the average execution time. Such reduction is necessary due to the moderately
large running time per query of BaseLine.
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Analysis. The results of our experimentation are summarized in Tables 2–4. For both
performance indicators indexing time and space occupancy, in Tables 2–4 we give the ratio of
the value achieved by b2all and that achieved by whl. In terms of indexing/preprocessing
time, our data show that algorithms BuildWhl and BuildBM are comparable and both
can be considered reasonably practical since both average execution times range from less
than half a second in the smallest instance (i.e. lux with b = 25) to around one hour in
the largest one (i.e. usa with b = 400). However, we notice that BuildWhl is always

Table 2 Results of the experimentation with b = 25 beer vertices.

Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

lux 0.12 0.13 1.09 0.13 2.92 22.46 1.2 · 10−7 1.1 · 10−7 0.01
ny 1.65 1.78 1.08 3.80 25.21 6.63 4.5 · 10−7 3.2 · 10−7 0.10
bay 1.94 2.40 1.24 2.59 30.64 11.83 4.3 · 10−7 3.7 · 10−7 0.13
col 2.39 2.96 1.24 1.77 41.55 23.47 3.5 · 10−7 3.3 · 10−7 0.18
dnk 2.56 3.30 1.29 5.36 44.74 8.35 4.1 · 10−7 3.8 · 10−7 0.17
fla 6.95 7.40 1.07 12.36 102.08 8.26 4.4 · 10−7 3.4 · 10−7 0.43
nw 7.25 8.43 1.16 8.30 115.20 13.88 4.2 · 10−7 3.5 · 10−7 0.51
ne 11.04 12.41 1.12 21.63 145.38 6.72 4.6 · 10−7 3.9 · 10−7 0.70
cal 13.63 15.43 1.13 15.44 180.32 11.68 5.2 · 10−7 4.3 · 10−7 0.87
ita 10.56 12.62 1.19 7.93 198.15 24.99 4.9 · 10−7 5.1 · 10−7 0.72
deu 26.81 31.80 1.19 48.44 386.01 7.97 6.9 · 10−7 5.2 · 10−7 1.63
usa 246.94 280.49 1.14 91.35 2283.80 25.00 9.7 · 10−7 6.7 · 10−7 10.90

faster than BuildBM, by factors that span in the orders of tens of percentage points (see
PTb2all/PTwhl column in Tables 2–4). This is most likely due to the fact that BuildWhl
stores label entries only when the flag of a vertex is false, i.e. when the root r is the only beer
vertex lying on the path found by the visit. Furthermore, to characterize of the scalability
properties of BuildWhl, in Fig 2 (left) and 3 (left) we plot its running time as a function
of b for all inputs. Our data suggest a linear trend of the indexing time with respect to to b,
which matches our analysis of Theorem 4. On top of that, Figures 2 (middle) and 3 (middle)
suggest that BuildWhl scales better with respect to b than BuildBM, in terms of running
time, with the ratio between the execution times of the two algorithms increasing with b.

25 50 100 200 40010 1
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25 50 100 200 4000.0

0.5

1.0
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25 50 100 200 400

101
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Figure 2 Running time (in seconds) of BuildWhl (left); ratio of the running time of BuildWhl
to that of BuildBM (middle); ratio of the space occupancy of the b2all matrix index to that of
the whl (right), for all graphs, except usa, as a function of b (x-axis).

Concerning the sizes of the whl index and the b2all matrix, instead, we observe that
our new scheme significantly outperforms method b2all. In fact, BuildWhl computes very
compact whl indices, even for large graphs, with an average space occupancy that is up
to orders of magnitude smaller than that of b2all matrices, which contain precisely one
distance value per beer vertex and for all vertices of the graph (cf. column “Space Occupancy”
of Tables 2-4). In details, we observe that, even in the largest considered graph, i.e. usa (see
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Table 3 Results of the experimentation with b ∈ {50, 100} beer vertices.

b Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

50

lux 0.25 0.34 1.34 0.27 5.85 21.67 1.5 · 10−7 1.4 · 10−7 0.01
ny 3.11 3.77 1.21 5.34 50.42 9.44 3.5 · 10−7 3.4 · 10−7 0.11
bay 3.68 4.41 1.20 4.59 61.28 13.35 3.3 · 10−7 2.2 · 10−7 0.13
col 4.77 5.89 1.23 1.78 83.10 46.69 4.9 · 10−7 2.2 · 10−7 0.17
dnk 5.97 7.14 1.20 7.08 89.48 12.64 3.8 · 10−7 2.4 · 10−7 0.21
fla 12.82 15.59 1.22 11.14 204.16 18.33 4.2 · 10−7 2.5 · 10−7 0.46
nw 14.67 17.79 1.21 11.37 230.40 20.26 4.3 · 10−7 2.7 · 10−7 0.55
ne 19.29 23.46 1.22 30.37 290.77 9.57 4.4 · 10−7 2.6 · 10−7 0.71
cal 23.86 29.27 1.23 21.17 360.64 17.04 4.5 · 10−7 2.7 · 10−7 0.88
ita 25.47 30.61 1.20 23.73 396.29 16.70 4.6 · 10−7 2.9 · 10−7 0.96
deu 57.03 66.62 1.17 49.37 772.01 15.64 6.0 · 10−7 3.5 · 10−7 2.05
usa 412.75 469.48 1.13 161.71 4 567.59 28.24 5.7 · 10−7 3.3 · 10−7 13.91

100

lux 0.49 0.55 1.13 0.29 11.69 40.31 1.4 · 10−7 1.7 · 10−7 0.01
ny 6.25 7.68 1.23 6.31 100.84 15.98 3.7 · 10−7 2.9 · 10−7 0.11
bay 7.16 8.83 1.23 4.09 122.55 29.96 3.4 · 10−7 2.9 · 10−7 0.13
col 9.60 12.03 1.25 2.52 166.19 65.95 4.1 · 10−7 3.0 · 10−7 0.18
dnk 11.11 13.71 1.23 3.67 178.95 48.76 3.8 · 10−7 3.0 · 10−7 0.20
fla 25.08 31.12 1.24 11.34 408.32 36.01 4.3 · 10−7 3.4 · 10−7 0.46
nw 29.08 35.90 1.23 14.89 460.79 30.95 4.4 · 10−7 3.7 · 10−7 0.55
ne 38.17 47.12 1.23 37.89 581.53 15.35 4.7 · 10−7 3.6 · 10−7 0.71
cal 47.01 58.20 1.24 34.96 721.29 20.63 4.9 · 10−7 3.6 · 10−7 0.88
ita 48.14 58.72 1.22 15.98 792.58 49.60 4.8 · 10−7 3.6 · 10−7 0.92
deu 107.30 130.06 1.21 77.34 1 544.03 19.96 5.2 · 10−7 3.8 · 10−7 1.98
usa 836.25 981.31 1.17 341.28 9 135.19 26.76 6.5 · 10−7 4.2 · 10−7 13.81

Table 4 Results of the experimentation with b ∈ {200, 400} beer vertices.

b Graph Preprocessing Space Occupancy Query (s)
PTwhl (s) PTb2all (s) PTb2all/PTwhl ISwhl (MB) ISb2all (MB) ISb2all/ISwhl QTwhl QTb2all BaseLine

200

lux 0.97 1.11 1.14 0.66 23.38 35.42 1.7 · 10−7 2.9 · 10−7 0.01
ny 12.46 15.56 1.25 6.61 201.68 30.51 4.4 · 10−7 4.0 · 10−7 0.11
bay 14.33 17.95 1.25 6.32 245.11 38.78 3.7 · 10−7 4.1 · 10−7 0.13
col 19.00 24.28 1.28 6.37 332.39 52.18 4.1 · 10−7 4.2 · 10−7 0.17
dnk 22.15 27.77 1.25 12.65 357.90 28.29 4.2 · 10−7 4.3 · 10−7 0.20
fla 49.94 62.58 1.25 23.84 816.63 34.25 4.9 · 10−7 4.5 · 10−7 0.46
nw 57.63 72.91 1.27 9.60 921.59 96.00 4.7 · 10−7 4.8 · 10−7 0.55
ne 74.85 94.99 1.27 32.77 1 163.07 35.49 4.9 · 10−7 4.6 · 10−7 0.71
cal 93.64 117.93 1.26 60.73 1 442.58 23.75 5.6 · 10−7 4.6 · 10−7 0.88
ita 96.81 120.30 1.24 16.08 1 585.17 98.58 4.9 · 10−7 4.6 · 10−7 0.94
deu 212.27 264.37 1.25 69.28 3 088.06 44.75 5.4 · 10−7 4.8 · 10−7 1.98
usa 1 658.4 1 967.24 1.18 529.48 18 270.38 34.50 6.8 · 10−7 5.3 · 10−7 13.88

400

lux 1.96 2.19 1.12 1.47 46.76 31.81 2.6 · 10−7 4.5 · 10−7 0.01
ny 24.54 31.71 1.29 14.97 403.36 26.94 6.5 · 10−7 5.7 · 10−7 0.11
bay 28.33 36.30 1.28 13.90 490.22 35.27 5.4 · 10−7 5.7 · 10−7 0.13
col 38.41 50.56 1.32 7.27 664.77 91.44 4.5 · 10−7 5.8 · 10−7 0.17
dnk 44.66 56.75 1.27 18.47 715.81 38.76 4.6 · 10−7 5.8 · 10−7 0.21
fla 99.92 127.31 1.27 42.71 1 633.26 38.24 6.0 · 10−7 5.9 · 10−7 0.46
nw 115.23 147.90 1.28 36.33 1 843.18 50.73 5.3 · 10−7 6.0 · 10−7 0.53
ne 150.59 194.48 1.29 63.70 2 326.13 36.52 6.1 · 10−7 6.7 · 10−7 0.73
cal 192.78 248.61 1.29 83.07 2 885.15 34.73 6.3 · 10−7 6.4 · 10−7 0.91
ita 192.47 242.78 1.26 49.50 3 170.33 64.05 5.2 · 10−7 6.1 · 10−7 0.92
deu 423.58 539.66 1.27 62.38 6 176.11 99.01 5.7 · 10−7 6.6 · 10−7 2.02
usa 3 178.94 3 962.77 1.24 692.82 36 540.75 52.74 7.5 · 10−7 6.9 · 10−7 13.95

Table 4), the space occupancy of the whl index, with b = 400, is less than 700 MB, which
can be considered a negligible amount of memory for modern commodity hardware. On the
contrary, the space occupancy of the b2all matrix is more than 36 GB of data, roughly
50 times more than the whl index. Moreover, as shown in Figures 2 (right) and 3 (right)
the gap between the two occupancies tends to increase with b, which suggests that the whl
schemes scales better in terms of space occupancy with respect to b. Even more remarkably,
the space to store whl index is often lower than the space occupancy of the input graph (cf.
column |G| of Table 1 and column ISwhl of Tables 2–4) and always lower for large graphs and
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Figure 3 Running time of BuildWhl (left, in seconds); ratio of the running time of BuildWhl
to that of BuildBM (middle); ratio of the space occupied by the b2all matrix index to that
occupied by the whl (right) for graph usa, as a function of b (x-axis).

values of b. Note that, differently from previously indexing strategies based on the highway
labeling [18–20], our scheme is oblivious of the graph topology, that is, once the whl index
is built, algorithm QueryWhl does not need to access the underlying graph to answer BD
queries. This is an interesting feature with respect to both space efficiency (the whl index
can be seen as a compressed representation of all pairs beer distances) and usage of the index
in a distributed environment (distances can be computed by only accessing the labels of the
queried vertices and the distance decoding function [8]).

For the sake of completeness, in Figures 4 and 5, we provide measures of number of label
entries stored by algorithm BuildWhl in the labeling part of the computed whl index.
Despite, in the worst case, a whl stores an entry per beer vertex in each label, here we
observe that, in practice, the amount of entries is generally around two orders of magnitude
lower than such a worst case.
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Figure 4 Average number of label entries per vertex (y-axis) stored by algorithm BuildWhl into
the labeling part of the whl index, for each of the considered graphs, except usa, as a function of
the number b of beer vertices (x-axis).
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Figure 5 Average number of label entries per vertex (y-axis) stored by algorithm BuildWhl into
the labeling part of the whl index, for graph usa, as a function of the number b of beer vertices
(x-axis)
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Such behavior is reflected into the low space occupancy requirements discussed above and
shows how our preprocessing algorithm, and the highway labeling properties, allow to compute
compact representations of shortest beer paths. In this regard, we leave the problem of
evaluating whether such effectiveness is influenced by the centrality of beer vertices open for
future investigation.

Concerning query times, our experiments highlight that both QueryWhl and QueryBM
are extremely fast at answering BD queries (few hundreds of nanoseconds even for large
graphs and values of b, cf. column “Query” of Tables 2-4). As expected, QueryWhl is
slightly slower than QueryBM, since the query algorithm must consider distances between
beer vertices (cf. second term of Eq. 1). Nonetheless, both strategies are competitive under
such measure and suited for the requirements of modern data-intensive applications. Our
data also confirm the poor performance of BaseLine in this sense: the algorithm does not
scale well with both the graph size and b. Indeed, BaseLine’s average running time ranges
from around 0.01 seconds, on the smallest considered graph and value of b, to 14 seconds
on the largest graph and value of b (see Tables 2-4, cf. column BaseLine). In order to
give further insights on the effectiveness of employing a whl index for BD queries, in what
follows, we provide a cumulative analysis that compares BaseLine, the best known approach
without indexing, and our method. In particular, we design and run an experiment where, on
the one hand, we execute BaseLine to solve 105 queries for randomly selected vertex pairs
and measure the total running time. We call this quantity CMTbsl the cumulative running
time of BaseLine. On the other hand, we execute BuildWhl to build a whl index and
run QueryWhl to answer the same set of queries. We measure the preprocessing time and
sum it to the time for executing QueryWhl for all queries. We call this quantity CMTwhl
the cumulative running time of whl. The purpose of this experiment is to assess whether
the time taken by BuildWhl to construct the index is amortized by the time saved by
running QueryWhl to answer BD queries instead of BaseLine, hence to determine the
most effective solution in terms of amortized running time.

In Table 5 we present the results of the cumulative experiment for a subset of the
considered inputs and values of b. Results for other graphs and values of b are similar and
hence omitted. Our data show that the cumulative running time of whl is almost three

Table 5 Cumulative running time of whl and BaseLine to answer to 105 BD queries with
b = 200.

Graph CMTwhl (s) CMTbsl (s) CMTbsl/ CMTwhl

bay 1.4 · 101 1.3 · 104 9.2 · 102

dnk 2.2 · 101 2.0 · 104 9.3 · 102

cal 9.3 · 101 8.8 · 104 9.4 · 102

ita 9.6 · 101 9.4 · 104 9.7 · 102

deu 2.1 · 102 1.9 · 105 9.3 · 102

orders of magnitude lower than that of BaseLine on any combination of graph and number
of beer vertices. This is a remarkable result, especially if one considers that the time for
precomputing the highway labeling via BuildWhl can be as high as around two hours on
usa, and represents a strong experimental evidence of the fact that whl is the most effective
framework in practical contexts to answer BD queries, even when large graphs and volumes
of queries have to be managed.

Comparison against Frameworks for Generalized Shortest Paths. In this section we
complete the experimental evaluation of our framework for BD queries by comparing it with
the indexing scheme k-sky of [24], which is considered the best performing method to answer
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queries on generalized shortest paths, where the aim is computing minimum-weighted paths
that traverse at least one vertex for each of k vertex categories. Answering to queries on beer
distances or shortest beer paths is equivalent to the special case of generalized shortest paths
where k = 1. For the purpose, method k-sky preprocesses the graph to store both a 2-hop
cover distance labeling and, for each vertex, a so-called keyword-skyline. Upon query, the
former is exploited to compute quickly shortest paths while the latter, which is a collection
of sets of vertices, one per category, is used to reduce the computation of distances toward
vertices of each sought category (see [24] for more details). In order to compare k-sky and
whl, we implemented k-sky by considering a single POI category (set B) and executed it
in the same settings considered for whl in the previous section. For k-sky we measure: (i)
the running time to build the 2-hop cover distance labeling and to populate the keyword
skyline (PTk-sky); (ii) the space occupancy to store such two data structures (ISk-sky); (iii)
the average execution time to answer 105 BD queries for randomly generated vertex pairs
(QTk-sky). For whl, we measured the same performance indicators discussed in the previous
part of the experimentation. Clearly, QueryWhl is run with the same set of queries.

An excerpt of the results of the above experiment is given in Table 6. Data for other
graphs and values of b are omitted due to space limitations. The main conclusion that can
be drawn from our experimental data is that our method whl outperforms method k-sky
with respect to all performance metrics. Specifically, the preprocessing time of k-sky is
orders of magnitude larger than the running time of BuildWhl, as it runs for more than
one hour even for small inputs. This is expected, since the index constructed by BuildWhl
can be seen as a compact version of the 2-hop cover labeling. Also from a space occupancy
viewpoint, k-sky stores at least two orders of magnitude more information with respect to
the whl index. Finally, the average query time offered by k-sky is always around 3 orders
of magnitude larger than that of QueryWhl.

Table 6 Performance of whl and k-sky on graphs ny, bay, col with b ∈ {50, 100} beer vertices.

b Graph Preprocessing (s) Space Occupancy (MB) Query (s)
PTwhl PTk-sky ISwhl ISk-sky QTwhl QTk-sky

50
ny 3.11 > 3600 5.34 795.02 3.5 · 10−7 1.3 · 10−4

bay 3.68 > 3600 4.59 1385.53 3.3 · 10−7 1.6 · 10−4

col 4.77 > 3600 1.78 1982.95 4.9 · 10−7 1.5 · 10−4

100
ny 6.25 > 3600 6.31 1467.21 3.7 · 10−7 2.6 · 10−4

bay 7.16 > 3600 4.09 2726.54 3.4 · 10−7 3.3 · 10−4

col 9.60 > 3600 2.52 3794.05 4.1 · 10−7 3.0 · 10−4

5 Conclusion and Future Work

We have showcased that an indexing scheme, to efficiently execute queries on beer distances or
shortest beer paths for pairs of vertices of a beer graph, can be built by adapting the highway
labeling. Through extensive experimentation on real-world graphs, we have empirically
demonstrated its practical effectiveness and superiority, in terms of offered trade-off between
preprocessing time, space occupancy and query time, with respect to the state-of-the-art.
Our work leaves several questions open for future investigation. First and foremost, it would
be interesting to understand whether an indexing method with a space/computational time
trade-off better than those mentioned in this paper (either empirically or in the worst case),
can be designed for general graphs. Another relevant direction to explore would be extending
the experimental comparison of whl, b2all k-sky given here to digraphs and to queries on
shortest beer paths. A more challenging, but certainly of interest, objective to pursue would
be designing a dynamic algorithm to maintain the whl index under changes of the set B.

ATMOS 2024
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Abstract
The elementary shortest path problem with resource constraints (ESPPRC) is a common problem
that often arises as a pricing problem when solving vehicle routing problems with a column generation
approach. One way of solving the ESPPRC is to use a labeling algorithm. In this paper, we focus on
how different bounding strategies for labeling algorithms can be adapted and strengthened for the
ESPPRC that arises from the Electric Vehicle Routing Problem with Time Windows and Piecewise
Linear Recharging function (EVRPTW-PLR). We present a new completion bound method that
takes charging times into account, and show how the completion bound can be combined with
ng-routes. Computational experiments show that the new completion bound combined with ng-routes
significantly improves the performance compared to a basic labeling algorithm.
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1 Introduction

The interest in using electrical vehicles for transportation has been steadily increasing in the
last years. One of the main reasons is the positive environmental aspects compared to using
traditional combustion vehicles. As for the traditional vehicles, the routing and scheduling
of the electric vehicles is a crucial aspect to consider. This has created a new type of vehicle
routing problem, the Electric Vehicle Routing Problem (EVRP).
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As for traditional routing problems, a common way of solving the EVRP is to use a column
generation approach. Given a path representation of the routes, the column generation pricing
problem can be represented as a shortest path problem. In such a setting, the performance of
the pricing problem is crucial for the overall performance of the column generation approach.
In this paper we are interested in the pricing problem for the EVRP with Time Windows,
Piecewise Linear Recharging function and partial recharging (EVRPTW-PLR). This pricing
problem can be represented as an elementary shortest path problem with resource constraints
(ESPPRC). The ESPPRC can be solved in several ways, one of them is to use a labeling
algorithm [9] which is the method we will be using.

Compared to traditional routing problems, the electrical routing problems come with a
new set of challenges, the main one being the need to plan for recharging of the vehicles. This
changes the characteristics of the ESPPRC and the labeling algorithm needs to be adapted
to handle this, something that has been previously studied (see e.g. [5]). Another challenge is
to model the recharging realistically, for which a piecewise linear function has been proven to
be a good choice [11]. This does further complicate the ESPPRC and necessitates adaptions
of the labeling algorithm, as done in e.g. [10] and [2].

How well a labeling algorithm performs is highly dependent on the different acceleration
strategies that are used. Some of the most common acceleration strategies are bidirectional
labeling [14], ng-routes [1] and bounding (see e.g. [3, 14]). The implementation of ng-routes
is not affected by the piecewise linear charging function and can easily be implemented in
a standard way. For bidirectional labeling, the case is different, as the standard strategy
cannot be applied for piecewise linear charging functions. To the authors’ best knowledge,
this has not yet been done, and we find it hard to see how it can be done efficiently. For this
reason, we consider bounding to be an important type of acceleration strategy in labeling
algorithms for piecewise linear charging functions. Bounding builds on the idea to discard
unpromising labels. There are several ways to do this, one is the resource bounding, which is
a way to discard labels that cannot be completed to a feasible solution. Another way is the
completion bounding, which is a way to discard labels that cannot be completed to a better
solution than the best found so far.

In this paper, we focus on how different bounding strategies can be adapted and
strengthened for the ESPPRC that arises from the EVRPTW-PLR. The paper extends the
result of the master thesis [7] that introduced a bounding-based labeling algorithm for the
EVRPTW with linear and partial recharging. The main contributions of this paper are:

A new time-based completion bound method that takes charging times into account.

Integration of completion bounds and ng-routes that handles the assumption of element-
arity in completion bounds with the relaxation of elementarity in ng-paths.

Publicly available labeling algorithm solving the ESPPRC for the EVRPTW-PLR (avail-
able at: https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr).

The rest of this paper is structured as follows. In Section 2, the problem statement and
model will be presented. A short explanation of the foundations of the labeling algorithm
will be presented in Section 3. The implemented bounding methods will then be presented
in Section 4. Experimental results will be presented in Section 5 comparing the effect of
the different bounding methods implemented, and finally the conclusions are presented in
Section 6.

https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr
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Figure 1 The piecewise linear charging curve used in this paper, with data from [11].

2 Problem Statement and Model

The problem considered is the ESPPRC that arises as a pricing problem from solving the
EVRPTW-PLR within a column generation approach. In the EVRPTW-PLR, a fleet of
electric vehicles with limited load and battery capacity should visit a set of customers, where
each customer has a given time window and a given demand, while minimizing the total cost.
Furthermore, the vehicles start and end at a depot, and can recharge at charging stations.
The recharging rate is given by a piecewise linear function.

Inspired by the notation used in [5], we formulate the ESPPRC on a directed graph
G(V, A), where V denotes the set of nodes, and A denotes the set of arcs connecting the
nodes. The set of nodes V consists of customer nodes, given by the set N , charging nodes,
given by the set R, a start node o, and an end node d.

An arc between node i ∈ V and node j ∈ V is associated with three parameters: the
cost cij of the arc, the energy consumption rij for traversing the arc, and the travel time tij ,
where also the service time at i is included if i ∈ N , i.e. i is a customer node. We assume
that the triangle inequality holds for the time and energy consumption, i.e. tij ≤ tik + tkj

and rij ≤ rik + rkj for all i, j, k ∈ V . Each customer node i ∈ N is associated with a service
time window [ei, li], during which the service can start. The vehicle is allowed to arrive
early at a customer but has to wait until the start time to start service. Each customer node
i ∈ N is associated with a demand qi, which since we are solving the pricing problem, only
needs to be satisfied if the customer is visited.

The vehicle has a maximum load C and a maximum battery capacity Q. It can recharge
at charging nodes where partial recharging is allowed. The battery level cannot go below 0.

The charging curve is given by a piecewise linear function, and we define it as in [10] where
the charging curve is given by a set of pieces P = {1 . . . W}. Each piece p ∈ P is defined by
a start and end battery level τp−1 and τp, and a recharging rate ρp (energy per timestep). In
reality, the charging function is often concave since the charging rate decreases as the battery
level increases [11]. With these assumptions, it holds that 0 = τ0 ≤ τ1 ≤ . . . ≤ τW = Q and
ρ1 ≥ ρ2 ≥ . . . ≥ ρW > 0. An example is shown in Figure 1.

The vehicle starts at the start node at time 0 with a full battery and must return to
the end node before the max time, Tmax. It can visit a customer node at most once, while
charging nodes can be visited multiple times. The objective is to find a route that minimizes
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the total cost of the arcs travelled, while satisfying the constraints. Because we are in a
column generation setting, the arc costs are in fact reduced costs and as such they can become
negative. In the EVRPTW-PLR, we assume the initial costs to be positive, and customers
to be associated with dual variables, leading to that the outgoing arcs from customers can
become negative, while the other arcs have their initial cost.

3 Labeling Algorithm

The basic version of the labeling algorithm is presented in Algorithm 1. The algorithm is
implemented with a priority queue Γ of labels waiting to be extended and continues until
there is no label to be extended from this queue. In order to find a good complete path early,
the priority queue is ordered by increasing costs and the label with the lowest cost is first
extended. This is especially important when using completion bounds, since the strength
of the completion bounds depend on the quality of the incumbent upper bound. A label
is denoted by Li and represents a partial path o → i ∈ N . Each label contains a number
of resources, such as the cost of the partial path and the battery level. When extending a
label Li to a node j the function Extend(Li, j) updates the label resources given by the
defined Resource Extension Functions (REFs) and verifies the feasibility of the extension of
the path. All neighbours that can be reached from node i are denoted by ∆i. The function
Dominance(Λj , Lj) checks dominance between the new label Lj and all labels in Λj , which
is a bucket containing all labels ending at node j, given the decided dominance criteria. All
labels that Lj dominates are discarded, and the Dominance(Λj , Lj) returns false if Lj is
dominated, whereupon Lj is discarded. The shortest path can, at the end of execution, be
selected from the set of labels at the end node.

Algorithm 1 Basic labeling algorithm.

1 // Initialization of priority queue Γ with a start label Λo

2 Γ← Λo

3 while Γ ̸= ∅ do
4 // Get next label to extend
5 Li ← pop(Γ)
6 // Try to extend label to all outgoing neighbours of i

7 for j ∈ ∆i do
8 // Try to extend label to node j

9 if Lj ← Extend(Li, j) then
10 // If label finishes at end node, it is not added to priority queue
11 if j = d then
12 Λd ← Lj

13 // Else check dominance between new label and all labels at node j

14 else if Dominance(Λj , Lj) then
15 Γ← Lj

16 Λj ← Lj

17 end
18 end
19 end
20 end
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The resources of label Li are defined as suggested by Lam et al. [10], with the notation
of Desaulnier et al. [5], and presented below.

T cost
i : Cost of the partial path o→ i.

T load
i : Delivered load along the partial path.

T time
i : Earliest service start time at node i that ensures time window and battery

feasibility along the path.
T energy

i : Battery level at i, assuming that minimal recharges have been performed at
all visited charging stations.

T
mrtp

i : Available charging time at each charging piece p ∈ P that can be added at
previous charging stops while ensuring time window feasibility.

T custn
i : Indicates if a customer n ∈ N cannot be visited in the extension of the path.

This can either be because they already are visited or because they are
unreachable from the path ending at node j.

A label Li at node i ∈ N is extended to a node j ∈ N along the arc (i, j) ∈ A by a
number of Resource Extension Functions (REFs) that update the resources of the label,
creating a new label Lj . The REFs are defined as suggested by Lam et al. [10], with the
notation of Desaulnier et al. [5]. The REFs for the cost of the partial path and the delivered
load are defined by (1) and (2).

T cost
j = T cost

i + cij (1)
T load

j = T load
i + qj (2)

To update the time of the partial path and the energy level, we need to define some new
concepts. Whenever a vehicle can arrive early at a customer, i.e. T time

i + tij < ej , a slack
time is introduced, denoted Wij . This slack time is given by Wij = max{0, ej − T time

i − tij},
which represents how much later it is possible to leave node i without delaying service start
time at node j. If charging stations have been visited previous to node j, the slack time can
be used for charging to the extent allowed by the available charging time T

mrtp

i , p ∈ P . We
assume that all available slack time, in the extent that it is possible, is used for charging and
denote the energy charged during slack time by Sij . Since the charging curve is piecewise
linear, we have several charging pieces p ∈ P . In order to calculate Sij , we therefore need
to calculate the amount of time we can recharge at each charging piece, which we denote
by δslack

pij . This is calculated for each piece p ∈ P in decreasing order of charging rate by
δslack

pij = max{0, min{Wij −
∑p−1

µ=1 δslack
µij , T

mrtp

i }}. In this formula T
mrtp

i is, as mentioned, the
available charging time at charging piece p from previous charging stops, and Wij−

∑p−1
µ=1 δslack

µij

is the remaining available slack time for charging at piece p, given the charging time at
previous, more advantageous, pieces. The energy charged during slack time is then given by
Sij =

∑
p∈P ρpδslack

pij where ρp is the charging rate at piece p.
If the energy charged during slack time together with the initial energy is not enough

to cover the energy consumption rij of the arc (i, j), i.e. T energy
i − rij + Sij < 0, additional

charging is required. The required additional charging energy is denoted by Zij and the
time for this additional charging is denoted Xij . Similarly to how the energy charged during
slack time was calculated, we need to calculate the amount of time δextra

pij we recharge at each
charging piece p ∈ P . This is calculated for each piece p ∈ P in decreasing order of charging
rate by δextra

pij = max{0, min{T mrtp

i − δslack
pij , (−T energy

i + rij − Sij −
∑p−1

µ=1 ρµδextra
µij )/ρp}}. In

this formula T
mrtp

i − δslack
pij is the remaining available charging time for charging at piece

p after slack charging has been done and (−T energy
i + rij − Sij −

∑p−1
µ=1 ρµδextra

µij )/ρp is the
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remaining time, given the piece p charging rate, needed to be recharged after slack charging
has been done and additional charging has been done at previous, more advantageous,
pieces. The additional charging time and energy are then given by Xij =

∑
p∈P δextra

pij and
Zij =

∑
p∈P δextra

pij ρp, respectively.
The REF for time can now be given in (3), where, as stated, Xij is the required additional

charging time and ej is the earliest allowed arrival at node j. The energy level is updated
according to the REF defined in (4), where, as stated, rij is the energy consumption of the
arc, Sij is the energy charged during slack time, and Zij is the additional energy charged.

T time
j = max{T time

i + tij + Xij , ej} (3)
T energy

j = T energy
i − rij + Sij + Zij (4)

The REF for the available charging time is calculated for each piece p ∈ P in decreasing
order of charging rate, where τp is the end battery level of piece p ∈ P . It is given in (5)
and calculated differently depending on whether j is a charging station or not. If a charging
station, the time is calculated as the minimum of the maximum charging time at the piece p

and the time needed to reach the end battery level at the piece p given current battery level
T energy

j . If not a charging station, it is calculated as the minimum of available charging time,
after slack and additional charging has been added, and available time until the end of the
time window after available charging time at more advantageous pieces has been added.

T
mrtp

j =
{

min{(τp − τp−1)/ρp, max{(τp − T energy
j )/ρp, 0}}, if j ∈ R

min{T mrtp

i − δslack
pij − δextra

pij , lj − T time
j −

∑p−1
µ=1 T

mrtµ

j }, if j ∈ V \R
(5)

Finally, customer reachability is updated in REF (6), either if they are visited or if
they are unreachable from the path ending at node j. A node n ∈ N \ {j} is marked as
unreachable from the path ending at node j in the function R(T load

j , T time
j ) by the value 1

if T load
j + qn > C or T time

j + tjn > ln holds. This method of marking unreachable nodes as
already visited was initially suggested by Feillet et al. [8].

T custn
j =

{
T custn

i + 1, if j = n,

max{T custn
i , R(T load

j , T time
j )} j ∈ N \ {n}

(6)

After the resources of the label have been updated, the feasibility of the extension is
verified. As defined by [10], an extended label is feasible if the following four inequalities
hold: T load

j ≤ C, T time
j ≤ lj , T energy

j ≥ 0, and (T custn
j ) ≤ 1 for all n ∈ N .

Once a label has been feasibly extended to node j, dominance is checked on the other
labels finishing in node j. For a label L̃j at j to dominate another label L̂j at j, the criteria
given by Equations (7) through (11) must hold as defined by [10]. If L̃j dominates L̂j , L̂j is
discarded.

T̃ cost
j ≤ T̂ cost

j (7)

T̃ load
j ≤ T̂ load

j (8)

T̃ time
j ≤ T̂ time

j (9)

T̃ custn
j ≤ T̂ custn

j , n ∈ N (10)

f̃ energy
j (t) ≥ f̂ energy

j (t), t ∈ [T̂ time
j , lj ] (11)

In Equation (11), battery levels are compared given a later arrival time at j with the
help of the function f energy

j (t) which outputs the battery level given an arrival time t. This
has to be done because T energy

j is only the energy level given a minimal recharge, but since
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the extensions are unknown at the time of dominance checking, it might be needed to arrive
later but with a higher battery level. So in order for the label L̃j to dominate L̂j , it has
to be able to achieve a higher battery level for every possible arrival time at node j of L̂j .
The possible arrival times are all the times between T̂ time

j and the latest service start time
at node j, lj . However, since the charging curves are piecewise linear, it suffices to verify
this at start points, breakpoints and endpoints of the charging curves. For a more thorough
explanation and definition of this function, we refer to Lam et al. [10].

4 Bounding Methods

A well-known challenge when applying labeling algorithms is that in the late iterations, a
huge number of labels have been generated and a large portion of those cannot be completed
into a solution of interest. To avoid this, or at least discard some unpromising ones along
the way, bounding methods can be used. Bounding methods use optimistic bounds on the
completion of a path to discard labels that cannot yield a best solution. This can be done in
different ways, but common for all is that the methods need to rely on fast computations to
contribute to computational efficiency. For that reason the methods can often be greedy and
do not necessarily use the network structure or all information in the problem. Furthermore,
it is often important to use the problem structure to make the bounding methods even more
efficient. We choose to implement two types of bounding methods, resource bounds and
completion bounds, to improve the computational time of the labeling algorithm. These are
presented in Section 4.1 and 4.2, respectively.

4.1 Resource Bounds
The main idea behind resource bounds is that if there is not enough resources left to reach
the end node, a label can be discarded – even if there still are resource feasible extensions to
some nodes. We implement resource bounds for battery feasibility and time feasibility, as
they are the only resources that directly can prevent feasible completions of a path. The
resource bounds are implemented in the Extend(Li, j) function.

When formulating our resource bounds, inspiration is taken from the criterion W r + wr
ij +

wr
jd > W r

max suggested by Boland et al. [3], where W r is the consumption of resource r

along the partial path, wij the consumption on the arc (i, j), and wr
jd a lower bound on the

resource consumption from node j to the depot.
Starting with battery feasibility, it is checked that the partial path can reach the end

node or a charger without emptying the battery. For a node j ∈ V , let rjξ be the energy
consumption to travel from j to the closest node that is either a charger or the end node,
i.e. ξ ∈ R ∪ {d}. If the current battery level together with the available charging time is
not enough to reach ξ, the label can be discarded. This is done by checking if T energy

j +∑
p∈P ρpT

mrtp

j − rjξ < 0.
For time feasibility, we generate an optimistic bound on the time it takes to reach the

end node and use this to check that the end node can be reached within the max time limit.
Beyond travel time we also consider possible extra charging time that is needed to reach
the end node. In order to make sure it is an optimistic bound, i.e. no labels are discarded
wrongly, it is assumed that charging can be done “on the road” i.e. discarding the possible
extra travel time and energy it takes to reach a charging station. For the same reason it is
also assumed that the recharge is done at the fastest charging rate, ρ1. To formulate the
condition, we first need to calculate the possible required additional energy to reach the end
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node, which is given by Yj = max{0, rjd − T energy
j }, where rjd is the energy consumption

to reach the depot from current node j ∈ N . The feasibility check can then be done by
T time

j + tjd + Yj/ρ1 > Tend. If the inequality holds, the label is discarded.

4.2 Completion Bounds
For completion bounds, the idea is to discard labels that are guaranteed to not be completed
to a better solution than the current best solution. This is done by generating an optimistic
bound on the cost of completion of the path, denoted zLB. A label Lj with current cost
T cost

j , can then be discarded if T cost
j + zLB > UB, where UB is the current upper bound

on the cost for a finished path. We choose to calculate two completion bounds, one by
solving a knapsack problem with respect to the vehicle load constraint and one by solving a
problem that takes both travel time and charging time into account. Both are inspired by
the knapsack bound formulation of Righini and Salani [14].

For the load-based bound, the implementation is similar to the formulation of [14], but
with some adjustments to our problem. They do not have charging nodes, but as it turns
out, the charging nodes can be disregarded in the calculation of the bound. The reason for
this is twofold, firstly, the battery constraints are relaxed in the bound, so visits to chargers
are not required for feasibility reasons. Secondly, in a standard column generation context,
the dual variables of the charging nodes are non-existent as there are no master constraints
related to them, and it can therefore never be profitable to visit chargers assuming positive
initial costs. With this in mind, let then S be the set of already visited customers. We can
then define the continuous decision variable yk ∈ [0, 1], k ∈ V \ S that state how much a
customer is visited.

We define the cost of visiting a node i ∈ N as the cost of its cheapest outgoing arc,
i.e. ui = minl∈N\R cil. This is used to get the cost of visiting a customer in the case when
i ∈ N \ S which we only would want to do if ui is negative. It is also used to get the cost
of leaving the current node j in the case when i = j, which is necessary to get the right
number of arcs in the solution. Compared to [14], we consider the outgoing arcs from the
nodes k ∈ N instead of the incoming arcs to calculate the least cost since the service time
in our case is included in the outgoing arcs and not the incoming arcs. Note also that to
calculate the cost for visiting a customer, outgoing arcs to charging nodes are disregarded,
which is valid thanks to the relaxed battery constraints and the non-profitability of visiting
charging nodes. This strengthens the bound in the case where the closest node to a customer
node is a charging station since the arc between them would then be the arc with the least
cost. The load-based completion bound for a label Lj is presented in Equation (12).

zL = min
∑

k∈N\S

ukyk + uj

s.t. T load
j +

∑
k∈N\S

qkyk ≤ C (12)

0 ≤ yk ≤ 1, ∀k ∈ N \ S

Another important adjustment compared to the formulation of Righini and Salani
[14] is that when selecting the cheapest outgoing arc for a node, all arcs to customer
nodes are considered, not just arcs to not visited customers, i.e. minl∈N\R ckl instead of
minl∈N\(S∪R) ckl. Although the second formulation of the two generates a stronger bound, it
is more computationally expensive, since the least arc costs must be computed each time the
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bounding method is used. With our formulation, however, the least cost arc of a node, and
further the least time and least energy consumption arc, which will be used in the second
bound, can be precomputed.

The time-based bound can be seen as an extended version of a knapsack problem on
maximal route time. It considers arc travel time and, to make sure that the battery level
stays positive, the possible extra required charging time. To obtain a lower bound, the same
assumptions as in the resource bounds are made, i.e. it is assumed that the charging can be
done “on the road” and at the fastest charging rate, ρ1. Most of the notation is the same as
in the vehicle load bound, but some new parameters and variables need to be introduced. To
handle the extra potential charging time, a new continuous variable ζ is introduced, which is
the total extra charging energy that needs to be added in order to ensure battery feasibility.
We also introduce the minimum energy consumption ri of visiting a node i ∈ V , and the
minimum travel time ti to visit a node, i ∈ V . Both are calculated in the same manner as
the lowest cost, ui, by finding the cheapest outgoing arc from a node i ∈ V for energy and
time respectively, i.e. ri = minl∈N\R ril and ti = minl∈N\R til. The time-based completion
bound for a label Lj is presented in Equation (13).

zT = min
∑

k∈N\S

ukyk + uj

s.t. T time
j + tj + ζ/ρ1 +

∑
k∈N\S

tkyk ≤ Tmax

rj +
∑

k∈N\S

rkyk ≤ ζ + T energy
j (13)

0 ≤ yk ≤ 1, ∀k ∈ N \ S

0 ≤ ζ

Even if zT generates a good bound, it is not as straightforward to calculate efficiently as
zL. It can always be solved with an LP-solver, but that would not be that effective. However,
if we assume that the problem instance has the properties that t1 ≥ t2 ⇒ r1 ≥ r2, then
we can use a greedy algorithm to calculate the bound, presented in Algorithm 2. Note
that this assumption holds for the instances tested in this paper, the EVRPTW dataset
of Schneider et al. [15], where the relation between travel time and energy consumption
is linear, and the service time are same for all customers in one instance. As input to the
algorithm we precompute the most profitable customers and add them to a list, denoted K,
which is ordered by increasing value of the quotients uk

tk+rk/ρ1
. The algorithm then iterates

over the nodes in this order and adds the most profitable nodes to the path as long as the
max time limit is not violated.

4.2.1 Integration of ng-routes with Completion Bounds
Another popular acceleration strategy for a labeling algorithm is ng-routes, first suggested
by [1]. In ng-routes, the elementarity constraints on the paths are partly relaxed allowing
revisits to a customer as long as the customer is not in the ng-set of the current node. The
ng-set is unique for each node and contains the nodes for which elementarity is checked
when extending a label. If a customer is not in the ng-set of the node we are extending
the label from, it can be added to the path even if it has been visited before, allowing
for subtours. The size of the ng-set, n, is set according to what fits the problem and is
often chosen to be the n closest customers to the node, including itself. This is also the
approach we have chosen to use. One of the benefits of using ng-routes is that if the best
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Algorithm 2 Completion bound with time and battery constraints.

1 C ← 0 // Initial cost
2 σ ← max{0, (rj − T energy)/ρ1}+ tj // Time needed to leave j

3 T ← T end − T time
j − σ // Time left

4 E ← max{0, T energy
j − rj} // Remaining energy

5 i← 0
6 while T ≥ 0 do
7 // Find the most profitable customer to add
8 k ← K[i]
9 // Check that the customer can be added and have a positive effect

10 if T cust
j [k ] = 0 ∧ uk < 0 then

11 // Time needed to add customer k

12 σ ← max{0, (rk − E)/ρ1}+ tk

13 // Check if customer can be fully added, else add partially
14 if T − σ ≥ 0 then
15 C ← C + uk

16 T ← T − σ

17 E ← max{0, E − rj}
18 else
19 // Percentage that can be added
20 λ← (σ − T )/σ

21 C ← C + λuk

22 T ← T − λσ

23 E ← E + λrk

24 end
25 end
26 i++
27 end

path is elementary when finishing the labeling algorithm, it will be also be an optimal
elementary path. Using ng-routes is a powerful acceleration strategy. It can, however, not be
used directly with the implemented completion bounds. The reason for this complication
is that the implemented completion bounds create elementary completions to the partial
paths, which are not necessarily optimistic completions to an ng-route. Since subtours are
allowed for ng-routes, it has to be considered that a node can be added multiple times to
the completion of the path, and the calculation of completion bounds need to be adjusted
accordingly.

There are some existing approaches to combine ng-routes with completion bounds in the
literature, but none really fits with our problem. For implementations where each problem is
solved several times to find elementarity, i.e. iteratively extending the size of the ng-set until
the optimal path is elementary, labels from the previous iteration can be used to compute
lower bounds on the reduced cost of the completion of a path (used by [13, 4, 12]). Another
approach to use completion bounds in the ng-route ESPPRC was suggested by Baldacci et
al. [1], and was applied to the electric ng-route SPPRC by Duman et al. [6]. They use the
completion bounds as a big part of the solution method starting each solving process by,
for each customer, running an exact labeling algorithm with the customer as a start node
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and with tstart = Tmax −∆t as the start time. The results from these runs are then used as
lower bounds when solving again, but with the start time tstart = Tmax − 2∆t. This is then
repeated until the full problem is solved.

However, we want to integrate completion bounds with ng-routes without significant
changes to the algorithm. When computing the completion bound we therefore assume that
there are no elementary constraints, to ensure it to be an optimistic bound on the solutions
also in the case of using ng-routes. However, by considering other constraints, the bound
can be strengthened. Firstly a customer cannot be added at all if it is not reachable from
the current node, i.e. if T time

j + tjl < ll. Secondly, given it is reachable, an upper bound on
the total number of times a node can be added to the path can be calculated. Provided the
least time outgoing arc tmin

lk from node l and the least time incoming arc tmin
kl to node l, then

tmin
lk + tmin

kl is the minimum time required to leave and come back to node l. Furthermore, the
earliest arrival at the node l can be calculated as T start

l = max{T time
j + tjl, el}, comparing

the earliest allowed arrival el with the possible earliest arrival given the label T time
j at node

j and the travel time tjl. Using both of these, an upper bound on the number of visits at
node l can be calculated by

⌊
ll−T start

l

tmin
lk

+tmin
kl

+ 1
⌋
.

To further strengthen the upper bound on the number of visits, the elementary constraints
that exist in an ng-routes setting can be taken into consideration as follows. In order to be
allowed to come back to a node l that already has been visited, the route must be extended
from a node k for which l is not in its ng-set. Provided the least time outgoing arc from
node l to a node for which l is not in its ng-set t

minng
lk and the least time incoming arc from a

node for which l is not in its ng-set to node l, t
minng
kl , then t

minng
lk + t

minng
kl can be used instead

as the minimum time required to leave and come back to node l. The strengthened upper
bound on the number of visits at node l can hence be calculated as⌊

ll − T start
l

t
minng
lk + t

minng
kl

+ 1
⌋

.

In practice this adaption to make completion bounds work with ng-routes is implemented
by adding nodes to the path in order of decreasing profitability given that it is reachable
and that the multiplicity is not violated. Note that in order to ensure an optimistic bound,
given the ng-setting, a node can be added multiple times in a row as long as the multiplicity
constraint is not violated and that there is place left in the knapsack.

5 Experimental Results

The performance of the labeling algorithm with the suggested acceleration strategies is
evaluated using the EVRPTW benchmark data set of Schneider et al. [15] which is based on
Solomon’s benchmark instances for the VRPTW [16]. Tests are performed on all 29 instances
from the groups C100, RC100, and R100, that have 100 customer nodes with narrow time
windows and 20 charging nodes with no time windows. Each instance is tested in three
different simulated column generation environments, resulting in a total of 3 × 27 = 89
instances.

To simulate a column generation environment, values of the dual variables for customers,
πi, i ∈ N , are generated as random integer variables from a uniform distribution on the
interval {0, . . . , 20} as suggested by Feillet et al. [8]. These are used to update the arc costs
of outgoing arcs from customers nodes i ∈ N : cij = dij − πi, where dij is the Euclidean
distance between node i and node j. For all other nodes i ∈ V \N the outgoing arc costs
are set to cij = dij . The generated dual values are available in the public repo (available at
https://gitlab.liu.se/eliro15/labeling-algorithm-for-evrptw-plr).
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Table 1 Number of instances solved for each group and acceleration strategy

Series basic ng-routes bounds load bounds time ng-routes+bounds
C100 21/27 27/27 (20) 21/27 21/27 27/27 (20)

RC100 21/24 24/24 (19) 23/24 24/24 24/24 (19)
R100 18/36 25/36 (16) 20/36 21/36 29/36 (17)
Total 60/87 76/87 (55) 64/87 66/87 80/87 (56)

Table 2 Aggregated results for each group and acceleration strategy

Series basic ng-routes bounds load bounds time ng-routes+bounds
t̄ t̄ ∆t[%] t̄ ∆t[%] t̄ ∆t[%] t̄ ∆t[%]

C100 15.11 3.09 -79.60 9.06 -40.07 1.80 -88.06 0.74 -95.11
RC100 24.33 12.69 -47.87 14.15 -41.84 11.83 -51.38 6.17 -74.64
R100 620.67 515.09 -17.01 417.23 -32.79 256.75 -58.63 165.01 -73.41

In the dataset for EVRPTW it is assumed that the charging curve is linear, where the
battery capacity Q and the inverse recharging rate ω is unique for each instance. To adapt
the dataset to a piecewise linear charging function, we fit the charging curve in Figure 1, by
scaling the time of breakpoints by ωQ told

1.01 and the battery levels by Q eold
16 . From this it is

then easy to calculate, for each instance, the set of pieces in the piecewise linear charging
function with its corresponding breakpoints and recharging rates which are available in our
public repo.

Before running the algorithm the graph is reduced by removing infeasible arcs, i.e. arcs
between nodes i ∈ V and j ∈ V such that ei + tij > lj , qi + qj > C or rij > Q.

The algorithm was implemented in C++ and compiled with GCC 11.4.0. It was tested on
a PC with AMD Ryzen Pro565OU CPU at 2.301 GHz, 32 GB RAM on Ubuntu with WSL.

We report results of each instance solved using (i) no acceleration strategy, (ii) ng-routes,
(iii) resource bounds + load-based completion bound, (iv) resource bounds + time-based
completion bound. Finally, a combination of all acceleration strategies is tested (v): ng-
routes + resource bounds + load-based completion bound + time-based completion bound.
A maximum time of 1 hour was set for each instance.

To minimize unnecessary computational effort, the completion bounds are only computed
if the resource consumption for the constrained resource exceeds 20% of the total resource
availability. This threshold was chosen from pretrial tests (Figure 2 in Appendix A) of
different thresholds on resource consumption. In the combined setting, the time-based bound
is computed first and if T cost

j + zT > UB the label is discarded straight away. Otherwise,
the load-based bound is computed to check if T cost

j + zL > UB.
The size of the ng-sets were set to 10 (C100), 15 (RC100), and 20 (R100) nodes respectively.

For each group of instances, these were the smallest sizes of multiples of 5 of the ng-sets for
which the optimal solutions of at least half of the instances were elementary.

In Table 1, we report how many instances from each group were solved to optimality
within the 1-hour time limit. For the acceleration strategies using ng-routes, it is reported in
parentheses how many of the optimal paths were elementary. It is worth to remember that
in a column generation environment, as long as there is one elementary path with negative
reduced cost among the finished paths, the result is useful. Full results for each instance and
acceleration strategy can be found in Table 3–Table 5 in Appendix B.
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Table 2 shows aggregated time results per group and acceleration strategy. To make a
fair comparison, only instances that were solved with an elementary optimal solution by all
acceleration strategies within the 1-hour limit are included in the calculation. Deviation for
a strategy x and group y is calculated compared to the basic version by ∆t̄y

x = 100 · (t̄y
x −

t̄y
basic)/t̄y

basic.
Comparing the results in Table 1 and Table 2, we can state that the combination of

ng-routes and completion bounds (v) is the most effective acceleration strategy. It solves
the largest number of instances within the time limit, and achieves the largest reduction
in computational time compared to the basic version, from −73% to −95% in average,
depending on the instance group. When it comes to the computational time, the pattern for
the instances not included in the aggregated results is the same as for the instances included,
i.e. the combination of ng-routes and completion bounds is the most effective strategy.

Comparing the two implemented completion bounds, the time-based bound (iv) is on
average more efficient than the load-based bound (iii) for all groups of instances, and for
some the difference is significant. This indicates that the vehicle load is not as often a binding
constraint as the time constraint for the instances tested, at least when taking charging time
into account.

Looking a bit closer at the full results, Table 3–Table 5 in Appendix B, it can be seen
that the main difference in computational time between the other acceleration strategies and
acceleration strategy (v) shows on the more difficult instances. On instances that are easier
to solve, the difference in computational time between the strategies is not as large, and often
one of the plain bounding strategies is the most effective. The reason for this is most likely
that completion bounds generated when combining it with ng-routes is weaker compared to
when not combined with ng-routes, and the usage of ng-routes does not compensate for this
on easier instances.

6 Conclusion

In this paper, we propose bounding methods to accelerate a labelling algorithm used for
solving the ESPPRC as the pricing problem of the EVRPTW with a piecewise linear charging
curve and partial recharging. Two types of bounding methods are implemented, resource
bounds and completion bounds. For completion bounds we implemented two versions, one
load based and one time based. The latter is a new stronger completion bound that takes
travel time as well as charging time into account. A strength of both the completion bounds
is that they are cheap to compute, since the information required can be preprocessed.
Furthermore, we propose a way to integrate the bounding methods with ng-routes, another
popular acceleration strategy.

Experimental results show that the combination of ng-routes and bounding methods was
most efficient, reducing the computational time from −73% to −95% in average, depending
on the instance group, compared to a basic labelling algorithm on benchmark instances with
100 customers and 20 chargers. The results also show that the time-based completion bound
was more efficient than the load-based completion bound for all groups of instances.

Our efficient way of computing the time-based completion bound uses a specific relation
between travel time and energy consumption. Of interest for future work is to investigate
efficient ways of computing this time-based completion bound when these assumptions do
not hold.

ATMOS 2024
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Figure 2 Average computation times using different bounding thresholds.
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B Results

We report results of each instance in Table 3–Table 5, divided by the three simulated
column generation environments, solved using (i) no acceleration strategy, (ii) ng-routes,
(iii) resource bounds + load-based completion bound, (iv) resource bounds + time-based
completion bound and (v): ng-routes + resource bounds + load-based completion bound +
time-based completion bound. For each instance and strategy we report the solving time
in seconds, and how many non-dominated labels were left at the end of the algorithm, in
thousands. We indicate for the results using ng-routes with a star which instances did not
have an elementary optimal solution. The ng-set size was set to 10, 15, and 20 for the
instance groups C100, RC100, and R100, respectively. The instances that could not be
solved within the 1-hour time limit are indicated with ’-’.
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Table 3 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. First simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 10.57 0.72 13.64 1.06 7.02 0.38 6.64 0.26 6.91 0.33
c102 292.68 1639.79 61.19* 20.03* 257.23 828.44 153.99 156.62 41.22* 7.04*
c103 - - 187.81 450.61 - - - - 122.50 81.83
c104 - - 300.45* 1136.58* - - - - 237.44* 509.01*
c105 13.75 1.22 16.81 1.49 11.00 0.76 7.28 0.38 8.65 0.42
c106 22.98 2.72 25.80 2.97 19.07 1.65 8.87 0.48 9.04 0.39
c107 16.64 1.76 19.37 2.21 14.03 1.20 8.73 0.54 10.00 0.57
c108 32.11 5.03 34.28 4.65 27.84 3.05 15.90 1.01 15.64 0.85
c109 70.44 21.13 58.71 12.37 63.35 11.06 39.55 3.57 29.65 2.34
rc101 9.92 0.23 16.29 0.70 6.19 0.15 5.42 0.13 7.46 0.19
rc102 56.39 4.33 41.89* 2.77* 48.15 2.75 46.68 2.56 31.40* 1.33*
rc103 331.06 182.51 124.35 24.99 277.25 94.08 257.62 74.68 100.38 10.83
rc104 - - 232.14 93.65 - - 1013.24 2355.03 182.59 34.67
rc105 32.25 1.67 42.00 3.69 26.43 1.08 25.69 1.03 29.92 1.34
rc106 26.83 1.08 38.22 2.91 22.44 0.76 21.59 0.71 26.95 1.02
rc107 128.75 18.88 127.96 21.16 114.46 12.95 113.12 10.91 107.04 10.32
rc108 284.19 100.13 223.03 72.62 254.82 62.64 250.77 52.10 190.37 33.86
r101 9.96 0.24 30.10 2.85 4.08 0.08 1.86 0.05 2.66 0.07
r102 268.04 455.46 192.05* 676.26* 187.85 152.03 165.44 105.60 89.49* 76.10*
r103 - - 580.34* 3383.36* - - - - 375.53* 847.43*
r104 - - - - - - - - - -
r105 32.35 2.15 79.55 26.84 13.14 0.50 8.39 0.32 10.85 0.51
r106 361.49 1957.72 258.61* 1365.62* 252.39 659.79 221.34 563.77 127.36* 171.22*
r107 - - - - - - - - 250.37* 1364.76*
r108 - - - - - - - - - -
r109 77.27 11.18 124.72 57.29 45.36 3.40 28.16 2.07 35.72 3.38
r110 609.45 1034.56 454.91 773.58 528.69 620.33 388.87 423.37 284.19 241.75
r111 617.17 1218.69 408.33 996.71 538.91 709.02 398.09 509.14 268.08 323.70
r112 - - - - - - - - 788.28 3323.50
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Table 4 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. Second simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 6.26 0.30 8.07 0.30 4.15 0.17 3.04 0.10 3.60 0.12
c102 262.03 993.25 41.29* 5.61* 232.83 516.59 129.38 64.23 22.86* 2.10*
c103 - - 129.01* 82.20* - - - - 96.60* 26.76*
c104 - - 133.37* 229.87* - - - - 104.75* 80.61*
c105 9.80 0.58 12.32 0.67 7.69 0.41 5.69 0.22 6.75 0.25
c106 16.49 1.41 18.35 1.31 13.99 0.91 8.88 0.38 10.74 0.44
c107 10.33 0.78 12.41 0.81 8.78 0.58 6.56 0.32 7.36 0.34
c108 23.15 2.71 24.61 2.18 20.09 1.70 13.79 0.79 15.04 0.78
c109 46.66 10.22 36.66 5.27 43.07 6.25 32.68 2.81 26.32 2.00
rc101 9.22 0.25 14.67 0.63 4.92 0.13 4.04 0.12 5.29 0.16
rc102 63.35 5.80 50.94 4.69 42.70 2.34 39.28 1.96 33.93 2.67
rc103 233.18 97.14 135.98* 28.09* 179.02 42.10 175.89 43.30 105.43* 13.47*
rc104 - - 231.74 85.70 1254.22 2238.00 1077.48 1492.99 185.34 37.29
rc105 23.85 0.89 33.49 1.98 18.26 0.54 17.52 0.53 21.51 0.73
rc106 21.40 0.81 31.36 1.76 16.33 0.51 15.46 0.51 19.52 0.68
rc107 78.47 8.19 88.11 11.74 68.98 5.24 67.85 4.96 71.19 5.23
rc108 161.45 39.18 135.66 24.69 140.67 19.64 135.28 19.30 107.70 10.69
r101 5.49 0.11 14.35 0.65 3.24 0.07 1.94 0.05 2.73 0.07
r102 509.03 1610.95 264.09 672.55 415.35 873.40 341.72 547.88 177.42 201.77
r103 - - 388.42* 1165.05* - - - - 219.83* 232.07*
r104 - - - - - - - - - -
r105 15.31 0.56 36.57 4.35 8.11 0.24 6.22 0.19 8.18 0.29
r106 - - 411.79* 1755.61* - - 714.61 2795.80 289.07* 652.41*
r107 - - 519.23* 2438.46* - - - - 304.52* 571.81*
r108 - - - - - - - - - -
r109 64.95 13.62 107.91 72.88 48.34 5.45 41.61 4.12 52.29 6.84
r110 379.97 612.04 335.82 628.84 332.98 317.98 290.90 200.27 237.60 146.19
r111 415.15 640.51 339.85 546.87 370.74 274.64 332.89 270.65 250.83 178.28
r112 - - 808.89* 3512.37* - - - - 645.10* 1889.91*
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Table 5 C100, RC100 and R100: basic version, ng-routes, completion bounds and ng-routes with
bounds. Third simulated column generation environment.

basic ng-routes bound load bound time ng+bounds
Labels Time Labels Time Labels Time Labels Time Labels Time

c101 10.74 0.56 14.58 0.68 6.35 0.25 5.26 0.20 6.28 0.25
c102 189.41 212.56 43.98 4.73 158.19 126.25 89.23 18.95 23.85 1.50
c103 - - 145.53* 120.09* - - - - 88.56* 37.24*
c104 - - 250.34* 347.26* - - - - 177.54* 130.94*
c105 14.92 0.81 19.44 1.11 11.21 0.53 7.25 0.28 8.65 0.31
c106 24.54 1.81 28.38 2.02 20.27 1.25 10.23 0.42 9.86 0.41
c107 16.19 1.03 20.00 1.29 13.48 0.75 9.10 0.39 10.46 0.50
c108 33.56 4.07 35.73 3.97 28.20 2.55 15.52 0.84 13.28 0.58
c109 67.46 17.71 54.62 9.49 59.27 12.37 36.37 3.24 22.81 1.65
rc101 8.72 0.18 14.43 0.50 5.70 0.12 5.05 0.12 7.06 0.19
rc102 81.43 10.20 42.28* 2.91* 69.06 6.66 65.75 6.87 31.21* 1.61*
rc103 277.02 170.70 94.47* 11.93* 228.45 118.19 213.85 102.08 69.46* 5.94*
rc104 - - 202.47* 54.83* 1212.49 2985.51 1078.13 2329.54 169.58* 32.54*
rc105 26.29 1.04 34.30 2.21 20.42 0.70 19.25 0.68 23.30 0.94
rc106 23.22 0.75 31.87 1.56 17.90 0.51 16.92 0.51 21.42 0.72
rc107 105.39 10.72 110.37 13.92 90.57 8.16 87.71 7.46 88.95 8.26
rc108 198.30 41.37 163.56 25.93 175.65 31.02 169.05 25.43 135.59 18.03
r101 8.48 0.28 22.52 2.25 3.79 0.09 1.50 0.05 2.01 0.07
r102 - - 235.24* 1178.80* 291.00 1939.15 193.89 891.05 117.96* 266.17*
r103 - - - - - - - - 343.92* 3242.89*
r104 - - - - - - - - - -
r105 26.81 1.96 59.52 15.06 12.38 0.61 5.68 0.29 7.25 0.45
r106 - - 278.71* 1272.39* 332.47 2962.30 217.65 1046.66 134.17* 244.67*
r107 - - - - - - - - 284.58* 2133.11*
r108 - - - - - - - - - -
r109 82.11 32.52 129.89 196.64 51.20 11.44 26.56 4.59 36.29 9.02
r110 653.41 1482.01 456.48 1007.39 563.37 1211.10 400.06 791.16 260.14 332.05
r111 848.99 3269.41 615.19 3239.52 730.46 2548.20 481.84 1353.81 376.60 1195.76
r112 - - - - - - - - - -
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Abstract
We present novel extensions of the Periodic Event Scheduling Problem (PESP) that integrate the
assignment of activities to infrastructure elements. An application of this is railway timetabling, as
station and platform capacities are limited and need to be taken into account. We show that an
assignment of activities to platforms can always be made periodic, and that it can be beneficial to
allow larger periods for the assignment than for the timetable. We present mixed-integer programming
formulations for the general problem, as well as for the practically relevant case when multiple
platforms can be considered equivalent, for which we present a bipartite matching approach. We
finally test and compare these models on real-world instances.
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1 Introduction

Out of the many interacting pieces of public transportation services, a key determinant in
the puzzle is the timetable. This is an omnipresent yet flexible concern in the operators’
minds [3], as well as one of the data of most interest to passengers [14]. These are but two
of the reasons for which timetabling and in particular periodic timetabling has received
substantial attention in the past. The modeling framework of the Periodic Event Scheduling
Problem (PESP) was initially formulated by Serafini and Ukovich [16], quickly found to
have rich and interesting underlying structures [1, 9, 12, 13], and studied ever since, also in
integration with various other problems, such as [5, 10, 11, 15, 17].

Of special interest in this work is the question of solving PESP while making sure that
the produced timetable accounts for various infrastructural constraints of high practical
interest in railway operations, involving safety of operations and physical occupation of
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tracks. In particular, we focus on what is called track occupation problem in [11], which
entails ensuring that no two vehicles are ever scheduled to occupy the same point in time
and space. This is of particular interest, for example, when planning dwelling activities of
trains at the same platform. The need to respect a given association of the activities to be
scheduled to infrastructure elements led to Infrastructure-Aware PESP (IPESP), which can
be formulated as a mixed-integer linear program, by using well-known PESP constraints as
foundation [2, 11].

We present two main contributions: At first, we generalize IPESP to Infrastructure-Aware
PESP with Assignment (IPESPA), by integrating the assignment of activities to infrastructure
elements into the periodic timetabling problem. We show that such an assignment can always
be made periodic, without impact on the timetable, and highlight how it can be advantageous
for the period of such an infrastructure assignment to be larger than the one of the timetable,
with an elucidatory example. We then also present a mixed-integer programming formulation
for IPESPA, that generalizes the so-called Q0-constraints of [11].

The setting above is for the general case, in which we allow any map of activities to
sets of infrastructure elements. In a second step, we then restrict our inquiry to a more
common and practical use-case, where multiple infrastructure elements can be considered
as equivalent. We then assume that activities can only be assigned to one element, but
this element is allowed to have a capacity larger than one. For example, the two sides of a
platform are oftentimes equivalent options to choose, and we might consider such a platform
as an element with capacity two. The main achievement is a mixed-integer programming
formulation for this Infrastructure-Aware PESP with Capacities (IPESPC), a model much
more compact than the IPESPA model, based on matchings in certain auxiliary bipartite
graphs. Finally, this allows us also to derive two new alternative mixed-integer programming
formulations for standard IPESP, i.e., IPESPC with unit capacities, beyond those of [2, 11].

We compare our new formulations on three realistic instances, both in the case of unit
and larger capacities, and demonstrate their computational feasibility and practical benefit.

Section 2 recalls the Periodic Event Scheduling Problem and its infrastructure-aware
extension IPESP. Section 3 introduces IPESPA, discusses the theory of general infrastructure
assignments, and presents a mixed-integer programming formulation. In Section 4, we
restrict to IPESPC and present a matching-based MIP model, along with the resulting new
formulations for IPESP. We evaluate the computational power of our models in Section 5,
before concluding the paper in Section 6.

The present work is a direct consequence of the fruitful connections and conversations
that were had during ATMOS 2023 [4], and we thereby thank the organizing committee for
fostering the transport optimization community.

2 Periodic Event Scheduling and Infrastructure Awareness

The Periodic Event Scheduling Problem (PESP) is the standard model to compute and
optimize timetables for public transport. It is formulated as follows.

▶ Definition 1 ([16]). Consider a directed graph G with vertex set V (G) and arc set A(G),
together with T ∈ N, vectors ℓ, u ∈ RA(G), and w ∈ RA(G)

≥0 . The Periodic Event Scheduling
Problem (PESP) is to find vectors π ∈ RV (G) and x ∈ RA(G) such that
a) πj − πi ≡ xa mod T for all a = (i, j) ∈ A(G),
b) ℓ ≤ x ≤ u,
c) w⊤x is minimum,
or to decide that no such π and x exist.
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In public transportation practice the directed graph G is oftentimes a so called event-activity
network. There nodes V (G) are the events, typically arrival or departure events, whereas
arcs A(G) are the activities, typically driving from a departure to an arrival, or dwelling
from an arrival to a departure. The number T ∈ N is the period time, and determines
after how long each event should repeat. Then the vectors π and x sought by PESP are
called periodic timetable and periodic tension, respectively, where the former represents
T -periodic timestamps denoting at which point of each period each event should occur, and
the latter instead denotes the duration of the activities in-between events. PESP instances
are commonly denoted as (G, T, ℓ, u, w).

Note that the simultaneous use of timetable and tension variables is primarily for ease
of expression, since one can always be recovered from the other. In fact, given a periodic
timetable π, a corresponding tension is quickly found by setting xa := [πj − πi − ℓa]T + ℓa

for every a = (i, j) ∈ A(G), where [·]T denotes the modulo T operator with values in [0, T ).
Likewise, given a periodic tension, a corresponding timetable is quickly found by a connected
graph traversal [7, Theorem 9.8].

For in-depth analysis of the many properties of PESP, we refer to the literature, starting
with [8]. Multiple mixed-integer program formulations for PESP are known [7]. For simplicity,
here we choose the standard formulation [16], which models PESP by linearizing the modulo
constraints by use of auxiliary integer variables pij , called periodic offsets:

min
∑

(i,j)∈A(G)

wijxij (1a)

s.t. πj − πi + Tpij = xij ∀(i, j) ∈ A(G), (1b)
0 ≤ πi < T ∀i ∈ V (G), (1c)

ℓij ≤ xij ≤ uij ∀(i, j) ∈ A(G), (1d)
pij ∈ Z ∀(i, j) ∈ A(G). (1e)

Now we continue with the basic extension of PESP with infrastructure awareness, as
per [2]. First of all we define an infrastructure map η : A → E, mapping certain arcs
A ⊆ A(G) to a set of infrastructure elements E. This map encodes an assignment of
activities to infrastructure, implying where those activities will physically take place within
the network. We denote Ae := η−1(e), for e ∈ E. For each infrastructure element we also
have a minimum headway time h ∈ RE

≥0, indicating how long this element needs to be
unoccupied between uses of different vehicles. As in [2], we assume that for each e ∈ E either
he > 0 or ℓa > 0 for all a ∈ Ae, to avoid pathological cases.

Considering then arcs a1 = (i1, j1) and a2 = (i2, j2) in A, and such that a1 ̸= a2 and
η(a1) = η(a2), we say that a1 does not h-overlap a2 if it holds that

[πi2 − πi1 ]T ≥ xa1 + he. (2)

The constraint (2) is called Q0-constraint in [11], but there is also another possible equivalent
formulation, namely the Q4-constraint (“butterfly constraint”). These entail, for each pair of
arcs a1 and a2 as above, the addition of auxiliary arcs (j1, i2) and (j2, i1) with lower bound
he and upper bound T − he, and then imposing total tension exactly equal to T along the
4-cycle q(a1, a2) := (i1, j1, i2, j2, i1). That is,∑

a∈q(a1,a2)

xa = T. (3)

Then (3) holds for q(a1, a2) if and only if a1 and a2 do not h-overlap each other [11].
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0 T 2T
a1 a1

a2 a2

a3 a3 a3a3a3

Platform 1

Platform 2

Platform 3

(a) T -periodic platform assignment with 3 platforms.

0 T 2T
a1

a1a2

a2a3

a3a3 a3a3

Platform 1

Platform 2

(b) 2T -periodic platform assignment with 2 platforms.

Figure 1 Two platform assignments of the same three activities.

We say that a set S ⊆ A is h-conflict-free if no arc in S h-overlaps another, and
furthermore xa + he ≤ T for all e ∈ E and all a ∈ S ∩ Ae.

▶ Definition 2 ([2]). Let (G, T, ℓ, u, w) be a PESP instance, let η : A → E be an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP (IPESP) is to find a solution (π, x)
to PESP on (G, T, ℓ, u, w) such that A is h-conflict-free and the solution is optimal, or to
decide that no such solution exists.

The PESP mixed-integer program (1), together with either all necessary Q0-constraints (2)
or Q4-constraints (3), solves Infrastructure-Aware PESP.

This extended form of PESP implicitly assumes two rather strict properties. Firstly, the
map η is, by definition, mapping each arc in A to a single e ∈ E, thereby presuming that
such an infrastructure assignment has already been fixed. This implies that every activity
must repeat every period always on the same infrastructure. However common, this need
not be the case, and as we will see in the next section, it shall not.

3 General Infrastructure Awareness with Flexible Infrastructure Maps

Let us begin by considering the following illustrative example, motivating our work.

▶ Example 3. Consider an IPESP situation where we have T = 30 minutes, and three
dwelling activities ak = (ik, jk) for k ∈ {1, 2, 3}. Suppose further that there are three
platforms e1, e2, e3 with η(ak) = ek for all k ∈ {1, 2, 3}, without headway requirements. Let
πi1 = 0, πi2 = 10, πi3 = 20, and πj1 = 20, πj2 = 0, πj3 = 10, meaning that each dwelling
activity is scheduled for 20 min. In Figure 1a, we see how this would play out. Crucially,
this leaves each platform unoccupied for 10 minutes per period of 30 minutes.

Suppose we were now to allow all activities to be assigned to either platform, and possibly
to different platforms at different periodic repetitions. Then, the configuration of Figure 1b
would be possible. With the same timetable as before, only two platforms are required now.
This enables a more efficient use of the existing infrastructure.

Moreover, IPESP always assumes that no infrastructure element can be occupied for
longer than T . This might however be practically necessary, e.g., due to regulations on
minimum turnaround times.
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3.1 Problem Definition and Periodizability of Assignments
We now present the tools to do timetabling while ensuring efficient use of the underlying
infrastructure. Consider the flexible infrastructure map η : A → E ⊆ 2E , and so having the
option to choose where to have activities occur. Given a periodic timetable π and tension x

on a PESP instance (G, T, ℓ, u, w), we call

I :=
{

I(k)
a

∣∣∣ a ∈ A, k ∈ Z
}

(4)

the realisation of (π, x), where I
(k)
a := [πi + kT, πi + kT + xij ] for k ∈ Z and a = (i, j) ∈ A.

Now, an infrastructure assignment is any map ν : I → E, and we say it is valid if we have
that ν

(
I

(k)
a

)
∈ η(a) for all I

(k)
a ∈ I. Furthermore, for a given infrastructure assignment ν

and an infrastructure element e ∈ E we define

Ie :=
{

[πi + kT, πi + kT + xij + he)
∣∣∣ ∀I(k)

a ∈ I : ν
(

I(k)
a

)
= e
}

, (5)

and we say ν is h-conflict-free if the intervals in Ie are pairwise disjoint for every e ∈ E.
It now comes natural to formulate the following.

▶ Definition 4. Let (G, T, ℓ, u, w) be a PESP instance and η : A → E ⊆ 2E an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP with Assignment (IPESPA) is to
find a solution (π, x) to PESP on (G, T, ℓ, u, w), together with a valid and h-conflict-free
infrastructure assignment ν, such that the solution is optimal, or to decide that no such
solution exists.

It is clear that were η not to be actually flexible, meaning |η(a)| = 1 for every a ∈ A, then
we would fall back into Definition 2 by fixing the only possible assignment ν(I(k)

a ) := η(a) for
all intervals in the realisation. Otherwise, this problem formulation allows for full flexibility
in the choice of infrastructure, which can change after any periodic repetition, within the
limits of η. This lack of structure and predictability may seem to be an issue of design, since
the solutions could even become indescribable in finite terms. Thankfully, this will turn out
not to be an issue. We say an infrastructure assignment ν is ω-periodic, for some ω ∈ N, if

ν(I(k)
a ) = ν(I(k)

a + ωT ), (6)

for every I
(k)
a ∈ I. In such a case, we call ω the infrastructural period of the assignment. As

it turns out, we are always able to restrict to such repeating patterns without losing any
underlying PESP solution.

▶ Theorem 5. Consider an instance (G, T, ℓ, u, w) of IPESPA with η : A → E ⊆ 2E, and a
solution (π, x) together with a valid and h-conflict-free infrastructure assignment ν. Then,
there exist ω ∈ N, with ω ≤ |E||E|, and a valid and h-conflict-free infrastructure assignment
σ such that σ is ω-periodic.

Proof. Let us consider I for the above instance and solution. All activities have a single
representative interval in I whose lower bound is in [pT, pT + T ), with p ∈ Z. This set of
representatives, which we denote by Fp, is finite. Even more so, considering for each e ∈ E

the one interval in Fp that is ν-assigned to e and with the minimum lower bound, there are
at most |E| such leading intervals. There are at most |E||E| ways to assign these intervals,
and so there exists a p′ ∈ Z such that p − |E||E| ≤ p′ ≤ p + |E||E|, and such that ν|Fp′

mirrors ν|Fp on all the leading intervals of Fp. By that, mirroring the whole of ν|Fp on Fp′

can be done without h-conflict. Then, without loss of generality, we assume that p < p′, and
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set ω := p′ − p. By construction ω ≤ |E||E|, and we can construct a valid, h-conflict-free,
and ω-periodic infrastructure assignment σ by setting

σ
(

I(k)
a

)
:= ν

(
I([k−p]ω)

a

)
. (7)

◀

The theorem ensures that IPESPA can be solved by restricting to periodic assignments,
whose maximum period is bounded by the instance. Note that the bound on ω can be
significantly improved if all headways are the same, i.e., he = he′ for any e, e′ ∈ E. In that
case, much along the lines of [6, Theorem 3.1], the bound becomes ω ≤ |E|!.

3.2 Pattern Functions and Conflict-Freeness
We will now construct a finitely described object from which a periodic infrastructure
assignment can be derived, and conclude this chapter by showing how to use said object to
formulate IPESPA as a mixed-integer program. As in Definition 4 we have a PESP instance,
an infrastructure map, and a vector of headways. Choosing some maximum infrastructural
period M ∈ N>0, we construct a pattern function H : A → P, that assigns to each arc in A
a pattern in

P :=
⋃
i|M

Ei = {(e1, . . . , ei) | e1, . . . , ei ∈ E and i divides M} . (8)

A pattern function is said to be valid if every image H(a) only contains elements of η(a). The
prescribed pattern is intended to be repeated ad infinitum. A corresponding infrastructure
assignment νH is quickly extracted from a pattern function H, by setting

νH

(
I(k)

a

)
:= H(a)[k]ma

∀a ∈ A, ∀k ∈ Z, (9)

where ma is the length of H(a), i.e., the number of entries. So constructed, νH is periodic, of
period at most M . Note that the choice of M is up to the planner and the model becomes
more flexible the more M is divisible.

▶ Example 6. Let us consider again Example 3 in the case where we allow to assign each
activity to each platform, i.e., η(ak) = {e1, e2} for all k ∈ {1, 2, 3}. The valid pattern
function associated to the infrastructure assignment in Figure 1b is given by H(a1) =
H(a3) = (e1, e2), H(a2) = (e2, e1), so that ma1 = ma2 = ma3 = 2.

We can now use pattern functions to formulate linear modulo constraints, that generalize
the Q0-constraints as presented in (2).

▶ Theorem 7. Consider a PESP instance (G, T, ℓ, u, w), an infrastructure map η : A →
E ⊆ 2E, headways h ∈ RE

≥0, and some PESP solution (π, x). Let H be a pattern function,
and denote by ma the length of the pattern H(a). Then, the infrastructure assignment νH is
h-conflict-free if and only if:
(a) For every arc a ∈ A and infrastructure element e ∈ H(a), we have

xa + he ≤ maT. (10)
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(b) For every a1, a2 ∈ A, with a1 = (i1, j1) and a2 = (i2, j2), with images under H both
containing the same infrastructure element e at indices p1 and p2 respectively, such that
either a1 ̸= a2 or p1 ̸= p2, we have

[πi2 + (p2 + k2ma2) T − πi1 − (p1 + k1ma1) T ]mT ≥ xa1 + he,

∀k1 ∈
{

0, . . . ,
m

ma1

− 1
}

, k2 ∈
{

0, . . . ,
m

ma2

− 1
}

,
(11)

where m := lcm(ma1 , ma2), and the indexing of the patterns starts at 0.

Proof. ( =⇒ ): If (a) is violated, then νH

(
I

(p)
a

)
= e = νH

(
I

(p+ma)
a

)
, for p the index of e in

H(a). Then we find in Ie the intervals

[πi + pT, πi + pT + xij + he) and
[πi + (p + ma)T, πi + (p + ma)T + xij + he),

(12)

which intersect, since πi + pT + xij + he > πi + pT + maT .
Suppose instead (a) holds, and (b) is violated, for some k1 ∈ {0, . . . , m/ma1 − 1} and

k2 ∈ {0, . . . , m/ma2 − 1}. By construction in (9), note that the images under νH of I
(p1+k1ma1 )
a1

and I
(p2+k2ma2 )
a2 are both e, in fact for any integral k1 and k2. Since πv ∈ [0, T ) for every

v ∈ V (G), we have that

[πi2 + (p2 + k2ma2) T − πi1 − (p1 + k1ma1) T ]mT < xa1 + he, (13)

and by construction the content of the modulo operator is either already in [0, mT ), or it is
in [−mT, 0). If it is non-negative, we find in Ie the intervals

[πi1 + (p1 + k1ma1)T, πi1 + (p1 + k1ma1)T + xa1 + he) and
[πi2 + (p2 + k2ma2)T, πi2 + (p2 + k2ma2)T + xa2 + he),

(14)

and they intersect. If instead the content is negative, then the modulo operator will add mT ,
and we find in Ie the intervals

[πi1 + (p1 + k1ma1)T, πi1 + (p1 + k1ma1)T + xa1 + he) and
[πi2 + (p2 + k2ma2 + m)T, πi2 + (p2 + k2ma2 + m)T + xa2 + he),

(15)

and they intersect.
( ⇐= ): Suppose now that νH is not h-conflict-free. There is then an element e ∈ E such

that the set Ie contains two intersecting intervals. Let these be I
(s1)
a1 and I

(s2)
a2 , and without

loss of generality let us assume that min I
(s2)
a2 ∈ I

(s1)
a1 . We then have that

0 ≤ πi2 + s2T − πi1 − s1T < xa1 − he ≤ ma1T, (16)

where the last inequality holds if (a) does. Then, since ma1T ≤ mT , the [·]mT operator is
freely applied, and we have [πi2 + s2T − πi1 − s1T ]mT < xa1 +he. For both intervals, another
way to write si is as pi + kimai

+ βim, with integral βi and minimal positive integral ki,
by which we have [πi2 + (p2 + k2ma2 + β2m)T − πi1 − (p1 + k1ma1 + β1m)T ]mT < xa1 + he.
Then, the two summands β2mT and β1mT can be deleted since they do not affect the modulo
operation, and we have found a violation of (b). ◀

▶ Remark 8. In the IPESP case, i.e., |η(a)| = 1 for all a ∈ A, all patterns Ha have length
ma = 1, so that m = 1. Theorem 7 then states that an infrastructure assignment is h-
conflict-free if and only if xa + he ≤ T for all e ∈ E and a ∈ Ae and the Q0-constraint (2)
holds for all pairs of distinct arcs assigned to the same infrastructure element. Indeed, this
was our definition of h-conflict-freeness in Section 2. In general, the constraints (11) can be
interpreted as Q0-constraints that implicitly capture a time expansion up to period mT .
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a1 a1

a2 a2 a2 a2 a2

Figure 2 Two time expansions over 10 periods, with occurrences of two activities, a1 and a2,
with different pattern lengths. Each arc symbolizes one constraint like (19). Only those highlighted
in black are needed in case there were upper bounds ua1 , ua2 ≤ T .

3.3 A MIP Formulation for IPESPA
We now want to use the platforming period bound of Theorem 5 and the inequalities
of Theorem 7 to extend the PESP mixed-integer program (1) to IPESPA. We model a
pattern function H by introducing binary variables τaρ for all possible a ∈ A and images
ρ ∈ P =

⋃
i|M Ei, whenever ρ is valid for a, i.e., all entries of ρ are in η(a). By the bound

expressed in Theorem 5 we can choose a finite but sufficiently large M , thereby having
finitely many variables τaρ. Exactly one pattern has to be activated for each arc, which we
express by∑

ρ∈P
τaρ = 1, ∀a ∈ A. (17)

We include the inequalities (10), but only activate them if relevant, by having

xa + max
e∈ρ

he ≤ maT + (1 − τaρ)B, (18)

for every variable τaρ. Here maxe∈ρ he and ma are scalars, determined by the pattern ρ, and
B := maxa∈A ua + maxe∈E he is a scalar globally determined by the instance itself. This
way, if H(a) = ρ, then (18) is effective, but otherwise it is trivially satisfied.

To linearize the modulo operation in (11) we also introduce binary variables sρ1ρ2 . These
are analogous to the periodic offsets pij (1e) and can indeed be restricted to {0, 1}, as in this
case the modulo operator is applied to a number in [−mT, mT ). Activating the constraint if
and only if both patterns ρ1 and ρ2 are selected, we have

πi2 +(p2 + k2ma2) T −πi1 −(p1 + k1ma1) T +mTsρ1ρ2 ≥ xa1 +he −(2−τa1ρ1 −τa2ρ2)B, (19)

for every pair of arcs a1, a2 ∈ A, respectively with H-images ρ1, ρ2, of lengths ma1 , ma2 ,
both containing e ∈ E at indices p1, p2 (0-indexed), for every k1 ∈ {0, . . . , m/ma1 − 1} and
k2 ∈ {0, . . . , m/ma2 − 1}, and where m = lcm(ma1 , ma2). Note that pi, mai

, m, and he, here
are all scalars, determined by ρ1 and ρ2.

▶ Example 9. For an illustration of which constraints (19) are applied, we refer to Figure 2.
There we have two activities a1 and a2, assignable to the same infrastructure element, with
p1 = 2, m1 = 5, and p2 = 0, m2 = 2. Each arc symbolizes one constraint like (19), of which
there is two per pairing, i.e., 20 in total. However, in many cases, if p2 +k2ma2 −p1 −k1ma1 >

⌈(ua1 + he)/T⌉, then (11) is always satisfied, and we can exclude it a priori. This means that,
depending on the PESP upper bounds, a significant drop in the number of constraints is
possible. The bold arcs in Figure 2 are the 4 constraints that would be kept if we had, for
instance, ua1 , ua2 ≤ T .
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Including in a PESP mixed-integer program such as (1) these two types of binary variables
τaρ and sρ1ρ2 , together with (17), (18), and (19), yields a mixed-integer program formulation
for IPESPA. In (20) we can see it in full.

min
∑

a∈A(G)

waxa (20a)

s.t. (π, x) solves PESP on G, (20b)∑
ρ∈P

τaρ = 1 ∀a ∈ A, (20c)

xa + max
e∈ρ

he ≤ maT + (1 − τaρ)B
∀a ∈ A and
∀ valid ρ ∈ P ,

(20d) πi2 + (p2 + k2ma2) T

−πi1 − (p1 + k1ma1) T

+mTsρ1ρ2

 ≥

(
xa1 + he

−(2−τa1ρ1 − τa2ρ2)B

)
∀a1, a2 s.t. (⋆), (20e)

τaρ ∈ {0, 1}
∀a ∈ A and
∀ valid ρ ∈ P ,

(20f)

sρ1ρ2 ∈ {0, 1} ∀ρ1, ρ2 ∈ P , (20g)

where by (⋆) we mean the conditions of (19).
This formulation allows for a great degree of flexibility, giving practitioners a direct

handle on the maximum infrastructural period M . In fact, although fixing M to the bound
proven in Theorem 5 ensures that no PESP solution is excluded, it is entirely possible that
in a practical setting one would want to limit it further, so as to bound the complexity of
the infrastructural assignment. To that same purpose, the formulation also allows to forcibly
forbid individual patterns if desired.

4 Partitionable Infrastructure Maps

In practice, the infrastructure map η : A → E is oftentimes not completely flexible, as shown
in Figure 3a, but instead comes with additional structure. Of particular interest is the
case illustrated in Figure 3b, where E is a partition of all infrastructure elements, i.e., the
infrastructure elements are all grouped and every activity can be freely assigned to all
elements in one of such groups. An omnipresent example is a station with two platforms that
serves lines in two directions, with the lines in each direction having a dedicated platform. It
turns out that when η is partitionable, the IPESPA boils down to a rather compact form.

a1 a2 a3 a4 a5 a6

e1 e2 e3 e4

(a) Non-partitionable η.

a1 a2 a3 a4 a5 a6

e1 e2 e3 e4

(b) Partitionable η.

Figure 3 Two infrastructure maps for an instance with six activities and four infrastructure
elements.
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Formally, we define the following variant of the IPESPA.

▶ Definition 10. Let (G, T, ℓ, u, w) be a PESP instance and η : A → E an infrastructure
map, where E is a partition of E. The Infrastructure-Aware PESP with Capacities (IPESPC)
is to find a solution (π, x) to PESP on (G, T, ℓ, u, w), together with a valid and conflict-free
platform assignment ν, such that the solution is optimal, or to decide that no such solution
exists.

Alternatively, IPESPC is equivalent to IPESP with the additional feature that every e ∈ E

has now a capacity ke ∈ N. In other words, e ∈ E no longer corresponds to a single
infrastructure element, but to a group of ke equivalent elements. For ease of exposition, we
stick to this perspective going forward.

We use a matching-based approach to solve IPESPC. To this end, we expand G with
auxiliary arcs between activities that can use the same group of infrastructure elements.
Formally, let G′ be the graph arising from G by adding for each e ∈ E and a1 = (i1, j1), a2 =
(i2, j2) ∈ Ae a new arc α from j1 to i2. We refer to α as the auxiliary arc from a1 to a2,
and much like the headway arcs aI used in [2] and in the Q4 butterfly constraints (3), we
set ℓα := he, uα := T − he, wα := 0 if a1 ̸= a2, and ℓα := he, uα := T, wα := 0 in the case
a1 = a2. Let A′ denote the set of all auxiliary arcs, let A′

e denote all auxiliary arcs associated
to e, and let G′

e be the subgraph of G′ on the arcs in A′
e. For S ⊆ V (G) × V (G), we will use

the notation G[S] for the graph (V (G), A(G) ∪ S), so that, e.g., G′ = G[A′]. The following
theorem compactly characterizes when a PESP solution admits a feasible infrastructure
assignment in the context of IPESPC:

▶ Theorem 11. Consider a PESP instance (G, T, ℓ, u, w), the expanded graph G′, a par-
titionable infrastructure map η : A → E, headways h ∈ RE

≥0, capacities k ∈ NE, and some
PESP solution (π, x) on G. Then, there exists a valid and h-conflict-free infrastructure
assignment ν if and only if for each e ∈ E there exists a perfect matching M′

e ⊆ A′
e of G′

e

and (π, x) can be extended to a PESP solution on G[M′
e] such that∑

a∈Ae

xa +
∑

a∈M′
e

xa ≤ keT. (21)

Proof. First, assume that there exist perfect matchings M′
e of G′

e satisfying (21) for all
e ∈ E. The matching M′

e together with the arcs Ae forms a set of disjoint directed cycles,
where every cycle consists of arcs that alternatingly belong to Ae and A′

e.
Let then Ce

1 , Ce
2 , . . . , Ce

me
denote the cycles corresponding to e ∈ E, and define pe

j :=
1
T

∑
a∈Ce

j
xa for j = 1, . . . , me. Because the timetable (π, x) is feasible on G[M′

e], pe
j is

integer by the cycle periodicity property [7, Lemma 6.39]. Since it holds that

me∑
j=1

pe
j = 1

T

me∑
j=1

∑
a∈Ce

j

xa = 1
T

∑
a∈Ae

xa +
∑

a∈M′
e

xa

 ≤ ke, (22)

it suffices to show that just the activities appearing in Ce
j can be assigned on a group of

capacity pe
j . The total tension along the cycle is pe

jT , so in a pe
jT -periodic schedule it is

straightforward to fit all the activities in Ce
j ∩ A, simply following the order in which they

appear through the cycle and with timestamps agreeing with π modulo T . Then, having an
available capacity of pe

j , that schedule can be repeated over each of the pe
j equivalent elements,

each time shifted forward by T . This construction implies adherence to the T -periodic
timetable π, and a pe

jT -periodic infrastructure assignment, valid since each η(Ce
j ∩ A) = e,

and h-conflict-free by the bounds on the auxiliary arcs.
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Suppose the contrary instead, that no perfect matching in A′
e respects (21). Notice how,

given that π is fixed and the headway he is the same on all elements in the group e, we can
without loss of generality lengthen all activities in Ae by he and then assume that the new
minimum headway is 0 instead. Now, let M∗ be a minimum tension perfect matching in G′

e.
We then have that for some e ∈ E there is an integer Ke > ke such that∑

a∈Ae

xa +
∑

a∈M∗

xa = KeT > keT. (23)

Now, for t ∈ [0, T ) and S ⊆ Ae ∪ A′
e, let the inventory function Ie(t, S) denote the number

of h-overlapping activities in S at time t. By (23) we have that Ie(t, Ae ∪ M∗) = Ke for
all t ∈ [0, T ). Moreover, since M∗ is a minimum tension perfect matching, then there is a
t∗ ∈ [0, T ) such that Ie(t∗, M∗) = 0. That is because if M∗ = {(e1, f1), . . . , (em, fm)} was
h-overlapping everywhere instead, then without loss of generality we can assume that the
timestamps would be

πe1 < πfm
< πe2 < πf1 < . . . < πem

< πfm−1 , (24)

where a shorter matching is immediately apparent, negating the minimality of M∗. See
[17, Lemma 3] for further details. By the above, we then have that Ie(t∗, Ae) = Ie(t∗, Ae ∪
M∗) − Ie(t∗, M∗) = Ke > ke, implying there are more simultaneous activities than there is
infrastructure capacity to host them. In particular, there is no h-conflict-free infrastructure
assignment. ◀

j1

j2

j3

i1

i2

i3

xj1,i1 = 10

xj2,i2 = 10

xj3,i3 = 10

(a) Matching corresponding to Figure 1a.

j1

j2

j3

i1

i2

i3

x j 1
,i 3

=
0

x
j2 ,i1 = 0

x
j3 ,i2 = 0

(b) Matching corresponding to Figure 1b.

Figure 4 The two matchings corresponding to Example 3.

▶ Example 12. We illustrate on the basis of Example 3 how matchings relate to infrastructure
assignments in Figure 4. In the IPESPA situation of Figure 1a, we have three infrastructure
elements e1, e2, e3 of capacity one each. For each element ek, the matching in Figure 4a
creates a directed cycle of tension 1 · T = 30 containing the dwelling activity ak = (ik, jk)
and the auxiliary arc (jk, ik). Figure 1b is an IPESPC situation with one infrastructure
element e. Here, the matching in Figure 4b induces a directed cycle of tension 2 · T = 60, we
hence use a capacity of two. The cycle encodes that each platform is used by a1, a3, a2 in
this cyclic order.
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Theorem 11 allows formulating IPESPC very compactly compared to IPESPA. Introducing
matching variables as binary decision variables ya for all a ∈ A′, we have the following MIP:

min
∑

a∈A(G)

waxa (25a)

s.t. (π, x) solves PESP on G, (25b)∑
a∈δ−

G′
e

(i)

ya = 1 ∀e ∈ E, ∀(i, j) ∈ Ae, (25c)

∑
a∈δ+

G′
e

(j)

ya = 1 ∀e ∈ E, ∀(i, j) ∈ Ae, (25d)

∑
a∈Ae

xa +
∑

a∈A′
e

xaya ≤ keT ∀e ∈ E, (25e)

πj − πi + Tpa = xa ∀a = (i, j) ∈ A′, (25f)
ℓaya ≤ xa ≤ uaya + (T − 1)(1 − ya) ∀a ∈ A′, (25g)

ya ∈ {0, 1} ∀a ∈ A′. (25h)

Constraints (25c) and (25d) define a unique predecessor and successor for each activity by
requiring that y corresponds to a perfect matching M′

e in A′
e for each e ∈ E. Constraints

(25e) ensure that the total time of the activities scheduled on a platform group and the
selected auxiliary activities is at most the total available time on that platform group. These
constraints can be linearized by introducing for each a ∈ A′ a real variable za, with bounds
0 ≤ za ≤ ua, and constrained as xa − (1 − ya)ua ≤ za ≤ xa, so that it is equal to the product
xaya. The constraints (25f) tie the tensions xa on the auxiliary activities a ∈ A′ to the
timetable π. Finally, (25g) ensures that those tensions adhere to their bounds when they are
part of the selected matching, and impose no restrictions otherwise.

There is a clear resemblance between (25) and the formulation [17] proposes for jointly
optimizing a periodic timetable and vehicle circulation. This is no coincidence: as long as
the corresponding mapping from activities to resources is a partition, any resource schedule
associated to a periodic timetable can be described by a matching. In [17] the resources are
vehicles, whereas in the present paper infrastructure elements, e.g., platforms. It immediately
follows that the results established in [17] carry over to our setting. Most notably, given
a feasible timetable, a greedy algorithm can actually be used to find an infrastructure
assignment with the minimum number of required infrastructure elements.

For groups consisting of a single element, i.e., ke = 1, the matching formulation can be
enhanced using the surprising insight that in this case it is not necessary to compute the
matching explicitly. We have the following theorem:

▶ Theorem 13. Suppose ke = 1 and let (π, x) be a PESP solution on G. Then Ae is
h-conflict-free if and only if (π, x) extends to a PESP solution on G′

e such that

∑
a∈Ae

xa +

 1
|Ae|

∑
a∈A′

e

xa

 = |Ae| + 1
2 T. (26)

Proof. Suppose that Ae is h-conflict-free. This means that for any as = (is, js), at = (it, jt) ∈
Ae with as ̸= at the Q4-constraints (3) must hold, namely

xis,js + x′
js,it

+ xit,jt + x′
jt,is

= T, (27)

where we use the notation x′
a := [πj − πi − ℓa]t + ℓa to indicate tensions on an auxiliary arc

a = (i, j).
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Let q(as, at) denote the butterfly-shaped 4-cycle given by (is, js, it, jt, is). There are∑|Ae|−1
i=1 i = |Ae|(|Ae| − 1)/2 many such butterfly cycles, each auxiliary arc (js, it) ∈ A′

e with
s ̸= t is in exactly one such cycle, while each arc (is, js) ∈ Ae is in |Ae| − 1 many of them.
Moreover, there are exactly |Ae| auxiliary arcs of the form (js, is), for which holds that

he ≤ xis,js + x′
js,is

≤ 2T − he, (28)

since he ≤ x′
js,is

≤ T and h-conflict freeness implies xis,js ≤ T − he. Due to the cycle
periodicity property,

xis,js + x′
js,is

= T, (29)

unless he = 0, but then we can subtract T from x′
js,is

= T and maintain the feasibility of
(π, x) on G′

e.
Summing up over all butterfly constraints (27) for each pair of activities and all the

self-cycles (29) of each activity in Ae, we obtain

|Ae|
|Ae|∑
s=1

xis,js
+
∑

a∈A′
e

x′
a =

(
|Ae|(|Ae| − 1)

2 + |Ae|
)

T = |Ae|(|Ae| + 1)
2 T. (30)

For the other direction, suppose that A′
e is not h-conflict free, but (π, x) extends to PESP

solution on G′
e. Then one of (27) or (29) must be violated. Let q(as, at) be a butterfly cycle

with as = (is, js) and at = (it, jt). Then

xis,js + x′
js,it

+ xit,jt + x′
jt,is

≥ ℓis,js + ℓit,jt + 2he > 0 (31)

since we assumed that at least lower bounds or minimum headway times are positive. Due
to the cycle periodicity property of periodic timetables,

xis,js + x′
js,it

+ xit,jt + x′
jt,is

≥ T. (32)

Moreover, considering the cycles comprised of (is, js) ∈ Ae and the auxiliary arc (js, is) ∈ A′
e,

we have

xis,js + x′
js,is

≥ ℓis,js + he > 0, (33)

so that

xis,js + x′
js,is

≥ T. (34)

Therefore, if one of (27) or (29) is violated, we must have a strict inequality in (32) or (34).
Taking the sum,

|Ae|
|Ae|∑
s=1

xis,js +
∑

a∈A′
e

x′
a >

(
|Ae|(|Ae| − 1)

2 + |Ae|
)

T = |Ae|(|Ae| + 1)
2 T, (35)

so (26) cannot hold. ◀

A direct implication of Theorem 13 is a new formulation for IPESP, provided that all
infrastructure elements have unit capacities:

min
∑

a∈A(G)

waxa (36a)

s.t. (π, x) solves PESP on G′, (36b)∑
a∈Ae

xa + 1
|Ae|

∑
a∈A′

e

xa = |Ae| + 1
2 T ∀e ∈ E. (36c)
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In contrast to the original formulation proposed in [2] and to the matching approach (25),
formulation (36) introduces neither additional integer variables nor quadratic terms.

5 Experiments

In the sequel, we will evaluate different formulations for IPESP and IPESPC on a set of
realistic instances. We omit the IPESPA model, as for our datasets there hardly is added
value compared to IPESPC. We use Gurobi 11 as a MIP solver on an Intel Xeon E3-1270
3.80 GHz CPU with 32 GB RAM.

5.1 Instances
We evaluate our models on instances we constructed based on publicly available timetable
information, platform usage, and track data. Additionally, some track information was
provided to us by DB InfraGO AG. The instances are:

S-Bahn, the full network of S-Bahn Berlin, a suburban commuter rail network with 16
lines. On several sections, there are as much as 7 trains per track and direction within
the period time of 20 minutes. Our IPESP instance is based on the annual timetable,
assuming fixed driving times, but flexible dwelling and turnaround times. However, there
are several places in the network where multiple platforms are available, and this builds
our corresponding IPESPC instance.
Tram, the full tram network of Berlin, comprising 22 lines operated with a period
time of 20 minutes, with frequencies ranging between 1 and 6. The difficulty here
does not lie in associating driving and dwelling times, which are fixed, but in fulfilling
synchronization constraints and deciding infrastructure assignments at the terminal
stations: The turnaround times are flexible and capacities in the turning loops are scarce.
This is inherently an IPESPC instance, that, in fact, cannot be transformed into a feasible
IPESP instance, since all T -periodic assignments are infeasible.
Corridor, the central longitudinal railway corridor of regional and long-distance trains
in Berlin, as well as a subsection of it, from Ostkreuz to Friedrichstraße, which we denote
as ShortCorridor. Many stations have multiple platforms, and the trains have different
stopping patterns. The period time is 60 minutes, driving, dwelling, and turnaround
times are all variable. This, too, is inherently an IPESPC instance, from which we created
an IPESP instance based on the annual timetable.

We use only a simple objective function for the timetabling part: Driving and dwelling
activities are weighted by 2, turnarounds by 1, and all other arcs by 0. Additionally, note that
we do not include any transfer arcs, in part because we have no data available regarding the
flow of passengers, and in part because the scope of this work rather focuses on operational
capabilities instead.

5.2 IPESP Experiments
For the unit capacity case of IPESP, we have now several formulations at hand: The Q4
butterfly constraints (3), the matching model (25), and the special formulation (36). We
test these formulations and their combinations on the S-Bahn and Corridor instance, with
a wall time limit of one hour. We further include versions where the matching variables y

are relaxed to be continuous. Our results are collected in Table 1.
On S-Bahn, not all formulations found a solution, but those that did also managed to

prove optimality within the time limit. All such formulations contain the Q4 butterfly
constraints (3), and none of them use binary matching variables. The combination of Q4
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with the special sum constraint (36) worked best, followed by pure Q4. When initialized
with the optimal solution as MIP start, almost all formulations proved its optimality within
the time frame of one hour, or managed a very thin optimality gap.

On Corridor, no formulation found solutions, and no attempt at providing initial partial
solutions was successful. On ShortCorridor all formulations quickly found a primal solution
within seconds, and an optimal solution within minutes, but none managed to prove that
optimality within one hour. Only when starting ShortCorridor with the best solution
found so far, a proof to optimality was reached, and only by the formulation using (25), i.e.,
matching with binary variables, together with the special constraints (36c). This was also
the fastest formulation to reach optimality to begin with.

Table 1 Timed results for IPESP tests on S-Bahn and Corridor, expressed in seconds. Tests
denoted with Q4 use Q4-constraints as in (3). Tests denoted with M use matching constraints as
in (25), with capacity set to 1. Tests denoted with Mc use the same constraints as M, but with
relaxed continuous variables instead. Tests denoted with S use constraints as in (36). The first
column details the time to the first primal solution that was found, the second column the time to
the optimal objective value (3058 for S-Bahn and 10 for Corridor), and the third column the time
to fully close the optimality gap. The last column details the time needed to prove optimality when
given the optimal solution from the beginning. The time limit was 1 hour per configuration.

S-Bahn s to primal s to optimal s to proof s to proof (warm)
Q4 64 227 227 95
Q4+M – – – 1221
Q4+Mc 338 1672 1672 140
Q4+S 40 156 156 150
Q4+M+S – – – – (.58%)
Q4+Mc+S 172 738 738 766
M – – – – (.61%)
S – – – 595
M+S – – – 2952
Mc+S – – – 1402
ShortCorridor s to primal s to optimal s to proof s to proof (warm)
Q4 0 110 – –
Q4+M 5 87 – –
Q4+Mc 0 82 – –
Q4+S 2 48 – –
Q4+M+S 1 15 – –
Q4+Mc+S 0 23 – –
M 0 44 – –
S 1 576 – –
M+S 4 11 – 3268
Mc+S 6 50 – –

5.3 IPESPC Experiments
For the instances with capacities larger than one we used formulation (25). To aid the
solution process, all infrastructure that still had capacity one has been modelled using Q4
constraints, and used the matching variables where necessary, i.e., for all larger infrastructure.
We tested this formulation on the S-Bahn, the Tram, and the Corridor instance, with a time
limit of four hours.
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On S-Bahn no primal solution was found, but we were able to warm start the models with
solutions found in the corresponding IPESP tests instead. In that case, the more flexible
IPESPC within seconds improved the optimal IPESP solution (albeit by a measly 1.1%),
and within approximately 4 more minutes reached the final primal value. In the course of
the first hour, Gurobi managed to reduce the optimality gap to 0.2%, where it remained
until the time limit.

On Tram proven optimality was reached within 10 seconds. Notably, however quick to
solve this instance was, it is infeasible to formulate with simple IPESP. Only using the higher
capacities enabled by IPESPC it was at all possible to generate a feasible solution.

On Corridor, again, no solution was found, but providing a partial starting solution on
just the section of ShortCorridor was enough to be completed to a full solution for the
whole network, which then was improved to proven optimality in only 2 minutes and 25
seconds. On ShortCorridor the first primal was found in under 10 minutes and was directly
proven to be optimal. Notably, its objective value was better than the IPESP case, now
reaching 0 slack. Starting the same test with a solution from the IPESP case reached proven
optimality in 3 seconds.

6 Conclusion

This work extends the Infrastructure-Aware PESP (IPESP) framework. One of our new
problem formulations, Infrastructure-Aware PESP with Assignment (IPESPA), does so by
integrating the choice of the infrastructure assignment within IPESP, allowing for more
flexible use of the available infrastructure. In fact, this flexibility can lead to higher efficiency,
as well as improved timetables. Although extremely general in its assumptions, we prove
that IPESPA can be formulated as a mixed integer linear program (20).

Moving on to a more restricted, but highly realistic scenario, we consider the case when
infrastructure elements can be effectively considered as equivalent, and formulate this special
version of IPESPA as well, namely Infrastructure-Aware PESP with Capacities (IPESPC).
In this case the assignment structure is of note, since it can be seen as a matching problem
on a complete bipartite graph, connecting the ends of activities to the starts of the next ones.
This gives us not only a compact mixed integer linear program formulation (25), but also
novel formulations for IPESP itself, seen as a case of IPESPC with only unit capacities.

Finally, on the practical side, we tested the new matching-based IPESP formulations, as
well as the IPESPC formulation. On the unit capacity side, our tests went through various
combinations of approaches, and although caution is advised when drawing conclusions,
it seems that on the S-Bahn instance the Q4-based formulations fared better, whereas on
ShortCorridor, which has a higher density of larger infrastructure elements to deal with,
matching-based formulations had more success. With instances of larger capacity, instead,
our tests show that our modelling approach can be of interest in real-world scenarios.

For future work, on the theoretical side we suggest proving tighter bounds on the maximum
platforming period, as well as trying to generalize the Q4-constraints much like we here
generalized the Q0-constraints. On the practical side, we suggest an iterative approach that
uses a separate matching solver to concurrently feed the main model with partial solutions,
and to develop heuristic approaches to quickly generate initial solutions.
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This work deals with a problem of assigning periodic tasks to employees in such a way that each
employee performs each task with the same frequency in the long term. The motivation comes from
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1 Introduction

1.1 Context
The problem studied in this paper was suggested to the authors through a collaboration with
the SNCF, the main French railway company. The schedules of their freight train drivers
are always periodic: a collection of round trips is repeated every week, with each round
trip performed at the same time within the week. Such schedules are often termed “cyclic
rosters” in the literature. One motivation for this periodicity is that such schedules are easily
understood and memorized by the employees. Another motivation is that these schedules
balance experience: in the long term, each round trip is performed the same number of times
by each employee. This ensures fairness and also maintains a similar level of proficiency
among the employees.

More generally, in the transport sector, periodicity is an important requirement, to which
a full body of research is devoted; see, e.g., [5, 7, 8]. Based on the authors’ experience and
the literature, the concern of balancing experience among employees, given tasks that must
be performed periodically, is not only present at the SNCF but also in many other companies.
For instance, in an article by Breugem, Dollevoet, and Huisman [2], the same motivations as
described in the previous paragraph apply, justifying the use of cyclic rosters among teams
of employees (grouped by characteristics) for the Netherlands Railways. Another example,
this time for bus drivers, is studied in an article by Xie and Suhl [10].

This raises a natural mathematical question: given tasks that need to be repeated every
week and a group of employees, under what conditions is it possible to create (not necessarily
periodic) schedules ensuring that in the long term each task is performed the same number
of times by each employee?
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5:2 Balanced Assignments of Periodic Tasks

In this paper, we propose an almost complete solution to this problem. To the authors’
knowledge, this problem has not been addressed in the literature. Nevertheless, problems
with almost the same input but where the “balancedness” criterion is replaced by a more
standard optimization criterion, such as minimizing the number of employees, have been
studied in various papers. As an example, Korst, Aarts, Lenstra, and Wessels [4] consider
the problem of assigning periodic operations, with fixed starting times and different periods,
to a minimal number of processors.

1.2 Problem formulation
Consider a collection of tasks that have to be performed periodically (typically every week in
an industrial setting), and a group of indistinguishable employees who will perform them.
Formally, we are given

a collection of n intervals [ai, bi) ⊂ (−1, 1), with bi ∈ (0, 1] and bi − ai ⩽ 1.
a positive integer q.

Each interval of this collection represents a task: the rth occurrence of task i (r ∈ Z>0)
takes place over the time interval [ai + r, bi + r). The number q corresponds to the number
of employees, whom we identify from now on with the set [q]. Every occurrence of each
task has to be assigned to an employee. Such an assignment is feasible if no employee is
assigned two occurrences overlapping within R>0. Such an assignment is balanced if each
task is performed by each employee every q periods in the long term average.

In symbols, consider an assignment f : [n] × Z>0 → [q], where f(i, r) = j means that the
rth occurrence of task i is assigned to employee j. It is feasible if

[ai + r, bi + r) ∩ [ai′ + r′, bi′ + r′) ̸= ∅ =⇒ f(i, r) ̸= f(i′, r′) (1)

for all i ̸= i′ and all r, r′. (Remark that the left-hand side holds only if |r − r′| ⩽ 1.) It is
balanced if

lim
t→+∞

1
t

∣∣{r ∈ [t] : f(i, r) = j}
∣∣ = 1

q
, (2)

for all i ∈ [n] and all j ∈ [q]. An illustration is given in Figure 1.
We aim at identifying conditions under which there exists a balanced feasible assignment

and at studying the related algorithmic question.
A few comments are in order. First, remark that there exists a feasible assignment if and

only if there is no point in R contained in more than q intervals [ai + r, bi + r). (This has also
been noted by Korst, Aarts, Lenstra, and Wessels [4, Theorem 2.3], in a more general setting.)
This means that for our problem, feasibility is not the challenge. Second, when there is a
point of [0, 1) contained in no interval [ai + r, bi + r), then the construction of a balanced
feasible assignment is trivial: without loss of generality, this point is 0, and any feasible
assignment f and any cyclic permutation π of [q] provides a balanced feasible assignment g,
periodic with period q, defined by g(i, r) := (πr ◦ f)(i, 1) for i ∈ [n] and r ∈ Z>0. Finally,
there are feasible assignments for which the limit in (2) is not well-defined. By definition, if
the limit is not well-defined, then the assignment is not balanced.

1.3 Main results
Clearly, a necessary condition for the existence of a balanced feasible assignment is that there
is a feasible assignment in which an employee performs each task at least once. Our first
main result states the following surprising fact: this condition is actually sufficient.
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▶ Theorem 1. There exists a balanced feasible assignment if and only if there exists a feasible
assignment with an employee performing each task at least once. Moreover, if there exists a
balanced feasible assignment, then there exists such an assignment that is periodic.

An assignment f is periodic if there exists h ∈ Z>0 such that f(i, r + h) = f(i, r) for all
i ∈ [n] and r ∈ Z>0. The proof will actually make clear that, in case of the existence of
a balanced feasible assignment, it is always possible to get a period h upper-bounded by
q2 × q!.

The necessary and sufficient condition of Theorem 1 is simple enough to obtain an
algorithmic counterpart. This is the second main result of the paper.

▶ Theorem 2. Deciding whether there exists a balanced feasible assignment can be done in
polynomial time. Moreover, if the number of employees is constant, then such an assignment
can be computed in polynomial time when it exists.

The proofs of these two theorems can be found in Section 3.2. They essentially consist in
reducing the question of existence of a balanced feasible assignment to a problem of pebbles
on an arc-colored Eulerian directed graph. The latter problem is dealt with in Section 2,
which can be read independently of the rest of the paper. Section 3.1 introduces preliminary
results and tools, such as a graph DF built from a well-chosen set F of feasible assignments
and that plays an important role in the proofs. This graph DF is a particular arc-colored
Eulerian directed graph on which we apply the results of Section 2.

2 A problem of pebbles on an arc-colored Eulerian directed graph

This section introduces a problem of pebbles moving on an Eulerian directed graph, which
we believe to be interesting for its own sake. The proof of Theorem 1 will essentially
consist in reducing the problem of existence of a balanced feasible assignment to this pebble
problem. This pebble problem will also be useful for algorithmic discussions, as in the
proof of Theorem 2. From now on, this section does not refer anymore to the question of
assignments and periodic tasks.

Consider an arc-colored Eulerian directed multi-graph D = (V,A) such that each vertex
is the head of exactly one arc of every color, and also the tail of exactly one arc of every
color. (In other words, each color is a collection of vertex disjoint directed cycles covering
the vertex set.) Assume we have a pebble on each vertex. We denote by P the set of pebbles,
and we have thus |P | = |V |.

Now, we explain how a sequence of colors induces a sequence of moves for the pebbles.
Given a sequence c1, c2, . . . of colors, each pebble is first moved along the unique arc of color
c1 leaving the vertex on which it is originally located; then it is moved along the unique arc
of color c2 leaving the vertex it has reached after the first move; and so on. Remark that
each move sends each pebble on a distinct vertex and so after each move, there is again a
pebble on each vertex.

We might ask under which condition there exists an infinite sequence of colors such that
the arc visits are “balanced,” i.e., each pebble visits each arc with the same frequency. Not
only such a sequence always exists but such a sequence can be chosen to be periodic.

▶ Proposition 3. There always exists a periodic sequence of colors making each pebble visit
each arc with the same frequency.

The proof shows a bit more: each pebble actually follows a periodic walk on D which has
the same period as the sequence of colors, and the latter is upper bounded by |A|(|V | − 1)!.
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5:4 Balanced Assignments of Periodic Tasks

task 3

task 2

task 1 · · ·

· · ·

· · ·
1 2 3 4

(a) An instance with three tasks (n = 3). The first three occurrences of each task are represented. The
tasks 2 and 3 are in the set {i ∈ [3] : ai ⩽ 0} and their fourth occurrence is represented in lighter color.

employee 3

employee 2

employee 1 · · ·

· · ·

· · ·
1 2 3 4

(b) A feasible assignment f for three employees (q = 3). Assuming that this pattern is repeated along
the horizontal axis, each line represents an employee and the rth occurrence of the task i is on the line
of employee j when f(i, r) = j. This assignment is not balanced: employee 2 works 72% of the time,
employee 3 works 56% of the time, employee 1 does not perform task 3, and employee 3 performs 75% of
the occurrences of task 3.

employee 3

employee 2

employee 1 · · ·

· · ·

· · ·
1 2 3 4

(c) A feasible assignment g for three employees (q = 3). Assuming that this pattern is repeated along the
horizontal axis, the assignment g is feasible and balanced: task 1 is performed equally by employees 1, 2,
and 3, and so are tasks 2 and 3. The assignment g is periodic with period h = 3.

Figure 1 Example of an instance, with two feasible assignments.

The proof of this proposition relies on a larger graph D̃ = (Ṽ , Ã) built as follows. The
vertex set Ṽ is the set of bijections from P to V . For every color c, define the permutation
σc of V by setting σc(i) = i′ whenever there is an arc of color c from i to i′ in D. The set Ã
is built as follows: for each bijection η : P → V and each color c, introduce an arc (η, σc ◦ η),
and color this arc with color c. The indegree and outdegree of every vertex in Ṽ are equal to
the number of colors.

For each pebble j, we introduce a function pj : Ã → A. Given an arc ã = (η, η′) of Ã
with color c, we define pj(ã) as the arc (η(j), η′(j)) of A with color c.

The graph D̃ is an encoding of all possible distributions of the pebbles on V and all possible
transitions between these distributions. More precisely consider any initial distribution η of
the pebbles on V and a sequence of colors c1, c2, . . .. The moves induced by the sequence
of colors translate into a walk on D̃. The corresponding sequence of vertices of D̃ is the
sequence of distributions of the pebbles on V induced by the sequence of colors.

▶ Lemma 4. Let j ∈ P , a ∈ A, and K̃ be a connected component of D̃ (note that weakly
and strongly connected components of D̃ are identical by equality of the in- and outdegrees).
Denoting by κ the number of connected components of D̃, we have

|p−1
j (a) ∩A(K̃)| = (|V | − 1)!

κ
.

In particular, the left-hand term is independent of j, a, and K̃.
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Proof. Denote by c the color of a.
We prove first that every connected component K̃ of D̃ contains at least one arc from

p−1
j (a). Let η be a vertex of such a connected component K̃. Consider any walk W in D

from η(j) to the tail of a, and then traversing a. Such a walk exists because D is strongly
connected. With c1, c2, . . . , c being the sequence of colors of the arcs traversed by the walk,
the sequence

η, σc1 ◦ η, σc2 ◦ σc1 ◦ η, . . . , σc ◦ · · · ◦ σc2 ◦ σc1 ◦ η

forms a walk in K̃ starting from η, whose image by pj is W . Hence, K̃ contains at least one
arc from p−1

j (a).
Second, given two components K̃1 and K̃2 of D̃, we build an injective map ψ : A(K̃1) →

A(K̃2) as follows (actually, it is a bijection but this property is not explicitly used). Pick
ã1 ∈ p−1

j (a) ∩A(K̃1) and ã2 ∈ p−1
j (a) ∩A(K̃2). According to what we have just proved, these

two arcs exist. Write ã1 = (η1, σ
c ◦ η1) and ã2 = (η2, σ

c ◦ η2). Then, for an arc ã ∈ A(K̃1)
with tail vertex η and color d, set ψ(ã) as the arc (η ◦ η−1

1 ◦ η2, σ
d ◦ η ◦ η−1

1 ◦ η2) with color d
(this arc is unique). Checking that ψ is injective is immediate.

Third, we check that ψ maps elements from p−1
j (a) ∩ A(K̃1) to p−1

j (a) ∩ A(K̃2). Let
ã be an arc in p−1

j (a) ∩ A(K̃1). It is of the form (η, σc ◦ η). Its image by ψ is the arc
(η ◦ η−1

1 ◦ η2, σ
c ◦ η ◦ η−1

1 ◦ η2) with color c. Denoting i the tail of a, we have η(j) = η1(j) =
η2(j) = i, which implies immediately that pj

(
ψ(ã)

)
has the same endpoints as a. Since it

has also the same color c, we have pj

(
ψ(ã)

)
= a.

From the previous two paragraphs, we see that for any two components K̃1 and K̃2 of
D̃, we have |p−1

j (a) ∩ A(K̃1)| ⩽ |p−1
j (a) ∩ A(K̃2)|. Since the choices of K̃1 and K̃2 can be

arbitrary, we have actually

|p−1
j (a) ∩A(K̃1)| = |p−1

j (a) ∩A(K̃2)| . (3)

Finally, an arc ã = (η, η′) is mapped to a by pj precisely when ã is colored with color
c, we have η′ = σc ◦ η, and η(j) = i (where i is the tail of a). The number of bijections η
from P to V with η(j) = i is (|V | − 1)!. Hence, |p−1

j (a)| = (|V | − 1)!. Combining this with
equality (3), we get the desired conclusion. ◀

Proof of Proposition 3. Choose any connected component K̃ of D̃. It is Eulerian, since
each vertex of D̃ has equal in- and outdegrees. Consider an arbitrary Eulerian cycle, and
denote by c1, c2, . . . the sequence of colors of the arcs of this cycle. According to Lemma 4,
every pebble j moved according to this sequence of colors follows a closed walk on D visiting
each arc (|V |−1)!

κ times. Repeating infinitely many times this sequence of colors provides the
desired periodic sequence. ◀

3 Proofs of the main results

3.1 Preliminaries
This section introduces preliminary results and a few tools that will be crucial for the proofs
of Theorems 1 and 2 given in Section 3.2. In particular, we show how to introduce fictitious
tasks in a way that will simplify some discussions, we explain how to build a new feasible
assignment from a sequence of feasible assignments, and finally we define a graph DF built
from a set of feasible assignments, which will be useful to cast the problem of existence of
balanced feasible assignments as the pure graph problem of Section 2.
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5:6 Balanced Assignments of Periodic Tasks

3.1.1 Making the number of employees and the number of tasks
overlapping 0 equal

Denote by U the set {i ∈ [n] : ai ⩽ 0}. In other words U is the set of tasks that are
overlapping the left endpoint of the interval [0, 1]. We can get |U | = q by adding fictitious
tasks i whose intervals are of the form [0, ε) for an ε > 0 small enough. Just after the proof
of the following lemma, the relevance of this transformation will be highlighted.
▶ Lemma 5. The number ε can be chosen so that the following holds: There exists a feasible
assignment for the original instance if and only if there exists a feasible assignment for the
instance with the fictitious tasks.
Proof. Let ε := min

(
{ai : ai > 0} ∪ {ai + 1: ai ⩽ 0}

)
. Obviously, if there exists a feasible

assignment with the fictitious tasks, then the restriction of this assignment to the original
tasks is feasible. Conversely, suppose there exists a feasible assignment f for the original
instance. We extend it on the fictitious tasks as follows: for each integer time, the assignment
f leaves a number of idle employees equal to the number of fictitious tasks; extending f

arbitrarily on the rth occurrence of these tasks with these employees leads to a feasible
assignment for the instance with the fictitious tasks. (The number ε has been chosen so that
this does not create any conflict.) ◀

Since a balanced feasible assignment for the instance with the fictitious tasks is obviously
balanced and feasible when restricted to the original instance, the assumption |U | = q is
made throughout Section 3. For every feasible assignment f and every r ∈ Z>0, we introduce
the map φf,r : i ∈ U 7→ f(i, r) ∈ [q]. The assumption |U | = q makes φf,r a bijection, which
will turn out to be useful, already in the next paragraph.

3.1.2 Building a new feasible assignment from a sequence of feasible
assignments

In the proofs, we will build new feasible assignments from sequences of feasible assignments.
Let f1, f2, . . . be an infinite sequence of feasible assignments. Define inductively the per-
mutations πr of [q] by the equation πr+1 = πr ◦ φfr,2 ◦ φ−1

fr+1,1, where π1 is an arbitrary
permutation of [q]. This implies in particular

(πr+1 ◦ fr+1)(·, 1) = (πr ◦ fr)(·, 2) . (4)

Notice that if the fr are periodic, then so are the πr. Note also that the period of the πr can
be much larger than that of the fr. (Similar constructions have been used in the work of
Eisenbeis, Lelait, and Marmol [3].)
▶ Lemma 6. The map (i, r) 7→ (πr ◦ fr)(i, 1) is a feasible assignment.
Proof. Let us show that g : (i, r) 7→ (πr ◦ fr)(i, 1) is a feasible assignment by checking the
contrapositive of (1). Consider i, i′ ∈ [n] with i ̸= i′ and r, r′ ∈ Z>0. Suppose g(i, r) = g(i′, r′),
i.e., (πr ◦fr)(i, 1) = (πr′ ◦fr′)(i′, 1). Without loss of generality, suppose that r ⩽ r′. Consider
first the case when r = r′. Since πr is a permutation, we have fr(i, 1) = fr(i′, 1). Since fr is
feasible, then the contrapositive holds for fr, namely, [ai + 1, bi + 1) ∩ [ai′ + 1, bi′ + 1) = ∅,
which is equivalent to [ai + r, bi + r) ∩ [ai′ + r′, bi′ + r′) = ∅, as desired.

Consider now the case when r + 1 = r′. Note first that if i′ /∈ U , then bi + r < ai′ + r + 1
and so [ai +r, bi +r)∩ [ai′ +r′, bi′ +r′) = ∅. Suppose now that i′ ∈ U . Using the definition of
πr+1, we have πr(fr(i, 1)) = πr(fr(i′, 2)). Since πr is a permutation, then fr(i, 1) = fr(i′, 2).
The contrapositive holds for the feasible assignment fr, so [ai +r, bi +r)∩[ai′ +r′, bi′ +r′) = ∅.

Finally, if r+2 ⩽ r′, then [ai + r, bi + r)∩ [ai′ + r′, bi′ + r′) is necessarily empty. Therefore,
g is a feasible assignment. ◀
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3.1.3 Definition of DF

For each i, i′ ∈ U , pick a feasible assignment fii′ such that fii′(i, 1) = fii′(i′, 2) if it exists.
Let F be the set of all these feasible assignments (some fii′ might be equal but only one
representative is kept). The proofs rely on a directed multi-graph DF = (U,AF ), with vertex
set U and whose arcs are defined from the set F . The arc set AF is obtained by introducing
q arcs for each f ∈ F : an arc from i ∈ U to i′ ∈ U whenever f(i, 1) = f(i′, 2) – repetitions
are allowed – ; such an arc is labeled with f .

Note the following properties:
The q arcs labeled with the same feasible assignment f form a collection of vertex-disjoint
directed cycles: each vertex is by construction the head of exactly one arc and the tail of
exactly one arc.
The number of arcs in AF is q|F|.
When DF is weakly connected – i.e., the underlying undirected graph is connected – it is
also strongly connected and Eulerian.

Lemma 6 will be used to retrieve a feasible assignment from a walk on DF . The next
lemma will be useful in that regard.

▶ Lemma 7. The directed graph DF is Eulerian if and only if there exists a feasible assignment
with an employee performing each task at least once.

Proof. Suppose there exists a feasible assignment f with an employee j⋆ performing each
task at least once. For every r such that f(i, r) = j⋆ and f(i′, r + 1) = j⋆ there is an arc
(i, i′) in AF because we can build a feasible assignment from f in which the first occurrence
of i and the second occurrence of i′ are both assigned to employee j⋆. Thus the sequence of
tasks in U performed by employee j⋆ induces in DF a walk visiting all vertices. This implies
that the graph DF is weakly connected and as noted above this implies that DF is Eulerian.

Suppose now that DF is Eulerian. Let a1, a2, . . . be the sequence of arcs of an Eulerian
cycle of DF , visited infinitely many times, and consider the sequence f1, f2, . . . of assignments
labeling this arc sequence. Denote by ir the tail of the arc ar. Let πr be the permutations
defined by equation (4), for this sequence of assignments, with π1 being arbitrary. Let then
g be the feasible assignment as in Lemma 6. Let i ∈ [n]. Define then i′ := φ−1

f1,1(f1(i, 1)). In
particular, we have f1(i, 1) = f1(i′, 1). In other words, i′ is the task in U performed before
the first occurrence of i in the assignment f1. Let r̄ be such that ar̄ leaves the vertex i′ with
label f1, which means that i′ = ir̄ and fr̄ = f1. Such r̄ exists because an Eulerian cycle
visits all arcs and because from every vertex, there is an outgoing arc labeled with f1 by
construction of DF . Thus, we have

g(i, r̄) = πr̄(fr̄(i, 1)) = πr̄(f1(i, 1)) = πr̄(f1(ir̄, 1)) = πr̄(fr̄(ir̄, 1)) .

We have fr(ir, 1) = fr(ir+1, 2) for all r ∈ Z>0 because the arc ar is labeled with fr and ar

goes from ir to ir+1. Then, combining this equality alternatively with the equation (4), we
get

πr̄(fr̄(ir̄, 1)) = πr̄−1(fr̄−1(ir̄, 2)) = πr̄−1(fr̄−1(ir̄−1, 1)) = · · · = π1(f1(i1, 1)) = g(i1, 1) .

Therefore g(i, r̄) = g(i1, 1). Since i was chosen arbitrarily, this means the employee g(i1, 1)
performs each task at least once. ◀
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5:8 Balanced Assignments of Periodic Tasks

3.2 Proof of Theorems 1 and 2
This section deals with the proofs of our two main results.

Proof of Theorem 1. As already mentioned, one direction is immediate: if there exists a
balanced feasible assignment, then this assignment is such that every employee performs
each task at least once. We prove now the opposite direction.

Suppose there exists a feasible assignment with an employee performing each task at least
once. By Lemma 7, DF is Eulerian. Locate one pebble on each vertex of DF . Applying
Proposition 3 on DF , with each feasible assignment in F identified with a color, we get a
periodic sequence f1, f2, . . . of feasible assignments. Denote by g the resulting periodic feasible
assignment given by Lemma 6 for this sequence, with π1 being an arbitrary permutation.

Number j = g(i, 1) the pebble initially located on vertex i ∈ U . This makes sure that
each pebble gets a distinct number in [q] (by the bijectivity of φg,1). We establish now the
following claim: For every i ∈ U and every j ∈ [q], pebble j is on vertex i after its (r − 1)th
move if and only if g(i, r) = j.

Let us proceed by induction on r ∈ Z>0. This is true for r = 1 by the definition of the
numbering of the pebbles. Suppose now that the claim if true for some r ∈ Z>0. Consider
pebble j and assume it is located on i after its rth move. This means that the pebble j was
on vertex i′ after its (r − 1)th move then moved along the arc from i′ to i labeled with fr.
Then, using equation (4) and the fact that fr(i, 2) = fr(i′, 1) by definition of DF ,

g(i, r + 1) = πr+1(fr+1(i, 1)) = πr(fr(i, 2)) = πr(fr(i′, 1)) = g(i′, r) = j , (5)

as desired. Conversely, assume that g(i, r + 1) = j. Denote by i′ the tail of the arc of head i

and label fr. Then equation (5) holds as well, meaning that g(i′, r) = j. By induction, the
pebble j was located on vertex i′ after its (r − 1)th move. It then moves along the arc from
i′ to i with label fr, which concludes the proof of the claim.

We check that g is balanced. According to Proposition 3, for every i ∈ U , every j ∈ [q],
and every f ∈ F , we have

lim
t→+∞

1
t

∣∣{r ∈ [t] : pebble j leaves i along arc labeled f for its (r − 1)th move}
∣∣ = 1

|AF |
.

With the claim, this equality becomes

lim
t→+∞

1
t

∣∣{r ∈ [t] : fr = f and g(i, r) = j}
∣∣ = 1

|AF |
.

This equality is actually also true when U is replaced by the larger set [n]. Indeed, given
i ∈ [n] and f ∈ F , the bijectivity of φf,r ensures that there exists a unique u(i, f) in U

such that f(u(i, f), r) = f(i, r) and we have g(i, r) = g(u(i, fr), r) = j for every r ∈ Z>0, by
definition of g and u(i, fr). Therefore, for all i ∈ [n]

lim
t→+∞

1
t

∣∣{r ∈ [t] : g(i, r) = j}
∣∣ =

∑
f∈F

lim
t→+∞

1
t

∣∣{r ∈ [t] : fr = f and g(i, r) = j}
∣∣ = |F|

|AF | = 1
q

,

as desired. ◀

The proof actually shows that the period of the periodic balanced feasible assignment
g built within the proof is upper bounded by q2 × q!. Indeed, with the comment following
Proposition 3, each vertex i is visited by each pebble every h moves (with h the period of the
fr), where h is bounded by |AF |(q− 1)! ⩽ q2 × q!. Using the claim in the proof of Theorem 1,
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for each i ∈ U and r ∈ Z>0, we have g(i, r) = g(i, r + h). Extending this relation to all
i ∈ [n] as in the proof of Theorem 1 (since the sequence of the fr also has period h), the
period of g is bounded by q2 × q!.

The proof of Theorem 2 combines this remark, Theorem 1, Lemma 7, and the following
lemma.

▶ Lemma 8. Let i, i′ be two tasks of U . Deciding whether there exists a feasible assignment
f such that f(i, 1) = f(i′, 2) and building such an assignment if it exists can be done in
polynomial time.

Proof. Let G be the interval graph built from all the intervals [ak, bk) for k ∈ [n] together
with the intervals [ak +1, bk +1) for k ∈ U . Deciding whether there exists a feasible assignment
f such that f(i, 1) = f(i′, 2) is equivalent to deciding whether there is a proper q-coloring of
G with the intervals [ai, bi) and [ai′ +1, bi′ +1) colored the same color. (Indeed, such a feasible
assignment translates into a proper q-coloring of G with the desired property and conversely
such a q-coloring provides a “partial” feasible assignment which can be extended into a
feasible one easily.) This is equivalent in turn to the problem of deciding the q-colorability
of G with [ai, bi) and all intervals intersecting [ai′ + 1, bi′ + 1) (the latter interval excluded)
colored with pairwise distinct colors. Here, we use the fact that |U | = q, i.e., there are q − 1
intervals intersecting [ai′ + 1, bi′ + 1). The problem of deciding whether a partial coloring of
an interval graph can be extended to a proper q-coloring can be done in polynomial time
when the partial coloring contains at most one occurrence of each color (this is a result by
Biró, Hujter, and Tuza [1]). If such a partial coloring extension exists, then it can be built in
polynomial time as well. ◀

Proof of Theorem 2. According to Lemma 8, the graph DF can be built in polynomial time
(since |F| ⩽ q2). Deciding whether a graph is strongly connected can be done in polynomial
time, and DF being strongly connected means it is Eulerian. Therefore, using Theorem 1
along with Lemma 7, deciding whether there exists a balanced feasible assignment can be
done in polynomial time.

Moreover, Theorem 1 provides a construction of a periodic balanced feasible assignment
g (if it exists). By expliciting the arguments, the construction consists first in building the
graph D̃ of Lemma 4, and then in computing an Eulerian cycle in an arbitrary connected
component of this graph (as done in the proof of Proposition 3), which provides a periodic
sequence of feasible assignments f1, f2, . . .. The size of D̃ and the period of this sequence are
both polynomial when q is fixed. In other words, the sequence can be described in polynomial
time when q is fixed. This allows a polynomial description of g when q is fixed according to
the comment following the proof of Theorem 1. ◀

4 Concluding remarks

4.1 All feasible assignments are balanced (Almost)
If we are just interested in the existence of a balanced feasible assignment, and not on the
periodicity of such an assignment or its computability, we can replace Proposition 3 by the
following lemma in the proof of Theorem 1. We keep the same setting of an arc-colored
Eulerian directed multi-graph D = (V,A) with a distribution of pebbles on its vertices, as in
the beginning of Section 3.2.

▶ Lemma 9. Consider an infinite sequence of independent random colors drawn uniformly.
Then, almost surely, this sequence makes each pebble visit each arc with the same frequency.
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In particular there are infinitely many color sequences making each pebble visit each arc
with the same frequency. The proof relies on basic properties of Markov chains. (A standard
reference on Markov chains is the book by Norris [6].) The proof does not show how to
construct such a sequence of colors. It is not even clear that the proof could be modified in
that regard. So the proof shows that almost all color sequences have the desired property,
but does not explain how to construct a single such sequence. Although this might sound
surprising, this phenomenon is quite common. Normal numbers form an example: (almost)
all numbers are normal but not a single one has been described explicitely [9].

The proof of Proposition 3 actually provides an alternative proof of the existence of
sequences of colors making each pebble visit each arc with the same frequency, with an
explicit construction. However, the latter proof does not show that almost all sequences
are actually like that. (In counterpart, it shows that such a sequence can be chosen to be
periodic.)

Proof of Lemma 9. Any realization of this random sequence of colors defines a sequence
of moves for the pebbles, as described above. Consider an arbitrary pebble. The random
sequence of colors translates thus into a random walk of the pebble on the graph D. Denote
by Xk the arc along which the pebble performs its kth move. The Xk’s form a finite Markov
chain. Since the graph is Eulerian, this Markov chain is irreducible, and hence there exists a
unique invariant distribution λ such that λ⊤ = λ⊤M , where M is the transition matrix of
the Markov chain.

We claim that λ is actually the vector 1
|A|e, where e is the all-one vector. By the uniqueness

of the invariant distribution, it is enough to check that e is a left eigenvector of M with
eigenvalue equal to 1. The entry Ma,a′ of the transition matrix (row a, column a′), which
corresponds to the probability of moving along a′ just after moving along a, is equal to 1/α if
the head of a is the tail of a′, and 0 otherwise. The indegree of each vertex being α, we have∑

a∈A

Ma,a′ = α
1
α

= 1 ,

and therefore e⊤M = e⊤.
According to the ergodic theorem, for almost all realizations of the random sequence of

colors, the pebble visits any arc a with a frequency equal to the corresponding entry in λ,
which is equal to 1

|A| for all arcs since it is a probability distribution proportional to the
all-one vector. The previous discussion does not depend on the considered pebble, which
implies the desired result: for almost all realizations of the random sequence of colors, every
pebble visits every arc with a frequency equal to 1

|A| . ◀

Similarly to the proof of Theorem 1, using a much larger set of feasible assignments
F ′ (typically one for each feasible “pattern” on [1, 2]), Lemma 9 could translate into the
following statement: If there is at least one balanced feasible assignment, then almost all
feasible assignments are balanced.

4.2 Tasks with different periods
Suppose now that each task i ∈ [n] comes with a period τi ⩾ bi − ai: the rth occurrence
of task i takes place over the time interval [ai + rτi, bi + rτi). In this more general setting,
it is not clear under which extra condition Theorem 1 and Theorem 2 are verified. When
some periods are irrational, the equivalence stated by Theorem 1 does not necessarily hold.
Figure 2 provides an example where there exists a feasible assignment with one employee
performing all the tasks at least once but no feasible assignment is balanced.
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task 3

task 2

task 1

1 − π 1 1 + π

· · ·

1 − e 1 1 + e

· · ·

e

1 + e

2 + e

· · ·

(a) An instance with three tasks (n = 3). The task 3 has interval [1 − π, 1) and period π, the task 2 has
interval [1 − e, 1) and period e and the task 1 has interval [e − 3, e − 2) and period 1.

employee 3

employee 2

employee 1

1 − π 1

1 + π

· · ·

1 − e 1

1 + e

1 + 2e

· · ·

1 + e

· · ·

(b) A feasible assignment f for three employees (q = 3). Assuming that this pattern is extended along the
horizontal axis, the employee 3 performs each task at least once.

Figure 2 Example of an instance with irrational periods, for q = 3, with a feasible assignment
where an employee performs each task at least once but with no balanced feasible assignment: after
time 1 + e, there is no possible swap of the tasks between the employees.

However, the authors do not know what happens when all the periods are rational. In the
latter case, there is a natural way to associate to the original instance a new instance, with
all tasks of period 1 and with the same number of employees. This goes as follows. Write the
τi as fractions of integers with the same denominator, and denote by pi the numerator. Let
p be a common multiplier of the pi. For every i ∈ [n] interpret the p/pi first occurrences of
tasks i as the first occurrence of p/pi new tasks that replace the original task i. Then, scale
the time with a factor 1/p so as to get a common period of 1. Clearly, a balanced assignment
for this new instance translates into a balanced one for the original instance, but it is not
clear whether things go the other way around. Moreover, the construction described above is
not polynomial and extending Theorem 2 along these lines seems even more elusive.

4.3 When the number of employees is part of the instance

Theorem 2 states that when the number of employees q is constant, a balanced feasible
assignment (if it exists) can be built in polynomial time. However, the proof exhibits a
period bounded by q2 × q! for this balanced feasible assignment. Therefore, when q is part
of the instance, it is not clear whether the construction of a balanced feasible assignment
(under condition of existence) is polynomial.

▶ Question. When the number q of employees is part of the instance, what is the complexity
status of the construction of a balanced feasible assignment (if it exists)?
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Abstract
We consider the problem of creating weekly shift schedules for train dispatchers, which conform to a
variety of operational constraints, in particular, several work and rest time restrictions. We create
the schedules in a two-stage process. First, using a previously presented IP model, we create a set
of feasible daily shifts, which takes care of minimum-rest and shift-length requirements, taskload
bounds, and combinability of dispatching areas. We then formulate an IP model to combine these
daily shifts into weekly schedules, enforcing that each daily shift is covered by some dispatcher
every day of the week, while ensuring that the weekly schedules comply with various restrictions
on working hours from a union agreement. With this approach, we aim to identify “good” sets of
daily shifts for the longer schedules. We run experiments for real-world sized input and consider
different distributions of the daily shifts w.r.t. shift length and ratio of night shifts. Daily shifts
with shift-length variability, relatively few long shifts, and a low ratio of night shifts generally yield
better weekly schedules. The runtime for the second stage with the best daily-shift pattern is below
three hours, which – together with the runtime for stage 1 of ca. 2 hours per run – can be feasible
for real-world use.
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1 Introduction

Train dispatchers are responsible for assigning tracks, for routing trains safely and efficiently,
and for guaranteeing the safety of staff working close to the tracks [18]. A good performance
in their dispatching work is crucial for safe and efficient operations. This becomes even
more important with increasing traffic volumes: railway passenger traffic had increased
pre-pandemic and has again caught up with these volumes [9].

In Sweden, the Swedish Transport Administration (Trafikverket) manages ca. 90% of the
∼15.600-km track network [21]. For this task, the network is divided into eight dispatching
centers, each of which is further partitioned into geographical areas. Such a geographical area
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must be controlled by a dispatcher, but when the traffic situation allows – in particular, with
a low enough traffic volume – the working positions of several dispatchers, and with that the
geographical areas, can be combined to fewer working positions. However, the dispatchers
will need an endorsement for each area they control.

Apart from these operational requirements, dispatcher shifts must comply with a variety
of restrictions from a union agreement [20]: limits on the length of a single shift, limits on
the rest periods between consecutive shifts, limits on the weekly working hours (depending
on whether and how much a dispatcher works during nights and weekends). Currently, shift
scheduling for train dispatchers is a manual process and – up to our work – it had obtained
little attention by researchers, despite its complexity. In previous work, we [16, 15, 14]
presented integer programming (IP) models to compute daily train-dispatcher shifts, which
are feasible w.r.t. all shift-specific legal and operational requirements and for which the
dispatcher task load is limited.

While the daily shift plans are a good start, the planning horizon for dispatchers is longer.
When moving from planning for a single day to planning for longer periods, for starters to a
full week, a variety of relatively complicated restrictions from the union agreement [20] for
Trafikverket come into play:

The weekly rest in a seven-days period should include at least 36 hours of contiguous rest.
In the average of the considered period (= the calendar year), ordinary working hours
(refer to the standard weekly hours a dispatcher is expected to work excluding overtime),
may not exceed:

On average 40 hours per week without holidays.
On average 38 hours per week for employees who have ordinary working hours before
06AM or after 8PM on average one time per week or ordinary working hours on a
Saturday, Sunday, or holiday.
On average 36 hours per week for employees who have ordinary working hours before
6AM or after 8PM on average two times per week and ordinary working hours occur
on Saturdays, Sundays, or holidays.
On average 36 hours per week in case of ordinary working hours which on average
per employee occur 1 time/week and on average 2 hours/week and with on average 2
hours/week between 11PM and 5AM and ordinary working hours occur on Saturdays,
Sundays, or holidays.
On average 34 hours and 15 minutes per week if ordinary working hours on average
per employee occur with at least 1.4 times/week between 11PM and 5AM and at least
once on average 2 hours between 11PM and 5AM and ordinary working hours occur
on Saturdays, Sundays, and holidays.

We denote this list of restrictions by R. Since the planned horizon considered is one week,
resulting in a cyclic schedule, we use the total working hours to track the averages presented
in R.

Modeling all the constraints on weekly schedules mathematically incurs quite a high
complexity, and we did not want to add these to the functionality of our models for daily
shifts [16, 15, 14], as we do not expect to obtain solutions even with very high limits on the
computation times. Hence, for this paper, we instead use the output of the optimization
model for one-day shifts as puzzle bits that we aim to combine as good as possible for feasible
weekly schedules. More precisely, we take a set of feasible one-day shifts as our puzzle bits
and enforce that all of these are used every day – in contrast to using a larger set of possible
shifts (puzzle bits), where our mathematical model would have to ensure that with the
selected shifts each area is monitored by a dispatcher during all periods of each day (which
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would yield a column-generation approach). We use this approach, as we do not solely want
to compute the optimal puzzle bits, but we aim to identify good puzzle bits (daily shifts) and
how to create them. Thus, in our mathematical model for the weekly schedules, we do not
need to take care of aspects covered in the daily shifts: dispatchers are assigned one or several
combinable areas, for which they hold an endorsement; each dispatching area is assigned a
dispatcher during every period of the day; each dispatcher shift complies with upper and
lower bounds on the shift length; and the task load for each dispatcher does not exceed an
upper bound in any time period. Of course with this approach we will likely not reach the
global optimum for the weekly shifts. The runtime for stage one in our approach (using the
previous models to compute daily shifts), even if we minimize the dispatcher-area-assignment
switches (an operationally desirable property), is less than two hours.

In this paper, we minimize the number of dispatchers scheduled for work during the
week. The motivation for this is twofold: the labor turnover for dispatchers is relatively high
(possibly because of the partly undesirable working hours) and from the operational side it is
interesting to know the minimal number of dispatchers that are needed to cover the existing
traffic to be able to size the workforce; for us, the objective yields a baseline to which we can
compare results for other possible objectives in later stages. This is in line with our work
for daily shifts, where we first aimed to minimize the number of dispatchers and in later
stages aimed to minimize the number of dispatcher-area assignment changes while keeping
the number of dispatchers to the minimum.

Related Work. Shift-scheduling problems are typically different for each type of profession,
and even for each specific case study, making them difficult to solve by standard models [19].
However, some tentative approaches for a generic shift scheduling were presented in [1, 19].
These approaches categorize the problems’ constraints into hard ones, such as staffing and
competence constraints, and soft ones (called horizontal) consisting of counter constraints
(e.g., number of days off), series constraints (e.g., consecutive worked nights) and their
combination (e.g., number of resting hours between consecutive shifts). The objective
function contains a weighted sum of each of the violated horizontal constraints. In real
life, where scheduling is done manually, some horizontal constraints may be violated [8]. In
our paper, in contrast to [1, 19], we do not allow constraints to be violated, though we do
have horizontal constraints, e.g., on consecutive hours off. Several solution approaches were
proposed in the literature, which are based on exact methods, such as linear programming [4],
constraint programming [13] and column generation [6, 7, 10, 12], or on heuristics, such as
variable neighborhood search [3], tabu search [2, 17] and simulated annealing [5].

Guo et al., [11] used a two-stage approach for scheduling air traffic controllers over a
two-week period. The type of shifts (morning, evening and night) and the corresponding
demand were given. In the first step, they make shift-employee assignments, while breaks are
added in the second phase. This paper is organized as follows: in Section 2, we describe the
problem. In Section 3, we present the mathematical formulation. In Section 4, we describe
the experiments and discuss corresponding results. Finally, in Section 5, we present our
conclusions and recommendations for future work.

2 Problem Description

In this section, we briefly formalize the problem we aim to solve in this paper, the problem
of shift scheduling for train dispatchers for several days:
Input: A set S of daily shifts that feasibly cover a single day; a set of train dispatchers, D;
the length of the planning horizon in days, p; and a lower bound on the rest time between
two consecutive shifts, rmin.
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Output: A dispatcher-minimal assignment of all daily shifts in S to dispatchers for each of
the p days that fulfill all restrictions in R, such that the rest time between consecutive shifts
is at least rmin.

3 Mathematical Formulation

In this section, we present an optimization model for the weekly schedules, with the parameters
and variables presented in Tables 1 and 2, respectively. We give our model for daily shifts
from [15, 14] in Appendix A for the ease of the reader.

The number of periods equals the number of days for which we are planning, that is, for
a week, we have p = 7. The input is a set of shifts S that completely cover a day (where we
for starters assume the same traffic volume during all 7 days) – S could contain an optimal
set of shifts computed with one of our previous models [16, 15, 14], but also a different set of
shifts (e.g., computed with the previous models but with other parameters on shift length,
such as to obtain better “puzzle bits” for the weekly plan). We denote the elements of S as
“daily shifts”. We then construct the weekly schedule by enforcing that each shift is handled
by some dispatcher every day.

We assume that each dispatcher holds endorsements for all areas, which provides a lower
bound for other endorsement structures. If dispatchers hold endorsements only for some
areas, we could define subsets Si ⊆ S of shifts that dispatcher i can cover.

We now give the constraints of our formulation, followed by the objective function and
detailed explanations.∑

i∈D

xi,j,k = 1 ∀j ∈ S, ∀k ∈ P (1)∑
j∈S

xi,j,k ≤ 2 ∀i ∈ D, ∀k ∈ P (2)

xi,j,k ≤ qi ∀i ∈ D, ∀j ∈ S, ∀k ∈ P (3)∑
j∈S

∑
k∈P

xi,j,k ≥ qi ∀i ∈ D (4)

xi,j,k + xi,j′,k ≤ 1 ∀i ∈ D, ∀k ∈ P, ∀j, j′ ∈ S :

∆j,j′ < rmin (5)
xi,j,k + xi,j′,(k+1)mod p ≤ 1 ∀i ∈ D, ∀k ∈ P, ∀j, j′ ∈ S :

∆′
j,j′ < rmin (6)∑

k∈P

wri,k + wr′
i,k ≥ qi ∀i ∈ D (7)

δj,j′ · (xi,j,k + xi,j′,(k+1)mod p) ≤ 2 − wri,k ∀i ∈ D, ∀k ∈ P

∀j, j′ ∈ S (8)
δ′

j,j′ · (xi,j,k + xi,j′,(k+2)mod p) ≤ 2 − wr′
i,k ∀i ∈ D, ∀k ∈ P

∀j, j′ ∈ S (9)
xi,j,(k+1)mod p + wr′

i,k ≤ 1 ∀i ∈ D, ∀j ∈ S, ∀k ∈ P (10)∑
j∈S

∑
k∈{6,7}

xi,j,k +
∑

j′∈S:
endj′ <startj′

xi,j′,k′=5 ≤ M · wki ∀i ∈ D (11)

∑
j∈S

∑
k∈{6,7}

xi,j,k +
∑

j′∈S:
endj′ <startj′

xi,j′,k′=5 ≥ wki ∀i ∈ D (12)
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∑
j∈S

∑
k∈P

o
20/06
j · xi,j,k + wki ≤ M · w38

i ∀i ∈ D (13)

∑
j∈S

∑
k∈P

o
20/06
j · xi,j,k + wki ≥ w38

i ∀i ∈ D (14)

∑
j∈S

∑
k∈P

o
20/06
j · xi,j,k − 1 ≤ M · θ

20/06
i ∀i ∈ D (15)

∑
j∈S

∑
k∈P

o
20/06
j · xi,j,k ≥ 2 · θ

20/06
i ∀i ∈ D (16)

θ
20/06
i + wki − 1 ≤ w36

i ∀i ∈ D (17)

θ
20/06
i + wki ≥ 2 · w36

i ∀i ∈ D (18)∑
j∈S

∑
k∈P

ℓj · xi,j,k + 2 · (w38
i + w36

i ) ≤ wmax ∀i ∈ D (19)

∑
j∈S

∑
k∈P

o′23/05
j · xi,j,k − 1 ≤ M · θ′23/05

i ∀i ∈ D (20)

∑
j∈S

∑
k∈P

o′23/05
j · xi,j,k ≥ 2 · θ′23/05

i ∀i ∈ D (21)

θ′23/05
i + wki − 1 ≤ w′36

i ∀i ∈ D (22)

θ′23/05
i + wki ≥ 2 · w′36

i ∀i ∈ D (23)∑
j∈S

∑
k∈P

ℓj · xi,j,k + 4 · w′36
i ≤ wmax ∀i ∈ D (24)

∑
j∈S

∑
k∈P

o
23/05
j · xi,j,k − 1 ≤ M · θ

23/05
i ∀i ∈ D (25)

∑
j∈S

∑
k∈P

o
23/05
j · xi,j,k ≥ 2 · θ

23/05
i ∀i ∈ D (26)

θ
23/05
i + θ′23/05

i + wki ≤ 2 + w34
i ∀i ∈ D (27)

θ
23/05
i + θ′23/05

i + wki ≥ 3 · w34
i ∀i ∈ D (28)∑

j∈S

∑
k∈P

ℓj · xi,j,k + 6 · w34
i ≤ wmax ∀i ∈ D (29)

The objective function minimizes the number of used dispatchers: min .
∑
i∈D

qi (30)

Constraint (1) ensures that each shift is assigned to exactly one dispatcher during each
day. With Constraint (2), we limit the number of shifts a single dispatcher can be assigned
during a day to two: with shifts of minimum length 6 and a rest period of at least 11
hours, that is the maximum possible number. Constraint (3) ensures that if a dispatcher
is assigned to some shift during some day, they are counted as a working dispatcher, while
Constraint (4) ensures that if a dispatcher is not used for any shift during any period, they
are not counted as a working dispatcher. Constraint (5) states that if between shifts j and j′,
worked successively and started on the same day, we have less than the minimum resting time
between two consecutive shifts, we can assign at most one of j and j′ to the same dispatcher
during a day. Similarly, Constraint (6) states that if between two shifts j and j′, worked
successively and j being an overnight shift, we have less than the minimum resting time
between two consecutive shifts, we can assign at most one of j and j′ to the same dispatcher
during consecutive days. Constraint (7) ensures that any working dispatcher has at least one
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Table 1 Model Parameters.

Parameter Description
D set of train dispatchers, indexed by i

S set of daily shifts, indexed by j

P set of week days in the time horizon, indexed by k

startj the beginning of the first working hour of shift j

endj the beginning of the last working hour of shift j

ℓj the length of shift j

∆j,j′ the gap (number of rest hours) between shifts j and j′ if worked successively
and start on the same day

∆′
j,j′ the gap (number of rest hours) between shifts j and j′ if worked successively

and the first shift ends the next day (overnight shift)
δj,j′ binary, whether the gap between shifts j and j′ is less than 36h

if worked in two consecutive days
δ′

j,j′ binary, whether the gap between shifts j and j′ is less than 36h
if started in k and k + 2, respectively

rmin the minimum resting time between two consecutive shifts
wmax the maximum weekly working hours
o

20/06
j binary, whether shift j overlaps period 20-06

o
23/05
j binary, whether shift j overlaps period 23-05

o′23/05
j integer, the number of hours in shift j that overlap period 23-05

p = |P | number of time periods (days) in the time horizon
d = |D| number of available dispatchers (which maximally can be scheduled in the model)
M a big number

Table 2 Model Variables.

Variable Description
xi,j,k binary, whether disp. i is assigned shift j during period k

qi binary, whether disp. i works at least one shift/week
wri,k binary, whether disp. i has weekly rest (36h)

between periods k and k + 1
wr′

i,k binary, whether disp. i has weekly rest (36h)
between periods k and k + 2

wki binary, whether disp. i works, at least once, on a weekend
θ

20/06
i binary, whether disp. i works at least twice in period 20-06

θ
23/05
i binary, whether disp. i works at least twice in period 23-05

θ′23/05
i binary, whether disp. i works at least 2h/week in period 23-05

w38
i binary, whether disp. i works at least once in period 20-06

or on weekend
w36

i binary, whether disp. i works at least twice in period 20-06
and at least once on weekend

w′36
i binary, whether disp. i works at least 2h/week in period 23-05

and at least once on weekend
w34

i binary, whether disp. i works at least twice in period 23-05
for at least 2h/week and at least once on weekend
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weekly rest of at least 36 hours starting during some of the periods. Constraint (8) enforces
that there is no weekly rest period starting during day k for dispatcher i if they are assigned
a shift j during k followed by a shift j′ during k + 1 between which we have less than 36
hours. Constraint (9) ensures that there is no weekly rest period starting during day k for
dispatcher i, if they are assigned a shift j during k followed by a shift j′ during k + 2 between
which we have less than 36 hours. Constraint (10) enforces that dispatcher i can be assigned
at most one of two things during day k + 1: a weekly rest period of 36 hours starting during
day k and ending during day k + 2, or a shift during day k + 1.

Constraint (11) ensures that if dispatcher i is working some weekend shift, that is, a shift
starting Saturday or Sunday (periods 6 and 7) or a shift starting on a Friday but ending
on the Saturday, the variable indicating weekend work is set to 1. Constraint (12) enforces
that if dispatcher i is not working any weekend shift, the variable indicating weekend work is
set to 0. If a dispatcher is working either during a weekend or/and a shift during the week
that overlaps with the time interval 20-06, the variable indicating this, w38

i , is set to 1 with
Constraint (13). If a dispatcher is working none of these shifts, the variable is set to 0 with
Constraint (14). Similarly, Constraints (15) and (16) correctly set the variable indicating
whether dispatcher i works at least twice during the hours 20-06; Constraints (17) and (18)
correctly set the variable indicating whether dispatcher i works at least twice during the
hours 20-06 and a weekend shift. Constraint (19) sums up the length of all shifts during the
week assigned to dispatcher i and limits those plus 2 hours – if the dispatcher may by the
other constraints work at most 38 hours – or plus 4 hours – if the dispatcher may work at
most 36 hours – by the maximum weekly working hours of 40.

Constraints (20) and (21) keep track whether dispatcher worked at least two hours during
23 and 05 with the variable θ

′23/05
i . Constraint (22) and (23) enforce that the variable

indicating whether dispatcher i is working at least two hours within the hours 23-05 and
at least once during the weekend, w

′36
i , is assigned correctly. If that variable is set to 1,

Constraint (24) limits the lengths of shifts assigned to i to 36 (otherwise, the limit is 40
hours). Constraints (25) and (26) keep track whether dispatcher i worked at least twice
during 23-05 with the variable θ

23/05
i . Constraint (27) and (28) enforce that the variable

indicating whether dispatcher i is working at least twice and for at least two hours within
the hours 23-05 and at least once during the weekend, w34

i , is assigned correctly. If that
variable is set to 1, Constraint (29) limits the lengths of shifts assigned to i to 341.

4 Experiment Setup and Results

In this section, we present our experiments and their results followed by a discussion. We
consider real-world-sized data, comparable to Malmö dispatching center, which is responsible
for train traffic in southern Sweden. The dispatching area is partitioned into 15 dispatching
areas (the area adjacency graph is given in Figure 2 in Appendix B) and the number of train
movements per hour (approximating the dispatcher taskload) is based on discussions with
operational experts, where we allow a maximum taskload of 30 per hour and dispatcher
(see [16] for a detailed description of the train movements and the area’s adjacencies). We
assume that a dispatcher can handle a maximum of three areas simultaneously. We use one
of our IPs for daily shifts [16, 15, 14] to create feasible sets of daily shifts. In Figure 3 in
Appendix C, we present an example of the output of one of these models.

1 More precisely, 34h and 15 minutes rounded down to 34h given the time resolution of 1h.
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The input to the weekly problem consists of a set of shifts, S, represented by the start
time, startj , and end time, endj , of each shift j. Using this data we compute the parameters
for the weekly-scheduling model, such as ℓj , ∆j,j′ , ∆′

j,j′ , δj,j′ , δ′
j,j′ , o

20/06
j , o

23/05
j , and o′23/05

j .
For all instances, we set the minimum resting time between two consecutive shifts, rmin, to
11 periods (which equals 11 hours here), and the computational time limit to 48 hours.

We run three experiment series, varying the shift lengths and the number of night shifts
(i.e., shifts overlapping with the period 20-06) in the daily-shifts input. In the first series, we
change the interval of feasible shift lengths and the number of daily shifts when generating
data for the daily-shifts model. In the second series, we change the distribution of the
shift lengths, i.e., for each instance we generate daily shifts grouped by their length within
predefined intervals. The purpose is to better control the structure of the shift lengths (short,
medium, long) and to study the effect on the weekly dispatcher-shift assignments. Lastly,
in the third series, we keep all parameters from the previous two series, in particular, the
total number of daily shifts, while pushing for as few night shifts as possible (as night shifts
strongly constrain the allowed weekly working hours). The purpose here is to examine the
impact of the night-shift ratio on the weekly schedule.

For modeling and solving the IPs, we use the programming language Python and the
solver Gurobi. As hardware, we use a powerful server (Tetralith server, 2019), utilizing
Intel HNS2600BPB computer nodes with 32 CPU cores, 384 GB, provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS).

4.1 Series 1: Changing Shift Lengths and Total Number of Shifts
This first experiment series consists of two subseries (1.1 and 1.2). In the first one, we use a
set of shifts with lengths within the interval [6-11], and we gradually increase the number
of daily shifts. To generate these, we run the daily-shifts model where we set the lower
(T min) and upper bound (T max) for the feasible shift length to 6 and 11 periods (which equal
hours here), respectively. We start with 21 daily shifts, which is the minimum for a one-day
coverage for that specific instance, and gradually increase this number to 25. The rationale
for using increasing number of daily shifts is to create more puzzle bits and see how this will
affect the quality of the weekly schedule. We use the notation I

[ℓb,ub]
t,n for the instance with

feasible shift lengths within the interval [ℓb, ub], and where t is the total number of daily
shifts and n is the number of night shifts among those. In the second experiment subseries
(1.2), we adjust the feasible interval of the shift lengths in the daily-shifts model to [7-9]. The
idea here is to avoid shifts that are either too short or too long and examine the impact of
this change. The minimum number of shifts to cover one day of operations, for this specific
instance, is 28. Similarly to Subseries 1.1, we gradually increase the number of daily shifts
from 28 to 31.

We define the slack as the working hours of a dispatcher that we are not using with the
current schedule. For example, if a dispatcher i has been assigned a shift pattern with a total
of 34 hours, while according to the legal constraints for this specific shift pattern dispatcher i

could have worked up to 38 hours, then the slack is 4 hours. We are not steering for a small
slack with our model, but we use the slack as a performance indicator to gauge a shift pattern
– with the general expectation that a schedule with large slack uses many dispatchers.

We report the shift-length distribution and the results of the two subseries in rows 2-10
of Table 3. We present the sum of slacks, their average per dispatcher, the total number of
needed dispatchers, the optimality gap, and the runtime (rt) for each instance.

For both subseries, increasing the number of daily shifts in the input did not always result
in a decrease in the number of needed dispatchers for the week. However, the number of
dispatchers decreased between the instances I

[6,11]
21,16 and I

[6,11]
22,14 . The first instance uses the
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minimum number of daily shifts, this makes it more likely that many shifts are pushed to the
maximum of 11 hours. However, “puzzle bits” of 11 hours do not match well with the upper
bounds on working hours of 34, 36, 38, and 40 hours. Thus, instances with a high number of
11-hour shifts are likely to yield large slacks. Increasing the number of daily shifts resulted
in a decrease in the number of dispatchers in both I

[6,11]
22,14 and I

[6,11]
24,17 , while this was not the

case for I
[6,11]
23,18 , and even worse for I

[6,11]
25,21 , where the number of dispatchers increased to 49.

These high numbers of dispatchers in these two instances are probably due to a high number
of 11-hour shifts (15 in both cases). Increases/decreases in average slack are accompanied
with increases/decreases in the number of 11-hour shifts.

The changes in daily shifts in the second subseries (1.2) yield smaller changes in the
number of dispatchers, where the highest value (47) was obtained in I

[7,9]
29,22, which is the

instance with the highest number of 9h-shifts in this subseries. The same instance has also the
highest slack (both sum and average) within its group. Generally, the slack does not always
follow the same trend as the number of dispatchers, which is the value we are minimizing.

From this experiment series, we conclude that adding more daily shifts may improve
the weekly schedule, mainly because of adding shorter shifts at expense of longer ones.
Too many 11-hour shifts may create a large number of weekly schedules with ca. 33 hours,
which in turn yield a high slack. Hence, these experiments highlight the importance of the
length-distribution of daily shifts.

The runtime reached the maximum limit of 48h in six out of nine instances with an
optimality gap below 4.26. However, most instances reached the current solution relatively
quickly, and the latest current solution has been reached before 9 hours.

Table 3 Length distribution and results for the first experiment series (1.1 and 1.2) and second
experiment series.

night slack slack slack disp gap rt length distr.
instance name ratio

∑
avg min;max

∑
% (h) 6/7/8/9/10/11

I
[6,11]
21,16 0.76 132 2.87 0;7 46 0 0.36 0/0/2/1/1/17

I
[6,11]
22,14 0.64 24 0.58 0;5 41 3.37 max 0/5/1/3/1/12

I
[6,11]
23,18 0.78 61 1.33 0;5 46 3.98 max 0/5/0/1/2/15

I
[6,11]
24,17 0.71 14 0.33 0;4 42 0 9.47 4/3/2/0/6/9

I
[6,11]
25,21 0.84 55 1.12 0;5 49 3.12 max 0/4/2/3/1/15

I
[7,9]
28,20 0.71 30 0.69 0;3 44 2.27 max 0/10/6/12/0/0

I
[7,9]
29,22 0.76 39 0.83 0;5 47 4.26 max 0/6/10/13/0/0

I
[7,9]
30,23 0.77 14 0.30 0;3 46 2.17 max 0/13/6/11/0/0

I
[7,9]
31,24 0.77 7 0.15 0;4 46 0 3.45 0/13/11/7/0/0

I
1
2 :([6,8],[8,11])

21,16 0.76 7 0.19 0;1 37 0 0.73 0/1/10/1/0/9
I

1
2 :([6,8],[8,11])

22,17 0.77 16 0.4 0;1 40 0 1.49 0/1/10/0/0/11
I

1
2 :([6,8],[8,11])

23,15 0.65 12 0.3 0;1 40 0 1.50 0/4/8/0/1/10

I
1
3 :([6,7],[7,9],[9,11])

21,16 0.76 3 0.08 0;1 36 0 3.19 0/7/0/7/0/7
I

1
3 :([6,7],[7,9],[9,11])

22,15 0.68 6 0.16 0;1 37 0 1.48 0/8/0/7/0/7
I

1
3 :([6,7],[7,9],[9,11])

23,16 0.69 12 0.31 0;2 39 0 5.80 1/6/1/8/1/6
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4.2 Series 2: Splitting the Shift-Length Interval in Equal Subintervals
To generate more variability in the daily shifts, we adjust the input for the daily-shifts model,
splitting the complete interval of allowed shift lengths into subintervals, and requiring roughly
equally many shifts that have a shift length in each subinterval. This gave us the input for
the second experiment series, containing the Subseries 2.1 and 2.2, which we report together
with the corresponding results in rows 11-16 of Table 3. The instances of the first subseries
series are I

( 1
2 :[6,8],[8,11])

t,n , where half2 of the shifts have a length in the interval [6-8], and the
other half have a length within [8-11]. We generated these shifts by adding extra constraints
in the daily-shifts model. The two intervals overlap, because non-overlapping intervals may
not yield feasible daily shifts when we keep all other parameters unchanged. The instances in
the second subseries are I

( 1
3 :[6,7],[7,9],[9,11])

t,n , where we split the shifts into three equinumerous
sets with lengths within the intervals [6,7], [7,9] and [9,11], respectively (again we allow
overlapping intervals)3. In both subseries, we have instances with 21, 22, and 23 daily shifts.

Both the slack and the number of dispatchers improve in each instance I
1
2 :([6,8],[8,11])

t,n

compared to its correspondent in Subseries 1.1 with the same number of daily shifts, I
[6,11]
t,n .

Comparing the instances only within this subseries, I
1
2 :([6,8],[8,11])

21,16 performs best, which is
probably at least partly due to relatively few long (11-hour) shifts. The same trend holds for
instances I

1
3 :([6,7],[7,9],[9,11])

t,n compared to their correspondent instances I
[6,11]
t,n . Every instance

in the second experiment series outperformed any one in the first series w.r.t. the number of
used dispatchers. Moreover, the runtimes are generally much shorter in this second series.

4.3 Series 3: Changing the Percentage of Night Shifts
In all the previous experiments, relatively few shifts covered only daytime, while the majority
overlapped with night hours. In this experiment series, we aim to investigate the impact of
changing the ratio of the number of night shifts and the total number of shifts by decreasing
the number of night shifts (while keeping the total number of daily shifts constant). For each
of the previous instances, we generate a corresponding instance with the lowest night-shift
ratio for the given total number of daily shifts. The idea here is to minimize the number of
shifts involved in the constraints on the total weekly working hours, hence, we define the
night shifts as any shift that overlaps with the period 20-06 (we cannot impact the weekend
shifts, as all daily shifts have to be manned during the weekend). To generate these shifts
in the daily-shifts model, we prohibit some shifts from covering the time interval 20-06,
performing a binary search for the highest number of daily shifts that are prohibited to
overlap with the night hours, while yielding a feasible solution. In Table 4, we report the
shift distribution and the results of these instances, which we denote by I ′ instead of I.

The number of dispatchers in instance I ′ is lower than in instance I in 12 out of 15
instances; this number remains unchanged in two cases; and only for I

′[6,11]
22,12 , the number is

higher than in I
[6,11]
22,12 . This sole increase in the number of dispatchers is probably caused by

an increase in the number of 11-hour shifts.
The slack decreased for all but three instances I ′ in comparison to the corresponding

instance I (these three instances are marked in red in Table 4). However, in two out of three
cases, the increase in slack is accompanied by a decrease in the number of dispatchers (our
objective). Hence, the trend in slack is often a good indicator for the trend in the number of
needed dispatchers, but this does not always hold.

2 More precisely, we have ⌈ t
2 ⌉ daily shifts in one shift-length interval and ⌊ t

2 ⌋ in the other interval.
3 And again, we actually have two shift-length intervals with ⌊ t

3 ⌋ shifts and one shift-length interval with
⌈ t

3 ⌉ shifts.
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Table 4 Results for the third experiment series (with adjusted parameters of all instances in the
first two series), where the number of night shifts is minimized. For instances I ′ with a higher slack
than the corresponding instance I, we highlight the slack in red; for instances with a higher number
of dispatchers, we highlight the number in bold.

night slack slack slack disp gap rt length distr.
instance name ratio

∑
avg min;max

∑
% (h) 6/7/8/9/10/11

I
′[6,11]
21,13 0.62 30 0.77 0;5 39 2.56 max 1/0/1/1/4/14

I
′[6,11]
22,12 0.54 46 1.07 0;5 43 2.33 max 2/1/0/2/2/15

I
′[6,11]
23,11 0.48 4 0.1 0;2 38 0 1.42 5/5/0/2/2/9

I
′[6,11]
24,10 0.42 10 0.24 0;4 41 0 2.13 4/4/1/3/1/11

I
′[6,11]
25,9 0.36 1 0.02 0;1 40 0 3.52 7/4/2/1/1/10

I
′[7,9]
28,13 0.46 43 1.02 0;8 42 0 30.28 0/16/5/7/0/0

I
′[7,9]
29,13 0.49 20 0.44 0;5 45 2.22 max 0/10/5/14/0/0

I
′[7,9]
30,13 0.43 12 0.26 0;3 46 2.17 max 0/9/10/11/0/0

I
′[7,9]
31,13 0.42 2 0.04 0;1 46 2.17 max 0/13/9/9/0/0

I
′ 1

2 :([6,8],[8,11])
21,13 0.62 8 0.22 0;2 36 2.78 max 2/3/6/0/1/9

I
′ 1

2 :([6,8],[8,11])
22,12 0.54 4 0.11 0;1 37 0 1.59 6/1/4/0/2/9

I
′ 1

2 :([6,8],[8,11])
23,12 0.52 9 0.23 0;3 39 0 0.18 6/1/5/0/1/10

I
′ 1

3 :([6,7],[7,9],[9,11])
21,13 0.62 1 0.03 0;1 35 0 2.94 1/6/1/6/0/7

I
′ 1

3 :([6,7],[7,9],[9,11])
22,12 0.54 3 0.08 0;1 36 0 0.28 4/4/1/6/0/7

I
′ 1

3 :([6,7],[7,9],[9,11])
23,12 0.52 5 0.13 0;1 38 0 2.61 2/6/1/7/1/6

Since we are not steering the shift-length distribution in this experiment series, we exclude
the instances for which not only the number of night shifts changed, but for which the
number of the longest shifts decreased. The rationale behind this is that changes in both
would not allow us to determine whether the improvements are due to having fewer night
shifts. Considering only instances where the number of longest shifts did not decrease (10
instances), only two out of these ten instances, namely I

′[6,11]
22,12 andI

′ 1
2 :([6,8],[8,11])

21,13 , had worse
results either in terms of increased slack or both increased slack and number of dispatchers.
The remaining eight out of ten instances yield better results, which is possibly because of
fewer night shifts.

In Figure 1, we present the final weekly schedule obtained for instance I
′ 1

3 :([6,7],[7,9],[9,11])
21,16 .

This is the instance with the lowest number of needed dispatchers (35).
Generally, minimizing the number of night shifts has a positive effect on the weekly

schedule, which is in line with our expectations, since having more night shifts would activate
more constraints that limit the weekly working hours, thus, increasing the number of needed
dispatchers.

5 Conclusions and Future Work

Solving shift-scheduling problems with a long time horizon and a high resolution is a complex
problem that requires a huge amount of computation time, and in many cases depending
on the size and the problem type, without reaching a global optimum. In this paper, we
suggest a two-stage approach for weekly shift scheduling of train dispatchers. First, we use
our previous model from [16, 15, 14] to generate feasible daily shifts, which we then use as
input to the weekly-shift-scheduling model presented in this paper. We run three experiment
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Figure 1 The weekly schedule obtained for instance I
′ 1

3 :([6,7],[7,9],[9,11])
21,16 . The values in the cells

represent the start and end time of each shift. To exemplify the daily assignment of all daily shifts,
we marked two of the 21 daily shifts, the shifts 05-12 and 16-23 in red and blue, respectively.

series, with a real-world sized data, where we: change the number of daily shift and their
feasible lengths, split the feasible shift-length interval into equal subintervals, and change the
percentage of night shifts among the daily shifts.

We conclude that increasing the number of daily shifts may improve the weekly schedules,
especially if this would decrease the percentage of the too long shifts (11h). Moreover,
enforcing more variability in the daily shifts’ length, and reducing the night-shift ratio can
also improve the quality of the weekly schedules.

For stage two in our approach, the runtimes in our experiments were between a few
minutes up to being stopped after two days with an optimality gap below 4.26%. The
instances with minimized night shift ratio and with three subintervals of the feasible lengths
performed very well, and also had a relatively low runtime (between 0.28 and 2.94h). Thus,
we recommend those daily-shift patterns. For stage one in our approach, computing one
feasible set of daily shifts – using a model to minimize the dispatcher-area-assignment
switches [15, 14] – takes less than two hours. However, if we want to achieve the fewest
possible night shifts, we may have to perform multiple runs. Minimizing the number of
dispatchers only is much faster (with a runtime of maximum 20 seconds). We could use this
objective for our daily-shifts model to obtain the minimum number of night shifts (performing
a binary search on that number with a few seconds runtime per run) and then once run the
computationally more expensive model to minimize dispatcher-area-assignment switches;
with this, we would prioritize the smallest number of night shifts over the lowest possible
number of assignment switches. Given the planning horizon, the resulting runtime for the
complete approach can be acceptable for real-world use, in particular, given the quality of
the resulting schedules.

We opted for a two-stage approach, mainly to gain insight not only in the weekly schedules,
but also in “good” daily-shift distributions for the operational planning. Another natural
approach is column generation, where both constraints on the daily shifts and those on the
weekly shifts are integrated. The split in master and pricing problem could, for example, be
steered by operational vs. legal constraints on the shifts, respectively.



T. Lidén, C. Schmidt, and R. Zahir 6:13

References
1 Burak Bilgin, Patrick De Causmaecker, Benoît Rossie, and Greet Vanden Berghe. Local search

neighbourhoods for dealing with a novel nurse rostering model. Annals of Operations Research,
194:33–57, 2012.

2 Michael J Brusco and TR Johns. An integrated approach to shift-starting time selection and
tour-schedule construction. Journal of the Operational Research Society, 62(7):1357–1364,
2011.

3 Edmund K Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart Veltman. A hybrid
heuristic ordering and variable neighbourhood search for the nurse rostering problem. European
journal of operational research, 188(2):330–341, 2008.

4 Mehmet Tolga Cezik and Pierre L’Ecuyer. Staffing multiskill call centers via linear programming
and simulation. Management Science, 54(2):310–323, 2008.

5 Jean-François Cordeau, Gilbert Laporte, Federico Pasin, and Stefan Ropke. Scheduling
technicians and tasks in a telecommunications company. Journal of Scheduling, 13(4):393–409,
2010.

6 Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. Constraint programming based
column generation for employee timetabling. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems: Second International
Conference, CPAIOR 2005, Prague, Czech Republic, May 31-June 1, 2005. Proceedings 2,
pages 140–154. Springer, 2005.

7 Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-regular based hy-
brid column generation approach. Constraints, 11(4):315–333, 2006. doi:10.1007/
s10601-006-9003-7.

8 Robert G Drake. The nurse rostering problem: from operational research to organizational
reality? Journal of advanced nursing, 70(4):800–810, 2014.

9 eurostat. Passenger transport by type of transport (detailed reporting only), 2024. URL: https:
//ec.europa.eu/eurostat/databrowser/view/RAIL_PA_TYPEPAS/default/line?lang=en.

10 Michel Gamache, François Soumis, Gérald Marquis, and Jacques Desrosiers. A column
generation approach for large-scale aircrew rostering problems. Operations Research, 47(2):247–
263, 1999. doi:10.1287/opre.47.2.247.

11 Jia Guo and Jonathan F Bard. Air traffic controller scheduling. Computers & Industrial
Engineering, 191:110123, 2024.

12 Dennis Huisman. A column generation approach for the rail crew re-scheduling problem.
European Journal of Operational Research, 180(1):163–173, 2007. doi:10.1016/j.ejor.2006.
04.026.

13 Gilbert Laporte and Gilles Pesant. A general multi-shift scheduling system. Journal of the
Operational Research Society, 55(11):1208–1217, 2004.

14 Tomas Lidén, Christiane Schmidt, and Rabii Zahir. Improving attractiveness of working shifts
for train dispatchers. Under revision for journal publication.

15 Tomas Lidén, Christiane Schmidt, and Rabii Zahir. Improving attractiveness of working shifts
for train dispatchers. In 25th Euro Working Group on Transportation Meeting (EWGT 2023),
2023. Extended abstract presented only.

16 Tomas Lidén, Christiane Schmidt, and Rabii Zahir. Shift scheduling for train dispatchers. In
RailBelgrade 2023: the 10th International Conference on Railway Operations Modelling and
Analysis (ICROMA), 2023.

17 Nysret Musliu, Andrea Schaerf, and Wolfgang Slany. Local search for shift design. European
journal of operational research, 153(1):51–64, 2004.

18 Emilie M. Roth, Nicholas Malsch, and J. Multer. Understanding how train dispatchers manage
and control trains : results of a cognitive task analysis. Technical Report DOT-VNTSC-FRA-
98-3;DOT/FRA/ORD-01/02, John A. Volpe National Transportation Systems Center (U.S.),
2001.

ATMOS 2024

https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://ec.europa.eu/eurostat/databrowser/view/RAIL_PA_TYPEPAS/default/line?lang=en
https://ec.europa.eu/eurostat/databrowser/view/RAIL_PA_TYPEPAS/default/line?lang=en
https://doi.org/10.1287/opre.47.2.247
https://doi.org/10.1016/j.ejor.2006.04.026
https://doi.org/10.1016/j.ejor.2006.04.026


6:14 Two-Stage Weekly Shift Scheduling for Train Dispatchers

19 Pieter Smet, Burak Bilgin, Patrick De Causmaecker, and Greet Vanden Berghe. Modelling
and evaluation issues in nurse rostering. Annals of Operations Research, 218:303–326, 2014.

20 Trafikverket. Kollektivavtal: Trafikverkets affärsverksavtal mellan Trafikverket och
Saco-S, OFR-S och Seko, 2019. URL: https://www.seko.se/siteassets/forhandlings-
branschorganisationer/seko-klubb-trafikverket/pdf-er/test/trafikverkets-
affarsverksavtal_andringar_tillagg_till_och_med_2019_10_01_20191025.pdf.

21 Trafikverket. Sveriges järnvägsnät, 2024. Accessed: 2024-06-26. URL: https:https://www.
trafikverket.se/resa-och-trafik/jarnvag/sveriges-jarnvagsnat/.

A Mathematical Model for Daily Shifts

For the ease of the reader, we provide the full model used for computing the daily shifts
that we presented in [15, 14] (an improvement of the model from [16]) in this section of
the appendix. While we also presented different approaches for minimizing changes in the
dispatcher-area assignment in [15, 14], here, we give the improved model for minimizing the
number of used dispatchers while observing all operational and legal requirements for shifts
during one day.

We give the notation we used in the model in Tables 5 and 6. Because we aim to minimize
the total number of used dispatchers, our objective function is given by (31).

min .
∑
i∈D

qi (31)

The rest of the model is given by Constraints (32)-(43).

Table 5 Model parameters in the one-day-shifts model.

Parameters Description
D set of train dispatchers, indexed by i

A set of geographical areas, indexed by j

P set of time periods, indexed by k

C set of area combinations, indexed by ℓ

T Lj,k task load in area j during period k

T Lmax maximum allowed task load
Amax maximum number of assigned areas to a dispatcher per period
ei,j ∈ {0, 1} =1 if dispatcher i holds an endorsement for area j

T min minimum shift length (in time periods)
T max maximum shift length (in time periods)
rmin minimum number of rest periods between two shifts
p = |P | number of time periods in the time horizon

Table 6 Model variables in the one-day-shifts model.

Variables Description
xi,j,k ∈ {0, 1} =1 if dispatcher i is assigned area j during period k

ci,ℓ,k ∈ {0, 1} =1 if dispatcher i is assigned area combination ℓ during period k

yi,k ∈ {0, 1} =1 if dispatcher i is at work during period k

vi,k ∈ {0, 1} =1 if dispatcher i starts a shift at the beginning of period k

qi ∈ {0, 1} =1 if dispatcher i is used during some period

https://www.seko.se/siteassets/forhandlings-branschorganisationer/seko-klubb-trafikverket/pdf-er/test/trafikverkets-affarsverksavtal_andringar_tillagg_till_och_med_2019_10_01_20191025.pdf
https://www.seko.se/siteassets/forhandlings-branschorganisationer/seko-klubb-trafikverket/pdf-er/test/trafikverkets-affarsverksavtal_andringar_tillagg_till_och_med_2019_10_01_20191025.pdf
https://www.seko.se/siteassets/forhandlings-branschorganisationer/seko-klubb-trafikverket/pdf-er/test/trafikverkets-affarsverksavtal_andringar_tillagg_till_och_med_2019_10_01_20191025.pdf
https: https://www.trafikverket.se/resa-och-trafik/jarnvag/sveriges-jarnvagsnat/
https: https://www.trafikverket.se/resa-och-trafik/jarnvag/sveriges-jarnvagsnat/
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k∑
µ=k+1−T min

vi,µ(mod p) ≤ yi,k ∀i ∈ D, ∀k ∈ P (32)

k∑
µ=k+1−T max

vi,µ(mod p) ≥ yi,k ∀i ∈ D, ∀k ∈ P (33)

vi,k ≥ yi,k − yi,(k−1)(mod p) ∀i ∈ D, ∀k ∈ P (34)
vi,k ≤ yi,k ∀i ∈ D, ∀k ∈ P (35)
vi,k ≤ qi ∀i ∈ D, ∀k ∈ P (36)∑
k∈P

vi,k ≥ qi ∀i ∈ D (37)

k+rmin∑
µ=k+1

vi,µ(mod p) ≤ qi − yi,k ∀i ∈ D, ∀k ∈ P (38)

∑
j∈A

∑
ℓ∈C

ci,ℓ,k · aℓ,j · T Lj,k ≤ T Lmax ∀i ∈ D, ∀k ∈ P (39)

ci,ℓ,k ≤ ei,j ∀i ∈ D, ∀ℓ ∈ C, ∀j ∈ ℓ, ∀k ∈ P (40)∑
ℓ∈C\{0}

ci,ℓ,k = yi,k ∀i ∈ D, ∀k ∈ P (41)

ci,0,k = 1 − yi,k ∀i ∈ D, ∀k ∈ P (42)∑
ℓ∈C\{0}

∑
i∈D

aℓ,j · ci,ℓ,k = 1 ∀k ∈ P, ∀j ∈ A (43)

B Adjacency Graph of the Considered Dispatching Areas
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Figure 2 Adjacency graph of the considered dispatching areas.
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C Example Output of the Daily-Shifts Model

Figure 3 An optimum schedule obtained by the daily-shifts model given an instance with 24
periods and 15 areas. Rows and columns stand for dispatchers and time period of a day, respectively.
The values in the cells represent the assigned areas, while the colors are used for clarity and distinction
between rows.
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7:2 Improved Algorithms for the Capacitated Team Orienteering Problem

1 Introduction

The Capacitated Orienteering Problem (c-op) is an NP-hard combinatorial optimization
problem belonging to the wide class of Vehicle Routing Problems (VRPs), which has received
much attention in the literature on algorithms and operation research [2,6,8,13,16–19,22,25,26].
In c-op, we are given a complete graph, with edge lengths, where each node represents a
customer that is assigned a profit/prize and a demand/size. Given two nodes s and t the
goal is to find a path from s to t that maximizes the total prize, and respects both a capacity
constraint on the total size of the nodes on the s-t path and a budget constraint on the total
length of the s-t path. c-op is a natural generalization of two very well-known problems,
namely the Knapsack Problem [27], which is a special case of c-op where the length of all
edges is zero, and the Orienteering Problem (op) [9,10], which is a variant of c-op where the
size of all nodes is zero. A generalization of c-op is the case in which the goal is to find s-t
paths for a fleet of K homogeneous, capacitated vehicles that can be used to collect prizes.
This problem is known as the Capacitated Team Orienteering Problem (c-top) and has been
defined by Archetti et al. [2], originally in the flavor when s = t, i.e. when the aim is finding
tours centered at a depot node, rather than paths.

From a theoretical viewpoint, the best known approximation algorithms for c-op and
c-top, that run in polynomial time, are due to Bock and Sanità, who achieved approximation
factors of (3 + ε), for any ε > 0, and 3.53, respectively [8]. From a practical perspective,
for both c-op and c-top, several heuristics without guarantees on the achieved quality
of solution and exact algorithms with exponentially large worst-case running times have
been introduced and experimentally evaluated with the aim of characterizing their practical
effectiveness and applicability, i.e. evaluating the quality of the computed solutions and the
running time necessary to achieve such solutions (see [1, 2, 6, 16, 17, 19, 22, 25, 26]). In all
benchmark instances for the c-op and c-top problems considered in such works, the prize
of each node is fixed to be at least equal to half of its size. Specifically, the prize of each
node v with size r(v) is assigned to be equal to π(v) = (h + 0.5)r(v), where h is a random
number uniformly generated within interval [0, 1] [2, 26]. This implies that, for two nodes u

and v with r(u) ≥ r(v), we have π(u) ≥ π(v)/3. Motivated by this observation, we consider
problems c-op and c-top under the natural assumption that choosing subsets of nodes with
larger sizes results in achieving (almost) more prizes. In more detail, we assume that any
subset S of nodes collects an overall prize that is at least equal to a multiplicative factor
λ ∈ (0, 1] times the prize collected by any subset of nodes whose sum of sizes is lower than
the sum of the sizes of nodes in S (see Assumption 2.1 for a formal definition).

Our Contribution. The contribution of this paper is both theoretical and experimental. From
the theoretical viewpoint, we improve over the state-of-the art by providing approximation
algorithms, for c-op and c-top, that guarantees an approximation ratio which, under
particular assumptions, is smaller than the best approximation ratio known so far. In
particular, we propose a max{α, 2

λ }-approximation algorithm for c-op and a (1 − e− 1
β )−1-

approximation algorithm for c-top, where α is the approximation factor of an algorithm
for op, β = max{α, 2

λ }, and λ is the parameter of Assumption 2.1. Observe that, the best
known approximation algorithm for op is that given by Chekuri et al. [9], which guarantees
an approximation factor of 2 + ε, for any ε > 0. When λ ∈ [ 2

3 , 1], our algorithms for c-op and
c-top achieve approximation factors in the intervals [2 + ε, 3] and [2.55, 3.53), respectively,
for any ε > 0. These improve over the long-standing results by Bock and Sanità [8] who
achieved factors 3 + ε and 3.53 for c-op and c-top, respectively, for any ε > 0.
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Since our algorithms with theoretical guarantees have high computational complexity, we
propose four efficient heuristic algorithms that do not give any proven guarantee on the quality
of the computed solution but achieve good performance in practice. We experimentally
evaluate our heuristics in benchmark instances from the literature and show that two of them
produce solutions that are comparable to the best solutions known from the literature in
terms of collected prize, but outperform all the state-of-the art algorithms in terms of running
time. In particular, our heuristics require less than a second on the small instances (at most
100 nodes) and two orders of magnitude less time than other algorithms on large instances
(at most 577 nodes), while achieving the same prize in most cases, a slightly worse prize in a
few cases, and even a better prize in a few cases. To assess how the time performance of our
heuristics scales with the input size, we also generated new instances with up to 15 500 nodes,
starting from real-world road networks. Our experiments in these instances suggest that the
running time of two of our algorithms tends to grow approximately linearly with the input
size and highlight that, on the largest instance, such two algorithms take below one minute
on average, whereas previous algorithms are not able to handle such large input graphs.

Related Work. Blum et al. [7] gave the first constant factor approximation algorithm for
op with approximation ratio of 4 when s = t and showed that: (i) no polynomial-time
approximation algorithm can achieve a factor better than 1481

1480 ; (ii) op is APX-hard. Bansal et
al. [5] improved the bound of [7] by designing a 3-approximation algorithm for the case where
s = t while Chekuri et al. [9] proposed a (2 + ε)-approximation algorithm that works for any
positive constant ε. Friggstad and Swamy [15] designed, via LP-rounding, a 3-approximation
algorithm when s = t. Paul et al. [23], gave a 2-approximation algorithms for op when s and
t are not given in advance. Finally, Chen and Har-Peled [10] gave a PTAS for the case where
the points lie in a constant-dimensional Euclidean metric space.

A natural generalization of op is the Team Orienteering Problem (top) where we are
asked to find K ≥ 1 paths from s to t that maximize the total prize, accumulated by all the K

paths, and such that each path respects the budget B. Blum et al. [7] studied top under the
name of Multi-Path Orienteering problem (m-op) and showed that: (i) any α approximation
for op, when s = t, can be translated into a 1/(1 − e−α) approximation for m-op; (ii) their
algorithm for m-op has a factor of α + 1 when the starting point of each vehicle is arbitrary.
Friggstad et al. [14] studied a variant of m-op in the case where each vehicle needs to find
a tour and each node has a cost. The goal is to find K tours so that the minimum total
prize among all tours is maximized, i.e. to find P ′ : π(P ′) = max minP π(P ). They called
this problem max-min orienteering and showed that any α-approximation algorithm for
op results in an (α + 2)-approximation for max-min orienteering. Xu et al. [28] studied a
variant of top in which the prize function is a special submodular function and showed
the existence of a 1/(1 − e−α)-approximation algorithm for such variant, where α is an
approximation factor to op. Finally, Xu et al. [29] focused on top when s = t, they call
this variant the monitoring reward maximization problem and presented a 3-approximation
algorithm. Clearly, c-op is a generalization of op in which we also consider node demands
r : V → N and a capacity bound C. Gupta et al. [18] showed that, given an α-approximation
algorithm for op, it is possible to derive a 2α-approximation algorithm for c-op. By using
the (2 + ε)-approximation algorithm for op [9], this leads to a (4 + ε)-approximation for c-op.
Bock and Sanità [8] improved this result by giving a (1 + α + ε)-approximation algorithm for
c-op and by presenting a PTAS on trees and a PTAS on Euclidean metrics. Again, using
the (2 + ε)-approximation algorithm for op, results in a (3 + ε)-approximation for c-op. For
c-top, Bock and Sanità [8] designed a (1 − e

1
β )-approximation algorithm, where β is an

approximation factor for c-op. Using β = 3 + ε this leads to a 3.53-approximation algorithm
for c-top.

ATMOS 2024
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2 Notation and Definitions

We are given an undirected complete graph G = (V, E) with n = |V | vertices and m = |E|
edges, respectively. Let l : E → R≥0 be a metric length function on edges, let π : V → R≥0
be a prize function on the nodes, let r : V → R≥0 be a size function on the nodes, and let
g : V → R≥0 be a service time function on the nodes. For any subgraph G′ of G, we denote
by V (G′) and E(G′) the set of nodes and edges in G′, respectively. Given a subset S ⊆ V ,
G[S] denotes the subgraph of G induced by S, i.e., E(G[S]) = {{u, v} ∈ E | u, v ∈ S}.

For an integer k, let [k] := {1, 2, . . . , k}. A path Puv from node u to node v is a graph
made of a sequence of distinct nodes {v1 = u, . . . , vk = v} and a sequence of edges {vi, vi+1},
where i ∈ [k−1]. The cost of a path Puv in G is the sum of the lengths of its edges and service
times of its nodes, i.e.,

∑
e∈E(Puv) l(e) +

∑
v∈V (Puv) g(v). Given a path P = (s, v2, v3, . . . , t)

and a subset S = {vi1 , vi2 . . . , vik
} of k ≥ 1 nodes in V (P )\{s, t} with ij < ij+1 for j ∈ [k−1],

we call P [S] the subpath of P induced by S which is the path made of nodes {s, t} ∪ S and
edges {{s, vi1}, {vik

, t}} ∪ {{vij
, vij+1} : j ∈ [k − 1]}.

In the Capacitated Orienteering Problem (c-op), we are given two distinguished nodes
s, t ∈ V , a cost budget B ∈ R≥0 and a capacity bound C ∈ R≥0 on the sizes, and the goal
is to find a path Pst from s to t in G that maximizes the prize π(Pst) =

∑
v∈V (Pst) π(v)

and that satisfies both l(Pst) + g(Pst) =
∑

e∈E(Pst) l(e) +
∑

v∈V (Pst) g(v) ≤ B and r(Pst) =∑
v∈V (Pst) r(v) ≤ C. W.l.o.g. we assume that r(v) ≤ C, for any v ∈ V , and that r(s) =

r(t) = 0. The Capacitated Team Orienteering Problem (c-top) is a generalization of c-op in
which we are asked to find K ≥ 1 vertex-disjoint paths that maximize the total collected prize
and each path respects both the capacity and the budget constraints. Formally, in c-top, the
goal is to find K paths P 1

st, . . . , P K
st from s to t that maximize

∑K
k=1

∑
v∈P k

st
π(v), and such

that l(P k
st)+g(P k

st) =
∑

e∈E(P k
st) l(e)+

∑
v∈V (P k

st) g(v) ≤ B and r(P k
st) =

∑
v∈V (P k

st) r(v) ≤ C

for any k ∈ [K].
In the remainder of the paper, we assume w.l.o.g. that the service times of s and t are

equal to 0, that is g(s) = g(t) = 0. This implies that we can ignore the cost of service time
by moving it to the edge length function. More formally, we redefine the length and service
time functions as follows: the length is l′(e) = l(e) + g(v)+g(u)

2 , for each edge e = (u, v) ∈ E,
while the service time is g′(v) = 0 for each node v ∈ V . The cost of any path Pst, with the
new functions, is therefore equal to

∑
e∈E(Pst) l′(e) =

∑
e=(u,v)∈E(Pst)

(
l(e) + g(v)+g(u)

2

)
=∑

e∈E(Pst) l(e) +
∑

v∈V (Pst) g(v). This implies that under this transformation: (1) the cost of
any path is equal to the length of the path, and (2) clearly, the triangle inequality property
is preserved. Thanks to this transformation, for the sake of simplicity and w.l.o.g., from
now on we assume that any graph with node service times is converted to an equivalent
graph with zero node service times. For the sake of readability, the obtained length l′ will be
denoted by l.

Given a subset of nodes V ′ ⊆ V , let r(V ′) =
∑

v∈V ′ r(v) and π(V ′) =
∑

v∈V ′ π(v). In all
the benchmark instances that have been considered in the literature on c-op, we observe
that node size is positively correlated to node prize. In fact, in such real-world inspired
instances, the prize of a node v is equal to π(v) = (0.5 + h)r(v), where h is a random
value in [0, 1] (see [2, 25]). This implies that, for any two subsets of nodes V1, V2 ⊆ V with
r(V1) ≥ r(V2), we have π(V1) ≥ 1

3 π(V2), since π(V1) ≥ 1
2 r(V1) and π(V2) ≤ 3

2 r(V2) ≤ 3
2 r(V1).

Indeed, in many practical applications we have that the prize of a subset of nodes increases
as its size increases, that is for two subsets of nodes V1, V2 ⊆ V with r(V1) ≥ r(V2), we have
π(V1) ≥ λπ(V2), for some λ ∈ (0, 1]. Therefore, in this paper we consider c-op and c-top
under the following natural assumption.
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Algorithm 1
Input: I = ⟨G = (V, E), s, t, π, l, B, r, C⟩.
Output: An (s− t) path Pst s.t. l(Pst) ≤ B and r(Pst) ≤ C.

1 Let I ′ = ⟨G = (V, E), s, t, π, l, B⟩ be an instance of op;
2 Apply an Aop to I ′; let Pα be the returned solution;
3 if r(Pα) ≤ C then Pst ← Pα ;
4 else // r(Pα) > C

5 Choose a subset of nodes S ⊆ V (Pα) \ {s, t} with r(S) ≥ C such that, for some v ∈ S,
we have r(S \ {v}) ≤ C;

6 if r(S) = C then Pst ← Pα[S];
7 else // r(S) > C

8 Let v be a node in S such that r(S \ {v}) ≤ C;
9 Partition S into two subsets S1 = S \ {v} and S2 = {v};

10 Let S′ = arg maxA∈{S1,S2} π(A);
11 Pst ← Pα[S′];
12 return Pst;

▶ Assumption 2.1. Let λ ∈ (0, 1] be a parameter to be fixed. For any two subsets of nodes
V1, V2 ⊆ V with r(V1) ≥ r(V2), we have π(V1) ≥ λπ(V2).

Note that, Assumption 2.1 implies that selecting subsets of nodes with larger sizes results in
collecting more prize, besides a multiplicative factor λ.

3 Approximation Algorithms with Theoretical Guarantees

In this section, we introduce some polynomial time algorithms for c-op and c-top that
guarantee bounded approximation ratios under Assumption 2.1. We first focus on c-op
under that assumption and introduce a polynomial time max{α, 2

λ }-approximation algorithm
where α is the approximation ratio guaranteed by an algorithm Aop for op that is used
as a subroutine while λ ∈ (0, 1] is the parameter of Assumption 2.1. Then, we show that
this result implies, under some particular conditions, an improvement over the best known
approximation ratio for c-op. Finally, we show how to use this algorithm to approximate
c-top.

Our main algorithm, whose pseudo-code is summarized in Algorithm 1, takes as input an
instance I = ⟨G = (V, E), s, t, π, l, B, r, C⟩ of c-op. Starting from I, Algorithm 1 defines an
op instance I ′ with I ′ = ⟨G = (V, E), s, t, π, l, B⟩ and executes algorithm Aop onto it. Let Pα

be the solution returned by Aop when applied to I ′. An optimal solution OPTI′ to instance
I ′ of op has value at least π(OPTI′) ≥ π(OPTI), where OPTI is an optimal solution to the
instance I of c-op. It follows that, if r(Pα) ≤ C, then Pα is an α-approximation also for I.
Therefore, if r(Pα) ≤ C, Algorithm 1 returns Pα as a solution. If r(Pα) > C, Algorithm 1
chooses a subset of nodes S ⊆ V (Pα) \ {s, t} such that r(S) ≥ C and, for some v ∈ S,
we have r(S \ {v}) ≤ C. Now if r(S) = C, then Algorithm 1 returns Pα[S], the subpath
of Pα induced by S, as a solution. Otherwise, it partitions S into two subsets of nodes
S1 = S \ {v} and S2 = {v}, where v is a node in S such that r(S1) ≤ C. Note that r(v) ≤ C

and hence both S1 and S2 are feasible solutions for I. Finally, Algorithm 1 selects the set
with the maximum prize between S1 and S2, denoted by S′ = arg maxA∈{S1,S2} π(A), and
returns Pα[S′] as a solution. In the next theorem, we show that Algorithm 1 guarantees a
max{α, 2

λ }-approximation algorithm for c-op under Assumption 2.1.

ATMOS 2024
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▶ Theorem 1. Algorithm 1 is a polynomial time max{α, 2
λ }-approximation algorithm for

c-op under Assumption 2.1, where α denotes the approximation ratio for op and λ ∈ (0, 1].

Proof. If r(Pα) ≤ C, then Algorithm 1 returns solution Pα. By the feasibility of Pα for
instance I ′, we have that l(Pα) ≤ B and hence Pα is feasible for instance I of c-op. Moreover,
π(Pα) ≥ 1

α π(OPTI′) ≥ 1
α π(OPTI), and hence Pα provides an α-approximation for I. If

r(Pα) > C, then Algorithm 1 selects a set S ⊆ V (Pα) \ {s, t} with r(S) ≥ C such that there
exists a node v ∈ S for which r(S \ {v}) ≤ C. We distinguish between two cases.
1. r(S) = C. In this case, Algorithm 1 returns Pα[S] as a solution. Since l(Pα) ≤ B,

then, by triangle inequality, we have l(Pα[S]) ≤ B. Moreover, r(Pα[S]) = r(S) = C, as
r(s) = r(t) = 0, and hence Pα[S] is feasible for I. By Assumption 2.1, it follows that
π(S) ≥ λπ(OPTI), since r(S) = C and r(OPTI) ≤ C. Hence, Pα[S] is a 1

λ -approximation
for I.

2. r(S) > C. In this case, Algorithm 1 partitions S into two subsets S1 = S \ {v} and
S2 = {v}, with r(S1) ≤ C, selects the set with the maximum prize between S1 and S2,
say S′, and returns Pα[S′] as solution. Since l(Pα) ≤ B, then, by triangle inequality, it
follows that l(Pα[S′]) ≤ B. Moreover, both r(S1) and r(S2) are upper bounded by C

and hence Pα[S′] is feasible for I. Regarding the approximation factor of Pα[S′], we have
π(S′) ≥ 1

2 π(S) ≥ λ
2 π(OPTI), where the first inequality holds as S′ is the set with the

maximum prize between two sets S1, S2 ⊆ S with S1 ∪ S2 = S and S1 ∩ S2 = ∅, and the
second inequality follows by Assumption 2.1, as r(S) ≥ C and r(OPTI) ≤ C. Therefore,
Pα[S′] is a 2

λ -approximation for I. ◀
Theorem 1, along with the (2 + ε)-approximation algorithm for op given by Chekuri et al. [9]
implies the following result.

▶ Corollary 2. For any fixed ε > 0, Algorithm 1 is a max{2 + ε, 2
λ }-approximation algorithm

for c-op, under Assumption 2.1 where λ ∈ (0, 1].

When λ ≥ 2
3 in Assumption 2.1, then 2

λ ≤ 3 and hence the above corollary implies that the
approximation factor of Algorithm 1 is in the interval [2 + ε, 3], for any ε ∈ (0, 1]. This is an
improvement on the approximation of c-op under Assumption 2.1 over the factor 3 + ε by
Bock and Sanità [8].

▶ Corollary 3. For any fixed ε ∈ (0, 1], Algorithm 1 is a β-approximation algorithm with
β ∈ [2 + ε, 3] for c-op, under Assumption 2.1 where λ ∈ [ 2

3 , 1].

Another interesting implication of Theorem 1 is that an α-approximation algorithm for op
results in an α-approximation for c-op, under Assumption 2.1, when λ ≥ 2

α . In particular,
under this hypothesis, Algorithm 1 is a (2 + ε)-approximation algorithm for c-op, by using
the result by Chekuri et al. [9].

▶ Corollary 4. For any fixed ε > 0, Algorithm 1 is a (2 + ε)-approximation algorithm for
c-op, under Assumption 1 where λ ≥ 2

2+ε .

A β-approximation algorithm alg for c-op can be used as a black-box, to obtain a (1 −
e− 1

β )−1-approximation algorithm for c-top [8], using the following greedy strategy (named
GenStra):
1. For i = 1 to K do:

a. Run the β-approximation algorithm for c-op to obtain a path Pi on G = (V, E).
b. Remove all covered nodes V (Pi) from G.

2. Return P1, . . . , PK .

Using this result, we can generalize our result for c-op to c-top under Assumption 2.1.
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▶ Theorem 5. Under Assumption 2.1, there exists a polynomial time (1−e− 1
β )−1-approxima-

tion algorithm for c-top, where β = max{2 + ε, 2
λ } for any fixed ε > 0.

Proof. The theorem follows from Theorem 1 and the fact that any β-approximation algorithm
for c-op can be used as a subroutine in GenStra to achieve a (1 − e− 1

β )−1-approximation
factor for c-top [8]. ◀

Theorem 5 implies that when λ ≥ 2
3 in Assumption 2.1, one can achieve a ρ-approximation

algorithm for c-top, where ρ ∈ [(1 − e− 1
2+ε )−1, (1 − e− 1

3 )−1], for any ε ∈ (0, 1), where
(1 − e− 1

2 )−1 > 2.55 and (1 − e− 1
3 )−1 < 3.53. This is an improvement for c-top under

Assumption 2.1 over the factor (1 − e− 1
3+ε )−1, for ε > 0, by Bock and Sanità [8].

▶ Corollary 6. For any fixed ε ∈ (0, 1), under Assumption 2.1 with λ > 2
3 , c-top admits a

ρ-approximation algorithm, where ρ ∈ [2.55, 3.53).

4 Heuristic Algorithms

The running time of Algorithm 1 presented in Section 3 is dominated by the time required
to run an approximation algorithm for op at line 2. If we use the (2 + ε)-approximation
algorithm by Chekuri et al. [9] for this purpose, this step requires O(nO(1/ε2)) time, for any
ε > 0. In this section, motivated by such high computational time, we design four efficient
heuristic algorithms that have low computational time but do not guarantee any bound on
the quality of the computed solution. In Section 5, we experimentally evaluate the proposed
heuristics on relevant sets of instances of c-top, showing that they also produce high-quality
solutions. In particular we show that our heuristics require small computational time and
that the value of the computed solutions is comparable to that achieved by state-of-the-art
methods. Both in this section and in Section 5, we assume that s = t in c-op and c-top,
that is we need to find a tour instead of a path. We refer to node s as depot.

In what follows, we describe our heuristics for c-op. Each algorithm alg for c-op can
be generalized to be used for c-top by applying GenStra stated in Section 3, where we use
alg instead of a β-approximation algorithm for c-op, and we set s = t.

Our heuristic algorithms for c-op exploit a procedure, named dproc, to produce solutions
that respect the capacity constraints starting from a set of nodes S ⊆ V . Such procedure
works as follows: first, it computes a subset of nodes S′ ⊆ S that maximizes the prize π(S′)
and has size at most r(S′) ≤ C by using the well-known dynamic programming for the
Knapsack problem [27]. Then, it determines a tour T that includes the depot s and all
nodes in S′ using an approximation algorithm for the Traveling Salesman Problem (TSP).
Specifically, for all algorithms we consider two versions of dproc, which use either the 3/2-
or 2-approximation for TSP [27], respectively, and, in Section 5, we will specify how the
two versions are used in the experiments. Finally, dproc returns T as output. We remark
that the input graph is complete and metric. In the following, we denote the application
of procedure dproc with input S by dproc(S). Now, for any two nodes u and v, let
w(u, v) = l(e) · r(v), be the weight of edge e = (u, v). Our heuristic algorithms for c-op are
as follows. In Section 5, we will extend each algorithm for c-op to c-top by using procedure
GenStra and, we call its extension with the same name for c-op.

sqrB-ApxA (SBAA). This algorithm is inspired by the algorithms given by Kuo et al. [21]
and by D’Angelo et al. [12] for the problem of finding a rooted out-tree in a directed graph
that maximizes the sum of prizes associated to the nodes, subject to a budget constraint.
Specifically, for each node u ∈ V , we compute a candidate set Su and, at the end of the
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algorithm, we consider a set SM that maximizes the prize, i.e. SM := arg maxu∈V π(Su)
and output dproc(SM ). In details, the candidate set Su of a node u ∈ V is computed as
follows. We first sort all nodes v ∈ V in non-increasing order of π(v)/w(u, v) or π(v). In
Section 5 we will describe how the two sorting strategies are used in the experiments. Then,
we consider two integers x and y and, for each pair (x, y) ∈ {0, 1, 2} × [50], we compute:
(i) the set Sx

y containing the first yB1−x/2 nodes in the ordering that have a distance at
most Bx/2 from u; (ii) a tour T x

y = dproc(Sx
y ) and check if l(T x

y ) ≤ B. Then, set Su is
selected as a set that produces a feasible tour in the previous step and maximizes the prize,
i.e. Su := arg max{π(Sx

y ) : l(T x
y ) ≤ B, (x, y) ∈ {0, 1, 2} × [50]}. To improve the running time,

we exploit the monotonicity of function π, iterate through the values of y from y = 50 to
y = 1 and stop as soon as we find a feasible tour. The values for x and y have been chosen
after a preliminary pilot experimental study on the algorithm’s performance.

4-ApxA (4AA). This heuristic is based on the idea of Gupta et al. [18] who showed that, given
an α-approximation algorithm for op, it is possible to derive a 2α-approximation algorithm
for c-op. So, we use the best approximation algorithm for the unrooted version of op in which
there is no specified root node s that must be spanned, which is the 2-approximation algorithm
proposed by Paul et al. [23]. In particular, given an instance I = ⟨G = (V, E), s, π, r, l, B, C⟩
of c-op, we define an op instance I ′ with I ′ = ⟨G = (V, E), s, π′, l, B⟩ in which for any
v ∈ V , π′(v) = π(v) − ηr(v), where η ≥ OPT/(2C) and OPT is an optimal solution to
c-op. As OPT is not known, we guess it through a binary search over the range [πmin, TP ],
where πmin be the minimum positive prize of a node and TP is the total prize of vertices.
We know that OPT ≤ TP . We estimate the value of OPT by guessing N possible values,
where N is the smallest integer for which πmin2N−1 ≥ TP . For the instances considered in
Section 5, we set η using this binary search. For each η, we compute the solution returned
by the 2-approximation algorithm by Paul et al. [23] on the obtained instance I ′ and we let
Sη be the nodes in this solution. By definition of op, set Sη satisfies the budgeted constraint
but it is not guaranteed to satisfy the capacity. Therefore, we compute Tη = dproc(Sη)
to obtain a tour that satisfies the capacity constraint. Finally we output the tour TM that
maximizes the prize, i.e. TM := arg max{π(Tη)}, where η is set based on the binary search
to find OPT . Note that for any v, in case π′(v) = π(v) − ηr(v) < 1, we set π′(v) = 1.

GreedyRandom-ApxA (GRA). This is a modification of the randomized algorithm proposed
by Arora and Scherer [4]. The following randomized algorithm is repeated multiple times
and the solution with best prize is selected (in the experiments we repeat for 10 times). We
keep a solution S, initially equal to the empty set. For 3|V | times we repeat the following
loop. We sample a node v uniformly at random and we check if v ∈ S. If so, we remove it
from S. Otherwise, we add it to S. Then, we compute T = dproc(S) and check if l(T ) ≤ B

and π(T ) > π(S). In the affirmative case, we set S := V (T ) and repeat the loop.

Greedy-ApxA (GA). Like for SBAA, we compute a candidate set Su, for each node u ∈ V ,
we select a set SM that maximizes the prize, i.e. SM := arg maxu∈V π(Su), and output
dproc(SM ). For each node u ∈ V , the candidate set Su is computed as follows. We first
sort all nodes v ∈ V in non-increasing order of π(v)/w(u, v) or π(v). In Section 5 we will
specify the used sorting strategy. We initialize Su as Su := {u}. Then, we iterate over the
nodes v ∈ V \ {u}, according to the sorting. At each iteration we check whether adding to
Su the next node v in the sorting induces a feasible solution with better prize of the current
solution. Specifically, we compute T = dproc(Su ∪ {v}) and check whether l(T ) ≤ B and
π(T ) > π(Su). In the affirmative case, we set Su := V (T ) and iterate to the next node in
the ordering.



G. D’Angelo, M. D’Emidio, E. Delfaraz, and G. Di Stefano 7:9

Note that SBAA, 4AA, GA and GreedyRandom-ApxA are pseudo-poly algorithms as we
use the well-known dynamic programming for the Knapsack problem. However, one can use
the well-known FPTAS for the knapsack problem [27].

5 Experiments

In this section, we present and analyze the results of an extensive experimental evaluation on
the performance of the heuristics proposed in Section 4. We design two experiments, named
respectively comparison and scalability, with the objective of answering to different
experimental questions.

The aim of experiment comparison (see Section 5.1), is comparing the performance of
the four proposed heuristic algorithms against methods of the literature that are considered
the state-of-the-art for c-top. Among them, based on the most recent experimental results
on the problem (see [19]), we identify the most effective/competitive w.r.t. solution quality
and running time, that is algorithms: VNS, TSF, TSA [2]; BiFFf and BiFFs [25]; VSS-Tb and
VSS-SA [6]; HALNS [19]. We do not consider, instead, algorithms ADEPT-RD [22], SA-ILS [17],
and LNS/NLNS [20] since they have been tested only on a subset of the benchmark instances and,
in terms of performance, they are dominated by or comparable to HALNS [19]; Furthermore,
ILS [16] provided the average results on each set instead of giving their result on each
instance.

The aim of experiment scalability (see Section 5.2), is assessing the scalability properties
of our newly introduced heuristics, i.e. to study how the performance of our heuristics change
with the input size, and specifically if our algorithms can process larger instances than those
that have been considered in past literature on the problem. For all experiments, we use
implementations of the four heuristics of Section 4 we developed for the purpose. All our
code is written in C++ (available at https://shorturl.at/bMYNb) and compiled with GCC 9.4.0
with optimization level O3; all our tests have been executed on a workstation equipped with
an Intel© Xeon© processor, clocked at 2.30GHz, running Ubuntu Linux.

5.1 comparison Experiment
In this experiment, we test implementations of SBAA, 4AA, GRA, and GA on two publicly
available datasets of benchmark inputs for c-top, defined in [2] and [25], respectively, derived
from instances of TSP and considered reference instances for assessing the performance of
algorithms for c-top.

Input Data. The details of such datasets, which we call small-case and large-case
inputs, respectively, are summarized in what follows:
small-case: this set contains 130 instances (divided into three subsets, named sc-1, sc-2 and

sc-3 and having 10, 90 and 30 instances, resp.) defined in [2] by suitably manipulating
the instances given in [11] for TSP. The number of nodes of graphs in this set is n ∈
{51, 76, 101, 121, 151, 200}; instances are generated by considering different combinations
of fleet size K ∈ {2, 3, 4, 10, 15, 20}, budget B ∈ {50, 75, 100, 160, 200, 230, 720, 1040} and
capacity C ∈ {50, 75, 100, 140, 160, 200}.

large-case: this set contains 130 instances (divided in three subsets, named lc-1, lc-2,
and lc-3 and having 10, 90, and 30 instances, resp.) developed in [25] by modifying
the inputs to the Periodic Vehicle Routing Problem of [24]. The number of nodes in
this set is n ∈ {337, 361, 385, 433, 481, 529, 505, 577} while other parameters are K ∈
{6, 7, 8, 14, 15, 16, 18, 20, 21, 22, 24}, B ∈ {100, 200, 400, 660, 668, 675, 683, 705, 713, 720}
and C ∈ {75, 150, 200, 330, 335, 340, 345, 350, 360, 365, 375}.
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Each of the above instances, in what follows, is identified by a unique string following the
format base-n-K-C-B, where base is the name of the original TSP instance from either [11]
or [24], while n is the number of nodes, K is the number of vehicles, C is the capacity and B

is the budget. Note that, for both small-case and large-case instances, the prize of each
node v having size r(v) is assigned to be equal to π(v) = (h + 0.5)r(v), where h is a random
number uniformly generated within interval [0, 1]. This implies that for any instance having
capacity C and number of vehicles K, the optimum for the instance is upper bounded by
(h + 0.5)KC ≤ 3KC

2 in c-top.

Executed Tests. For all mentioned inputs, we run all four heuristics and measure both
running time (column t, in seconds) and solution quality (i.e. achieved prize, column p).
We then compare observed measures with the results obtained, on the same instances, by
reference methods of the literature mentioned above, as summarized in Tables 1–4.

Table 1 Results of experiment comparison for small-case inputs, subset sc-1.

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-15-200-200 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 904 362 35.84 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 2 0.00 1409 < 1 0.00

06-51-10-160-200 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 191 73 74.90 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00 761 < 1 0.00

07-76-20-140-160 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1238 146 6.70 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 < 1 0.00 1327 1 0.00 1327 < 1 0.00

08-101-15-200-230 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 916 391 34.98 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 < 1 0.00 1409 1 0.00 1409 < 1 0.00

09-151-10-200-200 2063 < 1 0.09 2064 < 1 0.04 2057 < 1 0.38 1586 1255 0.00 2064 3600 0.00 2061 163 0.00 2062 127 0.00 2065 2 0.00 2065 2 0.00 2065 39 0.00 2065 120 0.00 2065 1 0.00

10-200-20-200-200 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 2828 4218 7.21 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 < 1 0.00 3048 11 0.00 3048 < 1 0.00

13-121-15-200-720 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 417 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 < 1 0.00 1287 2 0.00 1287 < 1 0.00

14-101-10-200-1040 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 < 1 0.00 1710 3 0.00 1710 < 1 0.00

15-151-15-200-200 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 1450 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 < 1 0.00 2159 7 0.00 2159 < 1 0.00

16-200-15-200-200 2965 < 1 0.13 2965 < 1 0.13 2966 < 1 0.10 2941 3829 0.94 2968 3600 0.03 2965 270 0.13 2967 377 0.06 - - - - - - 2969 61 0.00 2969 254 0.00 2969 76 0.00

Observe that, for subsets of inputs sc-2, sc-3, lc-2 and lc-3, which have a large number
of instances, we report a meaningful selection of the results of our tests, while full data will
appear in a longer version of the paper. Besides running time and prize, for each algorithm
A and for each instance, we report the gap gA between the solution SolA computed by A

and the best known solution for the instance, obtained by any of the algorithm in the set X

of considered algorithms, i.e. gA = BKS−SolA

BKS · 100, where BKS = max
A′∈X

SolA′ . Algorithms
achieving the maximum solution quality, for each instance, are highlighted in bold. For the
sake of fairness, we remark that all the considered algorithms from the literature have a
randomized nature and have been evaluated by following a measurement strategy commonly
referred to as Time-To-Best, which consists of: (i) running a given algorithm 10 times; (ii)
selecting the run that performs best in terms of solution quality (prize); (iii) reporting solution
quality and running time only of such run of the algorithm (see [19] and references therein).
While this measurement strategy is reasonable when one compares only randomized solutions,
it appears to be not well suited to be applied in comparisons that include deterministic
algorithms, such as ours GA, SBAA or 4AA, which output the same solution even if they are
executed multiple times. Indeed, a more empirically appropriate assessment strategy would
require to measure, for randomized approaches, the sum of the running times of the all
executions, since that represents the actual time the algorithm have to run to obtain the best
solution, and compare such time with that of deterministic algorithms. Therefore, running
times reported for algorithms from the literature might likely be underestimations of the
actual average running time.

Note that, procedure dproc, used by all our heuristics, considers different possibilities for
computing a tour on a subset of the nodes, namely the 3/2- and 2-approximation algorithms
for TSP [27]. Moreover, heuristics SBAA and GA use two different node sorting strategies,
based on the prize or on the ratio between prize and weight. After a preliminary experimental
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Table 2 Excerpt of the results of experiment comparison for subsets sc-2 (top) and sc-3
(bottom).

Subset sc-2

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-4-100-100 510 < 1 4.13 523 < 1 1.69 516 < 1 3.00 501 257 5.82 529 963 0.56 531 317 0.18 529 357 0.56 531 7 0.18 532 42 0.00 532 27 0.00 532 12 0.00 532 21 0.00

06-51-4-100-100 450 < 1 5.49 470 < 1 2.48 472 < 1 2.07 388 21 19.50 481 135 0.20 482 25 0.00 482 26 0.00 482 < 1 0.00 482 < 1 0.00 482 < 1 0.00 482 2 0.00 482 2 0.00

07-76-4-100-100 510 < 1 1.72 510 < 1 2.11 514 < 1 1.34 451 107 13.43 521 342 0.00 521 25 0.00 514 26 1.34 518 < 1 0.57 521 < 1 0.00 521 < 1 0.00 521 2 0.00 521 2 0.00

08-101-4-100-100 514 < 1 2.06 523 < 1 1.69 516 < 1 3.00 501 107 5.82 529 963 0.56 531 317 0.18 529 357 0.56 531 7 0.18 532 41 0.00 532 29 0.00 532 20 0.00 532 31 0.00

09-151-4-100-100 532 < 1 1.64 542 < 1 0.73 539 < 1 1.26 506 1074 7.32 545 2934 0.18 539 924 1.28 536 959 1.83 545 51 0.18 546 38 0.00 546 53 0.00 546 31 0.00 546 31 0.00

10-200-4-100-100 544 < 1 1.80 548 < 1 0.90 550 < 1 0.54 522 2969 5.60 548 3600 0.90 549 2077 0.72 550 3232 0.54 553 183 0.00 553 243 0.00 553 11 0.00 553 40 0.00 553 43 0.00

13-121-4-100-100 415 < 1 1.19 415 < 1 0.95 417 < 1 0.47 383 23 8.59 419 179 0.00 419 24 0.00 419 48 0.00 419 < 1 0.00 419 < 1 0.00 419 < 1 0.00 419 1 0.00 419 1 0.00

14-101-4-100-100 511 < 1 3.04 522 < 1 0.57 521 < 1 0.76 488 212 7.04 525 670 0.00 523 210 0.38 525 292 0.00 525 < 1 0.00 525 < 1 0.00 525 5 0.00 525 1 0.00 525 5 0.00

15-151-4-100-100 542 < 1 1.27 545 < 1 0.72 544 < 1 0.91 518 1077 5.64 548 2828 0.18 549 1252 0.00 545 1015 0.72 548 10 0.18 549 206 0.00 549 66 0.00 549 49 0.00 549 87 0.00

16-200-4-100-100 553 < 1 0.53 555 < 1 0.53 554 < 1 0.71 538 3009 3.58 554 3600 0.71 554 2124 0.71 553 3559 0.89 556 3 0.35 558 67 0.00 558 5 0.00 558 79 0.00 558 36 0.00

Subset sc-3

Instance
GRA SBAA GA 4AA VNS [2] TSF [2] TSA [2] BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g p t g

03-101-4-200-200 936 < 1 1.47 938 < 1 1.26 939 < 1 1.15 914 927 3.78 950 961 0.00 946 110 0.42 947 42 0.31 950 < 1 0.00 950 < 1 0.00 950 16 0.00 950 11 0.00 950 10 0.00

06-51-4-160-200 681 < 1 0.29 682 < 1 0.14 680 < 1 0.43 648 82 5.12 683 53 0.00 683 5 0.00 682 4 0.14 683 < 1 0.00 683 < 1 0.00 683 < 1 0.00 683 1 0.00 683 1 0.00

07-76-4-140-160 705 < 1 0.28 705 < 1 0.28 704 < 1 0.42 686 376 2.97 707 296 0.00 707 44 0.00 702 39 0.70 707 2 0.00 707 5 0.00 707 2 0.00 707 1 0.00 707 < 1 0.00

08-101-4-200-230 947 < 1 0.31 949 < 1 0.10 946 < 1 0.42 924 916 2.73 950 726 0.00 949 89 0.10 949 38 0.10 950 1 0.00 950 10 0.00 950 8 0.00 950 8 0.00 950 11 0.00

09-151-4-200-200 1029 < 1 0.38 1031 < 1 0.19 1024 4 0.87 1008 3552 2.42 1033 2903 0.00 1033 480 0.00 1029 254 0.38 1033 2 0.00 1033 2 0.00 1033 44 0.00 1033 11 0.00 1033 16 0.00

10-200-4-200-200 1064 < 1 0.00 1064 < 1 0.00 1062 10 0.18 1060 8854 0.37 1064 3600 0.00 1064 1260 0.00 1063 789 0.09 1064 1 0.00 1064 < 1 0.00 1064 15 0.00 1064 9 0.00 950 11 0.00

13-121-4-200-720 908 < 1 0.00 908 < 1 0.00 908 < 1 0.00 908 1474 0.00 908 954 0.00 907 76 0.11 906 40 0.22 908 < 1 0.00 908 < 1 0.00 908 217 0.00 908 27 0.00 908 6 0.00

14-101-4-200-1040 975 < 1 0.00 975 < 1 0.00 975 < 1 0.00 978 < 1 0.00 975 483 0.00 975 56 0.00 975 38 0.00 975 1 0.00 975 1 0.00 975 < 1 0.00 975 1 0.00 975 < 1 0.00

15-151-4-200-200 1024 < 1 0.67 1027 < 1 0.38 1016 5 1.45 1010 3645 2.03 1031 2832 0.00 1019 618 1.16 1030 276 0.09 1031 3 0.00 1031 3 0.00 1031 262 0.00 1031 58 0.00 1031 7 0.00

16-200-4-200-200 1071 < 1 0.18 1071 < 1 0.18 1068 11 0.46 1062 9171 1.02 1073 3600 0.00 1072 1263 0.09 1071 897 0.18 1073 1 0.00 1073 1 0.00 1073 40 0.00 1073 15 0.00 1073 1 0.00

study, we found out that on instances sc-1, sc-2, and sc-3, on average the algorithms
based on prize ordering performs worse in terms of collected prize than those based on prize-
over-weight ordering. Therefore, for these instances we use the prize-over-weight ordering
and both the 3/2- and 2-approximation algorithms for TSP. We then select the solution
with the highest prize between these two and report the sum of the running times of both
approaches. Similarly, for instances lc-1, lc-2 and lc-3, our preliminary experiments
show that algorithms based on the 2-approximation algorithm for TSP perform worse than
those based on the 3/2-approximation and hence, in these instances, we use only this latter
and both prize and prize-over-weight orders. We then select the solution with the highest
prize and report the sum of the running times of both approaches. Finally, for SBAA we
fix parameter y, determining an upper bound on how many nodes can be assigned to each
vehicle, to 20, whenever the number of vehicles is large enough so that the nodes of graphs
can be divided among vehicles.

Analysis. Our data lead to two main general conclusions: first, the newly introduced
algorithms are competitive with existing ones in terms of solution quality. In fact, they
achieve, in many cases, best known solutions (i.e. have zero gap), and solutions with good
quality, with gaps that are in the order of few percentage points, one or two tens in the worst
cases, in the remaining cases. Second, SBAA, GA and GRA are significantly faster than methods
known in the literature, requiring running times that are up to orders of magnitude smaller
to achieve solutions that have comparable quality (with prizes equal or very close to the best
ones and corresponding small gaps). The only exception to this behavior is algorithm 4AA,
whose running time does not scale well with the graph size, due to using the 2-approximation
algorithm of [23]. For this reason, we omit from the comparison the results of algorithm 4AA
for larger instances, i.e. large-case. In more details, we observe that:
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Table 3 Results of experiment comparison for large-case inputs, subset lc-1.

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

01-337-14-345-720 3836 30 8.05 4139 1 0.79 4014 51 3.78 4172 17 0.00 4172 17 0.00 4172 1 0.37 4172 2 0.00 4172 1 0.00

02-385-16-350-713 4434 43 7.31 4753 < 1 0.64 4605 77 3.74 4784 25 0.00 4784 25 0.00 4784 1 0.37 4784 3 0.00 4784 2 0.00

03-433-18-330-675 4911 59 5.57 5187 < 1 0.26 4949 103 4.84 5201 33 0.00 5201 32 0.00 5201 2 0.37 5201 3 0.00 5201 4 0.00

04-481-20-335-713 5463 85 6.35 5834 2 0.00 5697 155 2.24 5828 48 0.10 5828 47 0.10 5828 1 0.10 5828 3 0.10 5828 3 0.10

05-529-22-340-705 5892 127 8.59 6446 5 1.95 6211 215 3.63 6445 101 0.01 6445 98 0.01 6445 3 0.01 6445 5 0.01 6445 3 0.01

06-577-24-365-683 6709 164 5.26 7082 5 0.00 6937 266 1.89 7071 94 0.15 7071 93 0.15 7071 1 0.15 7071 2 0.15 7071 6 0.15

07-361-15-335-668 3877 41 10.97 4134 < 1 5.07 4122 56 5.35 4355 24 0.00 4355 23 0.00 4355 1 0.37 4355 3 0.00 4355 1 0.00

08-433-18-350-675 4706 74 9.39 5133 2 1.17 4965 122 4.40 5194 51 0.00 5194 49 0.00 5194 2 0.37 5194 4 0.00 5194 1 0.00

09-505-21-360-660 5267 118 14.81 5841 5 5.53 5953 176 3.71 6183 103 0.00 6183 104 0.00 6183 3 0.37 6183 22 0.00 6183 5 0.00

10-577-24-375-675 6601 166 8.88 7245 8 0.00 7132 289 1.47 7239 144 0.08 7239 144 0.08 7239 4 0.08 7239 7 0.08 7239 6 0.08

for small-case instances, algorithms GRA, SBAA and GA outperform all other approaches
in terms of running time by completing their execution always in less than 1 second; at
the same time they compute best solutions in all cases with few exceptions where the gap
is below 5%; in more details, for subset sc-1, algorithms VSS-Tb, VSS-SA and HALNS have
running times up to 254 seconds (with zero gap) while GRA and SBAA, GA take less than 1
second (with gaps below 0.39%); for subset sc-2, similarly, VSS-Tb, VSS-SA and HALNS
have running times up to 100 seconds (with zero gap) while our simple algorithms SBAA
and GRA take always less than 1 second (with gaps below 5% and 7%, resp.); instead, GA
has running time below 4 seconds (while exhibiting gaps below 5%); finally, for subset
sc-3, VSS-Tb, VSS-SA and HALNS have running times up to 300 seconds, while SBAA and
GRA run always for less than 1 second and their gaps are below 1.78% and 3.42%, resp.;
GA has running time up to 11 seconds with gap below 2.00%; Note that for subsets sc-1,
sc-2 and sc-3, 4AA has gap mostly below 15.00% with high running time.

for large-case instances, algorithm SBAA outperforms the literature in 4 out of 10
instances of subset lc-1, in terms of quality of solution, while having running time at
most 8 seconds; in the remaining 6 instances of subset lc-1, method SBAA is competitive
w.r.t. the state-of-the-art, in terms of quality of solution, while achieving a gap that is
always below 5.40%; for subset lc-2, algorithms VSS-Tb, VSS-SA and HALNS have large
running times (up to 3900 seconds) while SBAA and GRA are the best performing in terms
of time, with executions lasting at most 32 seconds (which is at least two orders of
magnitude faster than VSS-Tb, VSS-SA and HALNS); on top of that, the gap obtained by
SBAA and GRA remain below 15% and 20% respectively in most cases, and the gap of
GA is mostly below 15% (with running time up to 132 seconds); finally, for subset lc-3,
algorithms VSS-Tb, VSS-SA and HALNS have huge running times (up to 16000 and 1700
seconds, resp., for VSS-Tb and VSS-SA, while HALNS runs for up to 7000 seconds) while
SBAA and GRA run for at most 56 seconds (meaning that SBAA is at least two orders of
magnitude faster than VSS-Tb, VSS-SA and HALNS) with gap mostly below 8%; similarly,
GRA has running time up to 56 seconds with the gap mostly below 15%, and GA takes
up to 437 seconds to yield gaps that are mostly below 5%; to summarize, the results for
large-case inputs suggest that our very simple algorithms outperform the literature by
far in terms of time (at least an order of magnitude) while having a good gap, and hence
they can be considered more practical.
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Table 4 Excerpt of the results of experiment comparison for subsets lc-2 (top) and lc-3
(bottom).

Subset lc-2

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

81-337-8-200-400 1718 16 15.82 1911 16 6.36 1976 50 3.57 2032 155 0.44 2032 1236 0.44 2039 1286 0.10 2041 763 0.00 2040 1167 0.05

81-337-8-200-400 1757 8 13.91 1911 16 6.36 1976 50 3.57 2032 155 0.44 2032 1236 0.44 2039 1286 0.10 2041 763 0.00 2040 1167 0.05

82-385-8-200-400 1830 8 11.50 1850 15 10.54 2022 55 2.22 2064 1216 0.19 2065 5641 0.15 2066 2121 0.10 2068 1078 0.00 2066 1983 0.10

83-433-8-200-400 1939 16 7.57 2024 10 3.52 2058 77 1.90 2096 574 0.10 2097 3173 0.05 2097 2724 0.05 2098 1649 0.00 2098 1562 0.00

84-481-8-200-400 1876 16 11.96 2014 21 5.49 2075 106 2.62 2127 112 0.19 2127 103 0.19 2130 3317 0.05 2131 1627 0.00 2130 1116 0.05

85-529-8-200-400 1708 20 21.03 2023 24 6.47 2109 111 2.77 2154 1038 0.32 2155 7914 0.37 2162 3764 0.05 2163 2252 0.00 2161 1339 0.09

86-577-8-200-400 1991 24 9.66 2116 19 3.99 2171 132 1.54 2204 7385 0.05 2204 1658 0.05 2205 6426 0.00 2204 2289 0.05 2205 2078 0.00

87-361-8-200-400 1804 8 12.59 1939 16 6.05 1978 55 4.16 2063 1964 0.05 2063 3762 0.05 2063 889 0.05 2064 886 0.00 2064 1329 0.00

88-433-8-200-400 1800 16 13.21 1814 22 12.53 2011 90 3.03 2068 683 0.29 2070 3589 0.19 2072 1974 0.10 2074 2000 0.00 2072 784 0.10

89-505-8-200-400 1718 16 18.88 1942 32 8.30 2051 126 3.03 2115 11022 0.14 2115 17380 0.14 2116 2693 0.09 2118 2515 0.00 2115 2849 0.14

90-577-8-200-400 1961 24 9.75 2077 24 4.41 2139 129 1.56 2168 2168 0.23 2172 15678 0.05 2171 3326 0.09 2173 3197 0.00 2173 2901 0.00

Subset lc-3

Instance
GRA SBAA GA BiFFf [25] BiFFs [25] VSS-Tb [6] VSS-SA [6] HALNS [19]

p t g p t g p t g p t g p t g p t g p t g p t g

21-337-8-345-720 2858 19 9.52 2933 26 7.15 2975 135 5.82 3159 927 0.00 3159 1745 0.00 3158 1462 0.03 3159 1576 0.00 3159 824 0.00

22-385-8-350-713 2911 24 11.54 3033 26 7.83 3183 161 3.28 3290 144 0.03 3291 583 0.00 3291 2850 0.03 3291 3018 0.00 3291 1401 0.00

23-433-8-330-675 2970 26 6.89 3058 17 4.13 3143 188 1.47 3190 455 0.00 3190 461 0.00 3190 4288 0.00 3190 3143 0.00 3190 616 0.00

24-481-8-335-713 3038 34 7.63 3144 29 4.40 3218 273 2.15 3289 451 0.00 3289 426 0.00 3289 283 0.00 3289 314 0.00 3289 297 0.00

25-529-8-340-705 3078 41 10.36 3258 31 5.12 3368 295 1.92 3432 1953 0.06 3434 7418 0.00 3434 4145 0.00 3434 4396 0.00 3434 5964 0.00

26-577-8-365-683 3385 51 9.70 3538 33 3.70 3674 406 2.00 3749 997 0.00 3749 1007 0.00 3748 14090 0.03 3748 9342 0.03 3749 1430 0.00

27-361-8-335-668 2738 24 12.15 3916 22 6.44 2947 131 5.45 3116 187 0.03 3116 189 0.03 3117 3090 0.00 3117 2248 0.00 3117 2046 0.00

28-433-8-350-675 2828 33 14.38 3106 40 5.96 3166 235 4.14 3301 1834 0.06 3302 3455 0.03 3303 5691 0.00 3303 5120 0.00 3303 3583 0.00

29-505-8-360-660 2794 45 20.82 3083 55 12.63 3303 373 6.40 3510 2282 0.54 3525 14499 0.11 3528 7370 0.03 3529 11119 0.00 3526 7134 0.09

30-577-8-375-675 3233 56 14.53 3518 48 7.00 3698 437 2.24 3781 2784 0.05 3783 11663 0.00 3781 10154 0.05 3783 9865 0.00 3783 7147 0.00

5.2 scalability Experiment
Here we evaluate how the running times of SBAA, GRA and GA change as the input size
increases.

Input Data. We generate input instances whose size is far larger than that of any of the
available benchmark inputs, with up to 15 500 nodes, by manipulating instance brussels2,
used by Arnold et al. [3], for a version of the capacitated vehicle routing problem where,
given a graph with edge lengths and a set of vehicles with limited capacity, the goal is to
cover all the nodes with minimum total length and in such a way that each vehicle respects
the capacity constraint. We sample uniformly at random 10 subgraphs from brussels2,
each having from 500 nodes to 15 500 nodes with steps of 1 000 nodes. For each subgraph, we
consider K ∈ {2, 4, . . . , 10} and B ∈ {200, 400, 600} while the capacity is fixed to C = 200.
Note that in the original instance, brussels2, the capacity of each vehicle is set to 150.
Similarly to the other benchmark instances, the prize is set to π(v) = (h + 0.5)r(v), for each
node v with size r(v), with h randomly uniformly chosen within [0, 1].
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Executed Tests. For each subgraph and combination of K and B, we ran heuristics SBAA,
GRA, and GA, and measure achieved prize and running time. We omit heuristic 4AA from
this part of the study since its running time is observed to be high even for not so large
input combinations (see Section 5.1). The results of this experiment are summarized in
Figures 1– 3: for each heuristic and for each considered value of B, we report measured
solution quality and running time, averaged over all K.
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Figure 1 Results of the scalability experiment for B = 200.
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Figure 2 Results of the scalability experiment for B = 400.
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Figure 3 Results of the scalability experiment for B = 600.

Analysis. Our experimental data highlight the following general behavior. When B = 200
(see Figure 1), GA and SBAA are extremely fast, with running times smaller than 1 second
even when the number of nodes n approaches 15 500; the running time of GRA is higher than
the first two heuristics and grows faster as n increases, but remains below 10 seconds even
for the largest case of n = 15 500. The latter value is far below the average running times
of algorithms tested in Section 5.1 for smaller graphs. Moreover, despite the low running
time, GA and SBAA on average outperform GRA also w.r.t. achieved prize. When the budget
is increased to 400 (see Figure 2) the observed trends are similar, with the average running
time of GA and SBAA being below 1 second until n is less than 6 500 and remaining below
50 seconds. GA and SBAA outperform GRA w.r.t. both execution time and prize while SBAA
outperforms GA, by small factors, w.r.t. both execution time and prize. Finally, when B is
further increased to 600 (Figure 3), the trend in terms of solution quality appears not to
be affected while the running time of all considered heuristics significantly increases, with
the difference between SBAA, GA and GRA that seems to decrease as n approaches the largest
value of 15 000. In general, our experiments suggest that the running time of SBAA and
GA tends to grow approximately linearly with the input size and highlight that, on the the
largest instance, SBAA and GA take below one minute on average, whereas previous algorithms
are not able to handle such large input graphs. Note that however, we use the dynamic
programming for the knapsack problem in both SBAA and GA, the capacity C in our instances
is less than the number of nodes.
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Abstract
We revisit the Segmented Best Path (sbp) algorithm for online DARP in an offline setting with
revenues and a time limit. The goal is to find a subset of the inputted ride requests that can
be served within the time limit while maximizing the total revenue earned. sbp divides the time
into segments and greedily chooses the highest-revenue path of requests to serve within each time
segment. We show that sbp’s performance has an upper bound of 5. Further, while sbp is a
tight 4-approximation in the uniform-revenue case, we find that with non-uniform revenues, the
approximation ratio of sbp has a lower bound strictly greater than 4; in particular, we provide a
lower bound of (

√
e + 1)/(

√
e − 1) ≈ 4.08299, which we show can be generalized to instances with

ratio greater than 4.278.
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1 Introduction

We study the Dial-a-Ride Problem in an offline setting with revenues and a time limit T .
The goal is to find a subset of the inputted ride requests that can be served within the time
limit while maximizing the total revenue earned. We consider the Segmented Best Path (sbp)
algorithm, originally proposed in [6] for an online variant of DARP. It was later adapted
by [1] for the offline setting where revenues are uniform and the goal is to maximize the
number of requests served. We present sbp in a form that applies to our offline non-uniform
revenue setting. This modified sbp algorithm starts by partitioning the total time limit into
time windows, where each window (except possibly the last) is split into two equal time
segments. The algorithm uses the first segment of each window to determine a maximum
revenue set of requests that can be served within a segment, moving (if needed) to this set.
It then uses the second segment of each window to serve the requests in this set.

For a literature review of some of the numerous DARP variants, see a recent survey by
Ho et al. [8]. DARP problems are generalizations of the Traveling Salesperson Problem
(TSP), so we mention TSP work that is most closely related to the time-limited variant of
DARP that we study in this paper. Balas [2] first introduced the Prize Collecting Traveling
Salesperson Problem (PCTSP), in which the server earns a prize (similar to our revenues)
for each location visited, with the goal of collecting a prescribed amount of prize money

© Barbara M. Anthony, Christine Chung, Ananya Das, and David Yuen;
licensed under Creative Commons License CC-BY 4.0

24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024).
Editors: Paul C. Bouman and Spyros C. Kontogiannis; Article No. 8; pp. 8:1–8:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anthonyb@southwestern.edu
https://orcid.org/0000-0002-2493-1251
mailto:cchung@conncoll.edu
https://orcid.org/0000-0003-3580-9275
mailto:adas@middlebury.edu
https://orcid.org/0000-0001-9445-1475
mailto:yuen888@hawaii.edu
https://orcid.org/0000-0001-9827-0962
https://doi.org/10.4230/OASIcs.ATMOS.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 Performance of SBP for DARP with Revenues

while minimizing travel costs and penalties. Bienstock et al. [3] gave the first approximation
algorithm for PCTSP with ratio 2.5. Recently, Blauth and Nägele [4] achieved a significant
improvement, obtaining an approximation guarantee of 1.774. Blum et al. [5] provide a
constant-factor approximation algorithm for the Orienteering Problem (OP), another special
case of the DARP problem we study. The goal of OP is, given a weighted graph with rewards
on the nodes, to maximize the total reward collected on a path of a predefined maximum
length. Our problem generalizes OP (and TSP), since in DARP we must visit pairs of points,
rather than single points. The limit on the path length for OP is analogous to the time limit
T in our DARP setting.

In this work, we highlight how sbp’s performance changes when the revenues switch from
uniform to non-uniform. Previously, we showed that an adapted version of the sbp algorithm
which enforced an even number of time segments gave an approximation ratio of 4 in the
uniform-revenue setting [1]. In this work we show that when revenues are non-uniform, sbp
approximates the optimal revenue that can be earned within the time limit to within a factor
of 5. We then show that when the number of time segments is odd, the approximation ratio
of sbp is no better than 5, before showing that when the number of time segments is even,
the ratio is strictly greater than 4.

2 New Upper and Lower Bounds

We formally define RDARP, the Revenue-Dial-a-Ride-Problem, as follows. The input to
RDARP is a complete weighted graph, a set of requests given as source-destination node-pairs
where each request has an associated revenue, and a time limit T > 0. We note that any
simple, connected, weighted graph is allowed as input, with the simple preprocessing step of
adding an edge wherever one is not present whose weight is the length of the shortest path
between its two endpoints. We further note that the input can be regarded as a metric space
if the graph is undirected and the edge weights satisfy triangle inequality. We treat the edge
weights as travel-times, but for expository convenience may also refer to them as distances.
Let tmax denote the maximum length of an edge in the graph.

Algorithm 1 Segmented Best Path (sbp) Algorithm as adapted from [6]. Input: time
limit T > 0, a complete graph with T ≥ 2tmax, and a set of requests with associated revenues.

1: Let t1, t2, . . . tf denote time segments of length X = T/f ending at times
T/f, 2T/f, . . . , T , respectively, where f = ⌊T/tmax⌋.

2: Let i = 1.
3: while i < f and there are still unserved requests do
4: At the start of ti, find the max-revenue-sequence, R.
5: Move to the source location of the first request in R.
6: At the start of ti+1, serve the requests in R.
7: Let i = i + 2.
8: end while

We begin by adapting the sbp algorithm for online DARP to the offline RDARP setting.
In the online setting, sbp was shown in [6] to have competitive ratio 6, which was then
improved to 5 and shown to be tight [7]. At the beginning of sbp (see Algorithm 1), set f ,
the number of time segments, to ⌊T/tmax⌋. Let X = T/f be the length of a time segment;
note X ≥ tmax. Let every pair of consecutive time segments, starting from the first time
segment t1, form a time window. A max-revenue-sequence, R, is a sequence of requests of
maximum total revenue that can be served within one time segment of length T/f .



B. M. Anthony, C. Chung, A. Das, and D. Yuen 8:3

We use the term drive to refer to any move of the server from one point to another,
whether or not there is a request being served during the move. We use opt to denote an
optimal solution: a sequence of requests that maximizes total revenue that can be served
within the time limit T . We let |opt(I)| denote the total revenue earned by the optimal
solution on an instance I of RDARP.

2.1 Upper bound
In what follows, we allow opt to choose its desired position at time 0. We will show that
even with this extra flexibility, sbp is a 5-approximation.

▶ Lemma 1. Let r denote the revenue of all requests that opt begins serving by the end of
the first time window, and s denote the revenue earned by sbp within the first time window.
Then s ≥ r/4.

Proof. Consider the initial subpath of opt that contains the first time window and any
requests opt begins serving by the end of the first time window. This subpath thus has
revenue r. We subdivide this subpath into four further subpaths:
1. The subpath that is entirely contained in the time interval [0, X].
2. The subpath that is entirely contained in the time interval [X, 2X].
3. The drive (not necessarily a request), if any, between (1) and (2).
4. The drive (not necessarily a request), if any, that comes after (2) and overlaps time 2X.
Each of these four subpaths has total length no greater than X. Because their collective
revenue is r, at least one of the four subpaths must have revenue at least r/4. Since sbp could
have greedily chosen any of these four subpaths, sbp must thus earn revenue s ≥ r/4. ◀

▶ Theorem 2. For the offline general metric with nonuniform revenues and time limit
T ≥ 2tmax, we have |opt| ≤ 5|sbp|.

Proof. We will show by induction on the number of time windows that |sbp| ≥ |opt|/5.
Base case 1: There is only one time window, so T = 2X. (T ≥ 2X since T ≥ 2tmax by

assumption, so f ≥ 2.) Using Lemma 1, |opt| = r ≤ 4s = 4|sbp| ≤ 5|sbp|.
Base case 2: T = 3X. For this case, consider the above proof of Lemma 1, but add one

more subdivision so that there are 5 subpaths instead of 4. The fifth subpath is the subpath
of opt that is entirely contained within the time interval [2X, 3X]. We now redefine r to be
the revenue earned by opt by time 3X. The rest of the proof remains the same, except we
divide into five subpaths instead of four, so |opt| = r ≤ 5s = 5|sbp|.

For the inductive step, we may now assume T ≥ 4X, with the theorem holding for any
smaller time limit than T . Let I refer to the original input instance. We want to show that
|sbp(I)| ≥ |opt(I)|/5. We consider the smaller instance after sbp has completed its first
time window. This smaller instance, I ′, has time limit T − 2X, and the requests served by
sbp in the first time window are removed.

Consider the path in I ′ formed by taking the opt path in I and removing the initial
part that earned revenue r; this path has length at most T − 2X, and revenue at least
|opt(I)| − r − s. In essence, it is the opt path with the first portion removed and potentially
some ‘holes’ from requests that are not present in I ′. By the inductive hypothesis, sbp(I ′)
would have revenue at least |opt(I ′)|/5 ≥ (|opt(I)| − r − s)/5.

Thus, using the inductive hypothesis and Lemma 1, we have |sbp(I)| = s + |sbp(I ′)| ≥
s + (|opt(I)| − r − s)/5 = (|opt(I)| − r + 4s)/5 ≥ (|opt(I)| − r + r)/5 = |opt(I)|/5,
completing the induction. ◀

ATMOS 2024
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Figure 1 A small instance with a = 4 and b = 2 that illustrates the overall structure of the lower
bound (but does not yield a ratio greater than 4). Requests are shown in color with distances and
revenues as indicated. Gray dashed edges are empty drives of distance ϵ. All edges not shown have
distance 1, including the reverse of existing directed edges.

2.2 Tight lower bound when the number of time segments is odd

Consider an instance with T = 6, tmax = 2, and five (or more) requests of unit revenue and
length 1 + δ, for some small δ > 0, so f = ⌊T/tmax⌋ = 3. These requests are such that opt
is able to serve five consecutively until the time limit, earning total revenue of 5. By contrast,
sbp serves only one request: two consecutive requests take time 2 + 2δ > 2 = T/f , so only
one request can be served within a single time segment of length T/f , and the first segment
of each window is used, by definition of sbp, to move. Thus, we achieve a ratio of 5 which
matches base case 2 of Theorem 2.

In [1] we proposed a version of sbp that ensured f , the number of time segments, was
even. There we showed that version of sbp earned a (tight) approximation ratio of 4; however,
in what follows we show that even if the number of time segments is even in Algorithm 1, we
cannot guarantee an upper bound of 4 on the ratio.

2.3 Lower bound when the number of time segments is even

We describe how to construct instances with an even number of time segments that have a
lower bound greater than 4. We note that these instances are not metric spaces, as they lack
symmetry. Let a, b be positive integers with b ≤ a. Let tmax = 1 and T = 2a, resulting in
f = 2a and X = 1. See Figure 1 for a representative example with a = 4 and b = 2.

Let the opt path consist of P1, E1, P2, E2, ..., P2a−1, E2a−1, P2a where each Pi (depicted
in Fig. 1 as vertical paths oriented upward) is a path of up to 2b + 1 requests with total
distance less than 1/(2a) and total revenue 1, and each Ei (depicted as a green downward
diagonal edge in the figure) is a request of distance 1 and revenue c that we will specify later.
These are the only requests in the input. Hence, the opt path has total distance at most
2a/(2a) + 2a − 1 = 2a, and the optimal solution can be completed in time T .
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Figure 2 Instance with a = 6, b = 3. Requests are shown in color with distances and revenues as
indicated. Gray dashed edges are empty drives of distance ϵ. All edges not shown have distance 1,
including the reverse of existing directed edges.

All other distances between nodes will be 1 except that specific nodes of each Pi are
very close to nodes in Pi+1 so that there are paths Q1, Q2, . . . , Qb defined as follows. Q1
(depicted in Figures 1 and 2 as the red and gray staircase pattern) starts with a request in P1
of revenue 1/(2a) and then cuts through P2, P3, . . . P2a, serving a request of revenue 1/(2a)
from each Pi, followed by an empty drive (gray dashed edges) of a sufficiently small distance
ϵ > 0 after each request, accruing a total revenue of 1. (Note: ϵ must be small enough so
that Q1 can be served within one time segment.)

Setting c ≤ 1, no paths of total distance 1 or less have revenue larger than 1, so we can
assume that sbp will move to and then drive along Q1 during the first two time segments.
At time t = 2, each path Pi now has remaining revenue (1 − 1

2a ), which we denote by ρ.
Now suppose we have path Q2 (depicted as the magenta and gray staircase in the figures)

that similarly cuts through P2, P3, . . . , P2a, P1, serving a request of revenue ρ/(2a) each, so
that Q2 has total revenue ρ. Again, as long as c ≤ ρ, no path of length 1 or less has revenue
more than 1 at time t = 0, and no path of length 1 or less has revenue more than ρ at time
t = 2. So we can assume that sbp moves to and serves Q2 from time t = 2 to time t = 4.

In general, define Qi for i = 1 . . . b as a path that cuts through Pi, Pi+1 . . . P2a, P1 . . . Pi−1,
serving a request of revenue ρi−1/(2a) each, so that Qi has a total revenue of ρi−1. To ensure
that sbp chooses Qi in time segment [2i − 2, 2i], we need c ≤ ρi−1, for all i = 1 . . . b. Note
that each Qi, 1 ≤ i ≤ b, consists of 4a − 1 drives: 2a requests with an empty drive of distance
ϵ between each pair for a total of 2a − 1 empty drives.

After time t = 2b, the remnants of each path Pi have revenue ρb. (After sbp serves Qi

for i = 1 . . . b, the remaining revenue of each Pi shrinks by a factor of ρ.) If c ≥ ρb, sbp may
serve paths of revenue c for the remainder of time. We choose c = ρb, so sbp serves a − b

paths of revenue ρb for the remainder of time. Summarizing,

|opt| = 2a + (2a − 1)ρb = 2a + (2a − 1)
(

1 − 1
2a

)b

and since 1 − ρ = 1/(2a),

|sbp| = 1 + ρ + ρ2 + . . . ρb−1 + (a − b)ρb = (1 − ρb)/(1 − ρ) + (a − b)ρb

= 2a(1 − ρb) + (a − b)ρb = 2a − ρb(a + b) = 2a −
(

1 − 1
2a

)b

(a + b).
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Table 1 Some sample instance parameters and their corresponding ratios.

b a |opt|/|sbp|
2 6 4.025
3 6 4.03985
3 10 4.09867

1000000 1877946 4.27805

If a = b, we can take the limit as a → ∞ to get ρb = (1 − 1
2a )a is 1/

√
e. Then |opt|/|sbp|

has a limit of (
√

e + 1)/(
√

e − 1) ≈ 4.08299.
Table 1 shows some sample instance parameters and their corresponding ratios. The

instance shown in Figure 2 is reflected in the second row. Thus far, preliminary testing
suggests that a ratio much greater than 4.27805 (in the final row of the table) is unachievable.

Since our upper bound is tight only when f is odd, we continue to investigate a version
of the sbp algorithm that enforces an even number of time segments. An open question is if
the upper bound of 5 is no longer tight for this adjusted algorithm, and whether the true
upper bound matches the above family of instances, or can be shown to be strictly below 5.

References
1 Barbara M. Anthony, Ananya D. Christman, Christine Chung, and David Yuen. Serving Rides

of Equal Importance for Time-Limited Dial-a-Ride. In Panos Pardalos, Michael Khachay,
and Alexander Kazakov, editors, Mathematical Optimization Theory and Operations Research,
pages 35–50. Springer International Publishing, 2021. doi:10.1007/978-3-030-77876-7_3.

2 Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
doi:10.1002/net.3230190602.

3 Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David Williamson. A note on
the prize collecting traveling salesman problem. Mathematical programming, 59(1-3):413–420,
1993. doi:10.1007/BF01581256.

4 Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting
TSP. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, pages 1848–1861, New York, NY, USA, 2023. doi:10.1145/3564246.3585159.

5 Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM
Journal on Computing, 37(2):653–670, 2007. doi:10.1137/050645464.

6 Ananya Christman, Christine Chung, Nicholas Jaczko, Marina Milan, Anna Vasilchenko,
and Scott Westvold. Revenue Maximization in Online Dial-A-Ride. In 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59, pages 1:1–1:15, Dagstuhl, Germany, 2017. doi:10.4230/OASIcs.ATMOS.
2017.1.

7 Ananya D. Christman, Christine Chung, Nicholas Jaczko, Tianzhi Li, Scott Westvold, Xinyue
Xu, and David Yuen. Improved Bounds for Revenue Maximization in Time-Limited Online
Dial-a-Ride. SN Operations Research Forum, 2(3):1–38, September 2021. doi:10.1007/
S43069-021-00076-X.

8 Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and Ter-
ence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B: Methodological, 111:395–421, 2018.

https://doi.org/10.1007/978-3-030-77876-7_3
https://doi.org/10.1002/net.3230190602
https://doi.org/10.1007/BF01581256
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1137/050645464
https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.1007/S43069-021-00076-X
https://doi.org/10.1007/S43069-021-00076-X


Online Vehicle Routing with Pickups and Deliveries
Under Time-Dependent Travel-Time Constraints
Spyros Kontogiannis #

Computer Engineering and Informatics Department, University of Patras, Greece
Computer Technology Institute and Press “Diophantus”, Patras, Greece

Andreas Paraskevopoulos #

Computer Technology Institute and Press “Diophantus”, Greece

Christos Zaroliagis #

Computer Engineering and Informatics Department, University of Patras, Greece
Computer Technology Institute and Press “Diophantus”, Patras, Greece

Abstract
The Vehicle Routing Problem with pickups, deliveries and spatiotemporal service constraints
(VRPPDSTC) is a quite challenging algorithmic problem that can be dealt with in either an off-
line or an online fashion. In this work, we focus on a generalization, called VRPPDSTCtd, in which
the travel-time metric is time-dependent: the traversal-time per road segment (represented as a
directed arc) is determined by some function of the departure-time from its tail towards its head.
Time-dependence makes things much more complicated, even for the simpler problem of computing
earliest-arrival-time paths which is a crucial subroutine to be solved (numerous times) by VRPPDSTCtd

schedulers. We propose two online schedulers of requests to workers, one which is a time-dependent
variant of the classical Plain-Insertion heuristic, and an extension of it trying to digest some
sort of forecasts for future demands for service. We enrich these two online schedulers with two
additional heuristics, one targeting for distance-balanced assignments of work loads to the workers
and another that makes local-search-improvements to the produced solutions. We conduct a careful
experimental evaluation of the proposed algorithms on a real-world instance, with or without these
heuristics, and compare their quality with human-curated assignments provided by professional
experts (human operators at actual pickup-and-delivery control centers), and also with feasible
solutions constructed from a relaxed MILP formulation of VRPPDSTCtd, which is also introduced in
this paper. Our findings are quite encouraging, demonstrating that the proposed algorithms produce
solutions which (i) are significant improvements over the human-curated assignments, and (ii) have
overall quality pretty close to that of the (extremely time-consuming) solutions provided by an exact
solver for the MILP formulation.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases transport optimization heuristics, vehicle routing with pickups and deliveries,
time-dependent travel-times

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.9

Related Version Extended Version: https://doi.org/10.48550/arXiv.2408.06324 [10]

Funding This work was co-financed by the European Regional Development Fund of EU and Greek
national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation
(call RESEARCH-CREATE-INNOVATE) under contract no. T2EDK-03472 (project “i-Deliver”).

1 Introduction

The vehicle routing problem with pickups, deliveries and spatiotemporal service constraints,
VRPPDSTC, concerns the utilization of a fleet of workers (e.g., drivers, couriers, etc.) with their
own work-shifts and capacitated vehicles, for the provision of one-to-one delivery services of
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commodities (e.g., parcels, food, individuals, etc.) from their origins (pickup points) to their
destinations (delivery points) within certain hard time-windows which are determined by
earliest pickup-times and latest delivery-times per commodity. The primary goal is to have a
maximum number of served commodity-delivery requests by the fleet of workers, respecting all
spatiotemporal constraints (i.e., vehicle capacities, work shifts, and servicing time-windows),
with a secondary objective that the workers commute in an underlying road network of a
(typically large-scale) urban area in such a way that a specific aggregate service-cost function
(e.g., total travel-time, total-distance of the entire fleet, etc.) is minimized.

An even more complicated generalization of the problem, VRPPDSTCtd, considers instances
in which the traversal-times of the road segments (which are represented as directed arcs),
rather than being scalars, are time-dependent, i.e., they are determined by given arc-traversal-
time functions of the departure-times from their tails towards their heads. Such a travel-time
metric is typical when computing earliest-arrival-time paths for private vehicles commuting
within road networks, but unfortunately makes the problem of computing earliest-arrival-time
paths much harder (cf. [11] and references therein). Since this is a typical subroutine that
must be used numerous times when solving an instance of VRPPDSTCtd, it is clear that this
generalization of the vehicle routing problem becomes even harder as well.

The problem can be dealt with either offline, i.e., having at the solver’s disposal the entire
instance of delivery requests to be served and the fleet of workers, or online, i.e., when the
requests for commodities to be delivered appear in real-time and/or the workers are activated
at will. For VRPPDSTC, typical approaches for the offline case such as the consideration of an
appropriate mixed-integer linear programming formulation and the use of state-of-the-art
MILP solvers, are well-known but also extremely demanding in computational resources,
since the problem is NP-hard to solve. Unfortunately, for VRPPDSTCtd the situation becomes
even more complicated, since there is no MILP formulation to solve (the travel-time metric
is not constant but time-dependent).

Therefore, our focus is mainly on the efficient construction of suboptimal solutions in an
online scenario where the work-shifts are predetermined and a priori known to the scheduler,
but the requests are revealed in real-time and the scheduler has to always maintain a feasible
solution for a maximal number of the active requests by the currently operational workers.
As it is not obvious how classical constructive and improvement heuristics for VRP can be
adapted when the service requests come in pickup-delivery pairs (one per served commodity),
the literature for VRPPDSTC has mainly focused on simple online solvers, namely some
well-known constructive heuristics such as the Neighborhood and the Insertion heuristics.
In particular, Insertion is a popular online algorithm, heavily used and experimented in
the past, e.g., in [3, 16] for VRPPDSTC, which simply constructs incrementally a feasible
solution by allocating in a locally-optimal way each emergent request to one of the existing
routes (creating a new route also being an option, provided there exist active workers still
awaiting their first assignment) in such a way that the relative order of the already assigned
requests remains intact and the incremental cost in the value of the objective function is
minimized. Typically this heuristic requires cubic time, but there are also some quite efficient
(even linear-time) implementations based on dynamic programming [16]. Incorporating a
time-dependent travel-time metric in such heuristics is already a challenge. On the other
hand, the adaptation of well-known exact polynomial-size MILP formulations for VRPPDSTC

to VRPPDSTCtd, to be fed to an offline solver, seems to be very hard because the point-to-point
travel-times are now time-dependent variables rather than scalars.

In this work, we propose, implement, engineer, and experimentally evaluate two insertion-
based algorithms for VRPPDSTCtd: The TD-Insertion and the TD-Prophet. Our implement-
ation of TD-Insertion, apart from the typical greedy criterion (the minimization of the
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additive cost for fitting a new request in the subtour of a worker) for accommodating an
emergent commodity to some active worker, also considers an alternative local-optimization
criterion, which essentially attempts to keep a rough balance in the aggregate lengths of the
workers’ subtours. This criterion was inspired by [1] who observed, in the most elementary
variant of VRPC only with vehicle capacities, that in optimal solutions some subtours cor-
respond to much longer routes than others. Trying to avoid this kind of unfairness among
the workers’ actual commodity-servicing tasks, they proposed to compute the scores (i.e.,
marginal increases in route lengths) of the candidate pairs using the difference of squared costs
(the ℓ2-scoring criterion), rather than just the difference of the route costs (the ℓ1-scoring
criterion). We implement and experimentally evaluate for VRPPDSTCtd the local-optimization
analogue of the ℓ2-scoring criterion for our TD-Insertion heuristic. As an alternative, we
also try to hard-code fairness in the workers’ subtour lengths when considering the classical
ℓ1-scoring criterion, via an additional heuristic feature that we may opt to use in our scheduler,
called the Work Balancer heuristic.

Our TD-Prophet algorithm was inspired by the Prophet-Insertion algorithm of [16]
and works similarly with TD-Insertion, but also tries to account for some sort of forecasts
for near-future requests and handles them exactly as the actual requests. Apart from
the consideration of the time-dependent travel-time metric, another difference from the
Prophet-Insertion algorithm of [16] is that TD-Prophet does not have the workers always
on the move just because of predictions for the entire period (as Prophet-Insertion does
in the static case); it just fits a small number of short-term predictions (e.g., only within the
next hour of operation) to their actual assignment of real requests that appear online to the
system, and simply shortcuts the coverage of delivery points of those predictions that were
not eventually verified in real-time at their pickup points.

Apart from implementing and engineering our online algorithms for VRPPDSTCtd, we
also evaluate the efficiency of a local-search improvement heuristic, namely, the repetitive
Relocation of already assigned but not yet served routes right after handling a new (real or
predicted) request, towards improving the solutions produced by the two algorithms.

As it would be too expensive to have an exact mixed-integer linear programming (MILP)
formulation for VRPPDSTCtd

1, we also propose a heuristic construction of some “baseline”
solutions, using a relaxed MILP formulation of polynomial size. This MILP considers a scalar
travel-time metric for interconnecting routes of service points of the requests which, rather
than being just the average travel-times or the (optimistic) free-flow travel-times or the
(pessimistic) full-congestion metric, are deduced by some “educated” estimations (scalars) of
the actual time-dependent travel-times, depending on when these interconnecting routes are
most likely to be used by any worker. Well-known MILP solvers are then used to create,
within bounded execution time, a small set of solutions which are then tested for feasibility
w.r.t. the temporal constraints, under the actual (time-dependent) travel-time metric. This
way we get some “baseline solutions” with which the solutions of our online algorithms are
compared. Of course, even an optimal solution for the relaxed MILP is not necessarily an
optimal solution for the time-dependent instance at hand, and its cost does not necessarily
constitute some guaranteed lower-bound of the optimal cost. Of course, this MILP-based
method is rather unrealistic for our online scenario, due to both the assumption of a priori
knowing all delivery requests and its need for extremely demanding computational resources.

1 One could possibly consider a set-partitioning formulation using all feasible routes, but this would
require exponentially many variables.
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Finally, we conduct a thorough experimental evaluation of our online algorithms for
VRPPDSTCtd, with or without the heuristic improvements, on a real-world instance of food and
supermarket delivery requests in an urban environment, which is fed with synthetic demand
forecasts of varying accuracy. It is mentioned at this point that although high-quality demand
forecasting is of paramount importance, it is not the subject of the present work. This is why,
for the purposes of our experimental evaluation only, we created synthetic forecasting data
of varying accuracy. As a measure of comparison for our produced solutions, we use both
the feasible solutions constructed by the relaxed MILP formulation and the actual solution
that was determined by experienced human operators in our real-world dataset. Our results
demonstrate a significant prevalence of both our online algorithms over the human-curated
solution, up to 49% in total length and travel time, and also the prevalence of TD-Prophet
over TD-Insertion, up to 4%, on finding better pickup-delivery scheduling solutions.

2 Problem Statement and Related Work

We are given a sequence R = ⟨r1, r2, . . . , r|R|⟩ of pickup-and-delivery requests. Each request is
a tuple r =

(
χpic

r , tep
r , tpsrv

r , χdel
r , tld

r , tdsrv
r , qr, hr

)
∈ R, where: tep

r (tld
r ) is the earliest-pickup-

time (latest-delivery-time) that a worker may receive (leave) the commodity from (at) the
pickup point χpic

r (delivery point χdel
r ), assuming that tep

r < tld
r ; tpsrv

r (tdsrv
r ) is the anticipated

service-time for the worker that is responsible for commodity r, at the corresponding (pickup
or delivery) location (χpic

r or χdel
r ); qr is the volume/weight of the commodity to be transferred,

that is consumed from the corresponding vehicle’s capacity; and hr ⊆ H is the subset of
eligible vehicle-types for the good to be transferred (e.g., bicycle, motorcycle, car, with a
cooler or heated box, etc.). Vpic = {(r, χpic

r ) : r ∈ R} and Vdel = {(r, χdel
r ) : r ∈ R} are the

sets of pickup and delivery events, respectively, for all the active requests in R. It is noted
that, even if two requests r ̸= r′ share some (geographical) service point, e.g., χpic

r = χdel
r′ or

χpic
r = χpic

r′ , the pairs (r, χpic
r ), (r, χdel

r ), (r′, χpic
r′ ), (r′, χdel

r′ ) are distinct.
There is also a set W =

{
w1, w2, . . . , w|W|

}
of active workers (e.g., operational couriers dur-

ing a work-shift), each of them represented by a tuple w = (χstart
w , tstart

w , χend
w , tend

w , Qw, Hw)
where: χstart

w and tstart
w (χend

w and tend
w ) are the initial (final) location and opening (closing)

time, respectively, of w’s work-shift; Hw ∈ H is the type of the particular vehicle used by w

(e.g., bicycle, motorcycle, car, etc); Qw is the maximum volume/weight of storage, for the
vehicle used by w. Vstart = {(w, χstart

w ) : w ∈ W} and Vend = {(w, χend
w ) : w ∈ W} are the

sets of work-shift starting and finishing locations, for all the active workers.
Each worker w ∈ W may be assigned an arbitrary subset of requests Rw ⊆ R which

are eligible for them to serve. The whole task for w is represented as a sequence of all the
corresponding pickup and delivery points for requests of Rw, called his/her subtour. Then,
w is assumed to move within an urban area along earliest-arrival-time subpaths connecting
consecutive points in the subtour, in order to serve them. The area is represented by a
directed graph G = (V, E), whose arcs correspond to unidirectional road segments and
vertices represent intersections and intermediate points (corresponding to distinct postal
addresses) of these road segments. Each arc e = uv ∈ E comes with a scalar arc-length, λ[e],
and a periodic arc-travel-time function τh[e](t) : [0, T ) 7→ R≥0 for evaluating the traversal-
time of e when using a vehicle of type h ∈ H, depending on the departure-time from u. For
succinctness in its representation, this function is assumed to be continuous and piecewise
linear (pwl), represented as a constant-size sequence of breakpoints. It is also assumed
to satisfy the FIFO property, as is typical for individually moving private vehicles within
road networks. The FIFO property implies that the corresponding arc-arrival-time function



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 9:5

ah[e](t) = t+τh[e](t) for e when using h is non-decreasing. In a similar fashion, we inductively
define the notions of travel-time and arrival-time functions for paths which are perceived as
sequences of incident arcs: For each k ≥ 0, a path π = ⟨e1 = (i0, i1), . . . , ek = (ik−1, ik)⟩ and
an arc ek+1 = (ik, ik+1), the path π ⊕ ek+1 is constructed by appending ek+1 at the end of π.
It then holds that λ[π ⊕ek+1] = λ[π]+λ[ek+1], ah[π ⊕ek+1](t) = ah[π](t)+τh[ek+1](ah[π](t)),
and τh[π ⊕ ek+1](t) = ah[π ⊕ ek+1](t) − t. Furthermore, τh[o, d](to) denotes the minimum
path-travel-time, when departing at time to from o ∈ V towards d ∈ V , using a vehicle of
type h, and the earliest arrival-time at d is denoted as ah[o, d](t) = τh[o, d](t) + t. The scalar
λ[o, d] denotes the minimum path-length from o to d.

A feasible solution for an instance of VRPPDSTCtd is described as a collection {Sw : w ∈ W}
of subtours (i.e., sequences of service points for all the requests assigned to them), one per
worker, such that each request belongs to at most one subtour and, along each subtour Sw,
there is no violation of a temporal constraint or a vehicle capacity constraint as w moves with
his/her vehicle between consecutive service points along Sw across interconnecting paths of
the road graph G. The primary goal is to find a feasible solution that maximizes the number
of served (i.e., assigned) requests, and a secondary goal is to minimize a global cost objective
value (e.g., total travel-time or total-length, for all workers).

For convenience, we consider a special graph, the pickup-and-delivery (PD) graph GP D =
(V, E) (cf. Figure 1), whose node set V contains four subsets of nodes corresponding to
distinct events: The green and orange nodes correspond to workers-shift starting and ending
events from Vstart and Vend, respectively. The purple and blue nodes correspond to pickup
and delivery events from Vpic and Vdel, respectively. As for the arc set E , nodes from Vstart

are connected to all nodes in Vpic, nodes from Vdel are connected to each node in Vend,
and (roughly) a complete subgraph is induced by Vpic ∪ Vdel, excluding only arcs from each
delivery event to the pickup event of the same request, as they cannot be part of any solution.

For each u ∈ Vpic ∪ Vdel, ρ(u) ∈ R denotes the corresponding request. For each
v ∈ Vstart ∪ Vend, γ(v) ∈ W denotes the corresponding worker for the work-shift v. Within
GP D, each subtour Sw = ⟨v0, v1, . . . , vk+1⟩ can be seen as a (simple) path where v0 = χstart

w ,
vk+1 = χend

w , and ∀i ∈ {1, 2 . . . , k}, vi ∈ Vpic ∪ Vdel (service point for some request).
For each arc uv ∈ E , there is a minimum-length path πλ

u,v (and possibly suboptimal
travel-time), and a minimum-travel-time path πτ

u,v(tu), dependent on the departure-time
tu (and possibly suboptimal length) in the underlying road graph G connecting u and v.
Each subtour (i.e., simple path in GP D) Sw of a worker can then be translated within the
road graph G into a route by using either a distance-optimizing route Πλ

w (prioritizing the
usage of length-optimal interconnecting paths), or a travel-time-optimizing route Πτ

w(tstart
w )

(prioritizing the usage of length-optimal interconnecting paths), that interconnects all the
consecutive points in Sw. For some route Πw =

(
v0 = χstart

w , v1, . . . , vk+1 = χend
w

)
for worker

w ∈ W, we denote by Πu:v
w the subroute starting at node u and ending at node v. For a

given departure-time t, we associate each node vi ∈ Πw with the following labels:
1. arrival-time: a(vi) = a[Πv0:vi

w ](t);

2. earliest departure-time: d(vi) =


max{a(vi), tep

ρ(vi)} + tpsrv
ρ(vi), vi ∈ Vpic

a(vi) + tdsrv
ρ(vi), vi ∈ Vdel

a(vi), otherwise
3. waiting-time: b(vi) = max{tep

ρ(vi) − a(vi), 0} for vi ∈ Vpic, and b(vi) = 0 otherwise; and

4. current-load: C(v0) = 0; ∀i ≥ 1, C(vi) =


C(vi−1) + qρ(vi), vi ∈ Vpic

C(vi−1) − qρ(vi), vi ∈ Vdel

C(vi−1), otherwise
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9:6 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

When considering to insert a new service point u in Sw right after some existing point
vi, all the subsequent subpaths interconnecting consecutive nodes of Sw after vi must be
recomputed, to account for the updated departure and arrival times along Πw. Due to the
time-dependent nature of the travel-time metric, this is a non-trivial task to execute, prior
to assessing the effectiveness of positioning the new event at a particular place within Πw.

An instance of VRPPDSTCtd is represented by a directed graph G = (V, E), scalar arc-
lengths λ : E 7→ R>0, (periodic, continuous and piecewise-linear) arc-travel-time functions
(τh[e] : [0, T ) 7→ R>0)h∈H,e∈E , a sequence of requests R, and a set of workers W. As
previously mentioned, we also construct the auxiliary graph GP D. Because there may be
nodes in V whose geo-locations do not coincide with vertices in V , some road-pedestrian
connections are added between them by finding the nearest-neighbor pairs (x, v), for each
x ∈ V and v ∈ V. The nearest-point search is done efficiently using an R-tree [6]. We
also conduct sequentially shortest-path-tree computations for any involved vehicle type,
to provide a set of (one-to-many) minimum-length paths and minimum-travel-time paths
among geo-locations for elements of V ∪ V . For the (scalar) length metric we simply employ
executions of Dijkstra’s algorithm [4]. As for the time-dependent travel-time metric, the
earliest-arrival-time computations are efficiently performed “on the fly”, using the query
algorithm CFCA of the CFLAT oracle [9] for time-dependent shortest paths, exactly when an
arc in the PD graph GP D is to be used by some worker. This is something that can be done
efficiently by an online algorithm that only tries to fit into an existing solution a single new
delivery request. On the contrary, the consideration of time-dependent travel-times renders
impossible the construction of an exact MILP formulation; therefore, even the time-consuming
construction of an optimal solution via MILP solvers becomes quite more challenging in this
case. Section A in the appendix provides an approximate MILP formulation for VRPPDSTCtd

that considers some carefully selected scalar travel-time values for entire paths (rather than
just arcs), exactly when they could be possibly used by some (any) feasible solution.

𝑠|𝑊|

𝑠2

𝑠1

𝑓|𝑊|

𝑓2

𝑓1
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𝑝3 𝑑3

𝑝2 𝑑2

... ..
.
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.

..
.

𝑝1 𝑑1

Figure 1 The pickup-and-delivery (PD) graph.

3 Insertion-based Schedulers for VRPPDSTCtd

The purpose of an insertion heuristic is to assign each request r to a worker w in a cost-optimal
way, so that the new subtour S′

w (after adding the two service points of r) maintains the
same relative order for the service points in Sw. The main reasons for such a requirement are
simplicity and computational efficiency, since the consideration of all possible subtours for
R′

w = Rw ∪ {r} would require the examination of an exponential number of subtours [14].
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▶ Definition 1 (Insertion-Based Heuristics). Given a collection of subtours Sw for serving
the subsets Rw of requests assigned to each operational worker w ∈ W, and a new request
r, an Insertion-Based heuristic determines for each w ∈ W a candidate subtour S′

w for
R′

w = Rw ∪ {r}, which achieves a minimum increase in w’s contribution to some global-
objective value, and leaves intact the relative order of the service points already in Sw.
Eventually, r is assigned to the worker achieving the minimum increase, among all workers.

The Plain-Insertion algorithm is well known in the literature of VRP-related prob-
lems. A naïve implementation of such a heuristic would require quadratic, or even cubic
computational time. A linear-time implementation of Plain-Insertion for VRPPDSTC was
recently proposed [16], which is based on a preprocessing step and on dynamic programming
for computing the workers’ scores (i.e., the marginal increases in cost if they were assigned
the new request), for a scalar travel-time metric. We introduce in this section a variant of
Plain-Insertion, called TD-Insertion for VRPPDSTC, which follows the main idea of the
preprocessing of workers’ paths in [16], so as to achieve early pruning of infeasible solutions,
but with some major modifications so as to deal with the time-dependent travel-time metric
and the consideration of earliest pickup-times for each request. The primary objective is
to maximize the number of assigned requests. As a secondary objective, our algorithm
considers two alternatives, as was previously explained: either the sum (i.e., ℓ1-norm), or
the sum-of-squares (i.e., ℓ2-norm) of the workers’ costs (distances, or travel-times). The
ℓ2-scoring criterion was inspired by [1], as an indirect means of inducing more balanced
allocations of requests to the workers. We then incorporate in TD-Insertion the heuristic
Workload Balancer (WB), which enforces some balance among the workers’ assignments.
We also consider a local-search improvement heuristic which post-processes the solutions
provided by TD-Insertion, exploring among single-request relocation attempts for better
solutions. Finally, we introduce TD-Prophet, a variant of TD-Insertion that, apart from
actual requests, also includes in the produced subtours some short-term forecasts for future
requests.

(a) Description of TD-Insertion

We denote as TD-Insertionκ,ν the variant of TD-Insertion that assumes a cost metric
κ ∈ {τ, λ} (τ for travel-times and λ for distances) and a norm ℓν ∈ {ℓ1, ℓ2} for assessing
the scores of candidate insertion pairs of each new request. It is assumed inductively that:
(i) each worker w ∈ W has already been assigned a subset of requests Rw, to be served
according to the subtour (i.e., sequence) Sw of the corresponding service points; (ii) Sw

has already been translated into some particular route Πκ
w, depending on the particular

cost metric κ ∈ {τ, λ} that we consider as primary. It should be noted at this point that
Πτ

w is indeed a route of minimum-travel-time interconnecting subtours. On the other hand,
Πλ

w is not necessarily a route of minimum-length interconnecting subtours. In particular,
some minimum-travel-time interconnecting paths may also have been used in Πλ

w for some
pairs of consecutive points in Sw, only as contingency interconnecting routes for the case
that the insertion of a service point with length-optimal interconnecting paths has lead to
a violation of some temporal constraint of the subsequent service points. More about this
issue is discussed in Subsection A.3.

Let a(vi) and d(vi) denote the arrival-time at vi and the departure-time from vi, respect-
ively, as w moves along Πκ

w. In a nutshell, the steps of TD-Insertionκ,ℓν
for κ ∈ {τ, λ} and

ν ∈ {1, 2} are the following: For each new request r, at release-time trel
r , we test the insertion

of r within the subtour Sw = ⟨v0 = χstart
w , v1, v2, . . . , v|Sw|−1 = χend

w ⟩ by iteratively placing
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the pickup node χpic
r right after position i ∈ {0 . . . , |Sw| − 2} and the delivery node χdel

r right
after position j ∈ {i, . . . , |Sw| − 2}. We also require that trel

r ≤ d(vi+1), i.e., r cannot precede
a service point whose departure time is already before r’s release time. This insertion would
result in the expanded subtour S′

w = ⟨v0, v1, . . . , vi, χpic
r , vi+1, . . . , vj , χdel

r , vj+1, . . . , v|Sw|−1⟩
and the corresponding route Π′

w from Πκ
w with the appropriate cost-optimizing interconnect-

ing paths. For each pair (i, j) of candidate positions for the service points of r, a feasibility
check of the spatial- and (time-dependent) temporal-constraints is performed along the
suffix-subroute of Π′

w starting at node vi. If all these service points are still feasible, then
a marginal-increase value Scoreκ,λν

(Πw, i, j, r) is computed, to assess the impact on w’s
servicing cost of accepting the candidate positions (i, j) of Sw for serving r. In case of
infeasibility, when κ = τ the candidate pair (i, j) is immediately rejected. When κ = λ,
we alternatively construct the route Π′′

w from Πw with the appropriate travel-time-optimal
interconnecting paths (only for the detours of r’s service points). We provide now a detailed
description of exactly how this is done.

(a.i) Preprocessing check-constraint indicators for candidate insertions
As in [16], given the (κ, ℓν) pair of cost-metric and scoring-criterion that we consider, we
use two check-constraint indicators for the service nodes of Sw, as w moves along the
corresponding route Πw (for simplicity, we slightly abuse notation by skipping the metric-
dependent exponent, and the worker’s shift-start-time):

slack(vi) is the maximum tolerable time for inserting a detour between vi and vi+1,
without violating any of the (temporal) latest-delivery-times for nodes in Πvi+1:v|Sw|−1

w .
ddl(vi) is an upper bound on the ultimate arrival-time at vi so that neither the deadline
for serving the request ρ(vi), nor the work-shift end of the carrying worker are violated.

For each arc e = vivi+1 ∈ Sw ∩ E , the travel-time τ [e](t), of the path πe = ⟨vi, vi+1⟩ in G

associated with e, can be either increased or decreased as a function of the departure-time t

from vi. Nevertheless, due to the FIFO property, the arrival-time function is non-decreasing:
∀t < t′, a[e](t) ≤ a[e](t′). Inserting χpic

r between vi and vi+1 will give a new arrival-time
a′(vi+1) ≥ a(vi+1). Therefore, the current arrival-time value a(vi+1) is a lower-bound whereas
slack(vi) is an upper bound on the arrival time at vi+1, and their difference is an upper
bound for the delay that may occur (due to some detours for adding new service points)
between vi and vi+1. In order to incorporate earliest pickup-times in the slack(vi) and ddl(vi)
indicators, the following dynamic-programming approach is adopted, as we move backwards
along Πw, from the end v|Sw|−1 = χend

w towards vi:
1. ddl(vi) values:

for the work-shift end node, ddl(χend
w ) = tend

w ;
for a commodity-delivery node vi ∈ Vdel ∩ Sw, ddl(vi) = tld

ρ(vi);
for a commodity-pickup node vi ∈ Vpic ∩ Sw : vj ∈ Vdel ∧ r = ρ(vi) = ρ(vj),

ddl(vi) = tld
r −

∑
i≤k<j

[(a(vk+1) − d(vk)) + tk − b(vk)]

where tk =


tpsrv
ρ(vk), vk ∈ Vpic

tdsrv
ρ(vk), vk ∈ Vdel

0, otherwise
2. slack(vi) values: slack(vk) = min { ddl(vk+1) − a(vk+1), slack(vk+1) + b(vk+1) } for k

ranging from |Sw| − 1 down to i.
Recall that b(v) represents the required waiting-time at a service node v, or just the
resulting idle-time (only at pickup nodes), when r imposes an earliest pickup-time tep

r .
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It should be noted that, compared to a brute-force implementation of Plain-Insertion,
the exploitation of these two auxiliary variables by our online algorithms allows the pruning
without checking of many insertion-candidates, which has lead to a significant improvement
of our implementations’ execution times by at least 60%.

(a.ii) Efficient rejection of infeasible candidate insertions
The procedure is as follows: Assume for a new request r and a subtour Sw that we consider
for insertion the candidate pair (i, j), for 0 ≤ i ≤ j ≤ |Sw| − 2. If [a′(vi+1) − a(vi+1) >

slack(vi)] ∨ [C(vi) + qr > Qw] i.e., the resulting increase on the arrival-time at vi+1 exceeds
the slack of vi, or the resulting vehicle-load after picking up r at vi causes a violation in the
vehicle capacity, then the candidate pair (i, j) can be safely rejected. Moreover, if either of
these two types of violation constraints occurs and i < j, i.e., only the pickup node of r is
checked for insertion right after vi, then all the candidate pairs (i, m) : i ≤ m ≤ j can be
safely rejected.

It should be noted at this point that, since the slack times are only upper-bounds, even if
the above checks are passed, we still need to check for potential violations in latest-delivery-
times of requests or in the work-shift end-time along the suffix of the new subtour S′

w that
we create, under the time-dependent travel-time metric. Therefore, the time complexity to
obtain all the feasible insertion-pairs for a new request along Sw is O(|Sw|2), due to the
unavoidable time-dependent travel-time updates when checking for these potential violations.

(a.iii) Computation of scores for feasible candidate insertion-pairs per
route Πw

For a new request r, fix an arbitrary worker w whose vehicle-type is eligible for r: Hw ∈ hr.
Recall that we consider some arc-cost metric κ ∈ {τ, λ} (i.e., traversal-times, or distances)
for all the arcs in the auxiliary PD graph. As for the assessment of the scores for candidate
insertion pairs, as already mentioned, we consider that it is specified by the norm ℓν ∈ {ℓ1, ℓ2}.
For example, TD-Insertionτ,ℓ1 uses the travel-times cost metric for the routes and assesses
the overhead of each candidate path according to the ℓ1 norm, whereas TD-Insertionλ,ℓ2

uses the arc-lengths metric for the routes and the overhead of each candidate path according
to the ℓ2 norm. For TD-Insertion we need to compute one of the following path-costs for
worker w’s subroute Πw:

For distance-metric: Costλ(Πw) =
∑

e=uv∈Πw
(λe).

For travel-times metric: Costτ (Πw) =
∑

e=uv∈Πw
[a(v) − d(u)].

Given Πw and a particular candidate insertion pair (i, j) for a new request r, Πw(i, j, r) is
the resultant candidate subroute from Πw in which χpic

r is positioned right after vi and χdel
r

is positioned right after vj (and after χpic
r , in case that i = j). The scores (i.e., marginal

costs) of this subroute are calculated as follows, for κ ∈ {λ, τ} and ν ∈ {1, 2}:

Scoreκ,ℓν
(Πw, i, j, r) =

{
[Costκ(Πw(i, j, r))]ν − [Costκ(Πw)]ν , if Πw(i, j, r) is feasible

∞, if Πw(i, j, r) is infeasible

The score of w for hosting r is then Scoreκ,ℓν
(w, r) = min0≤i≤j≤|Sw|−2 Scoreκ,ℓν

(Πw, i, j, r).
Eventually, r is assigned to a worker ŵ of minimum score: ŵ ∈ arg minw∈W Scoreκ,ℓν

(w, r).
Note that during step (a.ii), for each feasible pair (i, j), the score can be computed in

parallel with the constraint-checking process. When a feasible pair (i, j) is verified, its (finite)
score is compared to the minimum score discovered so far. Then, (i, j) is rejected immediately
when the calculation of its score already gives a value larger than the current minimum score.
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A particular attention should be given when working with distances: If some (i, j)
leads to an eventually infeasible route Π′

w := Πw(w, i, j, r), because of violations of temporal
constraints, then we repeat the process using travel-time-optimal (instead of distance-optimal)
interconnecting paths for pairs of consecutive service points along Πw (corresponding to
arcs in the PD graph). This approach guarantees that, if there is any feasible solution
at all for the new request, then the request will at least be allocated to some subroute
Π′′

w of finite score, even if having to use distance-suboptimal interconnecting paths. For
TD-Insertion we considered two distinct contingency plans when facing such infeasibilities
with the distance metric: (i) either construct Π′′

w separately for each (i, j) whose Π′
w is

time-infeasible, interconnecting with distance-suboptimal subtours r’s service points within
Πw, or (ii) recompute from scratch an assignment for r, under the travel-time objective this
time, but only when all the candidate pairs under the distance metric provided temporally
infeasible routes. Eventually our decision for the experimental evaluation of TD-Insertion
was to adopt the former contingency plan, as it adopts the travel-time metric not for each
and every candidate pair but only for the problematic detours.

(b) Workload Balancer Heuristic (WB)
When running the experiments, it was observed that the optimal solutions provided by
TD-Insertion involved only a few workers that shouldered the majority of the requests,
while the rest of the workers did much less work, or were even not assigned any request at
all. Towards providing more fair assignments for all the operational workers, we consider
a threshold θ ≥ 1 and a penalty factor µ ≥ 1 and we introduce a bias for new requests
in favor of workers with lighter (by means of traveled distance) workloads, even though
some other workers might serve them with smaller marginal service costs. This bias is
achieved by our Workload Balancer (WB) heuristic, which considers a slightly different
scoring step for TD-Insertion for determining the winning worker per new request. In
particular, upon the release of a new request r, let Wo be the set of the currently operational
workers, and Costκ,ν(Πw) be the cost of some worker w ∈ Wo for a given metric κ ∈ {τ, λ}
and objective ν ∈ {ℓ1, ℓ2}. The total cost of the current solution (before serving r) is
Costκ,ν(Wo) =

∑
w∈Wo

Costκ,ν(Πw). Then, each operational worker w ∈ Wo whose subroute-
cost exceeds the average subroute-length in Wo by more than θ, gets a penalized score by a
multiplicative factor µ > 0: ∀w ∈ Wo, ∀κ ∈ {τ, λ}, ∀ν ∈ {ℓ1, ℓ2},

Scorewb
κ,ν(Πw, i, j, r) :=

1 + µ · I{
Costλ,ℓ1 (Πw)>θ·

Costλ,ℓ1 (Wo)
|Wo|

} · Scoreκ,ν(Πw, i, j, r)

(c) Request Relocation Improvement Heuristic (RR)
A weakness of insertion-based heuristics is that they forbid changes in the assignment and the
relative service order of the active requests, except for the new request. Towards amplifying
this drawback, as in [7], we introduce the Request-Relocation Improvement (RR) heuristic,
which conducts a sequence of local-search improvement attempts to the current solution
as follows: For each w ∈ Wo, and each r ∈ Rw that has not been picked up yet by w,
χpic

r ∈ Vpic and χdel
r ∈ Vdel are removed from Πw, making the appropriate shortcutting to

Πw so as to be a feasible subroute for Rw \ {r}. By the FIFO property, this may cause
no violation of a spatiotemporal constraint in Πw and does not affect the routes of other
workers. Consequently, r is relocated by TD-Insertion, either at a better position within
Πw or within the route of another operational worker.
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(d) Digesting Demand Forcasts with TD-Prophet

In the typical online scenario, the request sequence R is initially unknown and is gradually
revealed (per request) to the request scheduler. This knowledge gap is an important drawback
for preparing a better and more organized scheduling plan. Apart from the higher risk of
adopting suboptimal assignments, another significant burden is the necessity of the workers
making large detours to serve newly revealed requests. Inspired by the Prophet-Insertion
scheduler in [16], we introduce here a variant of TD-Insertion, called the TD-Prophet, which
takes into account some sort of short-term forecasts for future requests and deals with them
exactly as (virtual) requests with pickup/delivery points and spatiotemporal constraints.
These virtual requests are a priori scheduled in the front of the request sequence to be handled
by the scheduler, so as to be assigned to (initially idle) operational workers. This assignment
is done using TD-Insertion. Consequently, their spatiotemporal constraints are deactivated
(i.e., qr = 0, tld

r = ∞), so as not to cause unnecessary infeasibilities for the workers’ subroutes.
The major difference of TD-Prophet from Prophet-Insertion in [16], apart of handling
time-dependent travel-times, is that, after determining the assignment of the predictions to
the workers, the delivery nodes of predictions of low appearance probability (below 80%) are
removed (to better deal with any forecast inaccuracy). Also, when TD-Insertion decides to
place the service nodes of a new request, say, at positions i and j respectively, any virtual
pickup node (corresponding to a forecast) with low appearance probability (below 80%)
between i and j is simply ignored. It should be noted that the demand-forecasting task is
beyond the scope of this work and we consider this information to be provided as input to
TD-Prophet. Nevertheless, Section B in the full version of the paper [10] describes exactly
how this forecasting task is simulated for the real-world data set that we use for the needs of
our experimentation.

4 Experimental Evaluation

We evaluated our algorithms using a real-world data set with records of pickup-and-delivery
food and shopping orders during 3 consecutive working days, at the midium-sized city of
Ptolemaida, Greece. In our experiments we assess the performance of our online schedulers
for the actual request-sequence against two baseline solutions: (1) human-curated solutions
provided by operators in the control room of a middleware platform mastering the service
of food-order and shopping-delivery requests in Ptolemaida; and (2) optimal solutions to
the MILP formulation for a relaxation (a carefully constructed instance of VRPPDSTC) of the
actual instance of VRPPDSTCtd (the detailed description of this relaxation, the proposed MILP
formulation and the adopted solution method, are provided in Section A of the Appendix).

(a) Experimental Setup
The algorithms are in C++ (GNU GCC v.11.3.0). The experiments were conducted on an
AMD EPYC 7552 48-Core 2.2GHz Processor with 256GB RAM and Ubuntu (22.04 LTS).

(b) Experimental Dataset
The dataset contains a pair (W, R) of a worker set and a request sequence, with actual
pickup/delivery-times for the requests and work-shift intervals for the workers, within a
period from Monday, July 3 2023 to Wednesday, July 5 2023, in the city of Ptolemaida in
Northern Greece. All workers involved in this particular data set have used a single type
of vehicle (scooters with a fixed-size storage). The human-curated service subtours were
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decided in real-time by well-experienced operators at the control center of a middleware
platform providing couriers to food and shopping enterprises. The actual (GPS-recorded)
service routes of the couriers were extracted from the pilot-phase event-logging database in
the framework of a research project in which our group participated in the past [8]. These
routes are already of high quality, since they were based on the long-term experience of
the human operators, especially in the medium-size of the operational area (Ptolemaida).
The construction of the road graph G was based on an OpenStreetMap dataset for Greece’s
road network [12]. The travel-time metric is provided by the OpenStreetMap service and
the request-demand predictions were provided as input. G contains |V | = 2547 nodes
and |E| = 9514 arcs. In the real data set some spatiotemporal restrictions were missing.
In order to carry out a more realistic experimental evaluation, we adopted the following
constraint scenario: Each request was assumed to have one-unit load and a duration of
40min between the latest-delivery-time and and the earliest-pickup-time, and service times
of 1.5min; and each worker uses a vehicle with a total capacity of 3 units. I.e., ∀r ∈
R

(
qr = 1 ∧ tld

r = tep
r + 40min ∧ tpsrv

r = tdsrv
r = 1.5min

)
∧ ∀w ∈ W ( Qw = 3 ) .

(c) Analysis of Experimental Results
We executed three experiments, one per working day (Mon,Tue,Wed). Our online al-
gorithms created the full sequences of worker subtours per day, starting from initially
empty subtours. We experimented, exactly on the same instances, for an online algorithm
alg ∈ {TD-Insertionheur

κ,ν , TD-Prophetheur
κ,ν : heur ∈ { { }, {wb}, {rr}, {wb, rr} }, κ ∈

{τ, λ}, ν ∈ {ℓ1, ℓ2}} where heur indicates whether specific heuristics are activated, κ determ-
ines the cost metric and ν specifies the type of the global objective.

Each variant of TD-Prophetκ,ν works as follows: first we appended at the beginning of
the request sequence a subset of predictions for virtual requests, which were then assigned to
workers with TD-Insertionwb

κ,ν . The remaining sequence (of the real requests) were handled
then sequentially, exactly as they appeared, by TD-Insertionκ,ν . Each real request was
assumed to be visible to the scheduler only after its release time. Upon the release of a
new (real) request r ∈ R at time trel

r , each variant of our algorithms executes the following
substeps: r ∈ R is first assigned to a “moving” worker w ∈ W with the minimum score value,
w.r.t. the objective function. Then, a detour event takes place, if the worker is instructed
to change destination. Consequently, w’s route is expanded by adding the service nodes
of the new request. Finally, the new time-dependent interconnecting paths are computed,
to (re)construct the route also covering the service points of the new request. As for
preprocessing, in both the offline and the online scenarios, some common tasks are executed:
(a) The preprocessing phase of CFLAT was executed by computing optimal trees, so that the
interpolation of the travel-times at destinations constitutes an (1 + ϵ)-approximation of the
unknown time-dependent minimum-travel-time functions τh[o, d](to) : L × V × T 7→ R≥0,
where ϵ = 0.1, L is a subset of nodes (landmarks), h = scooter, and T is a one-week period.
In principle we could use the query algorithm CFCA to approximately compute time-dependent
distances “on the fly”. Nevertheless, since the graph size is small, we set L = V so as to avoid
executing CFCA and to improve the approximation guarantees of the provided travel-time
values. (b) Minimum distances λ[o, d] : V × V 7→ R≥0 are computed with Dijkstra calls from
all the nodes in GP D, under the distance metric λ.

The detailed presentation of the experimental results is deferred to the full version of
the paper [10]. We demonstrate some indicative results in Table 1, which focuses on the
distance metric and the ℓ1 objective. The reported execution times of the online algorithms
are average times per request. The table captures the resources spent: total travel-time (h)
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and total-length (km) traveled by the workers to serve requests, average (PathLen Avg) and
variance (PathLen Var) of the workloads (measured in km) assigned to the workers. For the
sake of a fair comparison, the human-curated subtours were translated into routes in such a
way that all the interconnection paths are indeed distance-optimal paths, even if some of
them are infeasible due to temporal constraint violations. This only works in favor of the
baseline solutions. For the WB heuristic, we set θ = 1.5 and µ = 2. As shown in Table 1,
against the quality of the human-curated assignments, there is a clear improvement of all
variants of TD-Insertionheur

λ,ℓ1
, varying from 14.6% up to 49.1% decrease in total-length,

and from 13.5% up to 48.9% decrease in total travel-time. The variants of TD-Prophetheur
λ,ℓ1

provide an additional improvement over the corresponding variants TD-Insertionheur
λ,ℓ1

by
roughly 4%. The picture is similar also for the ℓ2 objective, as shown in Table 2 in the full
version of the paper [10]. Remarkably, ℓ2 does not necessarily provide better solutions, but
it guarantees much less variance in the workloads, without the need of the WB heuristic.

As for the solutions of the relaxed MILP formulation of VRPPDSTCtd, as shown in Table 5
in the full version of the paper, the involved solvers take hours to construct optimal solutions,
even for small instances, whereas TD-Insertion finds very good solutions within amortized
time per request that is smaller by several orders of magnitude. E.g., for 12 requests and
8 workers, the branch-and-cut method of SCIP spending up to 6 hours to find 31 feasible
solutions and, via them, in the next phase, the best time-dependent metric converted solution
which is only 0.64% better than the best of them in total-distance, within only 69ms per
request.

Table 1 Experimentation of TD-Insertionλ,ℓ1 and TD-Prophetλ,ℓ1 .
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5 Concluding Remarks

In this paper we introduced, implemented and engineered two insertion-based online schedulers
for the time-dependent variant VRPPDSTCtd of VRPPDSTC, which were also experimentally
evaluated on a real-world instance of food and shopping orders. In the future we plan
to extend our online schedulers with more advanced local-search improvement heuristics,
exploit them also by well known metaheuristics that are efficient for VRP, such as the ALNS
metaheuristic, and also to explore in more depth offline solvers which are custom-tailored to
this particular problem.
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A Construction of a Relaxed MILP Formulation for VRPPDSTCtd

Recall that each assignment of requests to workers for an instance of VRPPDSTCtd is represented
as a collection {Sw : w ∈ W} of vertex-disjoint (simple) paths in GP D = (V, E). Of course, in
order to actually have a feasible solution in the end, we should translate each assignment Sw

into a (not necessarily simple) walk Πw to be followed by w in the underlying road network
G = (V, E), by substituting each pair of consecutive points in Sw (i.e., an arc in GP D)
with some cost-minimal interconnecting path of G. At this point, there are two options for
the interconnection of the endpoints of each arc e = uv ∈ E : Use in the road network G

either a travel-time-optimal (and distance-suboptimal) (u, v)-path, or a distance-optimal
(and travel-time-suboptimal) (u, v)-path. When the cost-objective is based on the travel-time
metric, all interconnecting paths for arcs of E are naturally minimum-travel-time paths in G,
mainly due to the FIFO property of the metric. On the other hand, when the cost-objective
is based on the distance metric, although the interconnecting paths for arcs of E should
ideally be minimum-distance paths in G, such a choice might lead to infeasible solutions.
We explain in subsection A.3 how we resolve this issue in such a way that, to the least,
whenever there is a feasible solution of a given maximum number of serviced requests, one
such solution should be found (even if it is suboptimal in the cost-objective).

Before that, we first consider a simplified situation (cf. A.1) where the travel-time metric
consists of scalar values for the arcs in G (i.e., it is time-independent). We then perceive all the
temporal parameters (e.g., travel-times, arrival-times) as scalars, which can be precomputed.
Abusing slightly the notation for the sake of simplicity, we use only the names of the temporal
functions, without their explicit dependence on departure-time values from the tail of an arc
or from the origin of a path, as the corresponding constants. For example, we write τ [Πw]
for the scalar approximation of the time-dependent path-travel-time function τ [Πw](tstart

w ).
Given those (constant) travel-time values, in subsection A.2) we provide a MILP formulation
for the (time-independent) relaxation of the actual instance of VRPPDSTCtd that we wish
to solve. This MILP is then fed to several MILP solvers for providing an offline solution
(cf. A.4), to act as alternative baseline solutions for quantifying the quality of the provided
heuristic solutions by our online solvers. Of course, even the solutions provided by the offline
solvers for the MILP relaxation are suboptimal solutions to the VRPPDSTCtd instance at hand.
The challenge is exactly to adopt a time-independent travel-time metric which is somehow
more informative than just considering the average, or the freef-flow arc-traversal times of
the road segments and thus renders offline solutions closer to optimality.

A.1 Approximating Time-Dependent Travel-Times
This subsection concerns the determination of scalar travel-time values to all the arcs in
the PD-graph GP D, when the global objective to consider is the minimization of (sums,
or sums-of-squares of) travel-time along the actual servicing paths of the workers. In this
case, each arc of GP D actually represents a minimum-travel-time interconnecting path for
its endpoints, in the underlying road network G.

Rather than simply considering only average (or, free-flow) travel-time values per arc in
G and then conducting shortest-path computations between the endpoints of arcs in GP D,
as is typically the case, we construct a more meaningful static travel-time metric for the
arcs of GP D, which tries to be as close as possible to the actual time-dependent travel-time
metric in G, taking into account that specific connections may only appear at specific parts
of the workers’ subtours. In particular, we construct relaxated time-indepdenent travel-times
for all the arcs in GP D in three consecutive phases,
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Phase 1: We compute the actual earliest arrival-times (and thus, also the minimum travel-
times) from the starting location of each worker to every of the pickup point, under the
time-dependent metric. In particular, fix an arbitrary arc e = (u = χstart

w , v = χpic
r ) ∈

Vstart × Vpic from some worker’s shift-start point to some request’s pickup point. The
departure-time is definitely tstart

w . Therefore, using the query algorithm CFCA of the
CFLAT oracle, we can determine a (1 + ϵ)-approximation of the minimum travel-time value
τ [Πu:v

w ](tstart
w ). The eventual scalar travel-time approximation for e (when considered as

candidate for first arc in some subtour) is defined as τe,hw = τhw [Πu:v
w ](tstart

w ) + tpsrv
r , i.e.,

we add to the actual travel-time value the service-time at the pickup point χpic
r .

Phase 2: We consider all the arcs of GP D emanating from pickup points, towards other
pickup points or delivery points (acting as candidates for second, or even later arcs within
subtours). To compute scalar approximations of their travel-times, we make calls of
CFCA from each pickup point χpic

r and each vehicle-type h ∈ Hr, towards all destinations
in Vpic ∪ Vdel. As departure-times from χpic

r we consider the maximum of its earliest
pickup-time tep

r and its earliest arrival-time from any worker with the specific vehicle
type. The resulting (time-dependent) minimum travel-time values at the destinations,
plus the service times at the destinations, determine the scalar approximations τe,h, for
all the arcs (χpic

r , v) ∈ E ∩ Vpic × (Vpic ∪ Vdel) and vehicle types h ∈ Hr.
Phase 3: We consider all the arcs of GP D emanating from delivery points, towards other

pickup points, delivery points, or work-shift ending points (as candidates for third, or even
later arcs within subtours). To compute scalar approximations of their travel-times, we
make again calls of CFCA from any delivery point χdel

r ∈ Vdel towards all destinations in
v ∈ Vpic ∪ Vdel ∪ Vend. As departure-time from χdel

r we consider the earliest arrival-time,
among all eligible vehicle types h ∈ Hr, from the corresponding pickup point χpic

r , as it
was computed in the second phase, since it definitely has to precede that delivery point.
The resulting minimum arrival-times computed by these calls plus the service times (if
any) at the destinations, determine the scalar approximations τe,h of the travel-times
that we consider, for all the arcs (χdel

r , v) ∈ E ∩ Vdel × (Vpic ∪ Vdel ∪ Vend) and eligible
vehicle-type h ∈ Hr.

A.2 MILP Formulation for Relaxation of VRPPDSTCtd

With the above mentioned static travel-time metric at hand, we may proceed with the con-
struction of the relaxed MILP formulation of VRPPDSTCtd. Recall that each arc (χstart

w1
, χpic

r1
) ∈

Vstart × Vpic and each arc (χdel
r2

, χend
w2

) ∈ Vdel × Vend may be “traversed” by workers w1
and w2 if and only if r1 and r2 were assigned to them, respectively. The rest of the arcs
in E may be “traversed” by any worker whose vehicle is eligible for the serviced requests
at its endpoint(s). Therefore, some binary decision variables are employed to indicate
the traversal of arcs by workers and the assignment of requests to workers: For each arc
e ∈ E ∩ ((Vpic ∪ Vdel) × (Vpic ∪ Vdel)), each request r ∈ R, and each worker w ∈ W, xe,w

indicates whether w traverses e, and xr,w indicates whether r is assigned to w.
We proceed with the definition of some constants for earliest arrival-times at nodes in V

and modifications in vehicle-loads, as some worker w traverses an arc e = uv ∈ Sw towards
a service node v ∈ Vpic ∪ Vdel. Recall that any feasible solution is a collection of subtours
{Sw : w ∈ W} which correspond to vertex-disjoint paths in GP D. In particular, for each
edge e = uv ∈ E , the constant qe represents the change in a vehicle’s load, when traversing
e: if v = χpic

r ∈ Vpic then qe = qr; if v = χdel
r ∈ Vdel, then qe = −qr; otherwise, qe = 0.

Moreover, each request r ∈ R comes with a (large positive) profit σr, to be considered only
when r is assigned to some worker for its service. Finally, for each node v ∈ V , the continuous
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variable av captures either the arrival-time of the unique worker (if any) who serves the
corresponding request r along its assigned route, when v ∈ {χpic

r , χdel
r ⊆ Vpic ∪ Vdel; or a

worker’s shift starting time tstart
w , when v = χstart

w ∈ Vstart is its shift-starting node; or, the
eventual arrival-time at the end of the entire route Πw of a worker, when v = χend ∈ Vend

is its shift-ending node. Along each arc e = uv ∈ E , the values of the variables au and av

should be compliant with the required time for the moving worker (with a particular vehicle
type) to traverse e.

For the sake of simplicity, we make here the assumption that all workers possess the same
vehicle type, as is the case in our real-world data set. The proposed relaxed mixed integer
linear program (MILP) for VRPPDSTCtd is shown in Figure 2. It can be easily extended to
also cover the case of more vehicle types for the workers.

min
∑

e∈E,w∈W
ce,wxe,w −

∑
r∈R

σr

∑
w∈W

xr,w

s.t.

0 ≤
∑

v∈Vpic

xuv,γ(u) ≤ 1, ∀u ∈ Vstart (1),

∑
uv∈E:u=χpic

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (2),

∑
uv∈E:v=χpic

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (3),

∑
uv∈E:u=χdel

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (4),

∑
uv∈E:v=χdel

r

xuv,w = xr,w, ∀r ∈ R, w ∈ W (5),

0 ≤
∑

w∈W
xr,w ≤ 1, ∀r ∈ R (6),

tstart
v ≤ av ≤ tend

v , ∀v ∈ V (7),
aχpic

r
≤ aχdel

r
, ∀r ∈ R (8),

|av − au −
∑

w∈W
(Tmax + τuv,w)xuv,w| ≤ Tmax, ∀uv ∈ E (9),

|qv − qu −
∑

w∈W
(Qmax + quv)xuv,w| ≤ Qmax, ∀uv ∈ E (10),

0 ≤ qv ≤
∑

r∈R,w∈W
xr,wQw, ∀v ∈ VP (11),

xe,w, xr,w ∈ {0, 1}, ∀e : uv ∈ E , w ∈ W , r ∈ R (12),
qv = 0, v ∈ Vstart ∪ Vend; 0 ≤ qv ≤ Qmax, v ∈ Vpic ∪ Vdel (13)

Figure 2 The relaxed MILP formulation of VRPPDSTCtd.

The objective function seeks as a primary goal to maximize the number of served requests
(recall the large positive values for the σr parameters) and, as a secondary goal, to minimize
the aggregate travel cost for having the selected requests served by the workers. Towards
this direction, we construct the objective as the sum of two terms. The first term accounts

ATMOS 2024



9:18 Online VRP with Pickups, Deliveries and Time-Dependent Travel-Times

for the aggregate cost to serve all the accepted requests, as determined by the sum of costs
ce,w · xe,w for those arcs of GP D which are used in the solution. The value of the coefficient
ce,w depends on the metric that is considered for the objective, i.e., it is associated with
either the arc-length λe, or with the (approximate) arc-travel-time τe,w (but excluding the
embedded service times). The second term determines the negative of the aggregate profit for
serving requests: For each request r ∈ R, the coefficient σr denotes the “profit” for having
r served by some worker. These coefficients are set to a sufficiently large value (based on
an upper bound to the worst possible path-travel-time or to the maximum length from any
origin towards any destination), so as to enforce the service of as many requests as possible.
The sum of profits for all the served requests is then subtracted from the overall service cost.

As for the constraints of the MILP: (1) ensures that any worker’s subtour may start
with a move towards at most one pickup point. (2-5) enforce that each worker may depart
from / enter the pickup / delivery) point of some request towards / from any other node,
only if the corresponding request is assigned to her. (6) ensures that any request r is served
by at most one worker. (7) enforces the arrival time av at each node v is in the allowable
time window, where: (a) for v ∈ {χstart

w , χend
w }, tstart

v = tstart
w and tend

v = tend
w ; and (b) for

v ∈ {χpic
r , χdel

r }, tstart
v = tep

r and tend
v = tld

r . (8) ensures that the pickup-time point of r

precedes the delivery-time point of r. (9) stipulates that if an arc e = uvE is traversed by
some worker w, then the arrival time av at v must be the result of the arrival-time au at
u plus w’s travel-time τe,w along e. (10) stipulates that if an arc e = uv ∈ E is traversed
by some worker w, then the change of w’s vehicle-load qv at v results from the vehicle-load
qu at u plus the pickup-load / minus the delivery-load qρ(v) = |qe| that corresponds to the
request ρ(v). (11) ensures that the vehicle’s load at any pickup-node v assigned to w, never
exceeds the vehicle’s maximum capacity Qw. The constants Tmax and Qmax are the result
of applying the big-M linearization method, and their values, in direct dependence on the
problem instance, are selected as the maximum distance |av − au|, |qv − qu|, ∀uv ∈ E , e.g. a
loose bound could be Tmax = maxw∈W(tend

w − tstart
w ) and Qmax = maxw∈W Qw. Note that in

(9) and (10) only the lower bounds are tight; the upper bounds are relaxed, Tmax and Qmax

theoretically can also be perceived as ∞. Their actual values are determined in relation
to the rest of the constraints. This is done on purpose, especially for the arrival decision
variables, because those variables in pickup-nodes have to be increased to reach the earliest
pickup-times in the case of a non-zero buffer time.

A.3 Translating Assignments to Routes under the Distance Metric
It is important to note at this point that for the MILP formulation provided in Figure 2, which
was constructed on top of the PD graph with arc-costs equal to the minimum travel-times
of their endpoints in the underlying road graph G, the optimal solutions indeed maximize
the aggregate profit for serving the accepted requests and, at the same time, minimize the
aggregate service cost for having the workers on the move, when the cost for each arc uv ∈ E
is indeed measured by the total travel-time of the workers from u to v in the underlying road
graph G.

Unfortunately, when the secondary objective (the aggregate service cost) is measured
by the total distance traveled by the workers, it is no longer true that the consideration
of a route of consecutive distance-optimal paths for implementing a given subtour is the
right choice for implementing a worker’s subtour. This then causes a crucial dilemma: which
weights should be considered for the arcs of E? For example, in Figure 3 the worker can
move from u to v along one of two uv-routes in the underlying road network G, but the
upper route is distance-optimal but time-infeasible and the lower route is travel-time optimal
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but distance-suboptimal. Then, for the unique arc uv ∈ E , using the distance-optimal (but
travel-time-suboptimal) weights would lead to a MILP formulation where the single request is
impossible to serve, whereas using the travel-time-optimal (but distance-suboptimal) weights
for the arcs in the PD graph would certainly provide a feasible solution, whose distance-
related service cost may be far from being optimal. Recall that our primary objective is to
have a maximum profit by the accepted requests for service (e.g., to have as many requests
served, as possible). Nevertheless, we wish (given that) to move towards optimizing also the
distance-related service cost, even though we cannot possibly reach it. Towards this direction,
we change the PD graph as follows: For each e = uv ∈ E , we attach two Pareto-optimal routes
in the underlying road graph G, a distance-optimal (but travel-time-suboptimal) uv-route
πl

u,v, and a travel-time-optimal (but distance-suboptimal) uv-route πτ
u,v, per type of vehicle.

This way, our (updated for the distance-optimal service cost objective) MILP formulation
tries to find either a distance-optimal and spatiotemporally feasible solution, or at least a
distance-suboptimal feasible solution that employs the cheapest (w.r.t. extra distance to
be traveled) subset of travel-time optimal connections so as to guarantee feasibility. Of
course, this is still not the required distance-optimal solution for the maximum profit for
the accepted requests, because it might be the case that some connecting paths in the road
graph which are suboptimal for both distance and travel-time criteria might be preferable.
Nevertheless, the primary goal of maximing the profit of accepted requests is now achieved.

𝑢 𝑣 𝑡𝑙𝑑 ≤ 8:30
arrival deadline

π𝑢,𝑣
𝑙

π𝑢,𝑣
𝑡

[4km, 45mins]

[5km, 27mins]

departure 
8:00

ℎ: motorbike

Figure 3 Finding a feasible solution to minimize distance while respecting the time constraints.
The worker arrives at u at 8:00. The arrival-time at node v via the distance-optimal path πl

u,v is
8:45, i.e., too late w.r.t. the latest-delivery-time deadline (8:30). On the other hand, the arrival-time
at v via the travel-time optimal path πt

u,v is 8:27, i.e., catching up the delivery deadline, at the cost
of a slightly longer distance to travel.

A.4 Offline Solvers for Relaxed MILP Formulation of VRPPDSTCtd

The core method used for solving the MILP formulation of VRPPDSTC is based on built-in
implementations in SCIP [2, 15] and Gurobi [5] of the branch-and-cut method [13]. Since the
produced solution has taken into account, not the actual time-dependent travel-time metric,
but a time-independent approximation metric for it, as was already explained in Section A.1,
we have to cross-check that the produced solution indeed respects all the spatiotemporal
constraints of the instance. This is done as follows: We examine up to 10 of the best feasible
solutions found from the MILP solver. Each solution is a set of subtours {Sw : w ∈ W}. For
each worker w ∈ W and the corresponding subtour Sw which dictates the visiting order of
the service points for all the requests assigned to her, we recompute the (now time-dependent)
optimal interconnecting paths for consecutive points of Sw. The spatial constraints (relating
to vehicle capacities) are certainly preserved. As for the temporal constraints, we recheck
along the subtour if any arrival-time at a delivery service or shift-ending node now violates
a temporal constraint, thus rendering the particular subtour infeasible. In such a case, we
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try to “repair” the route of Sw in the following way: at each vx ∈ Πw ∩ {Vdel ∪ Vend},
where α(vx) > tld

ρ(vx) or α(vx) > tend
w (i.e. a latest delivery or shift-ending deadline is

violated), we traverse the route Πv1:vx
w backwards, i.e. from vx up to v1, and successively

any contained intermediate subpath in Πw that was computed for length-minimization is
replaced by a corresponding optimal subpath that minimizes the travel-time. If there is no
length-optimal path or the applied replacements eventually are not enough to deal with the
deadline violations, then the whole solution is rejected, and an additional constraint to block
the selection of the infeasible subtours in GP D is added to the MILP formulation (Figure 2).
This process is applied to any MILP solver’s examined feasible solution. At the end, if
there is no time-dependent-metric converted feasible solution, then there is the possibility to
use the new MILP formulation (with the added constraints) to solve the problem again for
computing new solutions that will hopefully overcome the deadline violations.
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Abstract
While it is important to provide attractive public transportation to the passengers allowing short
travel times, it should also be a major concern to reduce the amount of energy used by the public
transport system. Electrical trains can regenerate energy when braking, which can be used by a
nearby accelerating train. Therefore, apart from the minimization of travel times, the maximization
of brake-traction overlaps of nearby trains is an important objective in periodic timetabling. Recently,
this has been studied in a model allowing small modifications of a nominal timetable. We investigate
the problem of finding periodic timetables that are globally good in both objective functions. We
show that the general problem is NP-hard, even restricted to a single transfer station and if only
travel time is to be minimized, and give an algorithm with an additive error bound for maximizing
the brake-traction overlap on this small network. Moreover, we identify special cases in which the
problem is solvable in polynomial time. Finally, we demonstrate the trade-off between the two
objective functions in an experimental study.
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1 Introduction

In order to reach the climate goals, it is necessary to strengthen the role of public transport-
ation in passenger transport. However, also the public transport system itself consumes a
large amount of energy. Modern electric motors are able to regenerate energy while braking.
In the context of rail traffic, the most efficient way to use the regained energy is to transfer
it via the catenary to an accelerating train close by. Therefore, it is sensible to schedule
train timetables in a way that synchronizes braking and acceleration processes of nearby
trains. Such a schedule has two advantages concerning the energy usage. First, it enables a
maximum usage of the regenerated energy and, hence, reduces the total amount of energy
that needs to be bought by the public transport company. Second, it prevents power peaks
that might surcharge the transportation system’s power supply.

However, from a passenger perspective, this synchronization of braking and acceleration
processes of two trains is the worst possible case as it prevents a passenger transfer from
the braking to the accelerating train. Narrowly missing a train leads to frustration of the
passengers and long waiting times might cause them to choose the car over public transport.
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br wait acc1

br wait acc2

br wait acc3

br wait acc4

time
(a) arr/dep around fixed time.

br wait acc1

br wait acc2

br wait acc3

br wait acc4

time
(b) Simultaneous braking/accelerating of pairs of trains.

Figure 1 Timetable patterns of braking, waiting and acceleration phases of four trains.

As an illustration of this trade-off, we consider an example motivated by Swiss railways.
Here, the operated timetable prevents such situations of narrowly missing a train. The trains
are scheduled in a regular interval timetable. At each station there is a fixed time. Shortly
before this time all trains stopping at the station arrive, and the trains depart shortly after
that time, see Figure 1a. This enables short transfer times to all directions. On the other
hand, a transfer of regenerative braking energy from one train to another is impossible. For
this objective, an efficient timetable would schedule the trains one after another such that
the braking and acceleration phases overlap pairwise, see Figure 1b.

While it is beneficial to the environment to use as much of the regenerative energy as
possible, it is also of utmost importance to provide attractive public transportation to the
passengers. In this paper, we investigate a bicriteria problem with the aims to maximize
the brake-traction overlap enabling the usage of regenerative energy and to minimize the
passengers’ travel times. We study this problem in the periodic version, where all train lines
are operated repeatedly with a fixed period time.

Related Work

The task of designing efficient railway timetables has been subject to study at least since
1989 [12]. Traditionally, the literature on timetabling focuses on minimizing the passengers’
travel time. An overview can be found in [7]. As mentioned above, the increasing importance
of saving energy has sparked significant research efforts towards this goal in the engineering
sciences. A complete review of all these works goes far beyond the scope of this paper.
Instead, we only mention some particularly important papers and refer to the survey by
Scheepmaker, Goverde, and Kroon [11] and the exemplary recent papers [8, 6, 13], which
contain more extensive literature reviews.

There are two ways in which the timetable can affect the trains’ energy consumption. On
the one hand, there is the idea of saving energy by the implementation of energy-efficient
driving strategies [5]. These depend on the time scheduled for each driving section; typically
longer travel times require less energy. Ghoseiri, Szidarovszky, and Asgharpour [3] considered
a multi-objective train scheduling model, combining the objectives of minimizing energy and
minimizing travel time, and approximate the Pareto frontier using the ε-constraint method.

On the other hand, the timetable can influence the usage of regenerative energy in train
systems. This was first researched by Ramos Pena, Fernández, and Cucala [10], who allow
a modification of the dwell times to increase the brake-traction overlap. A more detailed
modelling of the energy consumption that combines the driving strategies and the brake-
traction overlaps has been studied by Yin, Yang, Tang, Gao, and Ran [17], who devised a
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Lagrangian relaxation-based heuristic for this problem. In the other direction, Gupta, Tobin,
and Pavel [2] considered a very simplified linear programming model to synchronize the start
times of braking phases and the end times of acceleration times.

The bicriteria problem of minimizing the passenger travel times and maximizing the
brake-traction overlap has been investigated by Yang, Ning, Li, and Tang [16], who developed
a genetic algorithm for it. Moreover, Yang, Liao, Wu, Timmermans, Sun, and Gao [15] apply
the NSGA-II algorithm for approximating the Pareto frontier.

All these works considered given aperiodic timetables that can be modified. Only recently,
the study of the periodic version of this problem was initiated by Wang, Zhu, and Corman [14].
They assume a given nominal periodic timetable and develop a first model that can be
used for local adjustments. On the one hand their aim is to maximize the brake-traction
overlap to enable the usage of regenerative energy on a fixed set of synchronized arrival and
departure events. On the other hand, they include passenger related objectives such as the
minimization of the generalized average travel time of all passengers and the minimization of
the maximum increase in individual’s generalized travel time. Wang et al. also provide a
visualization of the Pareto frontier for these objectives on an instance of Dutch railways.

Our contribution

1. We propose a mixed integer programming (MIP) formulation for the problem of maximiz-
ing the brake-traction overlap (PESP-Energy), based on the Periodic Event Scheduling
Problem (PESP) (Section 2.1) and including the decision which acceleration and braking
processes are synchronized.

2. We extend this MIP formulation to the bicriteria problem that additionally aims at
minimizing the passengers’ travel time (Section 2.3) and run numerical experiments on a
single transfer station. (Section 5)

For our theoretical investigation, we focus on the problem restricted to a single transfer
station, for which we derive the following results:
3. We characterize the structure of optimal solutions for the two single-objective problems

(Propositions 8 and 9 and Theorem 10).
4. We show that only minimizing the transfer times is already NP-hard for a single transfer

station (Theorem 6).
5. Based on a special-form TSP, we obtain a polynomial-time algorithm with an additive

performance guarantee (depending on the input parameters) for the energy objective
(Theorem 16). We show for some special cases that its solution is optimal (Section 4.4).

2 Including the Brake-Traction Overlap in the Periodic Event
Scheduling Problem

In the timetabling problem, we are given a set of lines l ∈ L, which are given as sequences of
served stations v ∈ V . Every line will be served periodically with the given period of T .

2.1 PESP-Passenger – Minimizing the Travel Times
For the PESP model we are given bounds on the durations of activities (driving, waiting,
transfers) as well as weights which correspond to the number of passengers performing each
activity. The objective is to minimize the total travel time of all passengers. For this problem,
the event-activity-network (EAN) E = (E, A) for given directed lines L serving stations v ∈ V
is a directed graph on all arrival and departure events E = Earr ∪̇ Edep, given by

Earr :=
{

(v, ℓ, arr)
∣∣ ℓ ∈ L arrives at v ∈ V

}
, Edep :=

{
(v, ℓ, dep)

∣∣ ℓ ∈ L departs at v ∈ V
}

.

ATMOS 2024



10:4 Periodic Timetabling: Travel Time vs. Regenerative Energy

The activities A := Adrive ∪̇ Await ∪̇ Atrans connect the events as follows:

Adrive :=
{

((v1, ℓ, dep), (v2, ℓ, arr)) ∈ Edep × Earr
∣∣ ℓ serves v2 directly after v1

}
,

Await :=
{

((v, ℓ, arr), (v, ℓ, dep)) ∈ Earr × Edep
}

,

Atrans :=
{

((v, ℓ1, arr), (v, ℓ2, dep)) ∈ Earr × Edep
∣∣ ℓ1 ̸= ℓ2

}
.

A timetable π : E → {0, . . . , T − 1} assigns a time πi to each event i ∈ E, meaning
that the event takes place at all times from πi + TZ. We can associate the bounds on
the driving, transfer and waiting times with the activities: For each activity a ∈ A let
∆a = [la, ua] be the set of allowed durations with la, ua ∈ Z. Since we only determine the
times modulo T , we can ignore multiples of T in the activity durations and therefore assume
that 0 ≤ la ≤ T − 1 and 0 ≤ ua − la ≤ T − 1. Then a timetable is feasible if the periodic
tensions xij := (πj −πi − lij)modT + lij lie within the provided bounds for all ij ∈ A. In this
paper, we assume the bounds on the transfer arcs a we have ua = la + T − 1 and, therefore,
the bounds on the transfers do not impose feasibility constraints.

The classical PESP seeks to find a feasible schedule in this network. The PESP-Passenger
problem aims to find one with minimal total travel time. Let w(ij) be the total number
of passengers performing the activity ij ∈ A. Then we minimize the weighted sum of the
periodic tensions (cf. objective (1)) of all activities, yielding a timetable that minimizes the
passengers’ travel times. This leads to the following mixed integer linear program [7].

(PESP-P) min
∑
ij∈A

w(ij)xij (1)

subject to xij = πj − πi + pijT ∀ij ∈ A (2)
lij ≤ xij ≤ uij ∀ij ∈ A (3)
0 ≤ πi ≤ T − 1 ∀i ∈ E (4)
xij ∈ R, pij ∈ Z ∀ij ∈ A (5)
πi ∈ Z ∀i ∈ E (6)

The variables pij are called periodic offsets or modulo parameters and are chosen such that
the periodic tensions xij lie within the bounds. This is ensured by constraints (2) and (3).
Constraints (4) and (6) ensure that the timetable π takes only values within {0, . . . , T − 1}.

2.2 PESP-Energy – Maximizing the Brake-Traction Overlap
Now we develop an extension of the PESP that allows to maximize our second objective
function, the brake-traction overlap. In addition to the standard input, we are given the
acceleration and braking times for all departures and arrivals, respectively. Our model,
which we term PESP-Energy, is also based on an EAN E = (E, A). The events E =
Earr ∪̇ Edep are derived from the set of stations V and the set of directed lines L as in
PESP-Passenger. However, a different set of activities is considered. Specifically, we now
have A := Adrive ∪̇ Await ∪̇ Aenergy with Adrive and Await defined as above and

Aenergy :=
{

((v, ℓ1, dep), (v, ℓ2, arr)) ∈ Edep × Earr
}

.

Such an energy arc is depicted in red in Figure 2a. The energy activities do not impose any
constraints on the feasibility of a timetable, i.e., ∆a = [0, T − 1] for all a ∈ Aenergy. For each
arrival event i ∈ Earr the time tbr

i needed for braking, and the time tac
j needed for accelerating

at each departure event j ∈ Edep are given. We assume that tac
j +tbr

i < T for any ji ∈ Aenergy.
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We denote with tmin
ji := min{tac

j , tbr
i } the minimum and with tmax

ji := max{tac
j , tbr

i } the
maximum of the acceleration and braking times associated with energy arc ji. We consider
the periodic intervals of the acceleration and braking phases. By a periodic interval we mean

[a, b]T :=
{

[a mod T, b mod T ] if a mod T ≤ b mod T,

[0, b mod T ] ∪ [a mod T, T ) else.

The length of a periodic interval is length([a, b]T ) := (b − a) mod T . The periodic interval of
the acceleration phase after the departure event j is then [πj , πj + tac

j ]T and, analogously,
[πi − tbr

i , πi]T describes the braking phase before the arrival event i. The overlap of the two
phases is then determined by the intersection of the periodic intervals. Note that due to the
assumption that tac

j + tbr
i < T , this is again a periodic interval.

▶ Definition 1 (Brake-Traction Overlap). For ji ∈ Aenergy we define the brake-traction overlap
resulting from a periodic timetable π as oji := length

(
[πj , πj + tac

j ]T ∩ [πi − tbr
i , πi]T

)
.

Clearly, the overlap does not depend on the exact times πj and πi but only on their
difference, i.e., on the periodic tension xji. The following lemma gives a formula to compute
it, using the function overlapa : [0, T ) → R≥0 depicted in Figure 2b.

▶ Lemma 2. For every a ∈ Aenergy with periodic tension x the brake-traction overlap is

overlapa(x) := max
{

min{x, tmin
a , tmax

a + tmin
a − x}, 0

}
.

Proof. Let a = ji. There are two cases in which there is an empty intersection [πj , πj +
tac
j ]T ∩ [πi − tbr

i , πi]T . First, the intersection is empty if πj ≤ πi and πj + tac
j < πi − tbr

i . This
is the case whenever tac

j + tbr
i < πi − πj = (πi − πj) mod T = xji. The second case in which

the intersection is empty is if πj > πi and πj + tac
j < πi + T − tbr

i . This is true whenever
tac
j + tbr

i < πi + T − πj = (πi − πj) mod T = xji. Hence, we have an empty intersection if
and only if tac

j + tbr
i − xji < 0. In this case the overlap is oji = 0.

Provided that the intersection is non-empty, we receive the length of the overlap by
the minimum of the lengths of the four intervals [πj , πj + tac

j ]T , [πi − tbr
i , πi]T , [πj , πi]T ,

[πi − tbr
i , πj + tac

j ]T . This yields

oji = min{tac
j , tbr

i , (πi − πj) mod T, (tac
j + tbr

i − (πi − πj) mod T ) mod T}
= min{tac

j , tbr
i , xji, (tac

j + tbr
i − xji) mod T}

= min{tac
j , tbr

i , xji, tac
j + tbr

i − xji}
= min{tmin

ji , xji, tmin
ji + tmax

ji − xji} ≥ 0.

The third equation holds by the assumption that we have a non-empty intersection. Therefore,

min{tmin
ji , xji, tmin

ji + tmax
ji − xji} ≥ 0 ⇐⇒ [πj , πj + tac

j ]T ∩ [πi − tbr
i , πi]T ̸= ∅.

Hence, for the actual overlap of energy arc a ∈ Aenergy we obtain:

oa = overlapa(x) = max
{

min{xa, tmin
a , tmax

a + tmin
a − xa}, 0

}
. ◀

The maximum possible overlap at a ∈ Aenergy is oa = tmin
a , which is achieved if and only

if tmin
a ≤ xa ≤ tmax

a . In this case, we say that there is full overlap on a.
Of course, the fact that energy can only be reused once must be taken into account in

the model. Previous work [14] assumed a fixed matching between braking and accelerating
trains. In contrast, we integrate these decisions directly into the model. Therefore, the
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πjdeparture event

πiarrival event

energy arc

accelerating

braking

(a) Energy arc.

x

overlapa(x)

0 tmin
a

tmax
a tmax

a + tmin
a

(b) Function overlapa mapping tension x on a to brake-
traction overlap.

Figure 2 Energy arc in EAN and brake-traction overlap as a function of the periodic tension.

problem PESP-Energy consists in finding a feasible periodic timetable π together with a
matching M ⊂ Aenergy in E such that the sum of the brake-traction overlaps on the energy
arcs in the matching is maximized (cf. (7)):

(PESP-E) max
∑

ji∈Aenergy

oji (7)

s.t. (2)–(4)
oji ≤ xji ∀ji ∈ Aenergy (8)
oji ≤ tmin

ji ∀ji ∈ Aenergy (9)
oji ≤ tmax

ji + tmin
ji − xji + (1 − αji)Γ ∀ji ∈ Aenergy (10)

oji ≤ αji · Γ ∀ji ∈ Aenergy (11)∑
a∈Aenergy∩δ−(i)

αa ≤ 1 ∀i ∈ Earr (12)

∑
a∈Aenergy∩δ+(j)

αa ≤ 1 ∀j ∈ Edep (13)

oji ≥ 0, αji ∈ {0, 1} ∀ji ∈ Aenergy (14)
xij ≥ 0, pij ∈ Z ∀ij ∈ A (15)
πi ∈ Z ∀i ∈ E (16)

As we want to find a feasible timetable, the model also contains the constraints (2)–(4) from
the standard PESP. The variable oji determines the brake-traction overlap and is bounded
from above by the constraints (8)–(10) according to Lemma 2. The constant Γ is chosen large
enough so that for αji ∈ {0, 1} one of the constraints (10) and (11) does not impose a relevant
bound on oji. It can be set to Γ := max

{
max{tmin

ji , T − (tmax
ji + tmin

ji )}
∣∣ ji ∈ Aenergy

}
.

Constraints (12) and (13) ensure that the energy arcs chosen at each station form a matching.
They set αji to 0 whenever the arc ji ∈ Aenergy is not chosen to be in the matching.
Constraint (11) ensures that the overlap is not counted whenever αji = 0.

We now compare the way to model the brake-traction overlap in (PESP-E) with the
formulation of Wang et al. [14] for the timetable adjustment problem. For each energy arc,
Wang et al. introduce two binary variables to decide whether there is a brake-traction overlap
or not and thereby distinguish cases in which the periodic offset is 0 or 1. The next theorem
formally states that the parts maximizing the brake-traction overlap are equivalent in both
models. For a proof of this equivalence we refer to the appendix.
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▶ Theorem 3. The constraints (8)–(11) are equivalent to the constraints (18)–(26) in the
appendix, taken from the model of Wang et al. [14], in the sense that for each energy arc
a ∈ Aenergy and periodic timetable π with tension xa the overlaps in the two models are equal.

Next, we give an upper bound for the objective value of this maximization problem. To
this end, we define weights for the energy arcs ji ∈ Aenergy as w(ji) := tmin

ji .

▶ Proposition 4. For an instance of PESP-Energy on the EAN E = (E, A), let S = (π, M)
be a feasible solution with objective value f(S), and let wopt be the maximum weight of a
(perfect) matching in the graph G = (E, Aenergy) with weights w(ji) as defined above. Then
f(S) ≤ wopt.

Proof. Each overlap is bounded from above by both the corresponding acceleration and the
corresponding braking time: oji ≤ tac

j and oji ≤ tbr
i . ◀

2.3 The Bicriteria Problem
For real timetabling problems it is desirable to find timetables that enable the usage of
regenerative energy as well as short travel times for the passengers. Hence, it is necessary to
consider a bicriteria problem and study Pareto optimal solutions to find a good trade-off. The
bicriteria MIP formulation consists of the objectives (1) and (7) under the constraints (2)–(14).
However, solving only PESP-Passenger on large networks exactly is already computationally
out of scope. To obtain a better understanding of the problem under the two objectives, we
investigate the solution structures on a small network of one transfer station.

▶ Definition 5 (One-Station Network). An EAN En = (E, A) is called a one-station network
with n lines if it is based on one station |V| = 1 and n (directed) lines stopping at this station
inducing the following events:

Earr :=
{

(ℓ, arr)
∣∣ ℓ ∈ [n]

}
, Edep :=

{
(ℓ, dep)

∣∣ ℓ ∈ [n]
}

.

The activities A = Await ∪̇ Atrans ∪̇ Aenergy connect the events as follows:

Await :=
{

((ℓ, arr), (ℓ, dep)) ∈ Earr × Edep
}

,

Atrans :=
{

((ℓ1, arr), (ℓ2, dep)) ∈ Earr × Edep
∣∣ ℓ1 ̸= ℓ2

}
,

Aenergy :=
{

((ℓ1, dep), (ℓ2, arr)) ∈ Edep × Earr
}

.

There are no driving activities in a one-station network. In the following, a one-station
network Epass

n for PESP-Passenger has the arcs Await ∪ Atrans, while for PESP-Energy the
arc set of the one-station network Eenergy

n consists of Await ∪ Aenergy.

3 PESP-Passenger on a One-Station Network

The Periodic Event Scheduling Problem is NP-complete for any fixed T ≥ 3, which can
be proved by a reduction from the vertex colouring problem [9]. More recent work shows
NP-hardness on a star network with turnaround loops [1]. Here, we show that the problem of
finding a timetable minimizing the total transfer time on a single station is NP-hard as well.

▶ Theorem 6. The problem PESP-Passenger is NP-hard even on a one-station network.
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Proof. We show NP-hardness by a reduction from the Max-Cut problem. Let I be an
arbitrary instance of the Max-Cut problem, consisting of a graph G = (V, R) and a weight
function w : R → R. We search a bipartition (S, T ) of the vertex set V such that the sum of
the weights on the edges between the sets S and T ,

∑
u∈S,v∈T w(euv), is maximal.

Based on I we define an instance I ′ of the PESP-Passenger problem on a one-station
network: Let Epass

n = (Earr ∪̇ Edep, Await ∪̇ Atrans) be a one-station network with n := |V |
lines, inducing n arrival events and n departure events. Let the period time T := 2. The
bounds on the waiting activities ij ∈ Await are lij = uij = 0, and their weights are w(ij) := 0.
For the transfer activities ij ∈ Atrans, let the bounds lij = 1 and uij = 2 and weights

w′(ij) :=
{

w({i, j}) if {i, j} ∈ R,

0 else.

We want to show that any optimal solution to I ′ can be transformed to an optimal
solution of I. Let π be an optimal timetable for I ′. We define S := {i ∈ V | π(i,dep) = 0}
and T := {i ∈ V | π(i,dep) = 1}. To see that (S, T ) is an optimal solution to the Max-Cut
problem, i.e., that

∑
u∈S,v∈T w({u, v}) is maximum, note that π minimizes the sum of the

weights multiplied with the periodic tensions in I ′. As every transfer arc has tension 1 or
2, this is the same as maximizing the sum of the weights of arcs with tension 1, which are
exactly those between the sets S and T . Hence, (S, T ) is a maximum-weight cut. ◀

Now we establish a special case in which we know the structure of an optimal solution.

▶ Definition 7 (Basel Solution Structure). A timetable π for a one-station network Epass
n has

a Basel solution structure if all arrival events are scheduled at the same time πarr and all
departure events at time πdep such that (πdep − πarr) mod T = lmax := max{la | a ∈ A}.

▶ Proposition 8. Let Epass
n = (E, A) be a one-station network with lower and upper bounds

la, ua on the arcs such that ua = la + T − 1 for all transfer arcs a ∈ Atrans. Then any
timetable π with the Basel solution structure minimizes the total travel time independently of
the weights if and only if la = la′ for all a, a′ ∈ Atrans ∪ Await.

Proof. First, let us assume that la = la′ for all a, a′ ∈ Atrans ∪ Await. Let π be a timetable
with the Basel solution structure. Then the periodic tensions induced by π are xij =
(πj − πi − lij) mod T + lij = (lmax − lmax) mod T + lmax = lmax for all ij ∈ Atrans ∪ Await.
As we cannot do better than attaining the lower bounds on the tensions, π must be optimal.

Let us now assume that there is an arc a′ ∈ Atrans ∪Await with la′ < lmax. In the following
we find a weight vector w for which π is not optimal. Let a′ = i′j′. Then the following
timetable π′ achieves a lower objective value than π for the following weight vector w:

w(ij) :=
{

1 if ij = i′j′,

0 else,
π′

i :=


0 if i = i′,

li′j′ if i = j′,

arbitrary feasible values else.

This is possible as only the waiting activities impose feasibility constraints. The weighted
sum of the periodic tensions w.r.t. π is lmax, and it is la′ w.r.t. π′. By assumption, la′ < lmax,
hence, π is not optimal. ◀
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4 PESP-Energy on a One-Station Network

4.1 The Timetable for a Given Matching
An EAN for this problem is a bipartite graph with partition classes Earr and Edep. In
a one-station network, the set of waiting activities constitutes a perfect matching from
Earr to Edep. These activities impose the only feasibility constraints on the timetable π.
In contrast, the energy activities solely influence the objective value. Hence, arrival and
departure times of different lines are not restricted by any PESP constraint. For any
matching M ⊂ Aenergy = Edep × Earr, the graph (E, Await ∪̇ M) is a union of node-disjoint
directed cycles and directed paths. A timetable with maximum brake-traction overlap on
the matching arcs can be determined for each connected component of this graph separately.
The following proposition describes the structure of an optimal timetable for a directed cycle.
▶ Proposition 9. Let Eenergy

n be a one-station network, let M ⊂ Aenergy be a matching, and
let C ⊂ Await ∪̇ M be a directed cycle. We write the cycle as C = a1, b1, a2, b2 . . . , am, bm

with aj ∈ M , bj ∈ Await, and tmin
aj

≥ tmin
a1

for all j ∈ [m]. There is an optimal timetable π for
PESP-Energy restricted to C such that we have full overlap oaj

= tmin
aj

for all j ∈ {2, . . . , m}.
Proof. Let π be a timetable maximizing the brake-traction overlap on the energy arcs of
C. Among all such timetables, we consider one with the maximum number of arcs aj with
j ∈ {2, . . . , m} having full overlap. Assume that some arc aj with j ∈ {2, . . . , m} does not
have full overlap. To derive a contradiction, we modify the timetable π on C so that aj has
full overlap, while preserving full overlap on all other arcs and not reducing the total overlap.

To this end, we first define the new tensions x′ and then construct a timetable π′ inducing
them. Let x be the tension induced by π. For k ∈ [m] we set x′

bk
:= xbk

and

x′
ak

:=


xak

for k ̸= {1, j},

(xa1 − δ) mod T for k = 1,

xaj
+ δ for k = j,

where δ :=
{

tmin
aj

− xaj
if xaj

< tmin
aj

,

tmax
aj

− xaj if xaj > tmax
aj

.

Note that this covers all cases because for tmin
aj

≤ xaj ≤ tmax
aj

the activity aj would have full
overlap, contradicting our assumption. We define the periodic timetable π′ as follows: We
enumerate the nodes of the cycle so that ak = (2k − 1, 2k) for k ∈ [m] and bk = (2k, 2k + 1)
for k ∈ [m − 1]. The nodes with even number correspond to arrivals and with odd number
to departures. We set π′

1 := 0, π′
2k := (π′

2k−1 + x′
ak

) mod T for k ∈ [m], and π′
2k+1 :=

(π′
2k + x′

bk
) mod T for k ∈ [m − 1]. This adheres to the prescribed tensions on all arcs ak,

k ∈ [m], and bk, k ∈ [m − 1]. The tension on bm is congruent to π′
1 − π′

2m = −π′
2m =

−
∑m

k=1 x′
ak

−
∑m−1

k=1 x′
bk

≡ −
∑m

k=1 xak
−

∑m−1
k=1 xbk

≡ xbm
(mod T ). The last congruence

holds since the periodic tension x sums up to a multiple of T due to the cycle periodicity.
For a ∈ M let o′

a := overlapa(x′
a). The only matching arcs whose tensions have changed

are a1 and aj . We have x′
aj

∈ {tmin
aj

, tmax
aj

}, and thus aj has now full overlap, i.e., o′
aj

= tmin
aj

.
It holds that

o′
aj

− oaj
= tmin

aj
− oaj

=


tmin
aj

− 0 if xaj
> tmin

aj
+ tmax

aj
,

tmin
aj

− xaj if xaj < tmin
aj

,

tmin
aj

− (tmax
aj

+ tmin
aj

− xaj
) if tmax

aj
< xaj

≤ tmax
aj

+ tmin
aj

,

=
{

tmin
aj

if xaj
> tmin

aj
+ tmax

aj
,

|δ| else,

≥ min{|δ|, tmin
aj

}.
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Similarly, oa1 − o′
a1

≤ min{|δ|, tmin
a1

} ≤ min{|δ|, tmin
aj

}, hence the decrease of the overlap
on a1 is at most the increase of the overlap on aj . Since no other overlaps have changed, the
sum of all overlaps cannot have decreased, i.e., we have found a solution whose objective is
not worse but which has more arcs aj with j ∈ {2, . . . , m} with full overlap. ◀

We can also regard a connected component being a directed path as a cycle whose missing
edge has overlap 0. Hence, by Proposition 9, there is an optimal timetable for this component
such that all energy edges in the path have full overlap. While the proposition describes
the structure of an optimal timetable for each connected component resulting from a fixed
matching M , we are interested in a global optimum, comprising the matching. Hence, we
need to investigate the structure of an optimal matching.

4.2 The Matching of Energy Arcs
The following result bounds the number of arcs in the matching of a globally optimal solution.
▶ Theorem 10. In every optimal solution S = (π, M) to PESP-Energy on a one-station
network Eenergy

n the matching M contains at least n − 1 arcs.
Proof. Let S = (π, M) be an optimal solution to PESP-Energy with |M | < n − 1, so at least
two connected components of (E, Await ∪̇ M) are directed paths P1, P2. For k ∈ {1, 2} let
ik ∈ Earr be the start and jk ∈ Edep be the end node of Pk.

Let c := πj1 + tmin
j1i2

− πi2 , and let us define the following timetable

π′
v :=

{
πv if v ∈ E \ V (P2),
(πv + c) mod T if v ∈ V (P2).

Now, let S′ = (π′, M ′) with M ′ = M ∪ {j1i2}. For the tensions on M ′, we obtain:

x′
ji =

{
(π′

i − π′
j) mod T = (πi − πj) mod T = xji for ji ∈ M,

(π′
i2

− π′
j1

) mod T = tmin
j1i2

for j = j1, i = i2.

Hence, we obtain the brake-traction overlaps

o′
ji =

{
oji if ji ∈ M,

tmin
j1i2

if ji = j1i2.

Consequently, S′ yields a better objective value than S, so S cannot be optimal. ◀

▶ Corollary 11. There is a unique perfect matching Mp which is obtained by extending the
matching M of an optimal solution to PESP-Energy on a one-station network.

This yields another way of looking at an optimal solution to PESP-Energy on a one-
station network. A perfect matching Mp ⊂ Aenergy corresponds one-to-one to a permutation
φ : [n] → [n] of the trains (lines) in a one-station network. This is given by φ(ℓ) = k if and
only if ((ℓ, dep), (k, arr)) ∈ Mp. The directed cycles in Mp ∪ Await then correspond to the
cycles of the permutation.

Recall that we can find an upper bound for the objective value of a PESP-Energy instance
by calculating the maximum-weight perfect matching on the energy arcs a ∈ Aenergy w.r.t. the
weights w : Aenergy → R with w(a) = tmin

a (cf. Proposition 4). This matching can be found
easily by a greedy algorithm for the weights in our problem. Sorting both tbr

i , i ∈ Earr, and tac
j ,

j ∈ Edep, according to their sizes, we obtain the permutations ρ and σ with tbr
ρ(1) ≤ · · · ≤ tbr

ρ(n)
and tac

σ(1) ≤ · · · ≤ tac
σ(n). Then Mgreedy :=

{
((σ(i), dep), (ρ(i), arr)) ∈ Edep × Earr

∣∣ i ∈ [n]
}

is
a perfect matching with maximum weight in the graph (E, Aenergy).
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(a) Greedy matching,
weight: 38, total overlap: 32.
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(b) Optimal solution,
total overlap: 35.
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(c) Hamiltonian path,
total overlap: 34.

Figure 3 Example of non-optimal greedy and Hamiltonian path matchings for T = 15. The
timetable π is written in the nodes. To the left of the arrival nodes (white) the braking times are
given, and to the right of the departure nodes (blue) there are the acceleration times. The numbers
on the waiting (black) and energy (red) arcs correspond to the periodic tensions. For the full red
arcs, they also correspond to the achieved overlap.

4.3 A Hamiltonian Path Algorithm/Heuristic
A lower bound on the optimal objective value of PESP-Energy can be obtained by a
maximum-weight Hamiltonian path on Eenergy

n with respect to the weights w : A → R defined
by w(ji) := tmin

ji for ji ∈ Aenergy and w(ij) := Γ for ij ∈ Await, where Γ is a big number.
The choice of weights ensures that the path consists of n waiting arcs and n − 1 energy
arcs. Adding the arc from the end node of the path to its start node creates a cycle. Due
to Proposition 9, we know that in that cycle, we can obtain full overlap on the best n − 1
energy arcs, so we obtain at least overlap equal to the weight of the path’s energy activities.
Hence, this yields a lower bound on the optimal overlap achievable. In Figure 3 we can
see that neither weight of the greedy matching is always obtained as overlap nor does a
maximum-weight Hamiltonian path necessarily yield an optimal solution. In Figure 3a the
greedy matching together with the waiting activity M ∪ Await decomposes into three cycles.
Due to the cycle periodicity, however, we cannot obtain full overlap in the second cycle.
There is no overlap on the dashed arc. While the greedy matching has weight 38, only
an overlap of 32 can be obtained from the matching. In Figure 3b an optimal solution is
depicted. We can see a decomposition of one cycle and one path, which cannot be closed due
to cycle periodicity. The achieved overlap is 35. In Figure 3c, we can see a maximum-weight
Hamiltonian path with full overlap on all energy arcs. In total an overlap of 34 is achieved.
Due to the cycle periodicity it is not possible to obtain overlap on the missing energy arc.
We show now that this lower bound can be computed in polynomial time.

▶ Theorem 12. A maximum-weight Hamiltonian path on a one-station network Eenergy
n with

weights w can be found in polynomial time.

In order to prove this theorem, we show that PESP-Energy on a one-station network
can be transformed to the problem of sequencing a machine with variable state, for which a
polynomial-time algorithm is known, see [4]. To simplify the notation, in this section we write
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tac
ℓ := tac

(ℓ,dep) and tbr
ℓ := tbr

(ℓ,arr) for ℓ ∈ [n]. We consider the complete directed graph G =
([n], A) on the set of all lines and weights w : A → R defined by wG(kℓ) := min{tac

k , tbr
ℓ }. We

need the following three lemmas.

▶ Lemma 13. If PG is a maximum-weight Hamiltonian path in G w.r.t. wG, then P :=
{((k, dep), (ℓ, arr) | kℓ ∈ PG}∪{((ℓ, arr), (ℓ, dep)) | ℓ ∈ [n]} is a maximum-weight Hamiltonian
path in Eenergy

n w.r.t. w.

Proof. First, P is the arc set of a Hamiltonian path. It has weight w(P ) = w(PG) +
nΓ. Let P opt be a maximum-weight Hamiltonian path in Eenergy

n . By the large choice
of Γ, this must contain n waiting arcs and hence contains exactly n − 1 energy arcs
((k, dep), (ℓ, arr)). Then (P opt)G := {(k, ℓ) | ((k, dep), (ℓ, arr)) ∈ P opt} is a Hamiltonian
path in G of weight wG((P opt)G) = w(P opt) − nΓ. Therefore, w(P ) = w(PG) + nΓ ≥
w((P opt)G) + nΓ = w(P opt) and P is a maximum-weight Hamiltonian path in Eenergy

n . ◀

▶ Lemma 14. Any maximum-weight Hamiltonian cycle in G w.r.t. wG contains a maximum-
weight Hamiltonian path. Conversely, any maximum-weight Hamiltonian path can be closed
to a maximum-weight Hamiltonian cycle.

Proof. Let k := arg min{tac
(ℓ,dep), tbr

ℓ | ℓ ∈ [n]}. W.l.o.g. let us assume tbr
(k,arr) ≤ tac

k . We know
that all incoming arcs of k have weight wmin

G := tbr
(k,arr). Let Copt be a maximum-weight

Hamiltonian cycle. Since this must visit k, it must contain an arc a of weight wmin
G . Then

P := T opt \ {a} is a Hamiltonian path with weight w(P) = wG(Copt) − wmin
G .

Let now Popt be a maximum-weight Hamiltonian path, and let v be the first and u

be the last vertex in Popt. Then C := Popt ∪ {uv} is a Hamiltonian tour with weight
wG(C) = wG(Popt) + wG(uv) ≥ wG(Popt) + wmin

G .
Together, both P and C must be optimal since wG(P) = wG(Copt) − wmin

G ≥ wG(C) −
wmin

G ≥ wG(Popt) and wG(C) ≥ wG(Popt) + wmin
G ≥ wG(P) + wmin

G = w(Copt). ◀

▶ Lemma 15. Let C1, C2 ⊂ A be two Hamiltonian cycles in G. Consider a second weight
function w′ : A → R defined by w′(kℓ) := |tac

k −tbr
ℓ |. If w(C1) ≤ w(C2), then w′(C1) ≥ w′(C2).

Hence, a maximum-weight Hamiltonian cycle w.r.t. w is a minimum-weight Hamiltonian
cycle w.r.t. w′.

Proof. For the weight w′ of a Hamiltonian cycle C we get

w′(C) =
∑

kℓ∈C

|tac
k − tbr

ℓ | =
∑

kℓ∈C

(
max{tac

k , tbr
ℓ } − min{tac

k , tbr
ℓ }

)
=

∑
kℓ∈C

(
max{tac

k , tbr
ℓ } + min{tac

k , tbr
ℓ } − 2 · min{tac

k , tbr
ℓ }

)
=

∑
kℓ∈C

(
tac
k + tbr

ℓ − 2 · min{tac
k , tbr

ℓ }
)

=
∑

k∈[n]

(tac
k + tbr

k ) − 2 · wG(C),

where the first summand in the last expression is constant. Hence, if w(C1) ≤ w(C2), then
w′(C1) ≥ w′(C2). ◀

Now, we can prove Theorem 12.

Proof of Theorem 12. The problem of sequencing a one state-variable machine from [4] is
defined as follows. We consider N jobs J1, J2, . . . , JN which are to be done on one machine in
some order. For each job Ji we know the required starting state of the machine represented
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by the real number Ai and the machine’s state after the completion of job Ji represented by
the real number Bi. When job Jl follows job Jk, we need to change the machine’s state from
Bk to Al. The cost ckl of this change is defined as

ckl :=


Al∫

Bk

f(x)dx if Al ≥ Bk,

Bk∫
Al

g(x)dx if Al < Bk.

Here, f and g are integrable functions such that f(x) + g(x) ≥ 0 for all x ∈ R. The problem
is to find a sequence of jobs such that the sum of the costs for changing the state of the
machine between consecutive jobs is minimized. The polynomial-time algorithm developed
in [4] requires the prescription of an initial state BN+1 and a final state AN+1 of the machine
so that it becomes the problem of finding a tour JN+1Ji1 . . . JiN

JN+1 with the artificial
job JN+1 minimizing the total state transition cost.

Now, consider finding a maximum-weight Hamiltonian path in Eenergy
n , w.r.t. the weights w.

By Lemma 13, this is equivalent to finding a maximum-weight Hamiltonian path in G w.r.t.
wG. By means of Lemma 14, this can be reduced to finding a Hamiltonian cycle in G

which corresponds to finding a minimum-weight Hamiltonian cycle in G w.r.t. the weights w′

defined in Lemma 15. We reduce this problem to solving the sequencing problem of finding
a closed tour on a set of jobs on the following instance Iseq.

For every directed line ℓ ∈ [n] we define a job ℓ with Aℓ := tbr
ℓ and Bℓ := tac

ℓ . The
functions for the state transition costs are defined as f(x) = g(x) := 1 for all x ∈ R. This
yields the costs ckl = Al − Bk if Al ≥ Bk and ckl = Bk − Al if Al < Bk. In other words,
ckl = |Al − Bk| = w′(kℓ). Therefore, the cost of any cyclic tour of the jobs equals the weight
of the corresponding Hamiltonian tour in G w.r.t. w′. ◀

The maximum-weight Hamiltonian path yields a feasible solution to PESP-Energy on a
one-station network. We can guarantee that the objective value of this solution is not further
away from the optimal objective value than the smallest of the largest acceleration and the
largest braking time. This follows from the following theorem, which bounds the difference
between the lower bound and the upper bound from the greedy matching of Section 4.2.

▶ Theorem 16. Let H be a Hamiltonian path in Eenergy
n of maximum weight. Then it holds

w(Mgreedy) − w(H ∩ Aenergy) ≤ min
{

max{tbr
ℓ | ℓ ∈ [n]}, max{tac

ℓ | ℓ ∈ [n]}
}

.

Proof. We iteratively convert the greedy matching M0
greedy into a matching inducing a

Hamiltonian cycle and bound the total reduction of weight in this process. Finally, we delete
one edge to obtain a Hamiltonian path.

Let us assume that tac
1 ≤ · · · ≤ tac

n holds, and let φ0 denote the permutation obtained
by M0

greedy such that tbr
φ0(1) ≤ · · · ≤ tbr

φ0(n). Then M0
greedy = {((ℓ, dep), (φ0(ℓ), arr)) | ℓ ∈ [n]}.

The permutation φi corresponds to the perfect matching M i obtained in iteration i.
In each iteration, we obtain the matching M i as follows from the matching M i−1. Let

C ⊆ M i−1 ∪ Await be the cycle containing (1, dep). If C is a Hamiltonian cycle, we are done.
Otherwise, there is a smallest ℓ such that (ℓ, dep) ∈ C but (ℓ + 1, dep) ̸∈ C. We define the
new permutation φi as follows:

φi(x) :=


φi−1(ℓ + 1) if x = ℓ,

φi−1(ℓ) if x = ℓ + 1,

φi−1(x) else.
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For the new matching M i we have, M i = M i−1 ∪ {((ℓ, dep), (φi−1(ℓ + 1), arr)), ((ℓ +
1, dep), (φi−1(ℓ), arr))}\{((ℓ, dep), (φi−1(ℓ), arr)), ((ℓ+1, dep), (φi−1(ℓ+1), arr))}. The cycle’s
length increases by this operation and for the weight of the new matching M i, we get

w(M i) = w(M i−1) + min{tac
ℓ , tbr

φi−1(ℓ+1)} + min{tac
ℓ+1, tbr

φi−1(ℓ)}

− min{tac
ℓ , tbr

φi−1(ℓ)} − min{tac
ℓ+1, tbr

φi−1(ℓ+1)}

= w(M i−1) − |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)]|.

Further, we know that [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)] ⊂ [tbr
φ0(1), tbr

φ0(n)]. Hence, the length of the inter-
section can be bounded by

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)]| ≤ |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|

and, therefore w(M i) ≥ w(M i−1) − |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|.
Let k be the number of iterations until we obtain a matching Mk such that Mk ∪ Await

corresponds to a Hamiltonian cycle. In the following ℓi denotes the smallest ℓ ∈ [n − 1] such
that (ℓ, dep) ∈ C and (ℓ + 1, dep) ̸∈ C in iteration i. Further, it holds k ≤ n − 1 as there are
n different trains. Hence, we can overestimate the sum as follows:

k∑
i=1

|[tac
ℓi

, tac
ℓi+1] ∩ [tbr

φ0(1), tbr
φ0(ℓi+1)]| ≤

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|

Instead of just summing up the length of the intervals for the corresponding train ℓ in each
iteration, we sum over the lengths of all possible choices for ℓ. We get the following bound:

w(Mk) ≥ w(M0
greedy) −

k∑
i=1

|[tac
ℓi

, tac
ℓi+1] ∩ [tbr

φ0(1), tbr
φ0(ℓi+1)|

≥ w(M0
greedy) −

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|.

As the intervals [tac
ℓ , tac

ℓ+1] intersect only in one point (of length 0), we can bound the sum
of the intersections as follows:

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]| ≤
∣∣∣∣n−1⋃

ℓ=1
[tac

ℓ , tac
ℓ+1]

∣∣∣∣ = tac
n − tac

1 ,

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]| ≤ |[tbr
φ0(1), tbr

φ0(n)]| = tbr
φ0(n) − tbr

φ0(1).

Thus, w(Mk) ≥ w(M0
greedy)−min{tac

n −tac
1 , tbr

φ0(n) −tbr
φ0(1)}. In order to receive a Hamiltonian

path H ⊆ Mk ∪ Await, we delete one edge from the matching Mk. As we want to maximize
the path’s weight, we choose the edge with the lowest weight. Due to the weight structure,
this weight is min{tac

1 , tbr
φ0(1)}. For the difference of the weights of the greedy matching

Mgreedy and the weight of the energy arcs in H, we get:

w(Mgreedy) − w(H ∩ Aenergy) ≤ min{tac
n − tac

1 , tbr
φ0(n) − tbr

φ0(1)} + min{tac
1 , tbr

φ0(1)}

≤ min{tac
n , tbr

φ0(n)}.

The weight of the path H is a lower bound for the weight of an optimal Hamiltonian path. ◀
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4.4 Two Special Cases Solvable in Polynomial Time
There are some special cases in which we can solve PESP-Energy on a one-station network
in polynomial time. In the first case, all braking times and all acceleration times are equal.

▶ Proposition 17. Let I be an instance of PESP-Energy on a one-station network with n

lines such that all acceleration times are equal and all braking times are equal, i.e., tac = tac
j

and tbr = tbr
i for all i, j ∈ [n]. Then, there is an optimal solution to I consisting of one cycle

of all lines in arbitrary order. This can be found in polynomial time.

Proof. Assume that there is no optimal solution consisting of a single cycle, and consider an
optimal solution (M, π) with the minimum number of cycles. Let C1, C2 be two different
cycles in M ∪ Await, and let ak = (jk, ik) ∈ Aenergy ∩ Ck for k = 1, 2. Consider the alternative
solution with M ′ := (M \ {a1, a2}) ∪ {j1i2, j2i1}. Then M ′ induces a big cycle on the node
set V (C1) ∪ V (C2). Let c := πj1 + xa1 − πi2 , and set

π′
v :=

{
πv if v ∈ E \ V (C2),
(πv + c) mod T if v ∈ V (C2).

Then the arc j1i2 has new tension x′
j1i2

= (π′
i2

− π′
j1

) mod T = (πi2 + c − πj1) mod T = xa1 ,
i.e., it also has the same overlap because all energy arcs a have the same function overlapa

mapping tensions to overlaps. Moreover, the arc j2i1 has tension x′
j2i1

= (π′
i1

− π′
j2

) mod T =
(πi1 − πj2 − c) mod T = (πi1 − πj1 + πi2 − πj2 − xa1) mod T = xa2 , i.e., the overlap is also
equal. Therefore, together the overlap on the two new arcs is the same as on the two old arcs.
So we have found an optimal solution with less cycles, which constitutes a contradiction. ◀

In the second case, we consider a period time that is so large that no energy cycle can
exist. This corresponds to an aperiodic timetabling problem.

▶ Proposition 18. Let I be an instance of PESP-Energy on a one-station network with
n lines. Let umax := max{ua | a ∈ Await} + max{tmin

a′ + tmax
a′ | a′ ∈ Aenergy} such that

T > n · umax. Then, any matching MH inducing a Hamiltonian path of maximum weight
w.r.t. w is part of an optimal solution S = (π, MH).

Proof. We show that for every optimal solution Sopt = (πopt, Mopt) the set Mopt ∪ Await
contains a Hamiltonian path. By Corollary 11, Mopt can be extended to an optimal perfect
matching Mp. Let C be an arbitrary directed cycle in Mp ∪ Await. By Proposition 9 we can
assume that πopt induces full overlap on all but at most one arc of C. Let a0 denote this
energy arc such that tmin

a0
= min{tmin

a | a ∈ C}. It holds:

tmax
a0

+ tmin
a0

+
∑

a∈C∩Await

ua +
∑

a′∈C∩Aenergy\{a0}

tmax
a′

<
∑

a∈C∩Await

ua +
∑

a′∈C∩Aenergy

tmax
a′ + tmin

a′ < n · umax < T.

Therefore, we have
∑

a∈C∩Await
ua +

∑
a′∈C∩Aenergy\{a0} tmax

a′ < T − (tmax
a0

+ tmin
a0

). Since there
is full overlap on all a′ ∈ C ∩ Aenergy \ {a0}, we know that the periodic tensions induced
by πopt satisfy xopt

a′ ≤ tmax
a′ for all these arcs. Hence, for the tension xopt

a0
on a0 we have

xopt
a0

> tmax
a0

+ tmin
a0

as by the cycle periodicity constraints all periodic tensions in C need to
sum up to a multiple of T . Therefore, there is no overlap on a0. By the same argument, every
other cycle in Mp ∪ Await has an arc without overlap. We can remove all these arcs from
Mp without reducing the objective value. However, by Theorem 10, any optimal matching
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Figure 4 Number of passengers on transfer and waiting activities in instance I1 from Section 5.

Figure 5 Pareto frontier of instance I1.

has at least n − 1 arcs. Therefore, C must be the only cycle in Mp ∪ Await, i.e., it is a
Hamiltonian cycle. Moreover, the objective value of Sopt is equal to the total weight of
(C \ {a0}) ∩ Aenergy. An arbitrary maximum-weight Hamiltonian path contains all waiting
arcs and then maximizes the weight of the chosen energy arcs. Therefore, it yields the
optimal objective value. ◀

5 Examples of Bicriteria Timetables – Numerical Results

In this section, we present some computational results of bicriteria timetabling problems at
a single transfer station. We use the MIP formulation from Section 2.3 and solve it with the
CPLEX solver on a 13th Gen Intel(R) Core(TM) i5-1335U with 1.30 GHz, 16,0 GB RAM,
and a 64-bit processor. We use an ε-constraint method bounding the total brake-traction
overlap from below in order to obtain a set of Pareto-optimal solutions. The objective then
seeks for the minimal weighted sum of travel times. In the one-station network this equals
the weighted sum of the periodic tensions on the waiting and the transfer activities.

The instance I1 under consideration is based on a one-station network with 2 lines into
both directions and a period time of T = 40. The acceleration and braking times are all set
to tac = 5 and tbr = 7. On the waiting activities, we have the bounds l = 4, u = 8, and
the transfers have a lower bound of l = 5 and are non-restricted with u = 44. There are no
transfers into opposite directions of one line. We assume a symmetric passenger distribution
on the arcs, see Figure 4. Figure 5 shows the optimal weighted sum of the periodic tensions
(total travel time of the passengers) at this station depending on the required overlap time
for the braking and acceleration phases. We observe that the travel times increase with
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Figure 6 Exemplary solution structures of I1. The numbers in the nodes represent the scheduled
times of the events. Black arcs represent waiting activities and red arcs represent energy arcs with
the numbers indicating the overlap times.
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Figure 7 Objective values for instance I1 with different period times.

increasing required overlap time. Further, there is one huge gap, where the increase from a
required overlap time from 10 to 11 results in a huge increase of the total travel time from 579
to 894. In Figure 6 we can see the corresponding timetables for the scenario of no enforced
overlap and for a required overlap time of at least 10 and 11. Without an enforced overlap,
the timetable has almost a Basel solution structure separately for both the horizontal and
the vertical line. If the required overlap is 10, still two trains arrive and depart at almost the
same times. This structure disappears for an overlap of at least 11.

Figure 7 shows the Pareto frontiers of instances with the same parameters as I1 but with
varying period time T . We can observe that in general the total travel time of the passengers
increases with an increasing period time, which is reasonable as there are transfers with the
same number of passengers into both directions of each pair of lines. Further, we can observe
that it depends on the period time whether it is possible to attain a maximum overlap of 40
time units. While this is possible for the cases of T ∈ {20, 30, 60}, for T = 50 we obtain at
most 34 time units overlap and for T = 40 we obtain a maximum overlap of 32 time units.
Due to the cycle periodicity constraints which depend on the period length it is not always
possible to obtain full overlap on all chosen energy arcs.
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6 Outlook

We have introduced the new periodic timetabling problem PESP-Energy and its bicriteria
version. Apart from giving a MIP formulation we characterize the structure of optimal
solutions for both single objective problems on a one-station network. On this small network,
a polynomial-time algorithm with an additive performance guarantee is obtained for the
problem with energy objective. Further, some bicriteria instances on a one-station network
were solved numerically and analysed. We plan to continue our work investigating the
complexity of the single objective PESP-Energy on a one-station network and developing
algorithms for the bicriteria problem on larger networks.
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A Comparison with the Model of Wang et al.

In the timetable adjustment problem considered by Wang et al. [14], there is an explicitly
given set Asab ⊆ Edep × Earr of activities (j, i) specifying that the acceleration after the
departure j (taking time tj) and the braking before i (taking time ti) should be synchronized.
Their model reads

max O =
∑

ji∈Asab

Lji (17)

s.t. L∗
ji = min{πi − πj + βjiT, tj + ti − πi + πj − βjiT, tj , ti} ∀ji ∈ Asab (18)

M · (αji + βji − 1) ≤ Lji − L∗
ji ≤ −M · (αji + βji − 1) ∀ji ∈ Asab (19)

− M · (αji + βji) ≤ Lji ≤ M · (αji + βji) ∀ji ∈ Asab (20)

αji ≥ min
{πi − πj

M
,

πj − πi + tj + ti

M

}
∀ji ∈ Asab (21)

αji ≤ 1 + min
{πi − πj

M
,

πj − πi + tj + ti

M

}
∀ji ∈ Asab (22)

βji ≥ min
{πi + T − πj

M
,

πj − πi − T + tj + ti

M

}
∀ji ∈ Asab (23)

βji ≤ 1 + min
{πi + T − πj

M
,

πj − πi − T + tj + ti

M

}
∀ji ∈ Asab (24)

αji, βji ∈ {0, 1} ∀ji ∈ Asab (25)
Lji, L∗

ji ∈ Z ∀ji ∈ Asab (26)

The brake-traction overlap between the events j and i is represented by the variable Lji. The
auxiliary variable L∗

ji indicates the value of the minimum in the expression for the overlap in
Lemma 2, which equals the overlapping time if the overlap is non-empty. This is enforced by
Constraint (18). The binary variables αji and βji model whether there is some overlap or
not: the constraints (21)–(25) ensure that

αji =


1 if πi − πj > 0 and πj + tj > πi − ti,

0 if πi − πj < 0 or πj + tj < πi − ti,

0 or 1 else
(27)
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and

βji =


1 if πj + tj > πi + T − ti,

0 if πj + tj < πi + T − ti,

0 or 1 else
(28)

for all ji ∈ Asab. Finally, constraints (19) and (20) ensure that the actual overlap Lji is
set to L∗

ji in the case that αji + βji = 1 and to 0 if αji + βji = 0. Further, the case that
αji + βji = 2 is prevented by constraint (19). So it holds

αji + βji ≤ 1 ∀ji ∈ Asab (29)

Note that the constraint involving a minimum are not linear. To linearize them, we
would need to introduce two constraints for each constraint. Further, whenever the minimum
bounds from below, we would have to introduce a new binary variable.

Proof of Theorem 3. We begin by showing that the variable Lji in this model measures the
same overlap as oji from PESP-Energy. Hence, we show the following:
1. If there exists an overlap then Lji = L∗

ji = oji.
2. If there is no overlap, then Lji = 0 = oji.

The equalities oji = L∗
ji if there is an overlap and oji = 0 else follow from Lemma 2. So

we need to investigate the value of Lji for the cases in which there is an overlap (Case 1.1
and 1.2) and in which there is no overlap (Cases 2.1, 2.2 and 2.3).

Case 1.1 [πj < πi and πj + tj > πi − ti] In this case, αji = 1 by (27) and βji = 0 by (28).
(23) allows βji to take the value 0. Hence, αji + βji = 1 and we have Lji = L∗

ji by (19).
Case 1.2 [πj > πi and πj + tj > πi +T − ti] In this case, βji = 1 by (28) and αji = 0 by (27).

Also by (21) allows αji to take the value 0. Hence, αji + βji = 1 and we have Lji = L∗
ji

by (19).
Case 2.1 [πj < πi and πj + tj ≤ πi − ti] In this case, αji = 0 by (27). Further, βji = 0 by

(28) as πj + tj ≤ πi − ti implies that πj + tj < πi + T − ti. Hence, αji + βji = 0 and we
have Lji = 0 by (19).

Case 2.2 [πj > πi and πj + tj ≤ πi + T − ti] We have that αji = 0 by (27). Further, if
πj + tj < πi + T − ti then βji = 0 by (28). Hence, αji + βji = 0 and we have Lji = 0 by
(19). On the other hand, if πj + tj = πi +T − ti then βji = 0 or βji = 1 by (29). If βji = 0
then it holds, as just discussed, that Lji = 0. If βji = 1, then it holds that Lji = L∗

ji =
min{πi −πj +βjiT, tj +ti −πi +πj −βjiT, tj , ti} = min{πi −πj +βjiT, 0, tj , ti} = 0
as tj , ti > 0 and πi + T − πj > 0.

Case 2.3 [πj = πi] By (27) we get that αji could be 0 or 1 in this case, also the value for
βji is unclear. Therefore, we rest with the two options αji + βji = 0 and αji + βji = 1. If
αji + βji = 0, we know that Lji = 0 by constraint (20). If αji + βji = 1, then Lji = L∗

ji =
min{πi − πj + βjiT, tj + ti − πi + πj − βjiT, tj , ti} = min{0, tj + ti − 0, tj , ti} = 0
as tj , ti > 0 and therefore tj + ti > 0. αji = 1 by constraint (21) αji ≤ 1 by constraint
(22) βji = 0 by constraint (19). ◀



Solving the Electric Bus Scheduling Problem by an
Integrated Flow and Set Partitioning Approach
Ralf Borndörfer #

Zuse Institute Berlin, Germany

Andreas Löbel #

IVU Traffic Technologies AG, Berlin, Germany

Fabian Löbel1 #

Zuse Institute Berlin, Germany

Steffen Weider #

IVU Traffic Technologies AG, Berlin, Germany

Abstract
Attractive and cost-efficient public transport requires solving computationally difficult optimization
problems from network design to crew rostering. While great progress has been made in many areas,
new requirements to handle increasingly complex constraints are constantly coming up. One such
challenge is a new type of resource constraints that are used to deal with the state-of-charge of
battery-electric vehicles, which have limited driving ranges and need to be recharged in-service.

Resource constrained vehicle scheduling problems can classically be modelled in terms of either
a resource constrained (multi-commodity) flow problem or in terms of a path-based set partition
problem. We demonstrate how a novel integrated version of both formulations can be leveraged
to solve resource constrained vehicle scheduling with replenishment in general and the electric bus
scheduling problem in particular by Lagrangian relaxation and the proximal bundle method.
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1 Introduction

Public transport operators are ramping up the electrification of their bus fleets. Operators
in major German cities like Berlin, Hamburg or Munich have pledged to fully electrify their
public transport systems by 2030 [25]. Moreover, starting in 2026, it is a legal requirement
that 65% of new acquisitions have to have a clean drive train [30]. The European electric
bus market is dominated by battery-powered vehicles, depot chargers and fast opportunity
chargers at selected terminals [31, 5, 9, 32].

Deploying electric buses has to be planned around their complex energy-cycle. Unlike
their diesel counterparts, which can usually drive for an entire day and be fully refueled
within minutes upon returning to the depot, electric buses have limited driving ranges and
significant recharging times. These limitations are usually exacerbated during summer and
winter [31], for instance, enabling air conditioning may reduce a driving range of 250 km down
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11:2 Integrated Approach for EBSP

to 175 km [35]. As such, electric buses either require short schedules or pre-planned detours
and downtime throughout the day to recharge. Moreover, the physics behind recharging
batteries lead to non-linear energy models [27], which must be considered for electric vehicle
scheduling problems to ensure solutions are actually energy-feasible [24, 26, 22].

This paper is structured as follows: In Section 2 we define the electric bus scheduling
problem and in Section 3 we briefly review solution approaches (with non-linear charging) from
the literature. In Section 4 we provide a generalized formulation for resource constrained
vehicle scheduling by integrating the common flow and path-based models presented in
Section 2. In Section 5 we outline how to solve this new formulation leveraging Lagrangian
relaxation and the so-called proximal bundle method. For the sake of brevity, we will often
refer to older publications for details. Since this algorithm has been in commercial use
at a number of public transport operators with partially electrified fleets for a few years
now, we can not provide an open source implementation. Finally, we conclude with some
computational results in Section 6.

2 Problem Description

Attractive and efficient public transport is contingent on high quality solutions to a number
of strategic and operational planning steps, from infrastructure planning, line planning,
and timetabling to vehicle scheduling, duty scheduling, crew rostering, and finally real-time
disposition [34]. Due to the high computational complexity of each planning task, they are
often solved sequentially, even though there are some feedback relationships.

For this paper, we consider the vehicle scheduling planning step for bus systems with
(partially) battery-electric fleets, although we believe our results generalize to any electric
vehicle scheduling or routing problem. We assume that the infrastructure, bus lines and the
timetable have already been fixed, which yield a set of timetabled passenger trips T . A trip
τ ∈ T is the activity of servicing a single repetition of a line from its first to its last stop or
terminal. For example, if a bus line has a periodicity of five minutes, then it admits twelve
trips per hour. The back direction of a line for this purpose is considered as a separate line.

Each trip needs to be serviced by a bus and any individual bus can not service any trips
that happen simultaneously. Moreover, if a bus is scheduled to service two trips in order,
it needs to be able to get from the end terminal of the first trip to the start terminal of
the second in time to comply with the given fixed timetable. Generally, the set of trips
T together with a relation ≺ giving feasible connections called turns or deadheads can be
thought of as a partially ordered set.

The classic (non-electric) bus scheduling problem (BSP) in its simplest form is to find
a cost optimal partition of the trips into chains (subsets of ordered trips), which we call a
vehicle schedule. An individual chain of trips, i.e., a sequence of trips that can be serviced
by the same bus, is a vehicle course. The objective function would generally minimize the
total required fleet size, i.e., the number of vehicle courses, but also the overall operational
expenses.

We are further given a set of depots D and vehicle types V. Each course has to be
assigned a depot the bus has to begin and end service at, and a vehicle type which determines
operational costs, but also which trips, deadheads, depots or potentially other infrastructure
are accessible. Articulated buses or double-deckers may not fit through every road but some
trips have to be serviced by vehicles with a higher capacity for passengers. Moreover, in the
electric setting (Section 2.1), we may have vehicle types with different driving ranges, but
larger batteries incur higher deployment costs.
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We can model BSP as a multi-commodity flow problem on a directed acyclic graph where
pairs of vehicle type and depot K = V × D serve as the commodities, which we call plan
types. Every trip admits a node and we have an arc of the form (τi, τj) ∈ A if and only if
τi ≺ τj , that is, τj can be serviced after trip τi by the same bus. For every depot d ∈ D we
add a source node dout and a sink node din and connect them by pull-out and pull-in arcs
to every trip. K(a) then denotes the plan types admissible on arc a, which can be used to
control access of particular types to trips. By restricting the pull-in and pull-out arcs at a
depot to only the compatible plan types, we further enforce that buses actually return to the
depot that they started their course at.

A vehicle course for type v ∈ V is then a path between the source and sink nodes of a
depot d whose arcs all permit the plan type (v, d). The cost of a vehicle course is simply
the sum over arc costs ck

a of its plan type, which reflect operational expenses. A (binary)
multi-commodity flow of minimum cost on this graph then yields a minimum cost vehicle
schedule.

Moreover, we have so-called vehicle-mix constraints which impose lower and upper bounds
on how many courses may be assigned to particular plan types. This is because depots can
usually only accommodate a certain number of buses of any particular type, or operators
may insist that the fleet composition stay within some parameter. They are given by a family
of plan type subsets K̄ ⊂ 2K and for each K ∈ K̄, we have bounds ℓK and uK, as well as
coefficients κk

K per k ∈ K such that the weighted sum over all courses of those plan types has
to be within [ℓK, uK].

In this BSP model, trips are generally connected to all reachable trips which happen later
within the planning horizon, so a large fraction of the deadheads are long in the sense that
operators prefer a bus assigned to such a deadhead makes a stopover at a parking facility
or depot, where no driver has to be paid to watch over the idle vehicle. In the worst-case,
the total number of deadheads is |T | (|T | + 1)/2, therefore, long arcs are either dynamically
generated on demand while solving BSP [20], or they are modeled implicitly via timelines
(cf. [14, 12]): The planning horizon is discretized and for every time step and parking spot,
a node is added to the graph. The nodes of a spot are connected by idling arcs in order and
there are pull-out and pull-in deadheads between the trips and appropriate timeline nodes.
Every long deadhead is then pruned as it now corresponds to a path between a pull-in and a
pull-out along a timeline, which decreases the total number of arcs on instances of relevant
size [12]. For an example BSP graph with five trips, two depots and one parking spot see
Figure 1.

dout
1 din

1
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2 din
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τ1 τ2
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Figure 1 Example BSP Graph with five trips, two depots and one parking spot timeline.
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The grey arcs are the depot pull-in and pull-out deadheads which only permit plan types of
the associated depot. The trip nodes are elongated to indicate their relative start and end
times. There is no deadhead from τ3 to τ1 as there is no way to make the connection in time.
The long deadhead between τ3 and τ4 has been pruned in favor of the parking spot timeline
on top of the graph, which of course needs larger graphs to be of any advantage. If some
trips or deadheads may only be traversed by particular bus types, they must permit only the
corresponding plan types, so that the respective nodes and arcs are no longer part of the
network of those commodities.

Formulating this multi-commodity flow model of the non-electric BSP as an integer linear
program, we obtain

(BSP) min
∑
a∈A

∑
k∈K(a)

ck
axk

a (1)

s.t.
∑

a∈δin(n): K(a)∋k

xk
a −

∑
a∈δout(n): K(a)∋k

xk
a = 0 ∀n ∈ N \ D, k ∈ K (2)

∑
a∈δout(τ)

∑
k∈K(a)

xk
a = 1 ∀τ ∈ T (3)

∑
a∈δout(n)

∑
k∈K(a)

xk
a ≤ 1 ∀n ∈ N \ (D ∪ T ) (4)

ℓK ≤
∑

(v,d)∈K

κ
(v,d)
K

∑
a∈δout(dout)

x(v,d)
a ≤ uK ∀K ∈ K̄ (5)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (6)

where N denotes the entire set of nodes, i.e., it contains T , the depot source and sink nodes
and all timeline nodes. Furthermore, δin(n) denotes the set of incoming and δout(n) the set
of outgoing deadheads at node n. The binary variables xk

a indicate whether arc a is selected
or active for plan type k, i.e., whether a bus of the corresponding type and housed at the
corresponding depot traverses it. (2) are flow conservation constraints per commodity, which
propagate the selected vehicle type and depot along the flow belonging to a vehicle course.
(3) enforces that every trip is covered exactly once and (4) ensures that a parking spot can
be used by at most one bus at the same time. (5) are the vehicle-mix constraints.

Note that if |K| ≥ 2, BSP is NP-hard even without any vehicle-mix constraints [1].
Further note that BSP is a special case of the vehicle scheduling or routing problem, where
vehicles have to visit a set of customers within pre-defined time windows to perform some task
of a given duration. The trips correspond to customers with fixed and tight time windows.

Let MFx = b denote (2) - (5) of the flow formulation in an appropriate matrix notation.

2.1 The Bus Scheduling Problem with Electric Vehicles
The electric bus scheduling problem (EBSP) extends the BSP such that some or all of the
bus types are powered by an electric battery. We collect the corresponding plan types in KE

and normalize all battery capacities and energy consumption to a relative driving range in
[0, 1]. Every deadhead arc admits an energy consumption ek

a per electric plan type, including
the consumption of its target trip. We track the remaining driving range via variables ya at
the beginning of every arc, just after the source trip.

Charging takes place at a limited number of charger slots S, so we introduce timelines
to track when they are occupied by a bus. We denote those recharge nodes si by S̄ and
add them to N . The corresponding timeline arcs a(s, i) = (si−1, si) are called recharge arcs
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and we denote the set of all recharge arcs by AE . Along each we can replenish an amount
of driving range given by a function ∆ζk

s (ya(s,i), θ) where ya(s,i) is the charge state at the
beginning of the recharge arc a(s, i) and θ is the step size of the time discretization. The
charge increment function ∆ζk

s depends on the technology employed at charger slot s and
the vehicle type of the plan type k. Note that if we are given a charge curve ζ as most of the
literature on EBSP assumes, that is, a function mapping time spent charging an initially
empty battery to the resulting state-of-charge, then it relates to the increment function via
∆ζ(y, θ) = ζ(ζ−1(y) + θ) − y. For a homogeneous time step size θ we can just write ∆ζ(y).

This yields the, in general non-linear, mixed-integer program

(EBSP) min
∑

a∈A, k∈K(a)

ck
axk

a (7)

s.t. MFx = b (8)∑
k∈KE(a)

xk
a ≥ ya ∀a ∈ A \ Aout

D (9)

∑
k∈KE(a)

xk
a = ya ∀a ∈ Aout

D (10)

∑
a∈δin(n)
k∈KE(a)

ek
axk

a =
∑

a∈δin(n)

ya −
∑

a∈δout(n)

ya
∀n∈N

n/∈D∪S̄ (11)

∑
a∈δin(si),

k∈KE(a)

ek
axk

a −
∑

k∈KE(a(s,i))

φk
a(s,i) =

∑
a∈δin(si)

ya −
∑

a∈δout(si)

ya ∀a(s, i) ∈ AE (12)

φk
a(s,i) = ∆ζk

s (ya(s,i))xk
a(s,i)

∀a(s,i)∈AE ,

k∈KE(a(s,i)) (13)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (14)

ya ≥ 0 ∀a ∈ A (15)

where Aout
D denotes the set of pull-out arcs at depot nodes, i.e., those arcs that can open new

vehicle courses. We retain the BSP constraints in (8), but on the graph including charge slot
timelines (an example graph would still look like the one in Figure 1, except the timeline
may belong to a charge slot). (9) enforces that only active flow-carrying arcs can also have
non-zero charge states while (10) requires buses to start service with a full battery. (11) and
(12) propagate charge states along active arcs as an energy flow depending on whether any
incoming arc is a recharge arc. (13) gives the amount of restored driving range on active
recharge arcs depending on the incoming charge state. (14) and (15) are the variable domains.
To make (EBSP) a linear program we have to linearize the constraint (13), where we refer to
our contributions [21] and [22].

2.2 A Set Partition Formulation
It is well-known that BSP can be formulated as a set partition problem by applying Dantzig-
Wolfe decomposition to the multi-commodity flow formulation. For k = (v, d) ∈ K, let
Pk denote all dout, din-paths admissible for vehicle type v on the BSP graph. Further, let
P = ∪k∈KPk. Then, assuming a suitable cost vector c ∈ RP (usually the sum over the arcs
on the path), a formulation equivalent to (BSP) is

min
∑
p∈P

cpxp (16)
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s.t.
∑

p∈P :p∋τ

xp = 1 ∀τ ∈ T (17)

∑
p∈P : p∋n

xp ≤ 1 ∀n ∈ N \ (D ∪ T ) (18)

ℓK ≤
∑
k∈K

∑
p∈Pk

xp ≤ uK ∀K ∈ K̄ (19)

x ∈ {0, 1}P (20)

In theory, it is straightforward to turn this into a formulation for EBSP: Let P be the set
of all energy-feasible paths. A path on the BSP graph is energy-feasible if we can insert
recharge events such that the battery is never fully depleted and all trips on the path can
still be serviced as scheduled. Note that finding a cost-optimal recharge schedule for a given
fixed sequence of trips is an instance of the NP-hard fixed route vehicle charging problem
[24], while testing whether such a sequence is energy-feasible by just charging for as much
as possible is polynomially solvable [4]. Further note that the set partition formulation is
straightforward to generalize to any resource constrained vehicle scheduling problem with
replenishment, like railway operation with maintenance scheduling.

Due to the large number of variables, which in the worst case is one per path on the
vehicle scheduling graph, column generation lends itself as the go-to solving approach. The
pricing problem is then a resource constrained shortest path problem with replenishment, i.e.,
we need to find resource-feasible paths on the vehicle scheduling graph with negative reduced
costs. These paths have to be fit with a cost-optimal resource restoration schedule, which for
EBSP generally involves evaluating non-linear ∆ζ.

3 Solution Approaches in the Literature

Electric vehicle routing and scheduling is an active area of research attracting an immense
amount of attention. We therefore restrict this literature review to contributions presenting
solving approaches for the electric vehicle scheduling problem that can handle non-linear
charging explicitly. For an extensive survey on electric vehicle routing and scheduling we
refer to [5] and on electric bus scheduling see [28].

An energy state expansion model is proposed in [33], where for each step of a charge state
discretization, every node of the vehicle scheduling graph is duplicated. The deadhead arcs
connect nodes of appropriate charge states with each other and if there is a recharge window,
such a connection can go from a lower to a higher charge state, so ∆ζ can be evaluated
explicitly per recharge arc. The column generation pricing problem is then a classic shortest
path problem on this energy-state-expanded graph. The column generation itself solves the
Lagrangian relaxation of a path-based set cover formulation in combination with a rounding
heuristic.

In [16] a fully time-and-energy-expanded network is proposed, from which a MILP is
derived, where the frequency at which the passenger lines are serviced and the number of
chargers are decision variables. The formulation is verified using a commercial MILP solver.

A time-and-energy-expanded network with timelines to track charger slot occupation like
in our model is proposed in [3]. Two graphs are obtained by rounding charge states up or
down, from which in turn primal and dual bounds can be derived to fuel column generation.
A diving heuristic explores the branch-and-bound tree in a depth-first manner to obtain
integer solutions.
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[24], [7] and [6] are a series of papers which propose a local search to generate a set
of candidate vehicle courses that the set partition formulation is solved over. For every
candidate vehicle course, the local search has to solve the fixed route vehicle charging problem
to determine whether the course is energy-feasible and its cost, so a labeling algorithm and
recharge event insertion heuristics are developed. [24] introduces linear spline interpolations
of the charge curve ζ from which dominance rules for the labeling method can be derived. [13]
extends [7] to consider settings where operators may wish to charge at publicly accessible third-
party infrastructure with uncertain availability. The problem is solved by a benders-based
branch-and-cut algorithm using a modified version of the labeling algorithm.

Other extensions of [24] are [17] and [10]. [17] develops a label-setting algorithm for the
pricing problem of the column generation for the set partition formulation based on recursive
functions derived from the linear spline charge curve approximation. This is embedded within
a branch-and-price-and-cut framework. [10] extends the model and algorithm from [24] to
also include non-linear discharging.

Other papers relying on linear spline approximations of ζ are [36], which presents an
adaptive large neighborhood search, [37], which develops a label-setting algorithm considering
battery capacity fade, and [38], which also considers capacity fade and develops a MILP with
a number of a priori tightening inequalities and runs a commercial solver on it. We assess
the previously unknown numerical implications of approximating the charge curve ζ by a
linear spline interpolation in [23] and [22].

Lastly, there are a few exact approaches. [26] uses a greedy construction heuristic with
backtracking to insert charging events such that arbitrary ∆ζ can be considered. [4] proposes
a branch-and-check algorithm for factory in-plant electric tow trains. A vehicle schedule
whose courses can be made energy-feasible by charging for as much as possible is accepted as
the optimal solution, otherwise subtour elimination constraints are introduced to prohibit
energy-infeasible courses.

[15] considers an objective function that minimizes the total distance and time spent
charging. As such, every recharge event in an optimal solution will only charge for as much as
is strictly needed to drive the subsequent trips until the next recharge event or the final depot.
One can then use column generation on the set of trip sequences that are energy-feasible
without charging and their costs can be derived a priori from the inverse of arbitrary charge
curves. It is unclear how this approach can work if the objective does not explicitly minimize
the time spent recharging. Operators may not want to strictly minimize charging times due
to robustness considerations and active charge management [22]. Nevertheless, generating
energy-feasible trip sequences is also a core idea behind our method, which further takes
advantage of the easier pricing problem that arises then. Our method could loosely be seen
as a generalization of [15] to resource constrained vehicle scheduling with replenishment,
multiple depots and vehicle types, and arbitrary linear objective functions. It is also the (to
our knowledge) first application of the proximal bundle method [11] to EBSP.

4 An Integrated Flow and Set Partition Formulation

In computational experiments, we have found that the set partition formulation for EBSP
has two undesirable properties, which have also been reported in [15] and we expect should
be observable in related problems: For one, there are a large number of very similar columns
of negative reduced costs, which cause the master problem to quickly become intractable.
Furthermore, the longer the vehicle courses can be and thus have more insertion points for
recharge events, the worse the pricing problem performs. In contrast, rounding heuristics to
produce integer solutions struggle with the flow formulation. Solutions to the LP-relaxation

ATMOS 2024



11:8 Integrated Approach for EBSP

often collect fractional paths into a single bus, charge its battery, and then fractionally
distribute the replenished energy into the network. Vehicle courses derived from a (fractional)
path decomposition of the LP solution then often share a single recharge event and it is
unclear how to efficiently break this up.

Note that a recent publication [29] shows that electric shortest path with recharging and
the corresponding minimum cost flow problem are polynomially solvable if |K| = 1, the
charge curve ζ is piecewise linear, and every minimum cost subpath in the network is also
of minimum energy consumption. However, we believe piecewise linear charge curves to
be an inadequate model choice to describe the recharge process [23, 21, 22]. Furthermore,
energy-optimal subpaths may not be cost-optimal and vice versa in our application. Some
trip to trip arcs involve barely any driving because the bus simply idles at a terminal
waiting to service the back direction of the corresponding line. Such a turn has a low energy
consumption unlike deadheads that involve proper location changes. But the majority of the
operational costs on an arc come from the salary for the driver, so it is possible to have a
turn arc that is more expensive than a deadhead arc but that requires less energy.

As we have already alluded to in Section 3, we can make the set partition formulation
significantly more tractable by limiting P to those paths that start or end at a depot, where
vehicles can be removed from the network, or a facility where consumed resources can be
restored. All interior nodes of these paths shall be trips or parking spot timeline nodes and
the total resource consumption has to be permissible. In the context of EBSP, this means the
path can be serviced on a single battery charge. We call these paths vehicle blocks. Vehicle
courses are then alternating sequences of blocks and restoration or recharge events.

We can then couple the set partition formulation with the flow formulation to have it
arrange blocks into vehicle courses by forcing all deadheads contained in active blocks to
also be active within the flow. Flow conservation will naturally force deadheads to become
active that connect blocks to each other or depots. This yields an integrated flow and set
partition formulation for EBSP.

We can further completely eliminate all resource related constraints from the formulation
by assuming that every block p ∈ P is serviced by a vehicle that has not consumed any
resource yet. Consequently, we have to ensure that all block connections are long enough
such that a vehicle’s resource state can be fully restored from any initial state. We can
enforce this in the timeline model via constraints where an active pull-in onto the timeline
prevents pull-outs within the appropriate time window from carrying flow. We then only
have to consider the maximum driving range when generating vehicle blocks. This is not
a restriction in settings where resource restoration happens in constant time, like regular
maintenance or battery swapping, but it does prevent partially recharging a battery for
EBSP and block connections have to have recharge time windows of length ζ−1(1).

While this is clearly a major restriction compared to allowing partial charging, we hope
that the impact on solution quality is limited by the following observations: On most instances
we have encountered so far, recharge events are either a depot charging event with a longer
time window, especially in rural settings, or an opportunity charging event with a shorter
time window during the turn after a trip. Bus timetables usually tighten their frequency in
the morning and late afternoon to evening since the passenger demand is higher during these
times. This causes a peak of timetabled trips (see Figure 2) and we need at least as many
buses as the largest number of simultaneously scheduled trips as a consequence of Dilworth’s
theorem. Part of these buses will be idle after the morning peak and they can usually be fully
recharged before the afternoon or evening, so the corresponding courses should be mostly
unaffected by the restriction.
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Figure 2 Number of simultaneously scheduled trips of one of our test instances.

Opportunity charging events, as the name suggests, occur during the turns between trips
whose terminals are equipped with chargers and a bus can simply recharge there during the
mandatory downtime before the next trip. While these events are modeled exactly the same
as depot charging via charge slot timelines on the EBSP graph, we can efficiently consider
them during block generation, unlike depot charging.

Recall that the pricing problem for the full set partition formulation of EBSP, where P

is the set of energy-feasible vehicle courses, is a resource-constrained shortest path problem
with replenishment. This problem is computationally challenging because we can potentially
recharge after every trip at any charging facility, for an arbitrary amount of time to an
arbitrary state of charge. In particular, the minimum state of charge that the bus has to
reach depends on the rest of the path, which in turn depends on how much driving range
can actually be restored and the downtime that requires. In fact, as previously mentioned,
fitting a cost-optimal recharge schedule to an entirely fixed sequence of trips is NP-hard [24],
and the pricing problem to generate vehicle courses is a generalization of this problem.

But if the end terminal of a trip is equipped with an opportunity charger, since the
assigned bus is already there, we can simply charge the bus for as long as it can remain
depending on whatever trip is put next on the block. Opportunity charging is therefore
easy to incorporate into the pricing problem for generating p ∈ P and we can extend the
definition of a vehicle block to allow for opportunity charging whenever a trip terminal is
equipped with the necessary infrastructure. This softens our restriction to only apply to
depot charging in between blocks, whereas we can consider partial charging for opportunity
charging infrastructure as a part of vehicle blocks in P .

We can now give a general integrated flow and set partition formulation for integrated
resource constrained vehicle scheduling (with replenishment) (IRCVSP) as

(IRCVSP) min cT x (21)
s.t. MFx = b (22)∑

p∈P : p∋τ

wp = 1 ∀τ ∈ T (23)

∑
p∈Pk: p∋a

wp = xk
a ∀a ∈ A, k ∈ K(a) (24)

xk
a ∈ {0, 1} ∀a ∈ A, k ∈ K(a) (25)

w ∈ {0, 1}P (26)
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where the system (22) is the multi-commodity flow formulation for unconstrained vehicle
scheduling as in BSP. It enforces the vehicle-mix constraints and that capacities at parking
lots and chargers are observed. However, it further needs to guarantee the invariant that
vehicles start all blocks with a fully restored resource state by prohibiting block to block
connections that are too short. But it is otherwise completely devoid of resource constraints.

Constraints (23) ensure that every trip is covered by exactly one vehicle block and
(24) couple the selection of active blocks to that of the active deadheads. Note that if a
block contains an opportunity charging event, then that block needs to be coupled to a
corresponding charge slot pull-in arc, a number of timeline arcs and a pull-out arc in the
flow formulation.

Let MT w = 1 denote (23) and MCFx − MCPw = 0 denote (24) in matrix notation.

5 Solving IRCVSP

Our formulation for IRCVSP is superficially similar to standard formulations for the integrated
vehicle and duty scheduling problem, where P is defined to be the set of all valid driver duties
[34, 2]. A driver duty contains trips and deadheads and has to comply with an underlying
vehicle schedule, thus, it can be coupled to a BSP flow problem like the vehicle blocks in the
IRCVSP formulation.

start solve BSP,
init. blocks

PBM step
stability
center

change?

yesgenerate blocks

no stagnation?

no

yes

fix/unfix
deadheads

fully
integral?

no

yesoutput

Figure 3 Simplified flow chart of our method to solve IRCVSP.

In the case of EBSP, there is an intuitive equivalence between drivers and batteries:
Both can perform a limited amount of work before they have to be substituted by a fresh
replacement. The analogy is literal for battery swapping EBSP instances, otherwise replacing
a battery by a fresh one means we have to fully recharge it. While driver duties are subject
to multiple complicated resource constraints related to working time regulation, we expect
similar algorithmic techniques and frameworks used to solve the integrated vehicle and duty
scheduling problem to also work for resource constrained vehicle scheduling. In this vein,
the algorithm we present here is inspired by our work on the integrated vehicle and duty
scheduling problem. Since the algorithmic techniques are quite involved, we only give an
outline of the method and describe the necessary modifications to apply it to EBSP (see
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Figure 3 for a simplified flow chart). For any detailed descriptions omitted here we refer to
our previous work [34] and [2]. We further note that the method should generalize to all
resource constrained vehicle scheduling problems that fit formulation (IRCVSP).

Our method as depicted in Figure 3 has an inner and an outer loop. For the inner loop
it relies on the (inexact) proximal bundle method (PBM ) [11] in combination with column
generation on the set of vehicle blocks to produce fractional flow values, which are used in a
diving heuristic to gradually produce a fully integral flow on the EBSP graph by fixing or
unfixing arcs as part of the outer loop.

More precisely, we relax the integrality constraints and apply Lagrangian relaxation to
the coupling constraints (24) so that the Lagrangian dual

max
λ∈RA×K(A)

[
min

(
cT − λT MCF)

x + min λT MCP w
]

(27)

s.t. MFx = b s.t. MT w = 1 (28)

x ∈ [0, 1]A×K(A) w ∈ [0, 1]P (29)

decomposes into the LP-relaxation of the multi-commodity flow and a range-restricted set
partition formulation of non-electric BSP. The two subproblems are over separate domains
and coupled solely via the Lagrange multipliers λ. Therefore, the Lagrangian function (27)
is a separable, concave, piecewise linear, and non-smooth function, which can be expressed
as L(λ) = fF (λ) + fP (λ), where

fF (λ) = min
{(

cT − λT MCF)
x

∣∣∣ MFx = b, x ∈ [0, 1]A×K(A)
}

(30)

and

fP (λ) = min
{

λT MCPw
∣∣ MT w = 1, w ∈ [0, 1]P

}
. (31)

This is exactly the setting for the PBM to find the optimal multipliers λ. Given a decompos-
able concave function such as L, the PBM maintains a polyhedral approximation which is
iteratively refined along a sequence of so-called stability centers λi by evaluating the function
components and their subgradients at nearby trial points. Applied to our Lagrangian L from
(27), the stability centers λi converge towards the optimal multipliers. Furthermore, we can
obtain a series that converges towards the optimal primal solution to the LP-relaxation of
(IRCVSP) from the values x and w that attain fF and fP at the trial points [34, 2].

Evaluating fF and fP , i.e., solving the LP-relaxations of the flow and the set partition
problem for different multipliers, is still computationally challenging and has to be done
repeatedly. We therefore solve them approximately, which requires modifications to the PBM
to still guarantee convergence. For details on this inexact PBM for general applications we
refer to [11]. How to process approximate evaluations of fF and fP is explained in [34, 2].

The flow problem fF can be (approximately) solved by any appropriate algorithm, we
rely on the method described in [18], [19], and [20] as a black-box, which can produce both
fractional and integral feasible solutions of high quality as needed. As mentioned before,
we have to employ column generation to solve the set partition subproblem fP , so suppose
P I are the currently selected candidate vehicle blocks from some index set I. If we apply
Lagrangian relaxation to this restricted subproblem we obtain

max
µ∈RT

[
µT1 + min

wI ∈[0,1]P I

(
λT MCP

·I − µT MT
·I

)
wI

]
(32)
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where M·I denotes the submatrix made of columns indexed by I. For fixed multipliers λ and
µ the minimization is trivial to solve by setting wi to one if λT MCP

·{i} ≤ µT MT
·{i} and zero

otherwise. For fixed λ from the current PBM step of solving (27) we can then use the (exact)
PBM to determine the optimal µ, which yields an approximation for fP restricted to P I and
a corresponding argument wI . It is possible to deduce an approximation of the reduced costs
of all vehicle blocks from this by repairing µ∗ into a dual feasible, almost optimal solution,
see [34] for details. The reduced cost of block i is then λT MCP

·{i} − (µ∗)T MT
·{i}. Since MT

and MCP are simply incidence matrices of which trips and deadheads are contained in which
blocks, λ and µ∗ yield arc weights which we use for the vehicle block pricing problem as
explained in Section 4. It can be solved by standard label-setting techniques. If a deadhead
with an opportunity charging window is processed, i.e., a bus can idle at a charger at a trip
terminal for a few minutes, we evaluate ∆ζ for every respective label. While we eliminate
the need to decide when, where and for how long to charge after every trip for the pricing
problem and instead offload this decision to the flow subproblem, generating vehicle blocks
is still a computationally expensive step, so we only do it when the stability center and thus
the candidate trial points of the main PBM process changes significantly.

Finally, the lower bounds and (approximated) primal LP-solutions obtained by repeatedly
evaluating (27) are used to guide a rounding heuristic to find high quality integer solutions
for IRCVSP. Once the PBM appears to stagnate at the current stability center, we enter
the outer loop as indicated in Figure 3 and fix arcs for which xa is close to 1.0, appropriately
propagate this decision through the network and then relaunch the PBM algorithm. We
dynamically adjust the threshold for when an arc becomes fixed to be more aggressive early
on. If a fixing causes the objective to increase by a large margin, the method can backtrack
and revert the decision, however, this step is rarely necessary. The final solution is then a
feasible binary multi-commodity flow on the vehicle scheduling graph which adheres to all
capacity and vehicle-mix constraints, and is straightforward to decompose into individual
vehicle courses as explained in Section 2. It is compatible with a selection of energy-feasible
blocks which are connected with sufficient downtime to fully recharge the battery, so the
vehicle schedule is energy-feasible.

Note that we can obtain an initial solution to start the procedure with by solving the
non-electric BSP to integrality, then we simply cut the resulting vehicle courses into energy-
feasible blocks, which is what the step after “start” in Figure 3 refers to. Throughout the
method we also occasionally delete blocks with large reduced cost from P I to keep the
number of candidate blocks tractable.

6 Computational Results

We tested our method on sixteen anonymous real-life EBSP instances with sizes depicted in
Table 1. Instance G extends F, and I extends H by an additional opportunity fast-charging
terminal. Instances K, L and M are variations of the same instance with different charging
technology and bus types.

We ran our method until it returned a feasible integral solution and recorded the runtime
and objective value. Then, we ran Gurobi 11.0.0 [8] twice on the mixed-integer formulation
(7) - (15) for EBSP with our charge curve linearization of (13) described in [21] and [22],
once with the previously obtained solution and once without any information. After twelve
hours of running Gurobi, we recorded the best found objective value, lower bound, and how
long it took in the cold-started run to find a solution that was at least as good as the one
produced by our method. Note here that our method enforces that the downtime between
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blocks is large enough to fully recharge an initially empty battery, whereas the MILP permits
partial recharge events in the depot. Both permit partial opportunity charging, however.
Therefore, the lower bound and best possible objective are in relation to this more flexible
charging policy. The results are presented in Table 2 and Figure 4. The experiment was
carried out on an AMD EPYC 7542 CPU restricted to two cores and thus four threads per
instance.

Table 1 Number of vehicle types, depots, charge slots, timetabled trips and explicitly given
deadhead arcs of our test instances. So-called long arcs are given implicitly via pull-in and pull-out
arcs at charge slots and parking facilities at the depots.

instance electric
bus types

non-electric
bus types depots charge

slots trips deadheads

A 1 0 1 3 121 992
B 1 0 1 2 123 1 078
C 2 0 1 3 146 3 126
D 1 0 1 3 185 1 769
E 1 0 1 8 189 1 977
F 1 0 1 3 232 1 484
G 1 0 1 5 232 2 064
H 1 1 1 6 333 6 363
I 1 1 1 7 333 7 859
J 1 0 1 14 678 15 589
K 1 0 1 43 709 14 431
L 1 0 1 37 709 17 779
M 1 0 1 34 709 21 343
N 2 1 2 12 822 12 390
O 1 1 1 10 837 111 590
P 1 0 1 28 1 207 42 610

Table 2 Runtime comparison between our method and Gurobi on (7) - (15) for EBSP without a
start solution. The runtime of our method is how long it took to output an integer solution. We
compare it to the time Gurobi takes to produce an integer incumbent that is at least as good as
the reference solution of our method and the entry of the faster one is highlighted. A value of
“-” indicates that Gurobi failed to produce a better solution within twelve hours (43 200 seconds).
Gurobi could not produce any feasible integer solution for instances L and P.

runtime (s) of A B C D E F G H

our method 75 72 413 165 196 371 322 4 469
MILP via Gurobi - 173 4 967 82 6 834 56 8 39 689

I J K L M N O P

our method 6 604 1 767 1 854 5 008 2 637 2 887 29 334 2 792
MILP via Gurobi - 9 929 - - - 297 343 -

Our method can find good solutions faster than Gurobi, as demonstrated on eleven of the
sixteen tested instances, with a bias towards the larger ones. On six instances it produces a
solution in less than two hours that Gurobi can not beat within twelve. In particular, Gurobi
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Figure 4 Relative objective values. The best objective value we obtained after letting Gurobi
run for twelve hours, both with and without a start solution, is the baseline at 1.0. The best lower
bound is given as a relative value by the green triangles pointing to the right. The objective value of
the solution produced by our method is given as a relative value by the orange triangles pointing to
the left.

fails to produce any feasible vehicle schedule for instances L and P, whereas our method
produces solutions that are almost optimal even under the model where partial charging in
the depot is allowed, as can be seen in Figure 4.

Integer heuristics used by Gurobi can produce good schedules faster than the overhead
of our method permits for the small instances D, F, and G, but those heuristics are not
consistent on our test set as can be seen for other small instances A, C, and E. Among the
larger instances, N and especially O are the outliers for which our method is significantly
slower than Gurobi. Examining the vehicle schedules we see that the problem is the restriction
to full recharge windows between blocks. Gurobi can find the optimal solution for O, which
admits one hundred and three recharge events, whereas our method produces a solution with
sixteen. Most of these recharge events in the optimal solution are short and merely top off
an almost fully charged bus, i.e., they are like opportunity recharge events, except the bus
takes a small detour of about five minutes to the depot charger. In our data, this depot
charger is of course not flagged as opportunity charging infrastructure and is therefore not
considered by the vehicle block pricing algorithm. Our method then apparently struggles
to produce compatible blocks that allow for full recharge windows in between. We make a
similar observation for instance N.

Further examining the objective values and lower bounds in Figure 4, we see that our
method solves J, L, and P almost optimally and additionally attains the best found solution
for B, K, and M. At worst, it is within 11% of the best found solution and 15% of the best
lower bound. Lastly, note that a sequential approach of our method and then Gurobi on the
MILP solved A, C, G, J, L, and P to optimality within a total time limit of fourteen hours,
whereas Gurobi did not produce any feasible solution for L and P on its own.
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Abstract
Increasing the capacity of our railway infrastructure will become more and more essential in coping
with the need for sustainable transportation. This can be achieved by intelligently implementing
train control systems on specific railway networks. Methods that automate and optimize parts of
this planning process are of great interest. For control systems based on hybrid train detection,
such optimization tasks simultaneously involve routing and block layout generation. These tasks
are already complex on their own; hence, a joint consideration often becomes infeasible. This
work-in-progress paper proposes an idea to tackle the corresponding complexity. To this end, we
present a pipeline that allows to sequentially handle corresponding optimization tasks in a less
complex fashion while generating results that remain (close to) optimal. Results from an initial case
study showcase that this approach is, indeed, promising. A prototypical implementation is included
in the open-source Munich Train Control Toolkit available at https://github.com/cda-tum/mtct.
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1 Introduction

The demand for railroads is increasing as sustainable transportation becomes more and
more important. However, the capacity of existing railway infrastructure is limited. In
addition to building new tracks, increasing the capacity of existing lines is crucial to satisfy
the growing demand, e.g., by utilizing more efficient train control systems. For reasons
of compatibility, international train control systems have been specified in a standardized
fashion, e.g., through the European Train Control System (ETCS), Chinese Train Control
System (CTCT), and Positive Train Control (PTC) [10]. Each of them comes in different
variants. More sophisticated levels allow shorter train following times (headways), and by
this, increase the capacity while, at the same time, maintaining a high level of safety.

During the planning process, design choices have to be made that might influence the
outcome. Much of the planning relies on manual processes and the work experience of the
involved personnel, an expensive and error-prone endeavor. Automating and optimizing
specific steps to reduce these costs and ensure the best operational outcome is of great
interest [3]. Accordingly, methods have been developed that optimize train operation, such
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as creating timetables and routing [2]. Optimal routing has recently been considered for
trains operating under so-called Moving Block [12, 9, 6]. In addition, classical control systems
rely on separating the network into blocks, requiring physical hardware for each of them.
Generating optimal block layouts focused on optimizing general performance indicators
independent of specific schedules [7, 13].

Alternatively, modern specifications relying on Hybrid Train Detection allow the introduc-
tion of purely virtual (sub-)sections. At least in theory, they allow the flexible adjustment of
the layout, leading to new design objectives to be optimized [4]. To the best of our knowledge,
algorithms tailored to hybrid train detection have first been considered in [14, 11]. While
these initial solutions neglect significant modeling details, a more accurate solution method
has been introduced in [5]. Unfortunately, these solutions do not scale well. A primary
reason for that might be because they combine multiple complex objectives in one task.

In this work-in-progress paper, we propose an optimization pipeline that considers the
resulting sub-tasks sequentially. This allows for solving these problems in a less complex
fashion while still generating (close to) optimal solutions. Results obtained by initial case
studies confirm these premises. A prototypical implementation of the proposed idea is
available open-source as part of the Munich Train Control Toolkit at https://github.com/
cda-tum/mtct.

The remainder of this work is structured as follows. Sec. 2 summarizes the relevant
background, namely principals of train control systems in Sec. 2.1 and resulting design tasks
in Sec. 2.2. Afterward, Sec. 3 describes the proposed optimization pipeline and constitutes
the main contribution of this work in progress. A short case study in Sec. 4 demonstrates
that this approach is promising, and Sec. 5 concludes this paper.

2 Background

2.1 Moving Block and Hybrid Train Detection
Due to long braking distances, it is not feasible for trains to operate on sight. Instead,
signaling systems are implemented to ensure safe operation. Classical control systems divide
the network into fixed block sections. A train cannot enter a section that is already occupied
by another train. Physical Trackside Train Detection (TTD) hardware (e.g., axle counters)
at the section borders is used to detect the position of trains.

Modern specifications require trains to report their exact positions with certainty. By
doing so, TTD hardware is no longer needed. Ideally, a Moving Block control system can be
implemented in which trains follow each other at their (absolute) braking distance (similar
to car traffic) without the need to define block sections.

However, such a system might impose practical problems, especially on lines with mixed
traffic where some trains might not be equipped with train integrity monitoring systems
to safely report their positions to the control system [1]. As a “compromise” Hybrid Train
Detection has been specified. For this, existing TTD sections are separated into smaller
Virtual Subsections (VSS) without the need for additional hardware. This allows for shorter
headway times. At the same time, the original TTD sections serve as a backup.
▶ Example 1. Consider the scenario shown in Fig. 1 with two trains. In Fig. 1a, the network
is divided into block sections TTD1 and TTD2. Because TTD2 is occupied by train tr1, the
following train tr2 can only advance to the end of TTD1 (solid orange line). Using hybrid
train detection, TTD2 might be separated into two virtual subsections. Because of this, train
tr2 is authorized to move until the end of VSS21 (dashed orange line). On the contrary,
there are no block sections under moving block control. In Fig. 1b, train tr2 can advance up
to the end of train tr1 minus a small safety buffer.

https://github.com/cda-tum/mtct
https://github.com/cda-tum/mtct
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TTD1 TTD2

VSS11 VSS21 VSS22

↑ ↑ ↑ ↑

tr2 tr1

(a) Hybrid Train Detection.

tr2 tr1

(b) Moving Block Control.

Figure 1 Schematic drawings of various ETCS levels.

2.2 Resulting Design Tasks
In the following, we focus on control systems with hybrid train detection. At least in theory,
the virtual block layout can be chosen flexibly. This allows, for the first time, the VSS to be
adjusted depending on a specific train schedule. Hence, new design tasks result that utilize
this additional degree of freedom [4].

In general, the question is how to separate a given layout into VSS sections to obtain
the best operational outcome. Some objectives might be determining a minimal number of
subsections to make a previously infeasible timetable possible, minimizing runtimes using
a predefined number of VSS, or maximizing the throughput of additional (e.g., freight)
trains. Nevertheless, the focus is to achieve this operational benefit by intelligently defining
a (virtual) block layout. It can be shown that all of those tasks are NP-hard, even if the
routing aspect is fixed. For more details (which are out of the scope of this paper), we refer
to previous work [4].

3 Towards an Optimization Pipeline

The design tasks reviewed above have in common that they consist of two main parts,
namely train routing and placement of VSS sections. At the same time, they affect each
other. The feasibility of a routing depends on the chosen VSS layout, and the necessity of
subsections depends on the routing. Both tasks are NP-hard already on their own; hence, a
joint consideration often makes solving these tasks infeasible. To cope with the corresponding
complexity, we propose using an optimization pipeline to solve the two aspects sequentially
while still getting (close to) optimal solutions.

To this end, we use the following observation: Moving block control can be seen as classic
block signaling where each section is infinitesimally small. In particular, a routing under
moving block is likely feasible if a sufficient amount of block sections is defined. Nevertheless,
finding such a routing is easier on moving block systems because the optimization model
does not have to generate a (virtual) block layout simultaneously. Moreover, there is already
promising work for time-optimal routing on moving block controlled networks [12, 9, 6].
Thus, we propose a two-step approach, quasi an “optimization pipeline”:
1. The trains are routed as if they were to operate under moving block control using the

approaches mentioned above.
2. The routing obtained from Step 1 is fixed, and VSS sections are then generated based on

this assumption.
Based on the above reasoning, we conjecture that Step 1 will likely choose the same routes
as a combined optimization model would have produced (even though there is no theoretical
guarantee). In this case, Step 2 outputs the same optimal solution, but the sequential
approach substantially reduces the complexity compared to the joint consideration.

In order to implement that idea, we can utilize the approach proposed in [5], which is
based on a Mixed Integer Linear Program (MILP) that (in principle) jointly models Steps 1
and 2. At the same time, this approach offers an option to additionally constrain trains
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Figure 2 Velocity Profiles. Figure 3 Experimental Evaluation.

to use predefined routes; hence, it can be used in Step 2. In [5], it was already shown
that this option is beneficial under the assumption that these routes are available “for free”.
Unfortunately, the question of how (and at what additional cost) to obtain this information
has not been investigated before.

Given a solution obtained by Step 1, we can extract the used edges and even more
information to narrow down the search space and guide the optimization algorithm in Step 2.
To this end, observe that the approaches in [12, 9, 6] (which can be used for Step 1) only
model the times and velocities when entering and leaving specific track segments. Say a
train enters a given track segment with velocity v0 and exits at speed v1. The intermediate
positions and velocities can only be interpolated and might not be uniquely defined. To this
end, consider Fig. 2. The orange lines denote the (two) extreme velocity profiles that might
occur on the track segment and correspond to the min- and max-time profiles in [12]. If we
assume that trains only accelerate/decelerate close to the ends and travel at constant line
speed in between, we obtain the dashed blue profiles. Doing so allows assigning a well-defined
approximate velocity profile for any possible timing. Keeping this in mind, we concretize:

Fix Train Orders: To ensure train separation, every formulation has to somehow model
in which order trains traverse specific track segments. This usually adds complexity to
the underlying model. However, we can extract those train orders from a Step 1 solution
and fix it for Step 2, which reduces the feasible region, prunes the search space, and might
lead to faster solving times.
Fix Train Positions and Velocities: Solving Step 2 with the method proposed in [5],
position and velocity are modeled at a discretized set of time points. Using the above
observation, we can extract lower and upper bounds at every time point using the extreme
profiles and add this information as constraints. Theoretically, this could cut off the
optimal solution. However, we conjecture this to be unlikely due to the aforementioned
reasoning that train routes are likely equivalent under both controlling principles. To be
on the safe side, we add an additional tolerance of the distance traveled in one time step
to reduce a possibly negative effect of discretization errors.
Hint Approximate Train Positions: Using the specific timings from Step 1, we can map
precisely one of the approximate velocity profiles mentioned above. At any time, we
can easily calculate exact positions and velocities; however, the actual trajectory might
differ. Because of this, we are not sure enough to add this information using equality
constraints. However, we can pass these as a variable hint to the MILP solver, indicating
that we believe the optimal solution is close to that approximated trajectory. Some
solvers, e.g., Gurobi, can use this information to speed up the optimization process by
adapting heuristics and branching decisions [8].
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Overall, the above ideas allow for a sequential (rather than joint) consideration of the
corresponding design aspects. This may provide the path towards efficiently handling those
design tasks while still maintaining (close to) optimal results.

4 Case Study: Generation of Minimal VSS Layouts

To preliminary evaluate the proposed approach, we tested it on one of the more straightforward
design tasks: generating minimal VSS layouts to make a specific timetable possible. Our
implementation is based on [12, 6] for Step 1 and on [5] for Step 2, which was extended to
include the additional information described in Sec. 3. The code is available as an open-
source implementation on GitHub at https://github.com/cda-tum/mtct. We used the
same benchmark as in [5] and an Intel(R) Xeon(R) W-1370P system using a 3.60GHz CPU
(8 cores) and 128GB RAM running Ubuntu 20.04 and Gurobi version 11.0.2 [8].

The resulting runtimes2 are plotted in Fig. 3 (see previous page). The x-axis shows
timeouts in seconds, whereas the y-axis represents the percentage of instances solved within
the given time or faster. By design, all lines are monotonously increasing, and being on the
left/top is considered to be “better”. For comparison, we solved the benchmark using the
previous approach [5], which jointly considers all decision aspects. Additionally, all instances
were solved using the proposed sequential approach. In Step 2, three variants have been
considered, namely,
1. only fixing the routes (i.e., used edges) without any additional information,
2. additionally, constraining position and speed at every time step, and,
3. finally, incorporating all information described in Sec. 3.
The depicted runtimes are total times, i.e., the sum of both Step 1 and Step 2, as well as
model creation times.

Overall, these initial case studies clearly show the benefit of the proposed pipeline. Even
though this includes two optimization steps, it is consistently and significantly faster than
the previous approach. On the other hand, we can observe that most of this improvement
is due to the separation of routing and VSS placement (orange solid line). The additional
information described in Sec. 3 (dotted lines) seem to further improve the runtime in most
cases; however, the difference is not as big. Moreover, it is not immediately apparent which
of the described information are best to be included. Still, we can conclude that adding all
additional information is never a bad idea. It is just that, in some cases, almost the entire
runtime benefit might be due to fixing edges and not due to additional information. Finding
the best set of parameters within the proposed optimization pipeline is left to future research.

5 Conclusions

With this work, we proposed a step towards an efficient optimization pipeline for designing
railway networks based on train control with hybrid train detection. We demonstrate
how routing information from a different control principle, namely, moving block, can
significantly simplify the optimization model. Even though the resulting approach consists
of two optimization steps, the runtime is significantly reduced. The resulting prototypical

2 We do not show the objective values in detail. The optimal solution was returned independently of the
chosen algorithm in all but one instance. In this one case, fixing position bounds led to an increase
in VSS sections from 6 to 13, even though the route itself was optimal. All other parameters did not
have any effect on the objective. Overall, this shows that the proposed approach often yields (close-to)
optimal results (even though there is no theoretical guarantee).
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implementation is available open-source and included within the Munich Train Control
Toolkit at https://github.com/cda-tum/mtct. Future work focuses on a more sophisticated
implementation and evaluation of the idea presented in this paper. This includes the extension
to more complex design tasks and objectives as well as the development of algorithms tailored
to this framework to use more information on the relevant problem structure already at the
core of their development.
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Abstract
We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-PdM),
where a timetable given by a set of trips must be operated by a fleet of vehicles. Here, the health
states of the vehicles are assumed to be random variables, and their maintenance schedule should be
planned based on their predicted failure probabilities. Utilizing the Bayesian update step of the
Kalman filter, we develop a rolling horizon approach for RSRP-PdM, in which the predicted health
state distributions are updated as new data become available. This approach reduces the uncertainty
of the health states and thus improves the decision-making basis for maintenance planning. To
solve the instances, we employ a local neighborhood search, which is a modification of a heuristic
for RSRP-PdM, and demonstrate its effectiveness. Using this solution algorithm, the presented
approach is compared with the results of common maintenance strategies on test instances derived
from real-world timetables. The obtained results show the benefits of the rolling horizon approach.
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1 Introduction

Rail transport is one of the most positive modes of transport concerning environmental
friendliness and sustainability. Its volume is likely to increase further in the future. This
leads to an increased complexity in the planning of vehicle rotations and results in more
challenging scenarios, particularly with respect to maintenance scheduling.

A maintenance strategy that has become increasingly important in recent years is
predictive maintenance (PdM). One reason is the availability of sensors and the ability
to analyze the data they generate using machine learning. In addition, PdM has obvious
advantages in terms of economic and ecological factors. These advantages are based on the
fact that the costs for spare parts are lower if the currently installed components are used
until the end of their service life. As this also minimizes the number of spare parts used, the
environmental impact is likewise reduced.

To combine the advantages of rail transport with those of PdM, it is necessary to develop
approaches that integrate predictive maintenance planning into the optimization of rolling
stock rotations.
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One problem that arises in the application of PdM strategies is that the considered health
states are usually unobservable quantities that have to be derived from measurements using
some model. There are various steps in this process that introduce uncertainty into the
obtained states. For example, measurement errors may occur when recording the observable
quantities, or the employed model may be imprecise or only approximate. Since the states
are subsequently projected into the future to serve as a basis for maintenance decisions, and
the exact operating conditions cannot be known at that point in time, the uncertainty of the
health states increases the further they are projected into the future. This uncertainty must
be taken into account and addressed when optimizing the vehicle rotations.

Contribution

We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-
PdM), as presented in [31], and propose a rolling horizon approach that reduces the uncertainty
of the health states and their future predictions. For this purpose, the RSRP-PdM is solved
and the determined vehicle rotations are partially operated until measurements of the health
states become available, for example, by analyzing sensor data collected during operation
when the vehicles are parked overnight. Using these observations of the health conditions,
the current predictions of the states are then updated by Bayesian inference. This reduces
the variance of the health states and results in a subsequent RSRP-PdM instance.

Furthermore, we introduce a local neighborhood search, which is a modification of the
heuristic presented in our earlier paper [29], to solve the occurring RSRP-PdM instances.

Outline

The article is structured as follows: First, in Section 2, we review and discuss the literature on
the two arising tasks, i.e., the rolling stock rotation planning problem (RSRP) and predictive
maintenance (PdM). Next, the problem formulation of RSRP-PdM, as stated in [31], is
reproduced in Section 3. In Section 4, we describe the utilized Bayesian inference procedure.
We provide a description of the rolling horizon approach in Section 5 and present a heuristic
that extends the algorithm proposed in [29]. Section 6 then introduces the considered
maintenance strategies, which are compared with each other in the subsequent computational
experiments. Finally, we draw a conclusion on the obtained results in Section 7.

2 Related Work

Both aforementioned topics, i.e., PdM as well as RSRP, have already been thoroughly
described and studied in the literature. In the following, we provide a brief overview of
articles dealing with these two subjects.

The Rolling Stock Rotation Planning Problem (RSRP)

In RSRP, we are given a fleet of vehicles and a timetable whose trips must be operated.
Furthermore, maintenance requirements are defined that the vehicles have to fulfill. The
task is then to determine rotations for the rolling stock that operate all trips, satisfy the
specified maintenance conditions, and have minimum costs. The articles addressing RSRP
can be categorized according to the following three aspects:

Regarding the model used to represent the vehicle rotations.
According to the applied solution approach.
Based on the employed maintenance strategy.



F. Prause and R. Borndörfer 13:3

For a survey of the RSRP literature, we refer to [32]. An extensive comparison of different
articles with an emphasis on additionally considered constraints can be found in [31].

The RSRP is usually modeled by space-time graphs, where the nodes correspond to
events specified by a location and a time point, and the arcs represent the different actions
of the vehicles, e.g., [8, 25, 38]. Then, there is the sequence model, in which the nodes depict
the trips that need to be operated and the arcs indicate whether two tasks can be conducted
in succession, see [6]. Next, we have the hypergraph model utilized by [4, 18, 32]. This
model is a generalization of the space-time graph in which the hyperarcs represent vehicle
compositions and their orientation during operation. Finally, there is the state-expanded
event-graph, see [29, 31]. This is a space-time graph that is extended by additional dimensions
to implicitly track the resource flow that enforces the maintenance constraints. In contrast to
the previously mentioned approaches, this model allows for non-linear degradation functions,
which is of particular relevance as the wear of mechanical components often exhibits such a
behavior.

In all these models, the solutions to RSRP are given by flows that cover the trip arcs or
nodes sufficiently often and satisfy the additional maintenance or capacity constraints. These
induced flow problems are then solved by using branch and bound [8], the direct application
of mixed-integer linear programs [17, 20, 21, 34, 39], column generation [2, 4, 32], branch
and price [14, 25, 32], or the utilization of heuristics [5, 6, 18, 38].

The literature primarily employs preventive maintenance strategies. These include time-
based maintenance [2, 4, 8, 14, 32] and distance-based maintenance [2, 4, 17, 21, 25, 32].
Recently, also condition-based and predictive maintenance regimes have been introduced for
rail transport. Here, the maintenance decisions are either based on the vehicle states [5, 20],
a classification of the vehicle conditions into degradation stages [39], or the remaining useful
life (RUL) of the vehicles [34]. Finally, there are solution approaches that schedule the
maintenance based on the predicted failure probability of the rolling stock [29, 31].

Predictive Maintenance (PdM)

The literature regarding PdM generally focuses on the prediction of the RUL or indices
representing the future health conditions of the vehicles. We refer to [22] for different concepts
of health indices. These indices usually do not consider the vehicles themselves, but rather
the mechanical, electrical, or hydraulic components that are installed in them. The employed
approaches are often distinguished into data-driven and model- or physics-based ones, see [1].
In addition, there are hybrid methods that combine both. A comprehensive literature review
on PdM can be found in [13].

Data-driven models usually rely on machine learning techniques like classical neural
networks (NNs), recurrent neural networks such as long short-term memory (LSTM) net-
works [10], support vector machines (SVMs) and decision trees [23], or deep learning [11].
For a survey of data-driven approaches applied in the railroad sector, see [9].

Model-based approaches, on the other hand, are based on some assumptions regarding
the degradation process and often utilize Bayesian updating procedures [7, 16, 27].

Finally, there are hybrid approaches that combine model-based methods with machine
learning. These include, for example, relevance vector machines, i.e., Bayesian variants of
SVMs [35], Bayesian inference applied to the output of NNs [15, 26], or the assumption of a
piecewise linear degradation behavior, followed by the subsequent combination of the outputs
of multiple NNs using a Kalman filter [24]. In addition, a concept for extending deep learning
models to Bayesian NNs is presented in [28], which enables the NNs to determine probability
distributions for the predicted RUL.
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Note that the hybrid approaches and the Bayesian methods have the advantage of
obtaining a probability distribution for the RUL that captures the uncertainty of the
prediction.

3 Problem Description

We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-
PdM), as presented in [31], and recall its description in the following. Suppose we are given
a train timetable T consisting of various trips that need to be operated, and we have a
homogeneous fleet of vehicles V at our disposal to conduct them. Each trip t ∈ T features a
departure and an arrival location, i.e., ld

t , la
t ∈ L, as well as a departure and an arrival time,

i.e., kd
t , ka

t ∈ K. Here, L is the set of locations and K is the time horizon, which consists of
a finite set of time points. Furthermore, we associate an integer nt ∈ Z>0 with each trip,
which indicates how many vehicles are required to operate t.

The task of RSRP-PdM is not only to find a feasible sequence of trips for each vehicle,
i.e., a set of trips in which each pair of time-consecutive trips can be operated in succession,
but also to schedule the maintenance of the vehicles. The maintenance actions can be carried
out at the maintenance locations LM ⊆ L and should be based on the predicted health states
of the vehicles. These health states are considered to be random variables since they cannot
be measured directly and are thus prone to measurement, determination, and prediction
errors. In addition, they are assumed to be normally distributed, i.e., Hv,k ∼ N (µ, σ2) for
some µ ∈ [0, 1] and σ2 > 0. Hence, all health states are distributed by the family of normal
distributions with parameter space Θ = [0, 1]× R>0 and can thus be characterized by their
corresponding parameters θ ∈ Θ. In this sense, we assume that the initial state of each
vehicle v ∈ V is given by an initial parameter θv,0 ∈ Θ that determines Hv,0. Note that a
health value of one corresponds to a condition that is as good as new, while a value of zero
or less signifies that the vehicle has a breakdown. The failure probability of a vehicle at a
certain time is therefore given by

Pf (v, k) := P[Hv,k ≤ 0] =
0∫

−∞

exp
(
− µ2

v,k

2σ2
v,k

)
√

2πσ2
v,k

dx = 1
2

1 + erf

 −µv,k√
2σ2

v,k

 ,

where erf is the Gauss error function.
The deterioration of the vehicles and their maintenance is then described by modifying

the parameters that represent their health states. Therefore, we associate a degradation
function ∆t : Θ → Θ with each of the trips t ∈ T , whose application describes the wear
that occurs during the operation of t. Let τt := ka

t − kd
t be the duration of t, then the

parameters of v after conducting t are determined by θv,k+τt
= ∆t(θv,k). To obtain a

reasonable deterioration behavior, we further demand µv,k+τt ≤ µv,k and σ2
v,k+τt

≥ σ2
v,k

for (µv,k+τt
, σ2

v,k+τt
) = ∆t(µv,k, σ2

v,k), i.e., the mean of the health state decreases, while the
uncertainty about the condition grows. Similarly, we can associate degradation functions
with the other activities of the vehicles such as waiting or deadheading, which might depend
on the duration or the mileage of the corresponding task. Maintenance is also described
by a wear function, which does not cause a deterioration of the condition, but resets the
parameters of the health state to a certain value θm ∈ Θ.

We further assume that we occasionally receive measurements yv,k of the true health
value of v at time k that exhibit noise originating from the measuring process. This noise is
supposed to be normally distributed around zero with known variance σ2

y > 0.
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Combining these notions, the task of RSRP-PdM is to determine a feasible assignment of
the trips to the vehicles such that each trip is operated by the required number of vehicles.
The objective here is to find an assignment of minimum total cost that takes the potential
failure costs into account, i.e., the product of the predicted failure probability during the
operation of the trips and the costs associated with the breakdown of a vehicle. Finally,
we require that the rotations must be balanced, i.e., the number of vehicles located at each
destination at the beginning and at the end of the time horizon have to coincide. This
constraint is important as it gives rise to schedules that can be repeated periodically.

4 Bayesian Inference

In RSRP-PdM, as described in Section 3, the health states of the vehicles and their predictions
are assumed to be random variables to reflect their uncertainty. Since these random variables
are distributed by members of a family of probability distributions, their associated probability
density functions (PDFs) can be characterized by their parameters, and the degradation
functions describe how these parameters change. The deterioration process can therefore
be understood as a dynamical system in which the parameters of the vehicle conditions
represent the system states, and the degradation functions define the state transitions.

One problem that arises in practice is that the degradation functions are also subject to
uncertainty since they can only be derived from historical data, and the actual operating
conditions are unknown at the time of planning. If this uncertainty is factored in, the variance,
and thus the uncertainty, of the predicted health states increases the further into the future
they are projected. However, these predicted conditions form the basis for maintenance
planning. Therefore, it should be attempted to reduce their variance to obtain more accurate
estimates of the actual health states. This can be achieved by updating the predicted states
with measurements, which is a filtering problem, see [36]. Using standard terminology, we
utilize the rule of Bayes for these updates, see, for example, [36].

▶ Theorem 1 (Rule of Bayes [36]). Let θ and y be random variables representing a parameter
estimate and a measurement, then it holds

P[θ | y] = P[y | θ] · P[θ]
P[y] ∝ P[y | θ] · P[θ].

Here, P[θ] is the prior belief about θ before obtaining measurement y, P[y | θ] describes
the likelihood, i.e., the relationship between the true state and y, which represents the
measurement error. P[θ | y] is the belief about θ after the information about y is incorporated,
i.e., the posterior belief, and P[y] is the marginal probability, which can be interpreted as
a normalization constant ensuring that P[θ | y] has an integral of one. Furthermore,
f(x) ∝ g(x) signifies that f(x) is proportional to g(x), i.e., there exists a constant c ∈ R
such that f(x) = c · g(x) for all x ∈ R. For further details, we refer to [36].

We now transfer the notions of Theorem 1 to the situation in RSRP-PdM. Recall that
we assumed in Section 3 that the health states are normally distributed with a mean
between zero and one. Suppose we are given a vehicle v at time k0 with health state
Hv,k0 ∼ N (µk0 , σ2

k0
) that operates some services S = {s1, . . . , sn}, i.e., a set consisting of

trips, waiting times, deadhead trips, and maintenance actions in their chronological order.
Then, a prediction of the health state of v after the operation of S can be determined by
applying the degradation functions of the services in S to the parameters characterizing
Hv,k0 . If we set ∆S := ∆sn ◦ · · · ◦∆s1 and k := k0 + τs1 + · · ·+ τsn , the predicted state is
therefore Ĥv,k ∼ N (µ̂k, σ̂2

k) with (µ̂k, σ̂2
k) = ∆S(µk0 , σ2

k0
).
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Here, Ĥv,k represents the current belief about the true health state Hv,k. If we now
obtain a measurement y of the true health state with a measuring error whose variance is
specified by σ2

y > 0, then we have y | Ĥv,k ∼ N (Ĥv,k, σ2
y). Thus, we can apply the rule of

Bayes to obtain Hv,k = Ĥv,k | y. Since the considered random variables are all normally
distributed, this inference corresponds precisely to the update step of the Kalman filter, as
described in [36].

▶ Definition 2 (Kalman Filter Update Step). Let µ̂ ∈ Rn be the predicted mean of the
estimated state and P̂ ∈ Rn×n the corresponding predicted covariance matrix. Furthermore,
let H ∈ Rm×n be the measurement model, y ∈ Rm a measurement of the true state and
R ∈ Rm×m the corresponding covariance matrix of the measurement. Then, the Kalman
filter update step is defined as follows:

K = P̂HT
(

HP̂HT + R
)−1

µ = µ̂ + K (y −Hµ̂)

P = (In −KH) P̂,

where K ∈ Rn×m is the Kalman gain, µ ∈ Rn is the updated mean of the estimated state,
P ∈ Rn×n is the corresponding updated covariance matrix, and In ∈ Rn×n is the identity
matrix of size n.

Considering Definition 2 for the one-dimensional case and assuming that the measurement is
a direct observation of the true state, i.e., H = 1, we obtain the following corollary:

▶ Corollary 3. Let µθ ∈ R be the predicted mean of the estimated state and σ2
θ > 0 the

corresponding predicted variance. Furthermore, let µy ∈ R be a direct measurement of the
true state and σ2

y > 0 the corresponding variance of the measurement noise. Then, applying
the Kalman filter update step yields the updated state estimate

X ∼ N

(
µθσ2

y + µyσ2
θ

σ2
θ + σ2

y

,
σ2

θσ2
y

σ2
θ + σ2

y

)
.

The inferred health states can therefore be directly determined by applying Corollary 3.
Moreover, they are also normally distributed and thus members of the considered family of
probability distributions.

An example illustrating the impact of inference is given in Figure 1. The two graphs show
the development of a vehicle’s predicted/updated health state over time. The corresponding
PDFs are given from right to left and show the state after the operation of ten trips in
each case, starting with the initial health Hv,0 on the far right. It can be observed that the
variance in the scenario without inference continues to increase, while it remains in the same
order of magnitude if the states are updated with measurements after every ten trips. As a
result, Hv,50 has a high probability of taking values between 0.25 and 0.45 in the second case,
whereas in the first case, it contains essentially no information since its variance is too large.

Application to Non-normally Distributed Health States

However, the health states do not necessarily have to be represented by normally distributed
random variables. Other possible models could, for example, be based on families of
probability distributions that are used in reliability theory, such as the family of Weibull or
gamma distributions, see, e.g., [12].
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(a) PDF of the predicted health state over time,
without state updates.

(b) PDF of the health state over time, using infer-
ence after every tenth trip.

Figure 1 Comparison of the health state PDF development over time, with and without inference.

Furthermore, it would also be conceivable that the states are distributed by discrete
distributions or PDFs that do not belong to any common family of distributions. In these
cases, we have to choose a family of distributions whose members fit the given data as well
as possible since the employed approach is based on the assumption that the PDFs of the
random variables representing the health states all belong to a parametric family.

Suppose now that we have determined such a family of distributions for modeling the
health states and are able to obtain measurements of the true states, which are either given
by point estimates with a certain measuring error or described by a PDF. If we then apply the
rule of Bayes to infer the posterior of the health state after incorporating the measurement, as
described above, the resulting PDF does not necessarily have to be a member of the selected
family. It may even be that it does not belong to any common family of distributions.

In these cases, the posterior of the state would have to be approximated by a member of
the considered family of distributions. This would, for example, be possible by employing a
Markov chain Monte Carlo algorithm to sample from the posterior distribution of the health
state. Subsequently, we determine the PDF of the family that best fits the obtained data
w.r.t. some statistical distance. Another option would be the utilization of a variational
Bayesian method, see, e.g., [37].

5 Solution Approach

In this section, we introduce the rolling horizon approach. This algorithm determines a
solution for RSRP-PdM by sequentially generating and solving sub-instances. Here, the
instances occurring in each iteration are solved by a heuristic, which is also described below.

5.1 The Rolling Horizon Approach
The idea of the rolling horizon approach is the following: Suppose we have a solution for
RSRP-PdM where the expected deterioration caused by the trips is only known approximately.
Then, the maintenance services of the vehicles are planned entirely based on predictions
of the health states, whose uncertainty increases the further they are projected into the
future. However, if it is possible to occasionally obtain measurements of the health states
and incorporate them into the planning of the rotations, these can be adjusted such that the
vehicles are assigned to trips that better match their conditions. In addition, maintenance
needs can be better estimated, and the vehicles can be serviced at more appropriate times.
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This can be accomplished by first solving the initial RSRP-PdM instance (solveInstance)
and operating the resulting vehicle rotations until measurements y of the health states become
available at a certain time ky (operateRotations). Subsequently, a new problem instance
is created by restricting the timetable of the considered instance to trips whose departure
time is greater than or equal to ky (restrictTrips). The positions of the vehicles are
then updated by assigning them the location at which they are at time ky or at which they
terminate the operation they are conducting at that time (updatePositions). In addition,
the predicted health states of the vehicles are updated with y using Bayesian inference, as
described in Section 4 (inferStates). This procedure is outlined in Algorithm 1 and results
in a new RSRP-PdM instance, which is then considered in the next iteration of the approach.
The algorithm stops when all trips of the original instance have been completed.

Algorithm 1 One iteration of the rolling horizon approach.

Input : RSRP-PdM instance I, measurements y of the health states at time ky

Output : Updated RSRP-PdM instance for the remaining time
1 s← solveInstance(I)
2 operateRotations(s, ky)
3 I ′ ← restrictTrips(I, ky)
4 I ′ ← updatePositions(I ′, s, ky)
5 I ′ ← inferStates(I ′, y)
6 return I ′

5.2 A Local Neighborhood Search That Considers Transition Costs
To solve the occurring RSRP-PdM instances, we utilize a modified version of the multi-
swap heuristic proposed in [29]. This algorithm initially solves the underlying RSRP of
the instance using an integer linear program that neglects the maintenance constraints.
Afterwards, maintenance is scheduled in a second step by determining a shortest path in
the state-expanded event-graph (SEEG). Then, a local neighborhood search is employed to
improve the rotations of the current solution, where maintenance planning is again done by
searching for a shortest path in the SEEG.

This local neighborhood search works as follows: Given two vehicle rotations, the first
step is to determine the possible swap positions, i.e., the times at which both vehicles can
reach and operate the next trip of the other. This groups the trips of the rotations into sets
that can be exchanged without violating the feasibility of the corresponding vehicle schedules.
Subsequently, the generated subsets of trips are randomly swapped to obtain new rotations.
An example of this procedure is shown in Figure 2a. Here, the rotations of vehicles v1 and
v2 (top) are first grouped into subsets of interchangeable trips (middle). Afterwards, some of
these related subsets are swapped to create two new vehicle schedules (bottom).

In [29], the swapping decisions are sampled from a discrete uniform distribution U{0, 1},
i.e., the swaps are performed with a probability of one-half. However, some swaps are more
beneficial than others in terms of costs, and their selection may accelerate the process of
finding good solutions. Therefore, the transition costs of the vehicles should be included
when determining the exchange probabilities. These costs are referred to as cij ∈ R≥0, for
i, j ∈ {1, 2}, and are associated with the waiting times and deadhead trips that are necessary
for vehicle vi to reach the next trip of vehicle vj . For example, consider the scenario depicted
in Figure 2b with costs c11 = c22 = 1 and c12 = c21 = 10. If we disregard maintenance
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v1

v2

v1

v2

v1

v2

(a) The various stages of the local neighborhood search.

c11

c12

c21

c22

(b) The costs used in the weighted variant
of the swapping procedure.

Figure 2 Visualization of the stages of the employed heuristic (a) and of the transition costs of
the vehicles between trip subsets of the second stage (b).

decisions, a swap of the second pair of trip subsets would lead to an increase in transition
costs. Therefore, it would not be advisable to swap with a probability of one-half at this
position. For this reason, we use a probability of

Ps =
{

c11+c22
c11+c12+c21+c22

if c11 + c12 + c21 + c22 ̸= 0
1
2 else

for sampling the swapping decisions. However, to ensure a certain degree of exploration, the
Ps were finally rounded to values in [0.05, 0.95]. The swapping decisions for each pair of trip
subsets are then made in chronological order with the associated probability Ps. Here, we
set Ps := 1− Ps if the previous decision was a swap to account for the resulting exchange of
c11 and c12, as well as of c22 and c21.

A comparison of the solutions obtained with the multi-swap heuristic using this swapping
procedure with those of the algorithm from [29] can be found in Appendix A. The results
demonstrate the effectiveness of the modified swapping approach.

6 Computational Results

In this section, we examine the results of the Bayesian rolling horizon approach proposed in
Section 5.1. For this purpose, we compare its solutions with those of two other maintenance
strategies, namely predictive maintenance without Bayesian inference and preventive main-
tenance. To solve the occurring RSRP and RSRP-PdM instances, we apply the weighted
multi-swap heuristic presented in Section 5.2 and use scenarios derived from the instances
given in [30] for testing.

Computational Setup

The data structures and algorithms were implemented in Julia v1.9.4 [3], and Gurobi
v10.0.2 [19] was employed to solve the integer programs that are used to find initial rotations
for the heuristics. The computations were conducted on a computer with Intel(R) Xeon(R)
Gold 6342 @ 2.80GHz CPUs, eight cores, and 64GB of RAM. Finally, all approaches had
a time limit of seven hours, with the rolling horizon approach using one hour to solve the
RSRP-PdM instance of each day of the given week.
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6.1 Test Instances

The considered test scenarios, used for the evaluation and comparison of the maintenance
regimes, are based on the instances T1 – T6 constructed in [30]. Each of them has an
individual timetable, which needs to be completed within one week, and contains the
information about the available fleet, i.e., the operating costs of the vehicles and their initial
positions. In addition, the distances between the considered locations and the costs associated
with trips, waiting times, deadheading, and maintenance are indicated. The costs for vehicle
breakdowns are also defined.

The components that specify the conditions of the vehicles are their doors, and it is
assumed that they can undergo 1,500 cycles before failing. This assumption is based on
the real-world data used in [33] and influences the number of required maintenance services.
Furthermore, the expected deterioration caused by the operation of each trip, i.e., the number
of expected cycles, is given by the mean and variance of a normal distribution derived from
the passenger volume at the served stations, see [30]. Note that the vehicle conditions in the
conducted computations are assumed to deteriorate only during the operation of the trips.
In the original instances, a non-linear degradation behavior is considered, whereas we assume
a linear one, as this improves the comparability of the obtained solutions.

From each of these instances, we derive ten scenarios by sampling the initial states
of the vehicles, i.e., the number of already performed cycles, from the discrete uniform
distribution U{0, 1200}. In addition, the number of cycles that actually arise during each
trip is sampled from the corresponding normal distribution. These values are later used to
determine whether vehicle failures occur during the operation of the obtained schedules and
to derive the measurements utilized in the Bayesian approach. This gives rise to the various
scenarios T1-01 – T6-10, which are used for the computations below.

Furthermore, we assume that, if the states are considered as random variables, the initial
states of the vehicles, the conditions after maintenance, and the measurements each have
a variance of 25, i.e., the corresponding values are accurate to within ten cycles with a
probability of 90%. Finally, for the predictive approaches, we apply a transformation that
converts the number of cycles into a health value between zero and one. Here, zero cycles
correspond to a new condition, i.e., a value of one, while 1,500 cycles correspond to a vehicle
failure and thus a value of zero. The variances were also adjusted accordingly.

6.2 Compared Maintenance Strategies

Now, we describe the maintenance strategies considered in the computational experiments.
Since we assume a linear degradation behavior, one-dimensional quantities simply have to be
added. However, if the states and occurring cycles of the trips are considered as random
variables, the convolution of their PDFs must be determined. Nevertheless, since both are
presumed to be normally distributed, this convolution can be calculated by summing the
mean values and the variances of the corresponding PDFs.

Preventive Maintenance

The first considered maintenance strategy is preventive maintenance (PM), which represents
the status quo of maintenance planning. In this approach, one-dimensional quantities such
as the traveled distance or the elapsed time are usually considered, and maintenance is
performed before the values exceed a certain threshold.
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Applied to the considered scenarios, we assume that maintenance decisions are based on
the number of operated cycles, but only the mean values of the distributions characterizing
the deterioration due to the trips are used. Since the vehicles are assumed to complete 1,500
cycles before failing, we must first define a suitable threshold to avoid vehicle breakdowns.
For this purpose, we examine the preventive strategy with safety margins of 5% and 10%.

Based on the 3σ rule, i.e., the fact that approximately 99.7% of the values in a normal
distribution lie within an interval of three standard deviations around the mean, we require
that µ + 3σ ≤ 1, 500 holds for all parameters that the predicted health state of a vehicle
could possess before maintenance. Let v be a vehicle in new condition, i.e., with parameters
(µ, σ2) = (0, 25). Then, we apply the degradation functions of randomly selected trips to
v until the mean value of its predicted state is 1,350 and 1,425, respectively. With 50,000
repetitions, this results in a maximum variance of 750 or 800. Thus, a margin of 5% does
not fulfill the property required above and might therefore lead to failures. Hence, we use a
threshold of 1,350 cycles, i.e., a safety margin of 10%, for PM.

Predictive Maintenance

The next strategy used is the direct application of predictive maintenance (PdM), as described
in [29, 31]. Here, maintenance planning is based on the predicted failure probabilities of
the vehicles. However, the health states are not updated. Since the degradation behavior
is assumed to be linear, the deterioration of a vehicle v due to a trip t is expressed by the
convolution of the PDF of the random variable representing the health state of v with the
PDF of the random variable describing the expected number of cycles occurring during the
operation of t. As previously mentioned, the initial vehicle states and the conditions after
maintenance are assumed to have a variance of 25.

Predictive Maintenance with Bayesian Inference

Finally, we consider the maintenance strategy developed in this article, namely predictive
maintenance with Bayesian inference (PdM-B). For this, we utilize the predictive mainte-
nance regime PdM described above but additionally assume that it is possible to receive
measurements of the health states when the vehicles are parked overnight. As explained in
Section 4, we assume that these measurements are normally distributed and have a fixed
variance σ2

y = 25, which reflects the measuring error. After obtaining the measurements of
the states, we apply Algorithm 1, using Corollary 3 to update the predicted vehicle states
and reduce their variance. This yields a new RSRP-PdM instance, which is subsequently
solved.

6.3 Results
The results of the computations are summarized in Table 1 and show the number of
maintenance services and the total costs of the solutions after averaging the scenarios derived
from each instance. The best results for each instance are marked in bold. A more detailed
itemization of the costs by type can be found in Tables 3–5 in Appendix B. Here, only the
actually incurred costs are taken into account, i.e., the expected failure costs, which are
considered in the predictive maintenance strategies for maintenance planning, are ignored.
In addition, all determined vehicle rotations were compared with the number of cycles
that actually occurred, i.e., the number of cycles that were sampled for each trip when the
scenarios were created. However, none of the generated solutions resulted in a vehicle failure.

ATMOS 2024



13:12 A Bayesian Rolling Horizon Approach for RSRP-PdM

Table 1 Number of maintenance services and total costs of the solutions generated by the
considered maintenance strategies after averaging the scenarios of each instance.

Instance Maintenance services Total costs
PM PdM PdM-B PM PdM PdM-B

T1 6.3 5.8 5.8 272,822 271,781 271,937
T2 4.9 4.9 4.9 462,219 466,564 458,174
T3 14.9 13.3 13.2 1,421,806 1,411,300 1,412,457
T4 6.0 5.5 5.1 212,015 212,069 211,831
T5 7.0 6.8 6.2 346,513 344,891 342,976
T6 21.1 18.8 18.7 2,369,415 2,377,673 2,375,013
Σ 60.2 55.1 53.9 5,084,790 5,084,278 5,072,388

A comparison of PM with PdM shows that both approaches achieve better results in terms
of costs than the other for three of the six instances. Overall, however, they have almost the
same total costs. The reason for this is that PdM reduces the number of maintenance services
but does so at the expense of higher deadhead costs, compare Tables 3 and 4. Nevertheless,
excluding instance T2, PdM performed fewer maintenance services for each instance and was
able to reduce the total number of service actions by 5.1.

PdM-B, on the other hand, is able to reduce the number of conducted maintenance
operations even further. To be precise, an average of 6.3 fewer maintenance operations are
required compared to PM. Moreover, it can compensate for the disadvantage of PdM and
reduces the deadhead costs to such an extent that it generates the vehicle schedules with
the lowest total costs. It was thus able to achieve lower costs than PM for all instances
except T6 and reduced the number of maintenance services for all instances except for T2.
In particular, the number of service actions for instances with many vehicles, i.e., for T3 and
T6, is reduced. Looking at the entire network, i.e., all instances combined, PdM-B was able
to decrease the number of maintenance actions by 10.5%, while the costs are 0.24% lower. If
the fixed costs, i.e., the costs required to operate the trips, are neglected, the overall cost
advantage increases to 0.97%.

The cost differences, expressed as percentages, of PdM-B compared to PM and PdM are
shown in Table 6. These differences range between -1.02% and 0.24% and between -1.8%
and 0.08%, respectively. If the fixed costs are again excluded, the cost advantages for the
individual instances increase to up to 5.72% and 8.05%, respectively.

The main cost benefits of PdM-B in comparison to PM are less maintenance (T1), lower
deadhead costs (T2), or the combination of both (T3 and T5), see Tables 3 and 5. For
T4, the costs for maintenance and deadhead trips are also decreased, but PdM-B deploys
additional vehicles that may be necessary to absorb a more severe deterioration identified
by the incorporation of the measurements. In addition, some maintenance can be spared
by using these vehicles, which also reduces the costs. In the case of T6, PdM-B achieved
solutions with higher costs than PM, which is due to the increased deadhead costs, although
the number of maintenance tasks could be lowered.

Compared to PdM, PdM-B achieves lower costs for four of the six instances and lower
costs overall, specifically 0.23% less. When the fixed costs are neglected, the benefit is 0.93%.
In addition, the number of performed maintenance actions was reduced by a total of 1.2.
The cost savings are again due to lower deadhead costs (T2 and T6) and to a combination of
lower deadhead and maintenance costs (T4 and T5). For T1 and T3, the solutions generated
by PdM-B have slightly higher costs than those generated by PdM. In the first case, this
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is due to the utilization of additional vehicles, which reduces deadhead costs, while in the
second case, slightly higher deadhead costs are accepted to assign the vehicles to trips that
better match their conditions.

7 Conclusion

In this article, we presented a rolling horizon approach for RSRP-PdM that incorporates
health state measurements using Bayesian inference. We also extended the local neighborhood
search from [29] to include transition costs when determining the swapping probabilities.

For this purpose, we first gave a literature review of the two topics RSRP and PdM. Then,
we recalled the problem formulation of RSRP-PdM and introduced the notions that arise in
the context of Bayesian inference. Subsequently, the Bayesian rolling horizon approach was
introduced and we described the modified local neighborhood search. Finally, we conducted
computational experiments with three different maintenance strategies, namely preventive
and predictive maintenance, as well as predictive maintenance with Bayesian inference, and
compared their solutions.

The results show that the iterative scheduling of the Bayesian approach is advantageous
over both preventive and predictive maintenance without updating. Not only can the number
of maintenance actions be reduced by 10.5% compared to the conventional strategy of
preventive maintenance, but also the total costs of all instances combined are decreased by
0.24%, or by 0.97% if the fixed costs are excluded. In comparison to predictive maintenance
without updating, the costs can likewise be reduced by 0.23% and 0.93% respectively due to
fewer deadhead trips, while the number of maintenance operations is also slightly decreased.
This demonstrates the effectiveness and benefits of the Bayesian rolling horizon approach.

In addition, we have shown that taking transition costs into account improves the
performance of the multi-swap heuristic, both in terms of the solution value after a short
and a long computation time.
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A Computational Evaluation of the Weighted Swapping Procedure

In the following, we evaluate the effectiveness of the multi-swap heuristic utilizing the
weighted swapping procedure presented in Section 5.2. We will refer to this approach as
weighted multi-swap (WMS) and compare its results with those obtained by the algorithm
from [29]. This uses a swapping probability of one-half and is therefore denoted as equal
probability multi-swap (EPMS) in the following.

For testing, we use the instances of the preventive maintenance strategy described in
Section 6. The detailed results are listed in Appendix A and show the values of the solutions
obtained by EPMS and WMS after 360 seconds and after one hour of computation time.
The best results for each instance are marked in bold.

We can observe that EPMS finds the best result after 360 seconds only eight times and
that it was able to determine the best solution after one hour for only eight scenarios. The
majority of these cases occur for instances T3 and T4, both of which are medium-sized
scenarios in terms of the number of trips. In addition, there is a tie for the best solution for
six and seven instances, respectively. WMS, on the other hand, could find the best solution
after 360 seconds for 46 of the scenarios and achieved a better result after one hour for 45 of
the 60 instances. These results show that the cost-oriented swapping used in WMS offers an
advantage over the procedure employed in EPMS, both in terms of finding good solutions
quickly and finding solutions with low costs.

Table 2 Results of EPMS and WMS after 360 seconds and after one hour of computation time.

Instance EPMS after 360 s WMS after 360 s EPMS WMS

T1-01 274,016 272,090 272,514 272,090
T1-02 276,858 276,120 276,544 276,120
T1-03 276,684 275,607 275,836 275,607
T1-04 272,514 272,090 272,514 272,090
T1-05 272,514 272,090 272,090 272,090
T1-06 270,075 270,075 270,075 270,075
T1-07 277,825 276,544 276,544 276,544
T1-08 272,514 272,090 272,090 272,090
T1-09 272,090 272,090 272,090 272,090
T1-10 270,075 270,075 270,075 270,075

T2-01 507,420 494,036 484,718 468,615
T2-02 511,781 488,175 496,993 474,073
T2-03 503,256 492,784 493,873 471,772
T2-04 486,411 476,156 480,048 468,335
T2-05 498,193 466,304 485,160 459,522
T2-06 500,491 482,167 480,559 472,028
T2-07 506,559 485,151 489,451 474,629
T2-08 496,731 473,915 484,462 461,136
T2-09 499,435 475,127 486,415 461,121
T2-10 500,269 484,520 481,735 468,810

Continued on next page
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Table 2 – continued from previous page

Instance EPMS after 360 s WMS after 360 s EPMS WMS

T3-01 1,443,584 1,417,645 1,429,586 1,415,815
T3-02 1,466,915 1,436,870 1,459,579 1,435,336
T3-03 1,471,162 1,486,642 1,446,601 1,458,286
T3-04 1,465,143 1,442,264 1,448,476 1,433,629
T3-05 1,510,924 1,441,830 1,469,280 1,432,776
T3-06 1,456,730 1,475,282 1,437,910 1,456,083
T3-07 1,470,481 1,443,980 1,447,427 1,441,852
T3-08 1,430,814 1,424,607 1,422,649 1,424,329
T3-09 1,433,021 1,419,417 1,427,896 1,418,864
T3-10 1,449,332 1,412,973 1,427,362 1,411,817

T4-01 216,340 216,664 214,181 215,506
T4-02 219,954 221,504 218,414 216,350
T4-03 222,980 218,718 220,409 216,814
T4-04 219,139 222,581 217,756 218,094
T4-05 220,460 221,212 219,281 219,683
T4-06 219,149 219,112 216,181 215,830
T4-07 219,666 218,058 216,285 216,839
T4-08 216,103 218,168 215,807 215,936
T4-09 223,116 220,051 221,855 215,975
T4-10 219,098 217,057 216,856 214,176

T5-01 347,529 346,924 347,356 346,111
T5-02 349,658 349,658 349,658 349,658
T5-03 349,642 348,547 349,359 347,590
T5-04 345,630 345,630 345,630 345,175
T5-05 357,457 350,891 356,291 350,891
T5-06 343,027 342,714 343,027 342,052
T5-07 358,069 352,783 354,852 351,553
T5-08 347,051 345,996 347,002 345,996
T5-09 351,079 350,766 351,079 350,417
T5-10 345,039 345,039 345,039 343,742

T6-01 2,394,624 2,384,517 2,379,655 2,370,161
T6-02 2,450,322 2,430,110 2,432,481 2,392,949
T6-03 2,400,259 2,390,905 2,389,128 2,380,847
T6-04 2,390,995 2,390,943 2,390,995 2,370,129
T6-05 2,397,184 2,384,236 2,387,226 2,372,693
T6-06 2,442,339 2,426,068 2,416,792 2,390,244
T6-07 2,393,514 2,404,469 2,389,038 2,382,052
T6-08 2,393,010 2,389,088 2,384,886 2,373,894
T6-09 2,428,272 2,422,976 2,415,699 2,389,409
T6-10 2,386,473 2,382,799 2,377,996 2,362,586
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B Tables of Computational Results

Table 3 Costs by type after averaging the scenarios of each instance when the preventive
maintenance strategy (PM) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,507 1,342 12,600 247,373 272,822
T2 64,438 25,595 9,800 362,386 462,219
T3 308,384 58,388 29,800 1,025,235 1,421,806
T4 20,137 14,248 12,000 165,630 212,015
T5 41,425 6,459 14,000 284,629 346,513
T6 536,986 63,994 42,200 1,726,235 2,369,415

Σ 982,877 170,025 120,400 3,811,487 5,084,790

Table 4 Costs by type after averaging the scenarios of each instance when the predictive
maintenance strategy (PdM) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,507 1,301 11,600 247,373 271,781
T2 64,438 29,939 9,800 362,386 466,564
T3 308,384 51,082 26,600 1,025,235 1,411,300
T4 20,137 15,303 11,000 165,630 212,069
T5 41,425 5,237 13,600 284,629 344,891
T6 536,986 76,852 37,600 1,726,235 2,377,673

Σ 982,877 179,714 110,200 3,811,487 5,084,278

Table 5 Costs by type after averaging the scenarios of each instance when the preventive
maintenance strategy with Bayesian inference (PdM-B) is applied.

Instance Operating costs Deadhead costs Maintenance costs Trip costs Total costs

T1 11,737 1,227 11,600 247,373 271,937
T2 64,438 21,550 9,800 362,386 458,174
T3 308,384 52,439 26,400 1,025,235 1,412,457
T4 22,151 13,850 10,200 165,630 211,831
T5 41,425 4,523 12,400 284,629 342,976
T6 536,986 74,392 37,400 1,726,235 2,375,013

Σ 985,121 167,981 107,800 3,811,487 5,072,388
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Table 6 The cost differences of PdM-B compared to PM and PdM in percent after averaging the
scenarios of each instance.

Instance Cost diff. in % Cost diff. without fixed costs in %
PM PdM PM PdM

T1 −0.32 +0.06 −3.48 +0.64
T2 −0.86 −1.80 −4.05 −8.05
T3 −0.66 +0.08 −2.36 +0.30
T4 −0.09 −0.11 −0.40 −0.51
T5 −1.02 −0.56 −5.72 −3.18
T6 +0.24 −0.11 +0.86 −0.41

Combined −0.24 −0.23 −0.97 −0.93
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Abstract
On-demand ridepooling systems offer flexible services pooling multiple passengers into one vehicle,
complementing traditional bus services. We propose a transportation system combining the spatial
aspects of a fixed sequence of bus stops with the temporal flexibility of ridepooling. In the line-based
Dial-a-Ride problem (liDARP), vehicles adhere to a fixed, ordered sequence of stops in their routes,
with the possibility of taking shortcuts and turning if they are empty. We propose three MILP
formulations for the liDARP with a multi-objective function balancing environmental aspects with
customer satisfaction, comparing them on a real-world bus line. Our experiments show that the
formulation based on an Event-Based graph is the fastest, solving instances with up to 50 requests
in under one second. Compared to the classical DARP, the liDARP is computationally faster, with
minimal increases in total distance driven and average ride times.
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1 Introduction

Line-based bus services are able to pool a large number of transportation requests along
popular trajectories, thus contributing towards reducing mobility-related emissions when
people decide to take the bus instead of the car. However, when there is little demand (e.g.,
in rural areas or during off-peak periods), buses often run infrequently and almost empty,
so that the described benefits do not materialize. Ridepooling approaches, where multiple
passengers are pooled into a shared vehicle, accepting a slight detour compared to their
direct route, are often proposed to complement line-based bus services for these scenarios.
These approaches are inefficient where they do not succeed to pool requests sufficiently.

We formalize a conceptual approach called line-based ridepooling which combines the
spatial aspect of a classical line-based bus service with the temporal flexibility of on-demand
ridepooling, inspired by real-life examples, including the FLEX’HOP 722 in France, and the
NAHBUS3 and the Rufbus4 in Germany. In line-based ridepooling, we consider a fixed and
ordered sequence of bus stops (defined, e.g., by a prior operating regular bus line) which we
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use as pick-up and drop-off locations. In contrast to a classical line-based bus, our vehicles
have the flexibility to skip stops and take shortcuts, enabling tailored pick-up and drop-off
times dependent on the specific customer requests. However, in contrast to ridepooling, we
use the spatial structure of the given line as a sort of service promise, ensuring that passengers
are only transported towards their destination along the line. In particular, vehicles may not
turn with passengers on board. We call this the directionality property. We aim to achieve a
transportation mode which is more efficient and provides a higher quality of service than the
classical line-based bus, especially in areas with low demand or during off-peak times.

In this paper, we define a new optimization problem to serve passenger requests in
line-based ridepooling. Due to its similarity to the general Dial-a-Ride problem (DARP),
from which it differs by the directionality property and the underlying geography, we call
this problem the line-based Dial-a-Ride problem (liDARP). Here, we study the static variant,
where all requests are known ahead-of-time, and consider a homogeneous fleet of vehicles.

We observe that, due to the directionality property, each vehicle route can be decomposed
into a number of sublines, separated by vehicle turns, with each transported passenger assigned
to exactly one subline. We introduce and compare three mixed-integer linear programming
(MILP) formulations for the liDARP that exploit this property. The first formulation,
presented in Section 4.1, explicitly models sublines and the assignment of passengers to
them. The second and third formulation, presented in Section 4.2 and Section 4.3, are based
on Cordeau’s classic 3-index Location-Based formulation [7] and the Event-Based model
introduced by Gaul et al. in [14]. Section 5 discusses computational results.

Our contribution is threefold: First, we present a general problem definition for the
liDARP, an approach to organizing passenger transport with the potential to combine
benefits from a line-based public transport and on-demand transportation. Second, we
develop and present three MILP formulations for the liDARP. Third, we compare these three
models on synthetic test instances.

2 Related Work

Traditional modes for passenger transportation like the bus, metro, or train, operate based
on lines (prescribing the sequence of stops visited) and timetables (prescribing the timing of
each stop) or frequencies (prescribing the distance to be kept between individual vehicles
on a line). While public transport planning often takes a network perspective, there are
also many contributions that study timetabling or frequency setting on an individual line
with the objective to find an optimal balance between service quality and operator cost, see,
e.g., [18, 19] and the references therein. Gkiotsalitis et al. [15] present a model that allows
to establish regularly operating sublines within a longer line to deal with inhomogenous
demand along the line. Aktaş et al. [1] study a situation where selected stops are assigned to
an express service, forming a shorter and quicker route. Their goal is to determine which
vehicles should perform this express service during morning rush hour, based on expected
demand. While still a rather uncommon strategy during the planning of public transport
operations, short-turning and stop-skipping are common control strategies in transit systems
to mitigate effects like vehicle bunching and overcrowding, see [18].

The literature on Dial-a-Ride problems (synonymously called ridepooling, on-demand bus
services, or demand-responsive transport) is extensive, with in-depth overviews of the current
state being provided by Cordeau and Laporte [9] (until 2007) and Ho et al. [17] (2007 until
2018). Typography and variants are discussed in Molenbruch et al. [20], whence this paper
is concerned with the static, homogeneous, multi-objective approach, compromising the
conflicting goals of system efficiency (including environmental aspects) and user experience.
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Early approaches towards exact solution methods to the DARP were carried out by
Psaraftis in [25] and [26]. Cordeau [7] proposes a 3-index arc-based mixed-binary linear
program for the standard DARP, which was adapted to a 2-index formulation by Røpke
et al. [30]. Røpke et al. propose a branch-and-cut approach which is tested on a large
number of benchmark instances. Parragh [22] constructs further valid inequalities related
to capacity restrictions, integrating these into a branch-and-cut framework as well as a
variable neighborhood search heuristic, based on both the 3-index and 2-index formulations.
Gschwindt and Irnich [16] develop an exact branch-and-cut-and-price approach, which solves
all instances of the benchmark set introduced by [30] exactly. Recently, Rist and Forbes [29]
propose a branch-and-cut framework where a DARP route is broken in multiple fragments,
which are paths between a request’s pick-up and drop-off where the vehicle has a non-empty
load. Then, a route is created as a combination of fragments. Gaul et al. [14] propose a new
MILP formulation, relying on an Event-Based graph with nodes representing pick-up/drop-off
events denoting a feasible user allocation of the corresponding vehicle and edges connecting
feasible transitions between events.

Next to exact methods, many papers consider heuristic solution methods to solve the
DARP, including metaheuristics such as simulated annealing [4, 27], adaptive large neighbor-
hood search [23, 24, 31], and tabu search [3, 8].

We are aware of only three publications where the DARP is studied in combination with
an underlying line structure: Archetti et al. [2] restate and prove results from the dissertation
of Busch [6], showing that the Vehicle Routing Problem on the line is NP-hard, both with
an unlimited and a limited fleet of fixed capacity. A complexity classification of DARP
variants has been proposed by de Paepe et al. [10], establishing a scheme akin to scheduling
problems. They examine variants on the line geography, showing that the DARP on the line
with one vehicle of capacity one is solvable in polynomial time. The DARP on a line with
multiple homogeneous vehicles of fixed capacity ≥ 1 is NP-complete, which has been shown
by Bjelde et al. [5] based on a reduction from the Circular Arc Coloring problem. All
three papers are focused on exploring the complexity of the problem, where they consider
only the special case with equally spaced stations and do not allow for shortcuts.

3 Problem Description

We consider a set of κ vehicles of capacity Qmax that operate on a bus line, specified by a
sequence of bus stops H = (1, . . . , n), to transport m stop-to-stop passenger requests R.

The vehicles do not need to traverse the whole line in each route, but are allowed to take
short-cuts (including skipping stops at which no passenger wants to board or alight), to wait,
and to turn at any stop, the latter of which may not be done with passengers on board. In
this way, we guarantee that the directionality property is fulfilled, i.e., each passenger, at all
times, is transported towards their direction with respect to the sequence of stops defined
by the bus line. Pairwise (time) distances ti,j between all stops i, j ∈ H are given, with
ti,i := tturn denoting the turn time at i ∈ H. These distances respect the triangle inequality.

Each request r ∈ R specifies an origin stop or ∈ H, a destination stop dr ∈ H, a time
window [er, lr], a load (number of passengers in the request) qr, and a service time br

for boarding and alighting. We assume that boarding is synchronous, i.e., if one request’s
destination is another request’s origin, and both requests are transported by the same vehicle,
we require that the first request alights before the second boards. This reflects the widely
accepted standard boarding procedure on public transit systems. Furthermore, passengers
do not transfer between vehicles.
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We make two service promises to our accepted passengers regarding 1) their total travel
time and 2) their waiting time that have to be respected. For the former, we guarantee that
the passenger’s total ride time Lr will not exceed the time needed to travel the direct route
(between their origin and destination) by a pre-specified factor, the excess factor α, i. e.,
Lmax

r := α · tor,dr
. For the latter, we ensure that the actual pick-up (resp. drop-off) time is

not more than β minutes later (resp. earlier) than the specified earliest pick-up (resp. latest
drop-off) time.

Our objective is to create a reliable service for customers and, at the same time, integrate
environmental aspects by reducing emissions compared to passengers travelling in their own
vehicles. Therefore, our objective function is composed of two weighted components: the
number of accepted passengers and the saved distance (i. e., the difference between the sum
of direct distances between all origins and destinations and the total distance driven by our
vehicles), which we want to maximize. The optimization problem now consists of deciding
which passenger requests are accepted, and which are rejected, to assign accepted requests
to one of the κ vehicles, and to plan the routes of these vehicles.

The above-defined problem is a variant of the Dial-a-Ride problem: removing the restric-
tion that vehicles may only turn without passengers on board, it reduces to a (standard)
DARP. Given that our vehicle’s operations are constrained by the line, we call our problem
the line-based Dial-a-Ride problem (liDARP).

4 MILP Formulations for the liDARP

The underlying line structure, which defines an order of bus stops, combined with the
directionality property, allows us to divide the route of each vehicle into a number of sublines:
a sequence of stops at which a vehicle stops to pick-up or drop-off passengers. The first
subline is initialized when a vehicle starts its route and a new subline starts after each of the
vehicle’s turns. We split the set of sublines S into ascending sublines (Sasc), travelling from
a stop i to j with i < j, and descending sublines (Sdesc), travelling in the opposite direction.

Similarly, we divide the passenger requests r ∈ R into ascending requests (Rasc) and
descending requests (Rdesc). As passengers may not be on board when the vehicle turns, each
accepted request can be assigned to exactly one subline, with ascending requests assigned to
ascending sublines and descending requests assigned to descending sublines.

In Section 4.1, we exploit these properties to propose a Subline-Based MILP for the
liDARP, explicitly modelling sublines and passenger assignments to sublines. In Section 4.2
and Section 4.3, we show that the sublines can also be used to simplify MILP formulations
for the standard DARP.

Note that the sublines in the liDARP are similar to the so-called fragments proposed by
Rist and Forbes [29] in their branch-and-cut approach for the DARP. Namely, a subline can
be further subdivided into fragments, which start with a pick-up node and end when the
vehicle is empty.

4.1 Subline-Based Formulation
The Subline-Based formulation relies on the concept of a subline. Given the set of vehicles K,
we assign each k ∈ K a set of sublines S and use binary variables ys,k

i to indicate whether
subline s of vehicle k stops at bus stop i. The route of every subline s of vehicle k is encoded
by the binary variables xs,k

i,j that denote the path between bus stops i, j ∈ H. Depending on
the direction of the subline s, these only need to be defined for i ≤ j or j ≤ i, respectively.
Sublines are computed on a vehicle-basis and symmetry breaking constraints are defined on
the vehicle’s index to remove alternative solutions with equal objectives.
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Flow conservation constraints ensure these routes are consistent in each subline and
between consecutive sublines. We track the start and end stop of each subline with binary
variables xs,k

i,i , which correspond to sublines s of vehicle k turning at bus stop i.
Requests are assigned to sublines using binary variables assigns,k

r to indicate if request r

is transported by subline s of vehicle k. Note that these only need to be created for pairs
(r, s) with both r and s travelling in the same direction. We ensure each passenger is picked
up at most once, with the corresponding subline stopping at both the origin and destination
stop. The underlying line structure determines each subline’s pick-up and drop-off sequence,
allowing capacity constraints to be expressed solely in variables assigns,k

r .
Continuous variables arrs,k

i and deps,k
i model the arrival and departure time of subline

s of vehicle k at bus stop i, respectively. We introduce constraints to ensure the stopping
time is sufficiently long for all assigned passengers who are boarding or alighting the vehicle
at a station to do so. Similarly, we ensure that the time between departure at a bus stop
i and arrival at the next bus stop j on the vehicle’s route is equal to ti,j . The departure
and arrival times are further constrained by the fact that, when a request is assigned to a
subline, the corresponding departure and arrival times have to respect the request’s time
window and associated service promises. For this, we track the pick-up and arrival time of
every request r.

An overview of parameters and variables, and the full model are given in Appendix B.1.

4.2 Location-Based Formulation
Inspired by mathematical programming formulation for the traveling salesperson and vehicle
routing problems, Cordeau [7] models the Dial-a-Ride problem using a graph where nodes
represent origin or and destination dr locations of requests r and arcs represent direct
connections between locations. In principle, traveling between any pair of locations is possible,
though many arcs can be removed in a pre-processing step based on time constraints.

To account for the directionality property, we can modify Cordeau’s DARP formulation
for use in the liDARP as follows: we treat the requests as (general) DARP input, adding
modifications to respect the line precedence and to prevent that vehicles turn with passengers
on board. Observing that a vehicle may only turn after drop-off location or before a pick-up
location, we introduce additional nodes at these bus stops which are used to start or end
a turn, allowing us to model our problem based on fewer arcs than the general DARP. A
start-turn node denotes that a vehicle is turning at a pick-up node (and then starting a new
subline), while an end-turn node denotes that a vehicle is turning after a drop-off node (and
ending the current subline). Similar to the general DARP, many arcs can be excluded by
pre-processing based on time windows and service constraints.

Binary variables xk
i,j model whether vehicle k travels from node i to node j with flow

constraints ensuring feasible operations. Additional variables and big-M -constraints are
needed to keep track of the time at which locations are visited and of vehicle load, so that
the requirements with respect to time windows, service promises, and vehicle capacity are
ensured. Technical details and the full model are given in Appendix B.2, where we use
strengthening techniques based on [11].

4.3 Event-Based Formulation
Encoding feasible user allocations in vehicles as nodes, and constructing only edges between
feasible connections, Gaul et al. [14] propose the Event-Based graph as a basis to formulate
the general DARP as a MILP. Every node in the Event-Based graph represents a Qmax-tuple,
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where the first entry represents the most recent action: a pick-up r+ or drop-off r− of a
request r, and the remaining entries denote the other passengers on board. The node 0
is used to denote the depot. Finding feasible vehicle routes for the DARP can then be
interpreted as a minimum cost circulation flow problem with the additional constraints that
each passenger cannot be picked up more than once and that time windows and service
constraints need to be respected.

While the number of events grows exponential with Qmax, many nodes can already be
excluded during the construction of the Event-Based graph due to incompatibility of time
windows and service constraints. The directionality property allows us to further reduce this
set. In particular, requests i and j cannot be part of the same event if

one of them is ascending and the other is descending, or
both requests are ascending (resp. descending) and the request with a later (resp. earlier)
starting station cannot board a vehicle with the other already on board due to time
window constraints.

The Event-Based model for the DARP can be directly applied to the liDARP by an adapted
construction of the Event-Based graph, distinguishing ascending and descending events and
connecting only events that preserve the directionality property, hence we do not re-state
the formulation here. Moreover, Gaul et al. [12] proposed further arc eliminations.

5 Computational Experiments

In this section, we present numerical experiments for the liDARP on synthetic benchmark
instances. For all experiments, we set the passenger load qr = 1 and service time br = 3 min
for all r ∈ R. The service promise parameters were set to a maximum waiting time of
β = 15 min and a maximum exceedance of direct ride time by α = 3. The objective function
weights were chosen to be c1 = 10 for the number of accepted passenger and c2 = 1 for the
saved distance for the computational results.

The models for the Subline-Based and Location-Based formulation were implemented in
Python 3.11 using Gurobi 10.0. The Event-Based formulation was implemented in C++ 17
using CPLEX 22.1, based on the code by Gaul et al. [13]. The computations are carried out
using a 12th Gen Intel Core i7-1260P CPU, running at 2.10 GHz with 32 GB RAM. For all
runs, we set the solver timeout to 60 min and repeated the calculation five times, averaging
the runtimes.

5.1 Benchmark Instances
We create new benchmark instances specifically for the liDARP using the existing bus stops
of bus line 6 in Würzburg, Germany, as pictures in Figure 1, with 16 stops connecting the
city center to a residential area. We calculate bus stop distances using OpenStreetMap [21],
assuming vehicles can take shortcuts and rounding to the nearest minute.

For the given bus stops H, we generate requests that uniformly choose a pick-up and
drop-off stop in H. We generate an equal amount of requests per time window type,
picking the (earliest) pick-up time or (latest) drop-off time uniformly in the interval [0, 480],
corresponding to an operation of 8 hours. The vehicles have a capacity of Qmax ∈ {3, 6} and
take tturn = 3 min to turn.

We generated 14 instances on the given sequence H, varying from 16 requests with 2
vehicles to 50 requests with 5 vehicles, following the sizing of the well-known benchmark
instances by Cordeau [7] for the classical DARP. The instance names consist of a prefix ‘w’
(for Würzburg), followed by two numbers, where the first indicates the number of vehicles
and the second denotes the number of requests.
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Figure 1 Route of bus line 6 in Würzburg, Germany, from [21].

5.2 Results
In this section, we first compare the three proposed MILP formulations using the benchmark
bus line test instances. Second, we assess the trade-off between environmental savings and
customer satisfaction. Lastly, we compare the liDARP model to the classical DARP model
to evaluate its competitiveness.

Computational Time
Figure 2 shows the computational time per benchmark instance for all three formulations.
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Figure 2 Runtime of the three formulations on the benchmark instances. Solid markers denote
Qmax = 3, unfilled markers Qmax = 6, and the dashed line marks the solver timeout.

The results clearly show that the Event-Based model outperforms the Location-Based and
Subline-Based models in all instances, for either capacity. For Qmax = 3, the Subline-Based
model reached the timeout for all but one instance, w2-16, and we were not able to compute
a solution for the three largest instances due a lack of available memory. For Qmax = 6, the
largest possible instance the model could solve was w4-32.
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Observing the Location-Based model, we see a step-structure, where the runtime signific-
antly increases with the number of requests, then decreases as the instances switch to the
next-largest number of vehicles. We see a similar effect in the Event-Based model between
instances w4-58 and w5-40. This is supported by the model size differences reported in
Table 1, which strongly correlate to the number of passenger requests.

In the two instances where the Location-Based model reached timeout for Qmax = 3,
namely w4-58 and w5-50, we note that although the achieved a relative MIP gap at timeout
was greater than 1, the objective value found was within 8 % and even 0 % of the optimum,
respectively.

Table 1 Number of constraints and variables for the benchmark test instances with Qmax = 3,
ordered by the number of requests. SB = Subline-Based, LB = Location-Based, EB = Event-Based.

Num. Constraints Num. Boolean Var. Num. Cont. Var.

Inst. SB LB EB SB LB EB SB LB EB

w2-16 45 042 553 317 20 030 968 189 1952 150 53
w4-16 90 388 787 335 40 188 1868 196 3872 154 56
w3-18 83 315 752 401 35 841 1731 238 3276 170 64
w2-20 67 290 689 497 28 062 1372 294 2440 186 76
w2-24 96 434 825 746 38 462 2062 430 2928 222 106
w3-24 144 443 998 830 57 117 3168 449 4368 224 119
w4-24 197 732 1171 769 79 228 4116 437 5808 226 109
w3-30 227 963 1244 956 87 213 4473 610 5460 278 122
w4-32 352 756 1555 1174 133 500 6792 706 7744 298 149
w3-36 340 895 1490 1627 127 749 6564 935 6552 332 199
w4-40 577 636 1939 1867 214 204 10 668 1117 9680 370 223
w5-40 722 789 2224 1657 267 755 12 945 1065 12 080 372 188
w5-50 1 227 649 2774 2419 453 155 20 885 1602 15 100 462 249
w4-58 1 400 268 2803 3282 517 020 21 976 2154 14 036 532 326

The Subline-Based model requires a significantly higher number of resources, with the
number of constraints and boolean variables exceeding those of both the Location-Based and
Event-Based models by factors of 100 and 10, respectively. Notably, the Location-Based
model uses 10 times more boolean variables than the Event-Based model, but both require a
similar amount of continuous variables.

In general, this result is not surprising, as Gaul et al. [14] demonstrated the computational
efficiency of the Event-Based graph in a MILP formulation for the classical DARP, as many
complicating constraints are implicitly encoded in the underlying network structure.

All following experiments are carried out with Qmax = 3.

Trade-off Analysis

To evaluate the trade-off between environmental savings and customer attractiveness in our
chosen objective function, we compare three different settings: in the environmentally focused
setting, we use objective weights c1 = 1, c2 = 10, placing an emphasis on the distance saved,
whilst in the customer focused setting, we use weights c1 = 10, c2 = 1, emphasising the
number of transported passengers. We also include a setting with equal weights as a base
case. The trade-off between objective function components is visualized in Figure 3.
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Figure 3 Objective Function parameters for varying weights. Each marker shape represents one
benchmark instance.

Note that both objective functions are considered as maximizing objectives. A positive
saved distance is preferred, as this corresponds to more direct passenger kilometers saved
than total routing costs accumulated. All instances in Figure 3 were solved to optimality.

We observe that, in the customer-focused setting, all passengers are accepted in all
instances. In the environmental-focused setting, the saved distance is always non-negative.
We have highlighted the approximated Pareto front for a specific instance, w2-20, represented
by triangles, by connecting the markers corresponding to the three obtained weighted-sum
solutions in Figure 3 to better illustrate the trade-offs. The saved distance decreases from
7 min to −22 min between the environmental-focused and the customer-focused setting, while
the share of accepted passengers increases from 40 % to 100 %. The same pattern can be
observed for all other benchmark instances. Hence, the proposed objective function is capable
of capturing multiple needs and can be adjusted accordingly, dependent on the chosen
application.

DARP versus liDARP

Lastly, we compare the liDARP formulation to the classical DARP formulation, where
vehicles are allowed to take any route between passenger without needing to adhere to the
line structure. We use the above-introduced benchmark instances, extending these to cases
with up to 11 vehicles and 132 requests (similar to the extended benchmark set introduced
by Røpke et al. [30]). We set tturn = 0 min for both formulations and set the solver timeout
to 60 min. The computational time for both models is shown in Figure 4, averaged over five
runs. The Event-Based model was used to produce the liDARP results.

We observe that the liDARP model is faster in all instances. While both models’
computational time increases with the number of requests, the liDARP was able to solve
even the largest instances with over 100 requests in less than 10 s, while the DARP model
was aborted at timeout. Examining the objective values, both models accepted all requests
in all instances, while they differ in the saved distance, which is visualized in Figure 5. The
DARP achieved a higher saved distance in all but one instance, w10-100, which was aborted
at timeout, with the average deviation being 3 min and the maximum deviation being a
saving of 10 min in instance w11-132. Both models use all available vehicles for all instances.
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Figure 5 Saved distance of the liDARP and DARP on the extended benchmark instances.

The average ride time, measured as the time between pick-up and drop-off of each request,
was marginally higher in the DARP model, with an average increase of 0.14 min. The
difference in the average share of empty mileage, defined as the fraction of empty mileage
over the total distance, is less than 0.02 on average. Similarly, the difference in average
detour, which is the fraction of passenger distance driven to the shortest distances between
pick-up and drop-off, is less than 0.025 on average.

Examining each DARP solution, we count the number of requests which are, at least for
a portion of their trip, travelling away from their destination, i.e., violating the directionality
property. The only instances where there are no such violations are w3-18, w3-30, and w4-32.
On average, 7.7 % of passengers travel in the opposite direction for at least a portion of their
trip, with the largest amount being 18.9 % in instance w9-90. We hypothesize that these
routes will likely be viewed as unnecessary by customers, even if they are the most efficient
amongst all possible connections.
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While there is a difference in saved distance and ride time, passengers do not have to
accept significant detours when using the liDARP compared to the DARP model, and the
vehicles travel without passengers for a similar amount of time.

6 Conclusion

We present the line-based Dial-a-Ride problem (liDARP), wherein ridepooling vehicles operate
on-demand on a sequence of bus stations, adhering to the directionality property, time and
capacity constraints, and our service promises. The efficiency of this approach is validated
through numerical computations on benchmark instances derived from on a real-life bus line
in Würzburg, Germany. Our multi-objective approach successfully balances environmental
concerns, by reducing the total distance travelled compared to individual passenger trips,
and the attractiveness, measured in the total amount of passengers accepted.

The advantages of the liDARP additionally include the possibility to use existing infra-
structure, being based on a sequence of bus stops, which may increase utilization in off-peak
times or in areas with low demand. Thus, we provide a system that can serve as an alternative
to public transport, providing flexibility to its customers to improve attractiveness.

Our approach can be extended to inhomogeneous vehicles with varying capacities, to
determine where each vehicle is best allocated to serve the customer base. Future research
could explore varying demand scenarios, such as operating a feeder line to a train station
or considering rush-hour induced fluctuations in demand. Finally, this paper focuses on
the static variant of the liDARP, where all requests are known in advance. Investigating
the liDARP under unknown and dynamic demand may provide insights into its practical
applicability and competitiveness in a real-world setting.
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A Variable Overview

Table 2 Summary of liDARP parameters.

Notation Definition

H set of bus stops, {1, . . . , n}
K set of vehicles, {1, . . . , κ}
R set of passenger requests, {1, . . . , m}
Rasc set of passenger requests travelling in ascending direction
Rdesc set of passenger requests travelling in descending direction
or origin stop of passenger request r

dr destination stop of passenger request r

qr load of request r

er earliest departure time of request r

lr latest arrival time of request r

br service time for request r

ti,j travel time from bus stop i to j

α service promise constant relating to maximum ride time, excess factor
β service promise constant relating to maximum wait time
Lr total ride time of request r

Lmax
r maximum ride time of request r, dependent on α and β

tturn time it takes for a vehicle to turn around
c1, c2 objective weights

B MILP Formulations

B.1 Subline-Based Formulation
In this section, we present the MILP model for the Subline-Based formulation introduced in
Section 4.1. All parameters and variables are summarized in Table 3.
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Table 3 Summary of notation for the Subline-Based model.

Notation Definition

Parameters

S set of sublines, {1, . . . , σ}
Sasc set of sublines travelling in ascending direction
Sdesc set of sublines travelling in descending direction

Binary Decision Variables

assigns,k
r 1 if request r is assigned to subline s of vehicle k

ys,k
i 1 if subline s of vehicle k visits node i

startk
i 1 if node i is the start node of vehicle k

endk
i 1 if node i is the end node of vehicle k

xs,k
i,j 1 if node j is visited immediately after node i on subline s of vehicle k

xs,k
i,i 1 if vehicle k turns at node i after executing subline s

wr1,r2 1 if requests r1 and r2 are on the same subline of the same vehicle
zk 1 if vehicle k is in use

Continuous Decision Variables

deps,k
i departure time of subline s of vehicle k at node i

arrs,k
i arrival time of subline s of vehicle k at node i

pickupr pick-up time of request r

arrtimer drop-off time of request r

In this model, we explicitly model the path of every subline of each vehicle, using binary
variables ys,k

i to denote if subline s of vehicle k stops at bus station i and binary variables xs,k
i,j

to denote if the direct path from station i to station j is used. Further binary variables startk
i

and endk
i denote if vehicle k starts and ends at station i, respectively. Then, by tracking

the turning stations of every subline s, i.e., stations i where xs,k
i,i = 1, we track the start

and end station of every subline. For every variable which references both passengers and
sublines, such as assigns,k

r , we only create those variables where the passenger and subline
are travelling in the same direction.

To ensure our model respects the boarding precedence (requests which are alighting leave
the vehicle before those boarding can enter), we construct the following three subsets for
every request i ∈ R:

Preco,o
i , containing all requests j which have the same origin as i, are travelling in the

same direction, and should board before i,
Preco,d

i , containing all requests j whose destination is at i’s origin, are travelling in the
same direction, and should alight before i boards, and
Precd,d

i , containing all requests j which have the same destination as i, are travelling in
the same direction, and should alight before i.

Note that the set Precd,o
i , which denotes all origin requests that need to be served before

request i is dropped-off, is not created as it is always empty due to the boarding assumption.
Furthermore, we track which passengers are pooled together on the same subline of the

same vehicle with binary variables wr1,r2 . These are required, together with the precedence
sets, to ensure we allow for sufficient boarding and alighting times per passenger at every
stop. To model these, we use big-M constraints with M1 := maxr∈R Lmax

r .
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Binary variables zk denote that vehicle k is used by our solution. Here, we use big-M
constraints with M2 := maxr∈R lr + (2 · σ − 1) · br, where σ denotes the number of sublines,
to ensure the arrival and departure time variables for each vehicle are only set if they are
also used.

To strengthen the model, we enforce that a vehicle’s end stop is placed after it has
turned twice, i.e., after two consecutive sublines start and end at the same stop. Then, every
following subline is empty and turns at the same stop. This reduces the number of possible
solutions with the same objective value.

We define T + := maxr∈R Lmax
r + (σ − 1)tturn to be the end of service, i.e., when all

vehicles end their operation at the latest.
We note that the model’s size is dependent on the choice of σ, the number of sublines,

which is hard to choose. We set σ = 2 · m for all experiments presented here.
The full Subline-Based model is given by:

max
x

c1 ·

(∑
s∈S

∑
k∈K

∑
r∈R

assigns,k
r · tor,dr

−
∑
k∈K

∑
s∈S

∑
(i,j)∈H×H:

i̸=j

xs,k
i,j · ti,j

)

+ c2 ·
∑
s∈S

∑
k∈K

∑
r∈R

assigns,k
r

s.t.
∑
i∈H

startk
i ≤ 1 ∀ k ∈ K (1a)∑

i∈H

endk
i =

∑
i∈H

startk
i ∀ k ∈ K (1b)∑

i∈H

xs,k
ii =

∑
i∈H

startk
i ∀ k ∈ K, s ∈ S \ {σ} (1c)

xσ,k
i,i = 0 ∀ i ∈ H, k ∈ K (1d)

y1,k
i = startk

i +
∑
j<i

x1,k
j,i ∀ i ∈ H, k ∈ K (1e)

ys,k
i = xs−1,k

i,i +
∑
j<i

xs,k
j,i ∀ i ∈ H, k ∈ K, s ∈ Sasc \ {1} (1f)

ys,k
i = xs−1,k

i,i +
∑
j>i

xs,k
j,i ∀ i ∈ H, k ∈ K, s ∈ Sdesc (1g)

ys,k
i = xs,k

i,i +
∑
j>i

xs,k
i,j ∀ i ∈ H, k ∈ K, s ∈ Sasc (1h)

ys,k
i = xs,k

i,i +
∑
j<i

xs,k
i,j ∀ i ∈ H, k ∈ K, s ∈ Sdesc \ {σ} (1i)

yσ,k
i = endk

i +
∑
j<i

xσ,k
i,j ∀ i ∈ H, k ∈ K (1j)

zk=
∑
i∈H

startk
i ∀ k ∈ K (1k)∑

r:or≤i,dr>i

assigns,k
r ≤ Qmax ∀ k ∈ K, s ∈ Sasc, i = 1, . . . , n − 1 (1l)

∑
r:or≥i,dr<i

assigns,k
r ≤ Qmax ∀ k ∈ K, s ∈ Sdesc, i = 2, . . . , n (1m)

zk≥ ys,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1n)
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zk≥ xs,k
i,j ∀(i, j) ∈ E, s ∈ S, k ∈ K (1o)

zk≥ assigns,k
r ∀ r ∈ R, s ∈ S, k ∈ K (1p)

M2 · zk≥ arrs,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1q)

M2 · zk≥ deps,k
i ∀ i ∈ H, s ∈ S, k ∈ K (1r)

startk
i ≥

∑
j∈H:j<i

startk+1
j ∀ i ∈ H, k ∈ {1, . . . , κ − 1} (1s)

deps,k
i ≥ arrs,k

i ∀ i ∈ H, s ∈ S, k ∈ K (1t)

arrs,k
j ≥ deps,k

i + ti,j · xs,k
i,j ∀(i, j) ∈ H × H with i < j, s ∈ Sasc, k ∈ K (1u)

arrs,k
j ≥ deps,k

i + ti,j · xs,k
i,j ∀(i, j) ∈ H × H with i > j, s ∈ Sdesc, k ∈ K (1v)

arrs,k
i ≥ deps−1,k

i + tturn · xs−1,k
i,i ∀ i ∈ H, s ∈ Sasc \ {1}, k ∈ K (1w)

arrs,k
i ≥ deps−1,k

i + tturn · xs−1,k
i,i ∀ i ∈ H, s ∈ Sdesc, k ∈ K (1x)

arrs,k
i ≥ 0 ∀ i ∈ H, s ∈ S, k ∈ K (1y)∑

k∈K

∑
s∈S

assigns,k
r ≤ 1 ∀ r ∈ R (1z)

2 · assigns,k
r ≤ ys,k

or
+ ys,k

dr
∀ k ∈ K, s ∈ S, r ∈ R (1aa)

assigns,k
r · (er + bor

)≤ deps,k
or

∀ k ∈ K, s ∈ S, r ∈ R (1ab)

lr + T + · (1 − assigns,k
r )≥ arrs,k

dr
∀ r ∈ R, s ∈ S, k ∈ K (1ac)

wri,rj ≤ assigns,k
ri

∀ s ∈ S, k ∈ K, ri, rj ∈ R (1ad)
assigns,k

ri
+ assigns,k

rj
− 1≤ wri,rj

∀ s ∈ S, k ∈ K, ri, rj ∈ R (1ae)

pickupr≥
∑
k∈K

∑
s∈S

assigns,k
r · arrs,k

or
∀ k ∈ K, s ∈ S, r ∈ R (1af)

arrtimer≥
∑
k∈K

∑
s∈S

assigns,k
r · arrs,k

dr
∀ k ∈ K, s ∈ S, r ∈ R (1ag)

bri
+ pickupri

− pickuprj
≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Preco,o

ri
(1ah)

bri + arrtimeri − pickuprj
≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Preco,d

ri
(1ai)

bri + arrtimeri − arrtimerj ≤ M1 ·

(
1 −

∑
k∈K

∑
s∈S

ws,k
ri,rj

)
∀ri ∈ R, rj ∈ Precd,d

ri
(1aj)

deps,k
or

≥ assigns,k
r · (pickupr + br) ∀ r ∈ R (1ak)

deps,k
dr

≥ assigns,k
r · (arrtimer + br) ∀ r ∈ R (1al)

eor
≤ pickupr ≤ lor

∀ r ∈ R (1am)
edr ≤ arrtimer ≤ ldr ∀ r ∈ R (1an)
arrtimer + br − pickupr≤ α · tor,dr ∀ r ∈ R (1ao)

Constraint (1a) ensures each vehicle is used at most once and constraint (1b) ensures that
a started vehicle also ends at a bus stop. Constraint (1c) makes sure every started vehicle
turns around at some station, while (1d) denotes that the last subline of each vehicle does not
turn. Constraints (1e) to (1i) are for flow conservation between sublines and their turn stops.
The last subline ends at its end stop, which is controlled by (1j). Constraint (1k) tracks
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the amount of vehicles which are used. The upper capacity of every vehicle is ensured by
(1l) and (1m), for both subline directions. Constraints (1n) to (1r) ensure that only vehicles
which are started can travel to and between stops. Constraint (1s) is a symmetry breaking
constraint which says that vehicles with a smaller index start at a smaller station.

Constraint (1t) ensures a vehicle departs from a bus stop only after it has arrived, while
constraints (1u) and (1v) ensure the arrival time at the next bus stop respects the minimum
travel time. Constraints (1w) and (1x) take into account the turning time, linking a subline’s
end time with the subsequent subline’s start time at the same stop. Finally, constraints (1y)
ensures all times are positive.

Constraint (1z) ensures a passenger is picked up at most once and, by constraint (1aa),
only if the subline they are assigned to also stops at their origin and destination. The link
between earliest pick-up and departure from the origin times, as well as latest drop-off and
arrival at the destination times, is handled with constraints (1ab) and (1ac), respectively.
Finally, constraints (1ad) and (1ae) link the variable wri,rj to denote if two passengers are
assigned to the same subline of the same vehicle.

Constraints (1af) and (1ag) place a lower bound on the pick-up time and drop-off time
of each passenger, dependent on the vehicle’s arrival time at the corresponding station.
Constraints (1ah) to (1aj) ensure the precedence rules for boarding are respected and add
sufficient service times between serving customers. Then, constraints (1ak) and (1al) ensures
the vehicle can only depart after the last passenger has fully boarded or alighted. The time
windows of each passenger is guaranteed by (1am) and (1an), while the maximum travel
time is limited by constraint (1ao).

B.2 Location-Based Formulation
In this section, we describe the construction of the underlying graph for the Location-Based
formulation in more detail, as well as presenting the full MILP model. All notation is
summarized in Table 4.

We introduce ascending bus stops Hasc := {h1, . . . , hn} and descending bus stops Hdesc :=
{hn+1, . . . , h2n}. Bus stops hi ∈ Hdesc and hn+i ∈ Hasc are virtual copies of stop i ∈ H.
In reality, these may be the same stop on opposite sides of the road, for vehicles travelling
in opposite directions. We connect all bus stops hi ∈ Hdesc with their corresponding
hn+i ∈ Hasc, in both directions (corresponding to a turn at station i), and enforce that two
stops in either set can only be served in upstream order with respect to the line.

Similar to the classical DARP formulation, for each request r ∈ R, we construct four nodes
or, dr, ōr, d̄r in a liDARP-Graph GR = (HR, ER). Here, the nodes or and dr correspond to
the classic pick-up and drop-off nodes of r. The node ōr is a start-turn node, denoting that
the vehicle is at or, facing the opposite direction, i.e., before it turns and picks up request
r at or. Similarly, the node d̄r is an end-turn node, denoting that the vehicle is at dr, has
dropped off the request r, and is now turning to continue in the opposite direction. Then,

if r ∈ Rasc: we construct or at the origin hor ∈ Hasc, dr at the destination hdr ∈ Hasc

stop, ōr at hn+or
∈ Hdesc, and d̄r at hn+dr

∈ Hdesc.
if r ∈ Rdesc: we construct or at the origin hor

∈ Hdesc, dr at the destination hdr
∈ Hdesc

stop, ōr at hor−n ∈ Hasc, and d̄i at hdr−n ∈ Hasc.

We set P := {or : r ∈ R}, D := {dr : r ∈ R}, P̄ := {ōr : r ∈ R}, and D̄ := {d̄r : r ∈ R}
to denote the sets of these bus stops. We additionally define time windows on the nodes ōr

and d̄r of every request r ∈ R, dependent on the time windows on or and dr, respectively,
accounting for the boarding and turn times. We introduce two depots, the start depot δstart

ATMOS 2024



14:18 The Line-Based Dial-a-Ride Problem

Table 4 Summary of notation for the Location-Based model.

Notation Definition

Parameters

δstart start depot
δend end depot
P set of pick-up nodes
D set of delivery node
P̄ set of start-turn nodes, before a pick-up node
D̄ set of end-turn nodes, after a drop-off node
NR set of all pick-up and delivery nodes in all directions, depending on requests R

HR set of all pick-up, delivery, and depot nodes, depending on requests R

ER set of all edges between nodes in ER

Binary Decision Variables

xk
i,j 1 if vehicle k travels on arc (i, j) ∈ ER

zk 1 if vehicle k is used

Continuous Decision Variables

Bi start of service time at bus stop i

Qi passenger load departing bus stop i

Lr ride time of passenger r

and the end depot δend, where vehicles start and end their route. Let NR := P ∪ D ∪ P̄ ∪ D̄

denote all pick-up, drop-off, and turn stops, and HR := {δstart, δend} ∪ NR all nodes including
the depots.

The edge set ER :=
⋃10

i=1 Ei
R between nodes in HR is constructed as follows:

E1
R := {(or, dr) ∈ P × D : r ∈ R}, connecting each request’s origin with its destination,

E2
R := {(vi, wj) ∈ (P ∪D ∪D̄)× (P ∪D ∪ P̄ ) : hvi

, hwj
∈ Hasc, i ̸= j, vi precedes wj , i, j ∈

R}, connecting all ascending stops to subsequent stops in the same direction,
E3

R := {(vi, wj) ∈ (P ∪D∪D̄)×(P ∪D∪P̄ ) : hvi , hwj ∈ Hdesc, i ̸= j, vi precedes wj , i, j ∈
R}, connecting all descending stops to subsequent stops in the same direction,
E4

R := {(ōr, or) ∈ P̄ × P : r ∈ R}, connecting the start-turn stop of each request with its
corresponding origin stop in the opposite direction,
E5

R := {(dr, d̄r) ∈ D × D̄ : r ∈ R}, connecting the destination stop of each request with
its corresponding end-turn stop in the opposite direction,
E6

R := {(vi, wj) ∈ (P ∪ D ∪ D̄) × (P ∪ D ∪ P̄ ) : vi, wj ∈ Hasc, hvi = hwj , i ̸= j,

¬(vi ∈ D ∧ wj ∈ P ), evi
≤ ewj

, lvi
≤ lwj

, i, j ∈ R}, connecting ascending stops at the
same original physical bus stop if they are compatible regarding their time windows,
E7

R := {(vi, wj) ∈ (P ∪ D ∪ D̄) × (P ∪ D ∪ P̄ ) : vi, wj ∈ Hdesc, hvi = hwj , i ̸= j,

¬(vi ∈ P ∧ wj ∈ D), evi
≤ ewj

, lvi
≤ lwj

, i, j ∈ R}, connecting descending stops at the
same original physical bus stop if they are compatible regarding their time windows,
E8

R := {(δstart, δend)}, connecting the starting depot to the ending depot to allow for
unused vehicles,
E9

R := {(δstart, or) ∈ {δstart}×P : r ∈ R}∪{(δstart, ōr) ∈ {δstart}×P̄ : r ∈ R}, connecting
the start depot to all pick-up locations and their start-turn stops,
E10

R := {(dr, δend) ∈ D × {δend} : r ∈ R} ∪ {(d̄r, δend) ∈ D̄ × {δend} : r ∈ R}, connecting
all drop-off locations and their end-turn stops to the end depot.



K. Reiter, M. Schmidt, and M. Stiglmayr 14:19

Here, we write v precedes w to denote that the bus stations corresponding to v precedes that
corresponding to w with respect to the corresponding line direction. We use Eturn := E4

R ∪E5
R

to denote all the edges on which the vehicles turn. Each edge is only added once, even if it
appears in multiple sets. The travel time of the edges is given by the original network, where
a turn takes tturn and travel between two pick-ups or drop-offs at the same physical stop is
instantaneous.

In our model, the binary variable xk
i,j denotes if a vehicle k travels on defined arcs

(i, j) ∈ ER. Variables zk denote if vehicle k is used in the solution.
We define that the vehicle loads qδstart := qδend = 0, qi := 1 for all i ∈ P and qi := −1

for all i ∈ D. Additionally, we set the service times bδstart := bδend = 0 and bi = 0 for all
i ∈ P̄ ∪ D̄. Let Qi denote the passenger load of a vehicle departing a stop i and let the
continuous variable Bi denote the start of service time at stop i. Note that these do not
require an index for the vehicle k as each node can be visited by at most one vehicle and the
vehicles are homogeneous with a maximum capacity Qmax, as has been discussed in [7]. We
require that Qk

δstart
:= Qk

δend
= 0 for all k ∈ K, thus removing these variables from the model.

To strengthen the model, we introduce a symmetry breaking constraint which enforces
that vehicles of lower index are used first. Then, the full Location-Based model is given by:

max
x

c1

(∑
k∈K

∑
i∈P

ti,i+m · xk
i,i+m −

∑
k∈K

∑
j∈HR:

(i,j)∈ER

∑
i∈HR

ti,j · xk
i,j

)
+ c2

∑
k∈K

∑
j∈HR:

(i,j)∈ER

∑
i∈P

xk
i,j

s.t.
∑
k∈K

∑
j∈HR:

(i,j)∈ER

xk
i,j ≤ 1 ∀ i ∈ P (2a)

∑
j∈HR:

(i,j)∈ER

xk
i,j −

∑
j∈HR:

(m+i,j)∈ER

xk
m+i,j = 0 ∀ i ∈ P, k ∈ K (2b)

∑
j∈P ∪P̄

xk
δstart,j = 1 ∀ k ∈ K (2c)

∑
i∈D∪D̄

xk
i,δend

= 1 ∀ k ∈ K (2d)

∑
j∈HR:

(j,i)∈ER

xk
j,i −

∑
j∈HR:

(i,j)∈ER

xk
i,j = 0 ∀ i ∈ NR, k ∈ K (2e)

1 −
∑

j∈NR

∑
i∈NR:

(i,j)∈ER

xk
i,j ≤ M3 · xk

δstart,δend
∀ k ∈ K (2f)

Bj ≥ (Bk
δstart

+ bδstart + tδstart,j) · xk
δstart,j ∀ j ∈ P ∪ P̄ ∪ {δend}, k ∈ K (2g)

Bk
δend

≥ (Bi + bi + ti,δend) · xk
i,δend

∀ i ∈ D ∪ D̄ ∪ {δstart}, k ∈ K (2h)

Bj ≥ (Bi + bi + ti,j) ·
∑
k∈K

xk
i,j ∀ i, j ∈ NR : (i, j) ∈ ER (2i)

Bi ≥ ei +
∑

j∈HR\{i}

(
max{0, ej − ei + bj + tj,i} ·

∑
k∈K

xk
j,i

)
∀ i ∈ NR (2j)

Bi ≤ li −
∑

j∈HR\{i}

(
max{0, li − lj + bi + ti,j} ·

∑
k∈K

xk
i,j

)
∀ i ∈ NR (2k)

Li = Bi+m − (Bi + bi) ∀ i ∈ P (2l)
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ti,i+m ≤ Li ≤ α · ti,i+m ∀ i ∈ P (2m)
Qj ≥ qj · xk

δstart,j ∀ j ∈ P ∪ P̄ , k ∈ K (2n)

Qj ≥ (Qi + qj) ·
∑
k∈K

xk
i,j ∀ i, j ∈ NR : (i, j) ∈ ER (2o)

0 ≥ Qi · xk
i,δend

∀ i ∈ D ∪ D̄, k ∈ K (2p)

Qi ≤ Qmax · (1 −
∑
k∈K

xk
i,j) ∀ (i, j) ∈ Eturn (2q)

Qi ≥ −Qmax · (1 −
∑
k∈K

xi,j) ∀ (i, j) ∈ Eturn (2r)

Qi ≤ Qmax ·
∑
k∈K

∑
j∈HR:

(i,j)∈ER

xk
i,j ∀ i ∈ HR (2s)

zk ≥ 1
|HR|2

·
∑

(i,j)∈ER

xk
i,j ∀ k ∈ K (2t)

zk ≥ zk+1 ∀ k ∈ K (2u)

Constraints (2a) and (2b) ensure each passenger is picked up at most once and is dropped-
off by the same vehicle. Vehicles must start (2c) at δstart and end at δend (2d) depots,
maintaining flow conservation across all arcs (2e). Only unused vehicles may use the arc
(δstart, δend), as denoted by (2f), where we use a big-M constraint with M3 := |ER|. The
service start times for leaving and entering the depot, as well as consistency across arcs,
is handled by (2g)–(2i). Constraints (2j) and (2k) ensure time consistency regarding the
requests time windows. The maximum ride time of each request is defined and bounded by
constraints (2l) and (2m). Load constraints (2n)–(2s) ensure vehicles respect capacity limits
at each bus stop as well as on turning arcs. Constraint (2t) counts the number of required
vehicles. Finally, we use the symmetry breaking constraint (2u) to improve computational
times.



A Bi-Objective Optimization Model for Fare
Structure Design in Public Transport
Philine Schiewe #

Department of Mathematics and Systems Analysis, Aalto University, Finland

Anita Schöbel #

Department of Mathematics, University of Kaiserslautern-Landau (RPTU), Germany
Fraunhofer Institute of Industrial Mathematics ITWM, Kaiserslautern, Germany

Reena Urban #

Department of Mathematics, University of Kaiserslautern-Landau (RPTU), Germany

Abstract
Fare planning in public transport is important from the view of passengers as well as of operators.
In this paper, we propose a bi-objective model that maximizes the revenue as well as the number
of attracted passengers. The potential demand per origin-destination pair is divided into demand
groups that have their own willingness how much to pay for using public transport, i.e., a demand
group is only attracted as public transport passengers if the fare does not exceed their willingness to
pay. We study the bi-objective problem for flat and distance tariffs and develop specialized algorithms
to compute the Pareto front in quasilinear or cubic time, respectively. Through computational
experiments on structured data sets we evaluate the running time of the developed algorithms in
practice and analyze the number of non-dominated points and their respective efficient solutions.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Public transport, fare structure design, modeling, bi-objective, algorithm

Digital Object Identifier 10.4230/OASIcs.ATMOS.2024.15

Funding This work was partially funded by the European Union’s Horizon 2020 research and
innovation programme [Grant 875022] and by the Federal Ministry of Education and Research
[Project 01UV2152B] under the project sEAmless SustaInable EveRyday urban mobility (EASIER).

1 Introduction

Fare structures in public transport are an important design element that involves the interests
of both (potential) passengers and operators alike. For passengers, fares are one among
several criteria for mode and route choice. The affordability and the perceived fairness
of fares significantly influence people’s decisions to opt for public transport over other
modes of transport, for example, their own car. When the fares exceed a certain price limit
(willingness to pay), it is reasonable to assume a deterrent effect leading to a reduction in the
attractiveness of public transport and, therefore, ridership. Conversely, for operators, fares
directly impact the revenue. An increase of prices, for example, increases the income per
sold ticket but might decrease the ridership and therefore the total number of sold tickets.

In this paper, we investigate the trade-off between revenue and number of passengers
for different fare strategies. For each origin-destination (OD) pair, we consider multiple
demand groups that differ in their willingness to pay. If the fare for an OD pair exceeds
the willingness to pay of a demand group, this group does not use public transport. These
demand groups could, for example, be captive and choice passengers, where the willingness
to pay is dependent on whether an alternative mode like a car is available or not. Another
categorization of demand groups could be based on age and income. We introduce a bi-
objective model that optimizes fare structures to determine the Pareto front of revenue and
number of passengers.
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A wide range of fare structures is implemented worldwide. In this paper, we introduce
the revenue-passenger model for fare structures in general and then focus on flat and distance
tariffs. In a flat tariff, all tickets have the same price. While this is very easy to understand,
it also encourages using public transport for longer journeys. For shorter journeys a flat tariff
might be perceived as unfair because passengers with a short journey pay the same price as
passengers with a long journey. The opposite can be realized with a distance tariff, which
accounts for the traveled distance. Here, the distance may either be the beeline distance
between the start and the end station of the journey or the network distance of the respective
path of the journey. In this paper, we consider affine distance tariffs, which are composed
of a base amount and an additional price per kilometer. While it is easy to communicate,
passengers need to know the exact distance of their journey to determine the fare. Slight
deviations of the path may directly lead to a change in the fare. Other differential fare
structures depend on a duration, time or quality component of the journey [12, 22, 9], but
are not considered here.

Related Literature. In public transport, requirements and needs of several actors such as
the passengers and the operators are involved, leading to multi-objective models [5]. However,
multi-objective models are scarcely considered in fare planning, and the literature on fare
planning so far focuses on single-objective models. The objective often is the minimization
of the deviation from reference prices [15, 16, 1] or the maximization of either revenue or
demand [10, 3, 26, 19, 17]. Moreover, studies analyze the impact of different fare structures
such as flat, distance and zone tariffs on the route choice and travel time [18] and the revenue
and number of passengers [13, 6]. We expand the literature by a bi-objective model with
respect to revenue and number of passengers.

Contribution. First, we formulate a general model that can be applied for any fare strategy.
Due to the characteristic of one of the objectives, the complete Pareto front can be determined
with the ϵ-constraint method. Second, we study the specific problem for flat and distance
tariffs. In both cases, we identify a finite candidate set, based on which we develop algorithms
that compute the Pareto front in quasilinear or cubic time, respectively.

We also perform computational experiments on structured data sets and analyze the
number of non-dominated points and their respective efficient solutions. The experiments
emphasize the advantage in running time of the specialized algorithm for distance tariffs
compared to the mixed-integer programming formulation derived from the general model.

2 Problem Formulation

Let a public transport network (PTN) (V, E) be given. The node set V represents a set of
stops or stations and the edge set E represents the direct connections between them. For
simplicity, we assume the PTN to be an undirected graph which is simple and connected.
The PTN can be used to model railway, tram, or bus networks. In the following, we call the
nodes of the PTN stations, also if bus networks with stops are under consideration.

By D ⊆ {(v1, v2) : v1, v2 ∈ V, v1 ̸= v2} we denote the set of origin-destination (OD)
pairs. The potential passengers of an OD pair can be distinguished by their willingness to
pay. This could for example reflect the degree of dependence on public transport or the
income. For each OD pair d ∈ D, we denote by Gd ∈ N≥1 the number of demand groups, by
tg
d ∈ N≥1 the number of people belonging to group g ∈ {1, . . . , Gd} with a willingness to pay

of wg
d ∈ R>0. In this model, a demand group uses public transport whenever the ticket price

does not exceed its willingness to pay. Without loss of generality, we assume that wg
d > 0

and wg
d ̸= wg′

d for all g, g′ ∈ {1, . . . , Gd}, g ̸= g′ and all OD pairs d ∈ D.
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To simplify notation, we introduce the shorthand notation [G] := {1, . . . , G} for G ∈ N≥1.

▶ Definition 1 (Fare structure [25]). Let a PTN be given, and let W be the set of all paths in
the PTN. A fare structure is a function π : W → R≥0 that assigns a price to every path in
the PTN.

Usually, a fare strategy (e.g., a flat, distance or zone tariff) is desired instead of just
determining a price for each OD pair. Such a desired fare strategy can be modeled by
additional requirements, that can be formulated as constraints.

The objective is to maximize the revenue and the number of passengers simultaneously.
While the revenue is the key objective of the operator, the number of passengers serves as
an indicator of the success of the transition towards sustainable transport modes. This is
particularly significant when public transport is used instead of private motorized transport
modes such that the environmental impact of traveling is reduced.

Given a fare structure π, we denote the according price for OD pair d ∈ D by πd. The
number of attracted passengers for OD pair d ∈ D given πd is then determined as

pass(d | πd) :=
∑

g∈[Gd]: πd≤wg
d

tg
d.

The total number of passengers with respect to fare structure π is

pass(π) :=
∑
d∈D

pass(d | πd)

and the total revenue is

rev(π) :=
∑
d∈D

pass(d | πd) · πd.

With this, we can now define the revenue-passenger model formally.

▶ Definition 2 (The revenue-passenger model). Given are
a PTN (V, E) as an undirected graph,
a set of OD pairs D ⊆ {(v1, v2) : v1, v2 ∈ V, v1 ̸= v2}, D ̸= ∅,
the numbers of demand groups Gd ∈ N≥1 for each OD pair d ∈ D,
the willingness to pay wg

d ∈ R≥0 and the potential demand tg
d ∈ N≥1 for each demand

group g ∈ [Gd] and each OD pair d ∈ D.
The aim is to determine fare structures π that maximize the revenue rev(π) and the number of
passengers pass(π), where a desired fare strategy might be required. The bi-objective problem
hence is:

max rev(π)
max pass(π)
s.t. π is of a desired fare strategy

πd ≥ 0 for all d ∈ D.

Each feasible fare structure π induces a two-dimensional vector of objective function
values, i.e., we have a bi-objective problem. For multi-objective optimization, we refer to,
e.g., [11]. As usual in multi-objective optimization, we are interested in finding the Pareto
front and corresponding efficient solutions. Generally speaking, we aim to find those feasible
fare structures that do not allow to improve one objective function without decreasing the
other.

ATMOS 2024



15:4 A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

▶ Definition 3 (Efficient solution, non-dominated point and Pareto front, e.g., [11]). Let an
instance of the revenue-passenger model be given. A feasible solution π is called efficient and
its objective value (rev(π), pass(π)) is called non-dominated if there does not exist another
feasible solution π′ with objective value (rev(π′), pass(π′)) such that rev(π′) ≥ rev(π) and
pass(π′) ≥ pass(π) and at least one inequality holding strictly. The set of all non-dominated
points is also called the Pareto front.

Because the numbers of passengers tg
d for all d ∈ D, g ∈ {1, . . . , Gd} are given as natural

numbers, the objective function pass always attains integral values. Hence, the whole Pareto
front can be computed systematically by applying the well-known ϵ-constraint method [11, 4].
This is done by restricting the number of passengers pass in the constraints while the revenue
rev remains as the objective function. In this case, by increasing ϵ with a step width of 1,
we do not miss any non-dominated point. Further, given a set of tuples of revenue and
number of passengers, it is simple to filter for the non-dominated points: The points are
first sorted in decreasing order by the number of passengers and as a second criterion by
decreasing revenue. We then iterate over this sorted list and add a point to the Pareto front
whenever the revenue is strictly higher than the highest value so far. This ensures that
while the numbers of passengers is decreasing, the revenue is increasing, and we only keep
non-dominated points.

3 Flat Tariffs

Flat tariffs are common in city centers and assign the same price to all paths. We start with
a formal definition:

▶ Definition 4 (Flat tariff, [25]). Let a PTN be given, and let W be the set of all paths in
the PTN. A fare structure π is a flat tariff w.r.t. a fixed price f ∈ R≥0 if π(W ) = f for all
W ∈ W.

Let Swill := {wg
d : d ∈ D, g ∈ [Gd]} be the set of all willingness to pay values with

max Swill the largest of these values and let

S :=

(w, t) : w ∈ Swill, t =
∑
d∈D

∑
g∈[Gd] : wg

d
=w

tg
d


be the set of all tuples of willingness to pay and the respective demand with exactly this
willingness to pay. Let (w1, t1), . . . , (w|S|, t|S|) be a sorting of S such that w1 < . . . < w|S|.
In particular, we have |S| ≤

∑
d∈D Gd, with equality if and only if the willingness to pay is

different for every demand group.
For a flat tariff π with fixed price f ∈ R≥0, the objective functions simplify to

rev(π) = f ·
∑

(w,t)∈S:
f≤w

t and pass(π) =
∑

(w,t)∈S:
f≤w

t.

Because a flat tariff π is uniquely determined by f , we write rev(f) and pass(f) instead
of rev(π) and pass(π).
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▶ Definition 5 (F-RPM). Given the input data as in Definition 2, the bi-objective revenue-
passenger model for a flat tariff ( F-RPM) is the following:

max rev(f) = f ·
∑

(w,t)∈S:
f≤w

t

max pass(f) =
∑

(w,t)∈S:
f≤w

t

s.t. f ∈ R≥0.

We now derive a finite candidate set for F-RPM.

▶ Lemma 6. For all efficient solutions f to F-RPM, it holds that f ∈ Swill.

Proof. Let f̄ be an efficient solution, and assume that f̄ /∈ Swill. First, we have that
f̄ < max Swill because for f̄ > max Swill the objective function values are (0, 0), which is not
efficient since for f := max Swill = w|S| the objective function values are (rev(f), pass(f)) =
(t|S| · w|S|, t|S|), which dominates (0, 0). Hence, f ′ := min{w ∈ Swill : f̄ < w} is well-defined
and f ′ is the next higher price compared to f̄ that is contained in Swill. Then f̄ < f ′ and
{(w, t) ∈ S : f̄ ≤ w} = {(w, t) ∈ S : f ′ ≤ w} by definition of f ′ and because f̄ /∈ Swill.
This yields pass(f̄) = pass(f ′) and rev(f̄) = f̄ · pass(f̄) < f ′ · pass(f̄) = rev(f ′), which is a
contradiction to f̄ being efficient. ◀

Lemma 6 allows Algorithm 1 to compute the Pareto front in O(|S| · log(|S|)). Note that
|S| ≤

∑
d∈D Gd.

Algorithm 1 Solution method for F-RPM.

Input : Set S (as defined above) of F-RPM
Output : Set Γ of all non-dominated points

1 Sort S such that w1 < . . . < w|S|.

2 Initialize pass←
|S|∑
s=1

ts; rev← w1 · pass; Γ← {(rev, pass)}; rev∗ ← rev.

3 for s = 2, . . . , |S| do
4 Update pass← pass− ts−1.
5 Update rev← ws · pass.
6 if rev > rev∗ then
7 Update Γ← Γ ∪ {(rev, pass)}.
8 Update rev∗ ← rev.

9 return Γ

▶ Theorem 7. Algorithm 1 solves F-RPM in O(|S| · log(|S|)).

Proof. By Lemma 6 it suffices to consider the willingness to pay ws ∈ Swill as fixed prices of
the flat tariff. Because w1 is the unique optimum with respect to the objective function pass,
(rev(w1), pass(w1)) is a non-dominated point and is added to Γ in line 2. In rev∗ we store
the maximum revenue that has occurred so far. Increasing the fixed price from ws−1 to ws

reduces the number of passengers by those that have a willingness to pay of ws−1, which are
ts−1 many. Hence, after the updates in lines 4 and 5, rev and pass are the revenue and the
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number of passengers for a flat tariff with fixed price ws. Because the number of passengers
is strictly decreased in every iteration, the tuple (rev, pass) is non-dominated whenever the
revenue rev is larger than any previous revenue, i.e., if rev > rev∗. Therefore, in this case,
the tuple is added to Γ and the maximum revenue rev∗ is updated.

Sorting S can be done in O(|S| · log(|S|)) (see, e.g., [7]). The initialization of pass in
line 2 is executed in O(|S|), whereas all other initializations and updates are in O(1). Hence,
the for-loop takes O(|S|) in total. Overall, we obtain a running time of O(|S| · log(|S|)). ◀

4 Distance Tariffs

In a distance tariff, the fare is related to a distance l(W ) associated with the path W ∈ W .
Usually this is the beeline (Euclidean) distance between the start and the end station of
the path or the network distance, i.e., the length of the path W in the PTN. We consider
affine distance tariffs which means that the fares consist of a base amount and a price per
kilometer. We start with a formal definition.

▶ Definition 8 (Affine distance tariff, [25]). Let a PTN be given, and let W be the set of all
paths in the PTN. Let l : W → R≥0 be a distance function determining, e.g., the beeline or
network distance. A fare structure π is an affine distance tariff w.r.t. a base amount f ∈ R≥0
and a price per kilometer p ∈ R≥0 if π(W ) = f + p · l(W ) for all W ∈ W.

For the optimization of affine distance tariffs, we consider that each OD pair d ∈ D travels
along a fixed path Wd ∈ W. Hence, each OD pair is associated with a distance ld := l(Wd)
based on the distance function l.

▶ Definition 9 (D-RPM). Given the input data as in Definition 2 and a distance ld ∈ R≥0
associated with OD pair d for all d ∈ D, the bi-objective revenue-passenger model for a
distance tariff ( D-RPM) is the following:

max rev(π)
max pass(π)
s.t. πd = f + p · ld for all d ∈ D

f, p ∈ R≥0.

Also here, we write rev(f, p) and pass(f, p) instead of rev(π) and pass(π) because an affine
distance tariff is uniquely determined by f and p.

For the ϵ-constraint method, the following mixed-integer linear programming (MILP)
formulation may be used:

max
f,p,πg

d
,xg

d

∑
d∈D

∑
g∈[Gd]

tg
d · π

g
d

s.t. ϵ ≤
∑
d∈D

∑
g∈[Gd]

tg
d · x

g
d

f + p · ld ≤ wg
d + M · (1− xg

d) for all d ∈ D, g ∈ [Gd] (1)
πg

d ≤ f + p · ld for all d ∈ D, g ∈ [Gd] (2)
πg

d ≤M · xg
d for all d ∈ D, g ∈ [Gd] (3)

f, p, πg
d ∈ R≥0 for all d ∈ D, g ∈ [Gd]

xg
d ∈ {0, 1} for all d ∈ D, g ∈ [Gd].
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The variables f and p determine the base amount and the price per kilometer of the distance
tariff. The binary variable xg

d is 1 if and only if demand group g of OD pair d uses public
transport. Finally, the variable πg

d stores the price that is actually paid by the demand
group g of OD pair d. Constraints (1) ensure that xg

d is set correctly, meaning that it is
only 1 if the price according to the distance tariff does not exceed the willingness to pay.
Constraints (2) limit the price of a demand group to the price of the distance tariff and
constraints (3) set the price paid by a demand group to 0 if it does not use public transport.
Together constraints (2) and (3) set the price paid by a demand group to either 0 or the
distance tariff price.

Before we show that M can be chosen based on natural bounds on f and p, we introduce
some notation. Let

Sdem(f, p) := {(d, g) : d ∈ D, g ∈ [Gd], wg
d ≥ f + p · ld}

be the set of demand groups that are attracted in case of a distance tariff with base amount f

and price per kilometer p, i.e., pass(f, p) =
∑

(d,g)∈Sdem(f,p) tg
d. For every efficient solution

(f, p), it holds that Sdem(f, p) ̸= ∅ because otherwise the objective function value is (0, 0) and
is, analogously to the proof of Lemma 6, dominated by a solution f ′ := wḡ

d̄
for some d̄ ∈ D,

ḡ ∈ [Gd̄] and p′ := 0, which attracts at least one demand group. Therefore, we can restrict
f ≤ fmax := max {wg

d : d ∈ D, g ∈ [Gd]} and p ≤ pmax := max
{

wg
d

ld
: d ∈ D, g ∈ [Gd]

}
. Let

lmax := max{ld : d ∈ D}. Setting M := fmax + pmax · lmax, we have for all d ∈ D, g ∈ [Gd]
that

πg
d

(2)
≤ f + p · ld ≤ fmax + pmax · lmax = M,

i.e., M is sufficiently large for constraints (1) and (3).

This MILP has O(
∑

d∈D Gd) many variables and constraints and, as we will see later in
the experiments, is hard to solve. We hence develop a polynomial-time method that exploits
the specific problem structure.

▶ Lemma 10. For every efficient solution (f, p), at least one willingness to pay is met exactly,
i.e., there is at least one willingness to pay wg

d for some OD pair d ∈ D and demand group
g ∈ [Gd] such that wg

d = f + p · ld.

Proof. Let (f̄ , p̄) be an efficient solution. Assume that no willingness to pay is met exactly.
Then there must be a willingness to pay wg

d for some d ∈ D, g ∈ [Gd] such that wg
d > f̄ + p̄ · ld.

Otherwise Sdem(f̄ , p̄) = ∅, which is not possible for an efficient solution. Hence, we can set
δ := min{wg

d − f̄ − p̄ · ld > 0 : d ∈ D, g ∈ [Gd]}. Increasing f̄ to f ′ := f̄ + δ, we have

{(d, g) : d ∈ D, g ∈ [Gd], f̄ + p̄ · ld ≤ wg
d} = {(d, g) : d ∈ D, g ∈ [Gd], f ′ + p̄ · ld ≤ wg

d}

and hence pass(f̄ , p̄) = pass(f ′, p̄) and rev(f̄ , p̄) < rev(f̄ , p̄) + δ · pass(f̄ , p̄) = rev(f ′, p̄) which
is a contradiction to (f̄ , p̄) being an efficient solution. ◀

Lemma 10 shows that we can interpret our problem as least absolute deviation (LAD)
regression problem (see, e.g., [2, 23, 8, 24]): Given a set of points with weights, find a line
that minimizes the sum of vertical distances to the given points. In our case, the existing
points are (ld, wg

d) with weights tg
d for every OD pair d ∈ D and every demand group g ∈ [Gd].

We want to fit these points by a line with intercept f and slope p, i.e., x 7→ f + p · x. For the
evaluation of the fit we distinguish two cases:
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ld̄

φ1

φ2

φ3

distance

price

Figure 1 Example of three OD pairs with distances 1, 4 and 6 and with three groups each. They
are marked based on their distance and willingness to pay. Line φ1 (black, solid) meets exactly one
willingness to pay exactly. The point (ld̄, wḡ

d̄
) is the fixed point. The line can be rotated clockwise

to line φ2 (blue, dashed), or it can be rotated counterclockwise to line φ3 (red, dotted). For φ2 the
willingness to pay of two groups is met exactly. The black groups are always attracted, the gray
are attracted in none of the scenarios, and the gray-red group is only attracted in case of φ3 (red,
dotted). Vertical lines show the price difference for each OD pair in the different scenarios.

If (ld, wg
d) is on or above the line, we add tg

d to pass(f, p). For rev(f, p), we could have
achieved the full amount of the willingness to pay wg

d, but we realize only the point on
the line, i.e., f + p · ld. The vertical distance wg

d − (f + p · ld) between the point (ld, wg
d)

and the line is what we lose and hence what we want to minimize.
If (ld, wg

d) is below the line, the OD pair is lost and hence does not contribute to any of
the two objective functions.

Lemma 10 then says that any optimal line passes through at least one of the points. For
unrestricted LAD lines it is furthermore known that there always exists an optimal line that
passes through two of the points. In our case, the parameters of the line are restricted to be
positive, i.e., f ≥ 0 and p ≥ 0. Taking this restriction into account leads to the statement of
Theorem 11.

▶ Theorem 11. For every non-dominated point, there is an efficient solution (f, p) such that
one of the following holds: The willingness to pay of

two groups is met exactly, i.e., there are di ∈ D, gi ∈ [Gdi
] for i ∈ {1, 2} with d1 ̸= d2

and wgi

di
= f + p · ldi

,
one group is met exactly and p = 0, i.e., there is some d ∈ D, g ∈ [Gd] with wg

d = f ,
one group is met exactly and f = 0, i.e., there is some d ∈ D, g ∈ [Gd] with wg

d = p · ld.

Proof. Let (f1, p1) be an efficient solution, in particular f1, p1 ∈ R≥0. By Lemma 10, there
is at least one willingness to pay that is met exactly. We consider the case that only exactly
one willingness to pay w̄ := wḡ

d̄
for some d̄ ∈ D, ḡ ∈ [Gd̄] is met exactly and that neither

p1 = 0 nor f1 = 0. We fix (w̄, ld̄) and rotate the line f1 + p1 · x in the following ways as
illustrated in Figure 1:

We choose (f2, p2) as the optimal solution to

min
f,p

p

s.t. w̄ = f + p · ld̄
Sdem(f1, p1) ⊆ Sdem(f, p)
p1 ≥ p ≥ 0
f ≥ 0.
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Hence, (f2, p2) still meets w̄ for OD pair d̄. The line f2 + p2 · x is less steep than f1 + p̄1 · x,
with a non-negative slope for which all demand groups that are attracted by (f1, p1) are also
attracted by (f2, p2).

Analogously, we choose (f3, p3) as the optimal solution to

max
f,p

p

s.t. w̄ = f + p · ld̄
Sdem(f1, p1) ⊆ Sdem(f, p)
p ≥ p1

f ≥ 0.

Note that (f2, p2) and (f3, p3) are of the form as in the claim. Because of the assumption
that only one willingness to pay is met exactly and p1 > 0 and f1 > 0, we have that
p2 < p1 < p3 and f3 < f1 < f2. For i ∈ {1, 2, 3}, we define φi : R≥0 → R≥0, x 7→ fi + pi · x.

By construction, we ensure that the numbers of attracted passengers are not decreased
when changing from (f1, p1) to (f2, p2) or to (f3, p3). We show that for at least one of these
options also the revenue does not decrease. Note that the revenue related to OD pairs with
distance ld̄ does not change because the price is kept fixed. Hence, we divide the attracted
demand groups based on their respective distances ld compared to ld̄ as follows:

Sdem,L := {(d, g) ∈ Sdem(f1, p1) : ld < ld̄} and Sdem,R := {(d, g) ∈ Sdem(f1, p1) : ld > ld̄}.

For all d ∈ D, we set δd := |ld̄− ld|. From that, we obtain that ld = ld̄− δd for (d, g) ∈ Sdem,L

and ld = ld̄ + δd for (d, g) ∈ Sdem,R, which yields for all i ∈ {1, 2, 3} and all d ∈ D that

φi(ld) = fi + pi · (ld̄ ∓ δd) = fi + pi · ld̄ ∓ pi · δd = φi(ld̄)∓ pi · δd.

Then for the difference in revenues, we have

rev(f2, p2)− rev(f1, p1) ≥
∑

(d,g)∈Sdem,L

tg
d (φ2(ld̄)− p2δd) +

∑
(d,g)∈Sdem,R

tg
d (φ2(ld̄) + p2δd)

−
∑

(d,g)∈Sdem,L

tg
d (φ1(ld̄)− p1δd)−

∑
(d,g)∈Sdem,R

tg
d (φ1(ld̄) + p1δd)

=
∑

(d,g)∈Sdem,L

tg
d · δd · (p1 − p2) +

∑
(d,g)∈Sdem,R

tg
d · δd · (p2 − p1)

= (p1 − p2)︸ ︷︷ ︸
>0

 ∑
(d,g)∈Sdem,L

tg
d · δd −

∑
(d,g)∈Sdem,R

tg
d · δd


︸ ︷︷ ︸

:=∆

and analogously

rev(f3, p3)− rev(f1, p1) ≥
∑

(d,g)∈Sdem,L

tg
d (φ3(ld̄)− p3δd) +

∑
(d,g)∈Sdem,R

tg
d (φ3(ld̄) + p3δd)

−
∑

(d,g)∈Sdem,L

tg
d (φ1(ld̄)− p1δd)−

∑
(d,g)∈Sdem,R

tg
d (φ1(ld̄) + p1δd)

=
∑

(d,g)∈Sdem,L

tg
d · δd · (p1 − p3) +

∑
(d,g)∈Sdem,R

tg
d · δd · (p3 − p1)

= (p3 − p1)︸ ︷︷ ︸
>0

 ∑
(d,g)∈Sdem,R

tg
d · δd −

∑
(d,g)∈Sdem,L

tg
d · δd


︸ ︷︷ ︸

=−∆
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Because ∆ ≥ 0 or −∆ ≥ 0, at least one difference is non-negative. If the absolute revenue
difference |∆| is strictly larger than zero, then (f1, p1) is dominated by the respective other
distance tariff, which is a contradiction. If it is equal to zero, but the number of passengers
has increased, then (f1, p1) is again dominated, which is a contradiction. And if it is equal
to zero and the number of passengers is the same, then all solutions belong to the same
non-dominated point and we can choose the one that satisfies one of the claimed criteria.

Hence, for every non-dominated point, there is an efficient solution satisfying one of the
criteria in the claim. ◀

▶ Corollary 12. The problem is tractable, i.e., the number of non-dominated points is
polynomial in the input, namely in O((

∑
d∈D Gd)2).

Proof. The claim follows from Theorem 11 because there are at most
∑

d∈D Gd non-
dominated points for efficient solutions (f, p) with f = 0 or p = 0, and at most (

∑
d∈D Gd)2

non-dominated points that meet the willingness to pay of two demand groups exactly. ◀

Algorithm 2 Solution method for D-RPM.

Input : Instance of D-RPM
Output : Set Γ of all non-dominated points

1 Initialize Γ1 ← ∅; Γ2 ← ∅; Γ3 ← ∅.
// Determine points with a solution with p = 0.

2 Apply Algorithm 1 and let Γ1 be its result.
// Determine points with a solution with f = 0.

3 Set f ← 0.
4 for d ∈ D do
5 for g ∈ [Gd] do
6 Set p← wg

d

ld
.

7 Update Γ2 ← Γ2 ∪ {(rev(f, p), pass(f, p))}.

// Determine points with a solution that meets the willingness to pay
of two groups exactly.

8 for d, d′ ∈ D with ld < ld′ do
9 for g ∈ [Gd], g′ ∈ [Gd′ ] do

10 Set p← wg′

d′ −wg
d

ld′ −ld
.

11 Set f ← wg
d − p · ld.

12 if f > 0 and p > 0 then
13 Update Γ3 ← Γ3 ∪ {(rev(f, p), pass(f, p))}.

// Filter for non-dominated points.
14 Filter Γ1 ∪ Γ2 ∪ Γ3 for non-dominated solution as described in Section 2. Let Γ be the

filtered result.
15 return Γ

▶ Theorem 13. Algorithm 2 computes the set of all non-dominated points of D-RPM in
O((

∑
d∈D Gd)3).
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Proof. Theorem 11 gives a characterization of efficient solutions from which all non-dominated
solutions can be determined. In line 2 of Algorithm 2, a superset of all non-dominated
solutions with an efficient solution (f, p) with p = 0 is determined, in lines 3 to 7 a superset
of all those with f = 0 and in lines 8 to 13 of all those that meet the willingness to pay
of at least two groups exactly are computed. Combinations of demand groups with the
same distance are omitted because this would yield an infeasible vertical line. Therefore,
Γ1 ∪ Γ2 ∪ Γ3 contains all non-dominated points. In line 14, all dominated solutions are
removed and, hence, Γ is the set of all non-dominated points.

The computations in lines 2 to 7 are in O((
∑

d∈D Gd)2). In lines 8 to 13, we iterate
over the combinations of two demand groups and again iterate over the demand groups
for determining the revenue and the number of passengers in line 13. This is done in
O((

∑
d∈D Gd)3). Filtering Γ1 ∪ Γ2 ∪ Γ3 for non-dominated solutions in line 14 is done in

O((
∑

d∈D Gd)2 · log(
∑

d∈D Gd)). Hence, in total, the algorithm is in O((
∑

d∈D Gd)3). ◀

▶ Remark 14. Note that the running time is significantly influenced by the number of OD
pairs with the same distance because the for-loop in line 8 of Algorithm 2 is only performed
for OD pairs d′ with a larger distance than that of OD pair d, but in particular not for those
with the same distance. Hence, the loops over the demand groups and the computation of
the objective function value are omitted for OD pair combinations with the same distance.

5 Computational Experiments

The revenue-passenger model introduced in this paper is tested on artificial instances based
on the data sets grid and mandl from the open source software library LinTim [20, 21].
The PTNs provided for each of the data sets can be used to compute network and beeline
distances between any pair of stations. The distributions of the demand with respect to the
network and beeline distances is shown in Figure 2. Data set mandl consists of 172 OD pairs
that have 72 different network distances and 84 beeline distances. While data set grid even
has 567 OD pairs, these belong only to 8 network distances and 14 beeline distances. An
overview of the parameters for generating the artificial instances is given in Table 1: The
demand data provided in LinTim is split into G ∈ {1, 3, 5} demand groups to create the
input demand data of the revenue-passenger model in four different ways (equal, random,
increasing, decreasing). The willingness to pay for each group is generated using a flat
tariff (w-flat) or an affine distance tariff where the distance is derived from the network
(w-network) or the Euclidean distance (w-beeline). The parameters f and p are chosen
from three options for affine distance tariffs and one option for flat tariffs. In total, this
yields 252 instances per data set. The instances are solved for the revenue-passenger models
F-RPM and D-RPM, determining flat, network distance and beeline distance tariffs.
The solution methods are implemented in Python and the experiments are run on a machine
with an Intel(R) Core(TM) i5-1335U and 32 GB of RAM.

Running Time. The running times of Algorithm 1 and Algorithm 2 are depicted in Figure 3.
According to Theorem 7 and Theorem 13 the running time of Algorithm 1 is quasilinear in
the total number of demand groups while the running time of Algorithm 2 is cubic. This
can be observed in the running times: F-RPM can be solved in 0.08 seconds for all grid
instances and in 0.14 seconds for all mandl instances, while the running time of D-RPM
increases to up to 13 seconds for grid and to 46 seconds for mandl, respectively.
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(a) Demand data for data set grid.
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(b) Demand data for data set mandl.

Figure 2 Demand data with respect to the different PTNs. The size of a point reflects on the
demand. Above and on the right hand side of the plots, the demand with the same network or
beeline distance, respectively, is aggregated.

Table 1 Parameters for generating artificial instances.

Parameter Value Explanation

demand
groups G ∈ {1, 3, 5} number of groups Gd = G for all OD pairs d ∈ D

demand
split

equal
random
increasing
decreasing

∀d ∈ D, ∀g ∈ [G] : tg
d =

⌈
td
G

⌉
∀d ∈ D, ∀g ∈ [G] : tg

d ∈ {1, . . . , td} random with
∑G

g=1 tg
d = td

∀d ∈ D, ∀g ∈ [G − 1] : tg
d =

⌈
td
2g

⌉
and tG

d =
⌊

td

2G−1

⌋
∀d ∈ D, ∀g ∈ [G − 1] : tg

d =
⌈

td

2G+1−g

⌉
and t1

d =
⌊

td

2G−1

⌋
willingness
to pay

w-flat
w-network
w-beeline

tariff used to generate willingness to pay

tariff
parameter

A
B
C

∀g ∈ [G] : fg = g, pg = 0.2
∀g ∈ [G] : fg = g, pg = 0.6 − 0.1g

∀g ∈ [G] : fg = 1, pg = 0.1g

Figure 2 shows that the input data of grid is very structured and that only a few different
distances occur, especially for the network distance. As suggested in Remark 14, this reflects
on the running times, which is smaller for grid than for mandl, even though grid has roughly
three times as many OD pairs as mandl.

These running times are orders of magnitude smaller compared to the running times of
the MILP-based approach using Gurobi 10.01 [14] for solving the MILP of D-RPM. Figure 4
and Table 2 show that Algorithm 2 for D-RPM, that exploits the structure of distance
tariffs, is much faster than the MILP-based approach. For network D-RPM, in 68% of
the instances of grid with 5 demand groups, it was in some iteration not possible to even
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Figure 3 Running times in seconds for computing the complete Pareto fronts with Algorithm 1
for F-RPM and with Algorithm 2 for network and beeline D-RPM.
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ALGO MILP, solved optimally MILP, not solved optimally MILP, no feasible solution within time limit

Figure 4 Running times in seconds of network D-RPM with Algorithm 2 (ALGO) and with
the MILP-based method (MILP) on data set grid with a logarithmic scale. Each marker represents
the running time for computing the Pareto front of a single instance. The time limit for solving
each MILP within the ϵ-constraint method is set to 300 seconds. If a MILP could not be solved
to optimality within this time limit but a feasible solution was found, then we continue with this
feasible solution and label the instance as “MILP, not solved optimally”. If no feasible solution is
found, the procedure terminates and we label the instance as “MILP, no feasible solution within
time limit” and depict it with the maximum running time in this figure.

Table 2 Mean, minimum and maximum running times in seconds for solving network D-RPM
on the grid instances with Algorithm 2 (ALGO) and with the MILP-based method (MILP). Only
the instances that were solved optimally are considered.

running time ALGO running time MILP
groups mean min max mean min max

1 1.19 1.02 2.21 0.78 0.44 1.02
3 3.23 2.44 4.04 248.36 2.07 2086.07
5 6.95 5.11 12.37 30.53 10.15 67.35
all 3.79 1.02 12.37 103.81 0.44 2086.07
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determine a feasible solution within the time limit. With 3 demand groups this still happened
to 7% of the instances. In both cases, 11% terminated with a feasible, but not necessarily
optimal solution. Just in case of only 1 demand group, the MILP-based approach performs
slightly better than Algorithm 2 with a mean running time of 0.78 seconds compared to 1.19
seconds. Note that strengthening the formulation of the MILP could improve the running
time of the MILP-based approach.

Size of the Pareto Front. Figure 5 shows the number of points on the Pareto front for the
different options for the demand splits and for the generation of the willingness to pay. We
can observe two main effects:

First, a decreasing demand split leads to a small size of the Pareto front. This is
because the price increase cannot compensate for loosing large demand groups with a low
willingness to pay. We see the reverse effect for increasing which leads to the most points
on the Pareto front because loosing only small demand groups with a low willingness to pay
is compensated in the revenue by the increased price.
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(b) Data set mandl.

Figure 5 Size of the Pareto front dependent on the demand split and the tariff used to generate
the willingness to pay.
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Second, if the fare strategy of the input tariff (for generating the willingness to pay) and
the output tariff coincide, the size of the Pareto front is smaller. In this case, an output tariff
might be chosen exactly as the willingness to pay of one demand group level, which is in
general not possible if they differ.

Structure of the Pareto Front, Efficient Tariffs and Input Data. Figure 6 to Figure 9
show the Pareto fronts in (a) and corresponding efficient solutions in (b) and (c) for selected
parameter settings for the mandl instances. Additionally, (b) and (c) show the demand as
points (ld, wg

d) weighted with the number of potential passengers tg
d. The figures for grid can

be found in Appendix A. In these cases, we can see well that coinciding input and output
tariffs lead to a small sized Pareto front that even dominates many of the points of the other
tariff types. For w-beeline, the Pareto front of beeline D-RPM dominates the Pareto front
of network D-RPM, and vice versa for w-network. Particularly in Figure 6, it is visible
that the distinct points on the Pareto front belong to solutions that are a flat tariff. Only
in this setting with the willingness to pay being generated by w-flat, we obtain a Pareto
front for F-RPM that is not dominated by both, the Pareto fronts of beeline and network
D-RPM. This is however not surprising because a flat tariff is a special case of a distance
tariff.

Moreover, in many cases, the efficient tariffs are located on the lower levels of the demand
groups, meaning that it is not beneficial to increase the price to the highest willingness to pay.
For example, Figure 6 constitutes an exception, where it is an efficient solution to choose a
flat tariff with a fixed price equal to the second highest willingness to pay. However, we also
see here that the highest willingness to pay does not lead to an efficient solution.
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Figure 6 Instance of mandl with 5 demand groups and parameters increasing/w-flat/A.
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Figure 7 Instance of mandl with 5 demand groups and parameters random/w-network/A.

ATMOS 2024



15:16 A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

12000 13000 14000 15000

number of passengers

30000

35000

40000

45000
re
ve
n
u
e

network beeline flat

(a) Pareto fronts.

0 10 20

network distance

2

4

6

p
ri
ce

network flat

(b) network and flat tariff.

0.0 2.5 5.0 7.5 10.0

beeline distance

2

4

6

p
ri
ce

beeline flat

(c) beeline and flat tariff.

Figure 8 Instance of mandl with 5 demand groups and parameters decreasing/w-beeline/B.
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Figure 9 Instance of mandl with 5 demand groups and parameters equal/w-beeline/C.

6 Discussion and Outlook

In this paper, we have introduced a bi-objective model for fare planning maximizing the
revenue and the number of passengers with different demand groups per OD pair. Specialized
algorithms for flat and distance tariffs showed a significant reduction in running time in
computational experiments on artificial data sets from the software library LinTim.

Another common fare strategy are zones tariffs. For counting zone tariffs, for which the
price depends on the number of traversed zones, the MILP-based method can be performed
by applying the MILP proposed by [19] and adding the constraint restricting the number of
passengers. However, because this MILP has a high running time in practice, it cannot be
expected to compute the whole Pareto front, even for small instances. Future work could
encompass the design of a specialized algorithm for zone tariffs.

Computational experiments show that it is worth to look into the revenue-passenger
model for the specific fare strategies. Exploiting the structure of tariffs, leads to methods
that allow for the computation of the complete Pareto front. This yields a wide range
of information for public transport operators to choose a tariff that serves their financial
requirements as well as promotes public transport with the aim to attract and increase the
demand.
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A Pareto Fronts and Efficient Solutions for Selected grid Instances

Figure 10 to Figure 13 show the Pareto fronts in (a) and corresponding efficient solutions
in (b) and (c) for selected parameter settings for the grid instances. Additionally, (b) and (c)
show the demand as points (ld, wg

d) weighted with the number of potential passengers tg
d.
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Abstract
Simulation of urban rail networks provides useful information to optimize traffic management
strategies w.r.t. goals such as satisfaction of passenger demands, adherence to schedules or energy
saving. Many network models are too precise for the analysis needs, and do not exploit concurrency.
This results in an explosion in the size of models, and long simulation times. This paper presents
an extension of Petri nets that handles trajectories of trains, passenger flows, and scenarios for
passenger arrivals. We then define a fast event-based simulation scheme. We test our model on a
real case study, the Metro of Montreal, and show that full days of train operations with passengers
can be simulated in a few seconds, allowing analysis of quantitative properties.
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1 Introduction

Development of urban transport networks such as metros is a key issue in the development
of cities. Beyond infrastructure, efficient traffic management algorithms are needed to
plan operations in the network, and take the most appropriate decisions to optimize its
performance. Traffic management can be seen as a combination of planning (one needs a
priori schedules to provide a transport offer to clients, and plan composition of train fleets
in metro lines), control (to take decisions online to handle delays caused by incidents, and
avoid their propagation), and optimization of key performance indicators (KPIs).

Several quality criteria are usually addressed at the same time. An obvious one is
passengers satisfaction, which is highly correlated with waiting times in stations. This means
that to satisfy passengers demand, traffic management has to consider issues raised by crowds
in stations, and by delays. Other quality criteria address running cost of a network, energy
consumption, adherence to a determined schedule, etc. To answer all the needs of these
complex systems, it is natural to consider automated techniques. However, models for metros
are usually huge: even for a small network with a single line, a few stops and a small size fleet
of metros, the size of models that can capture the dynamics of the network exceed several
millions of states [3]. This exceeds the limits of most verification and optimization tools
that rely on an explicit state representation. This calls for the use of efficient simulation
techniques and statistical approaches to address real-size case studies.

Related Work. Several commercial tools propose realistic models to simulate metro networks.
OpenTrack [20] is often used to measure the KPIs achieved under a certain traffic management
policy. OpenTrack models are precise, and almost digital twins of the running systems. As a
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consequence, the simulation of a day of operation requires important computing resources.
The Railsys suite [7] is another tool addressing train operations at a microscopic level. The
simulation scheme of [11] starts from timetables. It considers how primary delays propagate
in a schedule, and uses symbolic descriptions of train trips and reduction rules to represent
states in a compact way and speed up the simulation process. However, this simulation
framework does not consider passengers. Models to simulate metro with their payloads
have been developed. Railnet is a simulation model to help planning shared occupation
of tracks between freight and passengers transport [19]. The network model is a graph
and the vehicles moves are depicted as sequences of arrival and departure dates. Railnet is
used to find a solution for insertion of new freight trips that do not harm passengers trains.
The model proposed in [1] is an origin-destination model for passengers interconnection to
forecast passenger movements and help propose new layouts for interconnections. Another
simulation method proposed in [9] evaluates passenger flows in case of service interruption.
The simulation is mainly a calculus of paths duration, involving access time, waiting time,
and transport duration. Many other tools exist, addressing modeling and simulation at low
(microscopic) or high (macroscopic) level, with a formal background inspired from graphs,
queuing theory, etc. We refer to [10, 15] for surveys of the domain.

Challenges. Most of the models proposed are either too low level and require important
computing resources to simulate a network, or describe metros at a higher level, but ignore
passengers. An ideal model should have a semantics close enough to the behavior of the
running system, but yet allow fast techniques to perform large simulation campaigns and
produce sound statistics on the performance of the system. The basic ingredients of the
model must take care of the network topology, of varying composition of vehicle fleets,
timetables, and passengers. Of course, an appropriate model for a metro network is a timed
model (performance of traffic management is often measured w.r.t. delays or end-to-end trip
durations) but also a stochastic model, as trips and dwell durations are subject to random
perturbations: unexpected delays can be imposed to a vehicle by a passenger blocking a
door, or by a choice of a driver to extend the dwell time in case of important crowds on
platforms. As already mentioned, state space explosion is an issue for tools and models
relying on explicit states representation. Further, as train movements are independent as
long as the distance between the two vehicles is sufficient, concurrency models such as Petri
nets are natural candidates to design metros.

Contributions. In this paper, we propose an efficient simulation scheme for metros operated
with a moving block policy. Our model includes train movements, passenger flows in stations,
platforms and vehicles. Important situations such as delayed trains are difficult to address
with standard models such as timed automata [2] or Time Petri nets [18], which led to
proposing a new timed variant of Petri nets in [13]. We extend this work, and propose
trajectory nets, a variant of Time Petri that includes passenger flows. Roughly speaking,
a trajectory net is a Petri net in which some places represent track portions and contain
forecast train trajectories instead of tokens. Passenger flows in a network are modeled by
assigning an integral vector indexed by destinations to trains and platforms, and by queues
representing connections between lines. Last, scenarios to describe passenger arrivals in the
network are modeled as sequences of Origin-Destination matrices indexed by time periods.
Despite these extensions, the model still benefits from fast simulation techniques that were
developed for Time Petri nets. We show the efficiency of our simulation scheme on a real
case study: we evaluate the effects of train insertions on passengers waiting times during
peak hours in the metro of Montreal.
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2 A subway network model

A subway network is mainly a graph, and it is natural to see a day of operation as a description
of how vehicles move on this graph. A metro that follows a path in the network graph travels
at a given speed between two stations, i.e. the train moves for a period of time between two
events: a departure and an arrival. The other events that can be considered are incidents,
or decision taken by an operator. Last, vehicles have independent moves if they are distant
enough in the network, but close trains may have to adapt their speed to maintain safety
distances. This calls for the use of concurrent models, and Time Petri nets [18] seem tailored
for this task: the flow relation of a net can represent the network, tokens can be used to
represent trains, and the timing constraints attached to transitions can be used to enforce
trips durations or dwell times. It was shown however that Time Petri nets are not expressive
enough to model simple situations where a train has to wait for a departure order even when
its dwell time has expired. A new model called waiting nets was proposed to solve this issue
in [13]. Further, speed adaptation for close trains cannot be captured by tokens and clocks.
In the rest of this section, we describe trajectory nets, a model that extends Time Petri nets
to handle safety distances and varying speeds of trains. Roughly speaking, a trajectory net is
a Petri net in which some places can contain diagrams representing several train trajectories
from a station to the next one instead of tokens. Trajectories are discretizations of space-time
diagrams, a representation of trains moves frequently used to give a feedback on realized and
planned train movements in a network. In the rest of the paper, configurations of a network
will be mainly collections of trajectories.

Before introducing the elements of our new model, let us recall the basics of Petri nets. A
Petri net is a bipartite graph composed of a set of places, denoted P that represent resources,
of a set of transitions, denoted T representing actions. Places and transitions are connected
via a flow relation, i.e. a subset of P × T ∪ T × P . The set •(t) denotes the resources (set of
places) required for transition t to occur, and the set (t)• represent the resources produced by
execution of transition t. Petri nets are often used to model systems with a lot of concurrency
and analyze their behaviors. The state of a Petri net is called a marking, and is a map that
associates a number of tokens to each place. The state of a Petri net evolves by firing actions,
i.e. consuming one token in each place representing a resource required by a transition t

and producing one token in each place in the postset of t. Behaviors of Petri nets can be
infinite, and the state state space reachable by a Petri net from an initial marking can also
be infinite. Despite this expressive power, many properties such as reachability are decidable
for Petri nets [17]. Figure 1 shows an example of Petri nets with places P = {p1, p2, p3} and
transitions T = {t1, t2}. Repeating sequence of transitions t1.t2 allows to fill place p3 with
any number of tokens. Due to their graphical nature that can easily simulate networks, to
their clear semantics, and to their decidability, Petri nets or their extensions are often used
to model railway systems.

•
p1

p2

p3t1

t2

Figure 1 An example Petri net.
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▶ Definition 1. A segment is a pair of points ⟨(x, y)(x′, y′)⟩ where x, x′ are real values that
represent time and y, y′ are real values that represent distances. A trajectory is a pair (tr, b),
where b is a boolean indicating if the trajectory is blocked, and
tr = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xk−1, yk−1)(xk, yk)⟩ is a finite sequence of consecutive segments
such that x0 =0, and ∀i, xi > xi−1 and yi ≤ yi−1. A trajectory is complete if yk =0.

In a point (x, y) of a segment, x represents a duration, and y a remaining distance to a
destination. So, trajectories define how distance to arrival decreases over time. For instance a
trajectory tr = ⟨(0, 200)(10, 100)⟩.⟨(10, 100)(30, 0)⟩ describes a train at distance 200 m from
its goal, that arrives 30 seconds later. It travels at 10m/s during 10 seconds, and then slows
down at 5m/s. A train approaching a close predecessor will have to adapt its trajectory to
preserve headways, and elapsing δ time units will simply consist in shifting trajectory segments
by δ units to the left. For a trajectory tr = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xk−1, yk−1)(xk, yk)⟩, and a
date d ≤ xk we will denote by tr(d) the coordinate of a train at date d. For xi ≤ d ≤ xi+1 we
have tr(d) = yi + (d− xi). (yi+1−yi)

(xi+1−xi) . We will say that two trajectories tr, tr′ respect a safety
headway h if and only if ∀d, |tr(d)−tr′(d)| ≥ h, and that tr′ is above tr if ∀d, tr′(d)−tr(d) ≥ 0.
Trajectories are defined for track portions of bounded length. For a length H we assume
that for every trajectory, y0 ≤ H. So, we can have at most H/h trajectories respecting a
safety headway h in a track segment of length H.

Trajectory nets defined hereafter will use sequence of trajectories of the form TS =
(tr1, b1) · · · (trk, bk) to represent trips for several trains in a given space of length H. We
forbid ill-formed sequences of trajectories where trains overtake or violate the safety headway.

▶ Definition 2. A sequence of trajectories TS = (tr1, b1) · · · (trk, bk) is consistent (w.r.t.
headway h) iff every pair of trajectories in TS respects safety headway h, and bi = true

implies that bj = true for every j < i.

For a sequence of trajectories TS = (tr1, b1) · · · (trk, bk), we can denote by xk
j (resp. yk

j )
the jth value of x (resp. y) in trajectory k. With this notation, yk

0 = trk(0) is the current
distance to next stop of train k in sequence TS. Let CTS(H, h) denote the set of consistent
sequences of trajectories (w.r.t. headway h) in a space of length H. Given a consistent
sequence of trajectories TS = (tr1, b1) · · · (trk, bk) such that trk(0) ≤ H − h, we can sample
an additional trajectory trk+1 such that TS.(trk+1, false) is consistent and yk+1

0 = H. Let
I = [α, β] be a time interval depicting a possible trip duration (these values depend on train
speeds allowed by the network, the rolling stock specifications, and the policies given by
operators), d ∈ I be a rational value, and t̂rk+1 = ⟨(0, H)(d, 0)⟩. Trajectory t̂rk+1 depicts
a space time diagram for a train traveling at average speed H

d when no other train is on
the track. Now, to preserve consistency of a place contents one cannot always add directly
t̂rk+1, to an existing sequence TS : the wished trajectory may have to be adapted (this
amounts to reducing the speed of a train) to stay at distance h from preceding trains. That
is, one has to compute a trajectory trk+1 =↑ (t̂rk+1, TS, h) such that, for every time value t,
↑ (t̂rk+1, TS, h)(t) = max(t̂rk+1(t), trk(t) + h).

Computing ↑ (t̂rk+1, TS, h) is a simple geometrical calculus, defined formally in Ap-
pendix A. One can notice that by construction, trk+1 =↑ (t̂rk+1, TS, h) is the only tra-
jectory for a train running at speed H/d whenever possible such that TS.(trk+1, false)
is consistent. For a given sequence TS and time interval I = [α, β], we denote by
SAMPLE(TS, H, h, I) = {↑ ( ̂tr|T S|+1, TS, h) | ∃d ∈ I ∧ ̂tr|T S|+1 = ⟨(0, H)(d, 0)⟩} the set of
additional trajectories depicting trains with trips of length H , that can be added consistently
to TS while respecting headway h with an initial speed in interval [ H

β , H
α ]. This way of

sampling trajectories allows the introduction of random perturbations w.r.t. a chosen speed
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Figure 2 A sequence of trajectories (left) and its left shift by δ = 40s (right).

profile with an appropriate probability distribution on I. The sampled trajectories can be
simple segments respecting headways (such as the black trajectory in Figure 2), or sequences
of consecutive segments at distance ≥ h from preceding train (such as the orange and green
trajectories in Figure 2).

As one can see on Figure 2, trajectories have an intuitive graphical representation, showing,
after x time units the distance from a train to the next station. A trajectory that is blocked
represents a train that cannot move because it does not have a sufficient headway ahead. Let
us now give a graphical intuition of how trajectories evolve when time progress. We will call
the left shift of a sequence of trajectories by a real value δ the sequence of trajectories obtained
by letting trajectories of blocked trains unchanged, and translating all other trajectories
by a value −δ. Figure 2 shows an example of left shift. In the original configurations, two
trajectories are blocked : a train at distance 0 from arrival (represented by a dot) and its
successor, that has to stop to preserve a headway, represented by a thick black line. The
next two trains are at a sufficient distance to continue their planned trip during 20 seconds.
The left shift of the initial positions of trains by 20 seconds simply consists in a translation
of 20 units to the left of unblocked trajectories (erasing the parts of shifted trajectories with
negative absiscaes). As for trajectory creation, left shift of a trajectory tr by δ time units is
a simple geometrical operation, denoted by LS(tr, δ), that we define formally in Appendix B.
We now have all elements to define our simulation model for metro networks.

▶ Definition 3. A trajectory net is a tuple N = (P, T, F, H, I) where P = PC ∪ PT is a set
of places partitioned into control places PC and trajectory places PT . T is a set of transitions,
and F ⊆ P × T ∪ T × P . Maps H : PT → Q associates a length, and I : PT → Q2 a time
interval with each trajectory place of PT .

As usual, we denote by •(t) = {p ∈ P | (p, t) ∈ F} the preset of a transition t ∈ T and
by (t)• = {p ∈ P | (t, p) ∈ F} its postset. A marking M of PC is a map that associates an
integral number of tokens with every control place in PC . We say that M enables a transition
t ∈ T iff, for every place p ∈ PC ∩ •(t), M(p) > 0. The effect of a firing of a transition t on a
marking M that enables it is to produce a new marking M ′ obtained by removing a token
from each place in •(t) ∩ PC and then adding a token in each place of (t)• ∩ PC . With a
slight abuse of notation, we will write M ′ = M − •(t) + (t)• . Let Hmax = maxp∈PT

H(p),
and assume a fixed headway h for the whole network. A trajectory marking (or TMarking
for short) is a map µ : PT → CTS(Hmax, h) that associates a sequence of trajectories with
each place of PT . We will say that µ enables t if, for every place p ∈ •(t) ∩ PT , µ(p) is not
empty and contains a trajectory of the form (tr, true), with tr = ⟨(0, 0)(0, 0)⟩ depicting a
train arrived at the end of its trip. A configuration of a net N is a pair C = (M, µ) where M

is a marking, and µ a TMarking. Figure 3 is a simple trajectory net with two control places
p3, p4, two trajectory places p1, p2 and a transition t. The TMarking of place p1 is a sequence
of two trajectories, where the green trajectory was adapted to preserve safety headways.
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p1

•
p3

p2

p4

t

H(p1) = 500 I(p1) = [40, 60] H(p2) = 700 I(p2) = [30, 50]

Figure 3 Basic elements of a trajectory net: places, transitions, trajectories.

The semantics of trajectory nets is given in terms of discrete and timed moves from
a configuration to the next one. Discrete moves depict arrivals and departures of trains,
trajectory changes imposed to preserve safety headways, and timed moves depict how
trajectories evolve when time elapses. One can simulate a train waiting in a station S with a
trajectory place pS representing the station, such that H(pS) < h. In this setting, a TMarking
of place pS can contain at most one train, which waiting duration lays in I(pS). Adding a
trajectory in place pS models an arrival in station, removing a trajectory a departure.

Given a non-empty TMarking µ(p) = (tr0, b0) · · · (trk, bk) one can easily find the remaining
time δarr(p) before arrival of a train depicted by trajectories in µ(p) if tr0 is not blocked, or
δblock(p) before a trajectory in µ(p) has to be blocked to preserve consistency of µ(p). For
a sequence TS = (tr0, b0) · · · (trk, bk), UNBLOCK(TS) = (tr0, false) · · · (trk, false) is the
sequence obtained by unblocking all trajectories in TS.

Consider semantics rule R1 below, depicting an arrival or a departure. Roughly speaking,
the rule consists in “consuming” a complete trajectory representing a train arrived in station,
creating new ones in the places1 of (t)•, and unblocking trajectories of trains that were
blocked until this arrival. The second semantics rule R2 below describes how trains can get
blocked when there is not enough space ahead to move.

(R1)

M enables t, µ enables t, M ′ = M − •(t) + (t)•
∀p ∈ PT ∩ •(t), µ(p) = (⟨(0, 0)(0, 0)⟩, true).W ∧ µ′(p) = UNBLOCK(W )

∀p′ ∈ PT ∩ (t)•, µ′(p′) = µ(p′) · (tr, false), where tr ∈ SAMPLE(µ(p′), H, h, I(p))
C = (M, µ) t−→ C ′ = (M ′, µ′)

(R2)

µ(p) = (tr1, b1) · (tr2, b2) · · · (tri, bi) · · · (trk, bk)
bi = false ∧

(
(bi−1 = true ∧ tri(0)− tri−1(0) = h) ∨ tri = ⟨(0, 0)(0, 0)⟩

)
µ′(p) = {(tr1, b1), (tr2, b2) · · · (tri, b′i = true) · · · (trk, bk)}

C = (M, µ) blockp,i−→ C ′ = (M, µ′)

Timed moves just let time elapse. We adopt an urgent semantics: a timed move of
duration δ is allowed from configuration C if and only if no discrete move is allowed in C.
Unsurprisingly, letting time pass is modeled by a left shift of TMarkings. However, blocked
trajectories represent trains that cannot move without violating a safety headway. Hence,
the left shift of a TMarking µ(p) = {(tr1, b1) · · · (trk, bk)} by a duration δ is a new TMarking
{(tr′1, b1) · · · (tr′k, bk)} where tr′i = LS(tri, δ) if bi = false and tri = tr′i otherwise.

1 To represent metro networks, one only needs |(t)•| = 1 but this restriction is not needed in the semantics.
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(R3)

δ ∈ R>0

∀t ∈ T, M does not enable t ∨ µ does not enable t

∀p ∈ PT such that µ(p) is defined δ ≤ min(δarr(p), δblock(p))
∀p ∈ PT , µ′(p) = LS(µ(p), δ)

C = (M, µ) δ−→ C ′ = (M ′, µ′)

With these semantic rules, we can simulate the behavior of a metro network represented
by a trajectory net. Arrivals and departure are symbolized by transitions firings, and result
in the sampling of a new trajectory that is consistent with the possible speeds of trains and
with the TMarking of the new track entered. An interesting feature of Rule 3 is that one can
directly elapse time for a duration δ = min

p∈PT

min(δarr(p), δblock(p)), i.e. progress time up to

the date of the next discrete event : arrival/departure in station, or blocking of a trajectory.
With this approach, one does not need to sample a discrete clock and compute what happened
at each time step. This approach is called event-based simulation, and considerably speeds
up simulation of metro networks. One can also see from these rules the advantages of using
Petri nets variants: in each discrete rule, the effect of an event changes the contents of a
single place, or the preset/postset of a single transition.

We can now define runs of a trajectory net. A run is a sequence ρ = C0
δ0−→ C1

e0−→ C1 · · ·
where each Ci is a configuration, Ci

δi−→ Ci+1 is a legal time move, and Ci
ei−→ Ci+1 is a

legal discrete move (ei is either a transition firing, or the blocking of a trajectory in a place).
Note that the behavior of a net starting from a configuration C0 is not deterministic, as
transitions firings sample random durations for newly created trajectories.

Despite their apparent simplicity, trajectory nets allow for the design of complex topologies
of metro networks involving forks, joins, reversal or garage zones for trains, ... Using control
places filled at the appropriate moment, one can guide a train reaching a fork to enter the
next track segment on its trip. We refer interested reader to Appendix F for examples.

3 Passenger flows

The model of Section 2 does not consider passengers, but only possible moves of trains. In
this section, we model passenger flows as a side quantitative information evolving with runs
of a trajectory net, i.e. as quantities representing crowds, that are updated at each timed
and discrete move. First of all, passenger flows are not constant over time, and depend on
particular scenarios. In most cities, during a working day, one can observe peak hours during
which commuters move from their home to their workplace, and the way back in the evening.
Scenarios for passenger flows during weekends differ w.r.t. dates and duration of peaks,
number of moving passengers or destinations. To control efficiently a transport network,
i.e. provide the expected transport offer but nevertheless use the right amount of resources,
operators use different policies for each scenario. In this section, we first explain how scenarios
for passenger flows are usually represented in metro networks (using Origin-Destination
matrices), how connections between parts of a network (corridors or access to quays) are
specified. We use these representations to decorate in a consistent way runs of our metro
model with quantities depicting passengers that are moving towards a platform, waiting on a
platform, or traveling in a train.

Roughly speaking, passenger behaviors (arrivals and final destination) are encoded as
sequences of origin/destination matrices, connections as queues, and train payloads as vectors
containing the number of passengers alighting at each destination in the network. To avoid
overloading our model, we consider that all passengers move at identical constant speed
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16:8 Modeling Subway Networks and Passenger Flows

from a point to the next one. This modeling choice may result in slight modification in the
duration of transit times. Indeed all passengers do not move at the same speed, corridors
may contain bottlenecks, and paths from a platform to another one on a different line may
include stairs, etc. However, there is no clear consensus on how passenger flows should be
modeled. It seems that for corridors with bottlenecks, the throughput depends mainly on the
width of the bottleneck [21]. We will hence model passengers moving in a station by queues
of integers. In a similar way, there is no canonical model to represent passengers entering or
leaving a trains, and the time needed to load and unload may depend on characteristics of
the rolling stock (e.g. the number of doors, their width and their position) [16]. Here again,
we will adopt a simple model, and consider the exchanges that occur depending on the dwell
time, passengers on platform, and available space in trains.

▶ Definition 4. Let S = {S1, · · ·Sm} be a list of stations in a metro network, and let us
fix a duration ∆. An Origin Destination Matrix (ODM for short) is an integer matrix OD

indexed by S. Each entry OD[si, sj ] represents a number of passengers willing to travel from
station si to station sj in ∆ time units. A scenario is a sequence OD1, OD2, ..., ODn of
origin destination matrices. The duration of a scenario is n ·∆

An ODM depicts the number of passengers traveling from one origin station (represented
by a row in the matrix), to a destination station (represented by a column) during a duration
of ∆ time units. The origin and destination stations need not be located on the same subway
line. This means that passengers may have to use interconnection at stations shared by
several lines, and move from one platform to another one to continue their journey. Hence,
the path followed by passengers will have an impact on passenger flows in the transit areas
at connection points. A metro network can be seen as a graph depicting connections from a
station to the next one along each line and interconnections between two lines. We assume
that this graph is consistent with the flow relation of the trajectory Petri net modeling
our network. We also assume that passengers always follow the shortest path (in terms of
distance or in terms of number of stations) in this graph when traveling from an origin station
So to a destination station Sd. With this assumption one can compute the shortest path for
every pair (So, Sd) of origin/ destination, using for instance the well known Floyd-Warshall
algorithm (see for instance [5]). For completeness, we provide this algorithm in Appendix D.
Let us assume that we have obtained a matrix MD giving the shortest distance between any
pair of connected stations. Then, we can compute a matrix MNS such that MNS(Si, Sj) = k

if station Sk is the next station to visit on an optimal path going from Si to Sj . When one
knows the final destination of passengers, this matrix MNS allows to decide, when a train
stops at a station, how many passengers leave the train, and how many passengers continue
their journey to the next station on the same line. The calculus of MNS can be done with a
simple extension of the Floyd-Warshall algorithm, given in Appendix E. Notice that this way
of modeling passengers choices is a way to keep the model simple. We could make passenger
choices more complex, e.g. allow choices of alternative routes to a destination, or choice of a
particular line to go from an origin to a destination. Note that line information is not needed
when lines do not share common track portions (as in the metro of Montreal).

Each ODM is used to depict passenger arrivals and destinations in the network for a
duration ∆. Scenarios allow changes in the arrival dates at each station, at each period
of the day. Let d ≤ ∆. Assuming that an ODM OD represents faithfully passenger trips,
the number of passengers entered in the network at station Si willing to go to station Sj is
⌊OD[i, j] · (d/∆)⌋. Remembering the time t elapsed since the beginning of a simulation, one
can compute how many passengers have entered the network and their destination at time
t + δ. Note that this calculus may involve contents of several OD matrices.
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Figure 4 Integration of scenarios and passenger flows in the model.

At each instant, one wants to remember the number of passengers for a destination in a
train, on platforms, in corridors connecting one entry to a platform, or on platform serving a
line to another platform serving a different line in the same station. We define a payload as
a vector of integers indexed by station, that is vectors of the form PL = [v1, · · · , vn]. The
interpretation is the following: if PL describes the passengers of a train, then PL[i] indicates
the number of passengers willing to reach station si in that train. Obviously, when a train
alights at station Si, then at least PL[i] passengers leave the train. Further, if Si is the last
station on the same line on a shortest path to station Sk, then PL[k] passengers leave the
train too, and move towards a corridor connecting the reached platform Si to the platform
MN [Si, Sk], that is the next step on the journey to Sk. We assume that passengers do not
make mistakes, i.e. they all follow the shortest path to their destination. Payloads are also
used to represent awaiting passengers on a platform: PL[i] is then the number of passengers
that did not yet board a metro and are waiting for a train to go to station Si.

Let us now add corridors to the model. Corridors connect entries of the network to
platforms, and bridge lines to allow journeys involving several metro lines. As for trains and
platforms, one has to remember the number of passengers moving in a corridor and their final
destination. However, passenger moves in corridors take time, and cannot be represented
with a payload. We use FIFO queues to represent passenger flows.

▶ Definition 5. A passenger queue is an tuple Q = (lQ, spQ) where lQ is a length (in meters),
spQ is an average speed. A state of a passenger queue Q is a vector of payloads MQ indexed
by 1..l. We will denote by MQ[k] the passengers at distance k from the beginning of the queue,
and MQ[k][j] = n means that at distance k, n passengers are willing to go to station Sj.

Each entry MQ[k] in a passenger queue represents a section of 1 meter on a path from an
origin (a platform or a station entry) to a destination (a platform). We take some simplifying
assumptions : the speed of passengers is constant in the whole space represented by Q and
is the same for all passengers. Passengers do not interact. With these assumptions, we
can simply remember with MQ[k][j] how many passengers willing to go to station Sj are at
distance k from the next platform. So, using passenger queues, one need not assign a behavior
to every passenger in the network (which would be too costly to simulate). More complex
models for crowd behaviors have been proposed [12, 16], but we are mainly interested in
durations of transfers and in destinations of passengers, not in individual movements. Further,
modeling flows with queues allow for an easy calculus of the evolution of crowds. Let MQ be
the current state of a queue Q = (l, sp) from an entry at station Si to a platform, d be the
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current date. Assume that the played scenario is OD1, OD2, ..., ODn. We can easily compute
how the state of Q evolves within δ time units. Passengers in MQ at distance x ≤ δ · sp

have arrived, so the corresponding sum of payloads from 1 to x is added to the payload
of the platforms. Passengers in MQ at distance y > x + 1 simply progressed in the queue,
i.e. MQ[y − ⌊δ · v⌋] = MQ[y]. Last, assuming that d and d + δ belong to the same period,
i.e. arrivals are given by a single ODM OD, we have OD[i][j] · δ

∆ new passengers arriving
in Q willing to go to station Sj , and spread uniformly on entries δ · sp . . . l of the queue.
In practice, computing the actualized contents of queues within δ time units may involve
several OD matrices, and one has to pay attention to rounding to avoid loosing passengers.
To avoid heavy notations, we leave the complete definition of passenger moves to a more
formal definition provided in Appendix G, and we will simply write M ′

Q = Update(d, δ, MQ)
to denote that M ′

Q is the state of queue Q after δ time units have elapsed since date d.
Similar rules apply for queues representing connections between platforms. In a similar
way, we can represent how the payload of a train evolves when time elapses. When a train
arrives at station Si, passengers alighting at Si leave the train, and either leave the system,
or move to the queue representing the connections to another platform. Then, passengers
on platform board the train up to the maximal capacity CTmax of the vehicle. We refer
to the model of [12] to compute the time needed by n passengers to leave a train. We set
talighting = ⌈n ·Dwidth ×Dnb⌉ × ta where Dwidth is the width of a door in meter, Dnb is the
number of doors of the vehicle and ta is the time for one passenger to alight, estimated in
seconds. Note that a train cannot leave if its passengers are still alighting, so when talighting

is greater than the dwell time planned, the train is delayed. When all passengers alighting at
si have left the train, and the payload of the train is TP then the free space can be used to
let n ≤ CTmax −

∑
TPk passengers enter the train. Boarding is similar to alighting time,

i.e. we have tboarding = ⌈n ·Dwidth ×Dnb⌉ × tb, where tb is the average time needed by a
passenger to board a train. Here, if tboarding is larger than the remaining dwell time of a
train, then our model assumes that doors close, and that some passengers fail to board.

As the remaining space, or the dwell time of trains might not allow all passengers to board,
some of them will stay on the platform. Failures to board are an important performance
indicator, as this is one of the quantitative aspects that characterizes users’ satisfaction. As
for queues, we will denote by TP ′i = Update(d, δ, TPi) the change of payload in train Ti

within δ time units, and P ′i = Update(d, δ, Pi) the change in platform i’s payload. Figure 4
gives an illustration of passenger flows between platforms, corridors, entries and trains.

Let us now reconnect trajectory nets, passenger queues and scenarios. The global
state of a simulation is represented by a tuple

(
C, d, (Pi)i∈1..KP

, (TPi)i∈1..KT
, (MQi

)i∈1..KQ
)
)

where C is a configuration of the trajectory net depicting the physical network, d is a
date, (Pi)i∈1..KP

represents platforms crowds, (TPi)i∈1..KT
represents train payloads, and

(MQi)i∈1..KQ
are the queues contents. Let t be an arrival of a train in station si after a

delay δ. The new state of the system is
(
C ′, d + δ, (P ′i )i∈1..KP

, (TP ′i )i∈1..KT
, (M ′

Qi
)i∈1..KQ

)
,

where C ′ is the configuration reached by the trajectory net after elapsing δ time units and
firing t, i.e., such that C

δ−→ C ′′
t−→ C ′, and P ′i = Update(d, δ, Pi), TP ′i = Update(d, δ, TPi),

M ′
Qi

= Update(d, δ, M ′
Qi

). Similar rule applies when blocking operations occur. At each use
of an operational rule for a train movement, at most one train has its payload updated, but
the contents of all queues and platforms change. So, one has to perform a number of updates
in O ((Kp + KQ · Lmax + 1) · S), where Lmax is the maximal length of a queue. Experimental
results in the next section show that this simulation model is efficient, and allows for fast
simulation of a complete day of metro operation.
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4 A case study: The metro of Montreal

We consider a real-size case study, namely the Metro network of Montreal (see [6] and
Appendix H for a complete map). The network is composed of three main lines (orange,
green, blue) plus a short yellow side line. The orange line is 31km long, it has 42 trains
and 31 stations, which corresponds to 128 places and transitions in our net model. The
green line is 22km long, it has 34 trains, which corresponds to 108 places and transitions in
our net model. The blue line is 9km long, with 32 trains, which corresponds to 48 places
and transitions. In addition to the trajectory net defining the physical behavior of trains,
queues have been created for each platform, and set a limit for the capacity of platforms. We
choose a default queue distance of 10m for corridors from an entry to a platform, a platform
capacity of 1000 awaiting passengers, and a train capacity of 1000 passengers. We represent
the 4 interconnections in the network with 8 queues (one per direction) of 50m.

The control part of the trajectory is extracted from a real GTFS file [8] (a standard
proposed by Google in 2006 for timetable description). This public data depicting one day
of operation on Montreal’s network is available on the STM site [22]. From this timetable,
we generate a list of events associating a date, a vehicle id and a transition to fire. This
timetable allows to feed the control part of our model to trigger train departures. If needed,
delays can be inserted to simulate small perturbations (e.g. doors blocking) or a more serious
anomalies causing a technical interruption of traffic.

We simulated the trajectory net depicting Montreal’s network with the MOCHY tool [14],
an Open-GL software developed for the simulation of transport networks described with
variants of Petri nets. The experimentation was conducted with a weekday scenario repeating
the same OD matrix representing one hour of passenger flows. In this matrix, for every
entry OD[i, j], we generated randomly a high number of passengers entering the network
at station Si and willing to go to destination Sj . This number of passengers per hour was
generated with a uniform law to sample a value ranging from 0 to 100. Multiplying an
average number of 50 passengers per hour by the number of stations in the network rapidly
leads to large flows of incoming passengers. With this scenario, we can model a peak period:
in all stations, a large number of passengers arrive and travel from their home place to their
work. In weekdays scenarios, the payload of all trains increase up to their full capacity if the
operators do not inject new trains in the network. The objective of this simulation was to
consider the effects of train insertion during peak hours, to verify that this policy influences
train payloads. Overall, simulating a full day of operation for the three main lines with
110 trains and their passenger flows takes between 1 and 2 minutes on a standard laptop
(Intel core i7). Our first simulation results are represented in Figures 5 and 6. Figure 5 is
a space-time diagram drawn from our simulation logs. It represents train moves between
station Montmorency and station Cote-Vertu on the Orange line from 5:00 to 8:20. The
horizontal axis represents time. The vertical axis represents localization of trains, labeled
by station names plus a garage, and ordered according to their position on the line. Each
colored line represents a train. This simulation follows exactly the planned timetable, i.e,
events have been realized exactly at their planned dates. The timetable was designed to
guarantee regularity of train departures at each station, and to increase the frequency of
trains to absorb passenger peaks. On the space time diagram, one can observe regularity of
service: train trajectories are parallel lines. When a train is inserted, trajectories adapt and
get closer, as expected.
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Figure 5 A Space-Time diagram for the Orange line.

Figure 6 Passenger flows at Berri-Uqam Orange line.

Figure 6 gives information on passenger flows at station Berri-UQAM (BUQ), more
precisely for the platform located on the orange line. This station is an important node
in the network, because it is an interconnection between the orange and green lines. The
horizontal axis represents time, and the vertical axis a number of passengers. Each point on
each curve was recorded at the date of closure of train doors, i.e. when a train is about to
leave the station. The orange curve describes occupation of trains that stop at the considered
platform. As one can see the trains rapidly fill at their maximum capacity between 6:00 and
7:00. The green curve represents passengers who alighted at BUQ, and will move to the green
line in the next coming seconds, the light blue curve represents the number of passengers
that boarded the currently stopped train. The dark blue curve represents the number of
passengers who alighted at that station but do not connect to the green line (they will exit
the station). Last, the yellow curve represents passengers who failed to board because the
train was full. This is an important indicator, that impacts user satisfaction. The pink curve
depicts the number of passengers who had to wait before entering the station (this value
remains low during the depicted simulation because platforms are never full).
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The simulation is done with heavy passenger flows conditions from early morning until
12 o’clock. The consequence is that trains are almost full on the whole time period shown in
Figures 5 and 6 except for the period 07:00 - 10:00, when frequency of trains is increased
sufficiently to reduce platforms occupation and hence avoid failures to board. Then, from
7:00 to 9:30AM, train occupation is low to 50-60% and no passenger fails to baord. After
10:00AM, the number of trains on the network is reduced. As the incoming passenger flows
remain high on all lines, trains occupation increases. However frequency of stops remains
sufficient to keep trains occupation at 90% of their maximal capacity, and the number of
boarding and alighting passengers remains rather stable after 10:00 during the simulation.

Figure 7 A delay at station Sauve creates a passengers peak at Beaubien.

In a second experiment, we studied the consequence of a 10min delay at 7:30AM at
station Sauvé (the 5th station on the Orange line) with the same weekday scenario. For
space reasons, the space-time diagram of this scenario appears in Appendix I. The networks
takes around 30 minutes to recover from this primary delay. Figure 7 shows the consequences
of this perturbation on passengers at station Beaubien (located 4 stations after Sauvé on
the orange line). A peak in trains occupation arises at 7:43AM. It is due to the increased
time gap between train departures, but also to a larger number of passengers boarding at
the previous stations for the same reason.

5 Conclusion

We have proposed a model for metro networks with their passenger flows. This extension
of Petri nets includes time, positions of moving objects, and queues to represent passenger
moves between platforms and metros. The proposed semantics allows fast simulation, by
computing the state of the system at each discrete event occurrence. At each event, the time
elapsed is known, which is sufficient to update trajectories and passenger flows. Simulation
of a complete day of operation is fast enough to handle real-size cases such as the Metro of
Montreal, and study the effects of operational choices on passenger flows.

A first direction to extend this work is to consider other values than the number of
passengers. For instance, considering the energy consumed by a metro network is a crucial
need. Another challenging task is to address traffic management as a controller synthesis
problem, building controllers that optimize a quantitative criterion (energy, nb. of failures to
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board...). Standard approaches of control (e.g. à la [4]) will not work for metros, due to the
number of states to consider. Solutions to build effectively optimized traffic management
algorithms may come from abstraction, approximation, and possibly learning techniques.
Last, even if this model is tailored for metros, the concurrent nature of the model should be
useful in a setting where objects are most of the time independent, and interact only in local
delimited areas, such as road sections or automated plants.
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A Computing ↑ (trk+1, T S, h)

Let trk = ⟨(x0, y0)(x1, y1)⟩ · · · ⟨(xn−1, yn−1)(xn, yn)⟩, and let dh ∈ [xm, xm+1] be the date
where t̂rk+1(dh) = trk(dh) + h. Then

↑ (trk+1, TS, h) = ⟨(0, H).(dh, trk(dh) + h)⟩ · ⟨(dh, trk(dh) + h)(xm+1, ym+1 + h)⟩ · · ·
· · · ⟨(xn−1, yn−1 + h)(xn, yn + h)⟩ · ⟨(xn, yn + h)(xn + h · d

H , 0)⟩

B Formal definition of Left Shift

▶ Definition 6. The left shift of a segment s = ⟨(xi−1, yi−1)(xi, yi)⟩ is defined if xi ≥ δ, and
is a segment LS(s, δ) = ⟨(x′i−1, y′i−1)(x′i, y′i)⟩, where : x′i−1 = max(0, xi−1 − δ), x′i = xi − δ,
y′i−1 = yi−1 + δ · yi−yi−1

xi−xi−1
, y′i = yi.

Let (tr, b) be a trajectory with tr = s1 · s2 · · · sk, and let δ ≤ xk. The left shift of (tr, b)
by duration δ, is denoted LS(tr, b). If b is true, then LS(tr, b) = (tr, b). If b is false, then
LS(tr, b) = LS(Siδ

, δ) · · ·LS(sk, δ), where iδ the index of the first segment such that LS(si, δ)
is defined.

Notice that as soon as δ ≤ xk, index iδ exists.

C Computing δarr, δblock

Let us now detail, for a given configuration C = (M, µ) and a given place p how to compute
the value of δarr(p) and δblock(p) when µ(p) = tr1 · tr2 · · · trk. First, the arrival date to
consider is the date of the first unblocked trajectory. Let i be the index of this trajectory, and
let tri = s1 . . . sq with sq = ⟨(xq−1, yq−1)(xq, 0)⟩. Then, the train represented by trajectory
tri can only arrive in station within xq time units, so δarr(p) = xq. In the same setting, one
can compute the remaining time before train represented by tri has to brake to maintain a
safety headway h. Letting tr−1

i (y) denote the date x at which traji(x) = y, then the train
has to adapt its speed at date δblock(p) = tr−1

i

(
(n− 1) · h

)
.
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D Algorithm to compute passenger paths

Algorithm 1 Floyd-Warshall Distance Matrix.

parameter N : the set of ids of the places
the cells of the matrix are initially null
MD : the distance square matrix from an origin to a destination
for all (id1, id2) ∈ A do ▷ Matrix initialization

MD(id1, id2) = 1 ▷ arcs weights are set to 1
end for
for all k ∈ N do ▷ Distance Matrix Building

for all i ∈ N do
for all j ∈ N do

v ← null

if MD(i, j)! = null then
if MD(i, k)! = null AND MD(k, j)! = null then

v ← min(MD(i, j), MD(i, k) + MD(k, j))
else

v ←MD(i, j)
end if

else if MD(i, k)! = null AND MD(k, j)! = null then
v ←MD(i, k) + MD(k, j)

end if
MD(i, j)← v

end for
end for

end for
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E Algorithm to compute the next station on a trip

Algorithm 2 Floyd-Warshall Next step Matrix.

parameter MD : from Floyd-Warshall Distance Matrix algorithm
parameter N : the set of ids of the places
the cells of the matrix are initially null
MNS : the next step squared matrix from an origin to a destination
for all (id1, id2) ∈ A do ▷ Matrix initialization

MNS(id1, id2) = id2
end for
for all k ∈ N do ▷ Next Step Matrix Building

for all i ∈ N do
for all j ∈ N do

v ← null

if i! = j then
if MD(i, k) == null OR MD(j, k) == null then

v ←MNS(i, j)
else if MD(i, j) == null then

v ←MNS(i, k)
else if MD(i, j) ≤MD(i, k) + MD(k, j) then

v ←MNS(i, j)
else

v ←MNS(i, k)
end if

end if
MNS(i, j)← v

end for
end for

end for

F Complex network patterns with Trajectory nets

Consider for instance Figure 8-a). This piece of trajectory net represent a typical pattern to
design forks. In this Figure, a train represented by a segment in place PT,A can be guided
to a track U (represented by place pT,U ) if place pc,U is filled or to track D (represented by
place pT,D) if place pc,D is filled. Figure 8-b) represents another typical pattern appearing in
networks, namely the en of track and the turn back procedure. Form these two examples, one
can see that filling control places at the right moment is a way to control arrivals, departures
and directions of trains. If timetable is provided, one can even implement it with a controller
that fills the appropriate places at the planned departure dates. A pattern of the form of the
net given in Figure 9 can also be used to represent a garage, initially filled with a sequence
of trajectories representing the available fleet of vehicles.

G Uptading queue, platform and train payloads

Let us detail how passengers waiting on quays, walking, or entered in a train are updated
between date d and d + δ. Let

(
C, d, (Pi)i∈1..KP

, (TPi)i∈1..KT
, (MQi

)i∈1..KQ
)
)

be the current
configuration, and Scen = OD1 · · ·ODK be the scenario used for simulation.
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Figure 8 Fork from section A to sections U or D controlled by place pc,U and pc,D.

pT,A

•

pc,U

t1

pT,U

pc,D

t1

pT,D

Figure 9 Garage and Reversals.

pend

t1

pgarage

t2

pbegin

Let Pi be the contents of a platform at a station Si, and Qi = (li, vi) be the queue relating
gates at the platform at station Si. Let MQi

denote the state of Qi.
The new state of MQi

in C ′ after δ time units is M ′
Qi

= M←δ
Qi

+ ArrMQi
(Scen, d, d + δ),

where M←δ
Qi

is the left shift of queue contents, i.e. MQi [⌊y − δ⌋ · vi] = MQi [y − δ · vi], and
ArrMQi

(Scen, d, d + δ) is the payload representing passengers arrived on platform Si between
date d and d + δ .

Formally, let k1, k2 be two integers such that d ∈ [(k1 − 1) ·∆, k1 ·∆] and
d + δ ∈ [(k2 − 1) ·∆, k2 ·∆]. Then

ArrMQi
(Scen, d, d + δ)[x] =


OD[k2] · 1

∆ if x ∈ [0, d + δ − k2]
OD[k2 − i] · 1

∆ if x ∈ [d + δ − k2 + 1, d + δ − k2 −∆ · i]
OD[k1] · 1

∆ if x ∈ [(k2− k1− 1) ·∆, δ]

Let us now consider the contents of platform Pi when no train is at station
Si. The payload of the platform is incremented by the number of passengers ar-
rived from the entry gate plus queues arriving on the platform. That is, P ′i [k] =∑

x∈0..δ MQi
[x][k]

∑
SQj→i

∑
x∈0..δ MQj,i

[x][k] where SQj→i is the set of queues from a plat-
form j to a platform j.

Let us now consider the situation where a train with payload TPm is stopped at station
Si We consider a simplified model for exchanges, where passengers board a train when all
passengers leaving at station Si have left the train. We consider that leaving a train takes a
constant time ∆lt per passenger, and similarly that boarding takes time ∆bt.

If TPm[Si].∆lt > δ then TP ′m[Sj ] = TPm[Sj ] (i.e., if the time needed to unload the train
at station Si is larger than δ) then for every Sj ̸= Si and TP ′m[Si] = TPm[Si]− ⌊δ/∆lt⌋.

If TC(p)[Si].∆lt ≤ δ then TP ′m[Si] = 0, then the allowed number of passengers after all
passengers stopping at Si have exited the train is maxboard = TCmax −

∑
Sj ̸=Si

TPm[Sj ].
The number of passengers who will board also depends on the remaining available time, i.e.,
δb = δ − TPm[Si] ·∆lt.
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Then, the number of passengers boarding who will board is: nbpC,δ =
max( δb

∆bt
, maxboard)

We divide the stations in two groups: S= containing stations Sk such that Pi[Sk] <

nbpC,δ/|S|−1, and S+, containing stations such that Pi[Sk] ≥ nbpC,δ/|S|−1 For every station
Sk ∈ S= we set P ′i [Sk] = 0 and TP ′m[Sk] = TPm[Sk] + Pi[Sk]. The remaining number of
passengers is nbprC,δ = nbpC,δ −

∑
Sk∈S=

Pi[Sk] This number of passengers is fairly distributed

on other destination, 2, by allowing nk passengers to board, with nk = ⌊nbprC,δ/|S+|⌋ or
nk = ⌊nbprC,δ/|S+|⌋+ 1, i.e. setting P ′i [Sk] = Pi[Sk]− nk and TP ′m[Sk] = TPm[Sk] + nk.

H Map of the metro network in Montreal

Figure 10 The STM Montreal Network.

2 To distribute fairly these passengers, we memorize the last destinations with the most passengers, or
choose randomly at each round which destinations receive an additional passenger.

ATMOS 2024



16:20 Modeling Subway Networks and Passenger Flows

I Appendix: A space-time diagram for a delay occurring at station
Sauve

The Space-Time diagram below in Figure 11 depicts a incident causing a 10 minutes delay
at 7:30AM at station Sauvé during a weekday scenario. Station Sauvé is the 5th station
on the Orange line, after a start in station Montmorency. It is located 4 stations before
station Beaubien. Figure 11 shows that this incident impacts 4 vehicles. The networks takes
around 30 minutes to recover from this primary delay. This can be observed as a “hole” in
the parallel lines representing train trips.

Figure 11 A delay at station Sauve impacts multiple vehicles.
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Figure 1 Two scheduled vehicle trips in the physical network (left) and their representation in
the time-expanded transit network (right).

categorized into frequency-based and schedule-based models, see [13, 12] for a survey. The
former model class operates operate with line frequencies and implicitly defines resulting travel
times and capacities of lines and vehicles, cf. [38, 11, 40, 3, 6, 5, 24]. With variations in the
demand profile during peak hours, the frequency-based approach only leads to approximate
vehicle loads, with the error increasing as variability grows. In contrast, schedule-based
approaches are more fine-grained and capable of explicitly modelling irregular timetables of
lines. They are usually based on a time-expanded transit network derived from the physical
transit network and augmented by (artificial) edges such as waiting, boarding, alighting,
dwelling, and driving edges to connect different stations. This construct, also known as
diachronic graph [29] or space-time network [4], is illustrated in Figure 1.

An assignment of passengers to paths in this network encompasses their entire travel
strategies, including line changes, waiting times, etc. It corresponds to a path-based multi-
commodity network flow satisfying all demand and supply. One key obstacle in the analysis of
such a schedule-based model is the integration of strategic behaviour of passengers, opting for
shortest routes, and the limited vehicle capacity, which bounds the number of passengers able
to use a vehicle at any point in time. If a vehicle is already at capacity, further passengers
might not be able to enter this vehicle at the next boarding stop, which can make their
(shortest) route infeasible. On the other hand, the passengers already in the vehicle are not
affected by the passengers wishing to board.

A key issue of such a capacitated model is to choose the right equilibrium concept.
Consider for instance the simple example in Figure 1, and suppose that the vehicles operating
the violet and the green line have a capacity of 1 unit each. A demand volume of 2 units
start their trip at node a at time 100, and all particles want to travel as fast as possible to
the destination node c. The violet line arrives at 430, while the green line arrives at 600.
Then there exists no capacity-feasible Wardrop equilibrium [39, 8], i.e., a flow only using
quickest paths.

Most works in the literature deal with this non-existence by either assuming soft vehicle
capacities (cf. [9, 30, 28]) or by considering more general travel strategies and a probabilistic
loading mechanism (cf. [26, 23, 27, 17]). An alternative approach that inherently supports
capacities are so-called side-constrained user equilibria. These are feasible flows such that
for any used path there is no available alternative path with lower cost (cp. [10]). The
precise definition of what is an available lower-cost alternative has spurred a whole series of
works. Larsson and Patriksson [32, 25] consider only paths with available residual capacity
as available alternative paths. This excludes the change from a used path p to another
path q that shares some saturated edges with p. For a path p, Smith [37] considers all
paths q to which a part of the flow on p can change over so that the resulting flow is feasible.
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This concept has the drawback that it allows for coordinated deviations of bundles of users,
which is unrealistic and, as shown by Smith, leads to non-existence of such side-constrained
equilibria for monotonic, continuous, but non-separable cost functions. In response, Bernstein
and Smith [2] propose an alternative equilibrium concept (see Definition 3 of BS-equilibrium)
characterized by the property that “no arbitrarily small bundle of drivers on a common path
can strictly decrease its cost by switching to another path” [7].

In this paper, we consider side-constrained user equilibria for schedule-based time-
expanded networks in the sense of Bernstein and Smith [2]. Here, whether a path is
an available alternative depends only on the available capacity of the vehicle when the
passenger boards it, but not on whether capacity is exceeded on a later edge of the vehicle
trip. Hence, a path can be an available alternative for some user even if arbitrarily small
deviations to that path make the resulting flow infeasible (for some other users). Similar
to [28], the priority of passengers in the vehicle can be modelled by expressing the capacity
limitations using discontinuous costs on the boarding edges in the time-expanded transit
network. The resulting cost map is not separable, and it turns out that it does not satisfy
the regularity conditions imposed by Bernstein and Smith [2] to prove existence of equilibria.
Our approach works for elastic demands where a user only travels if the travel cost does not
exceed the user’s willingness to travel. This elastic demand model is quite standard in the
transportation science literature, see [41] and references therein.

1.1 Our Contribution
We define a user equilibrium for schedule-based time-expanded networks using the notion of
deviations. For a given flow, an admissible ε-deviation corresponds to shifting an ε-amount
of flow from a path p to another path q without exceeding the capacity of any boarding
edge along q. A feasible flow is a side-constrained user equilibrium if there are no improving
admissible ε-deviations for arbitrarily small ε. We summarize our contribution as follows.
1. We prove that for schedule-based time-expanded networks, side-constrained user equilibria

can be characterized by a quasi-variational inequality defined over the set of admissible
deviations (Theorem 2). Moreover, by moving the side-constraints into discontinuous cost
functions, we can express side-constrained user equilibria as BS-equilibria (Theorem 4).

2. We study the central question of the existence of BS-equilibria. We first give an example
showing that our cost map does not fall into the category of regular cost maps, defined
by Bernstein and Smith [2], for which they showed the existence of equilibria. Instead,
we introduce a more general condition for cost maps, which we term weakly regular. As
our main theoretical result, we prove in Theorem 7 that BS-equilibria do exist for weakly
regular cost maps. We further show (Theorem 8) that the cost maps in schedule-based
time-expanded networks are weakly regular, hence Theorem 7 applies. However, the
generalization of Bernstein and Smith’s result might also be of interest for other traffic
models.

3. We then turn to the computation of BS-equilibria. For single-commodity time-expanded
networks, we present an algorithm that computes a BS-equilibrium in quadratic time
relative to the number of edges of the input graph (Theorem 12). For multi-commodity
networks, we give an exact finite-time algorithm. As this algorithm is too slow for
practical computations, we further develop a heuristic based on our quasi-variational
inequality formulation. It starts with an arbitrary feasible flow and updates this flow
along elementary admissible deviations in the sense of Theorem 2.

4. Finally, we test our heuristic on realistic instances drawn from the Hamburg S-Bahn
network and the Swiss long-distance train network. It turns out that user-equilibria can
be computed with our heuristic and that they are quite efficient compared to a system
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optimum, which neglects equilibrium constraints and minimizes total travel time. More
specifically, for the computed instances the total travel times in the user equilibria are
less than 8% higher compared to the system optimum.

1.2 Related Work
Schedule-based transit assignment has been studied extensively in the past. Since the works
by [29, 4], most authors use a time-expanded graph as their modelling basis. For example,
Carraresi et al. [4] consider a model with hard capacity constraints where passengers accept
routes that are at most a factor of 1 + ε worse than an optimal path without any congestion.
This is approximated in several papers [9, 28, 30] by incorporating the vehicle capacities as
continuous penalties representing the discomfort experienced by using an overcrowded edge.

Marcotte and Nguyen [26] address hard capacities by defining an agent’s strategy as
preference orderings of outgoing edges at each node, similar to so-called hyperpaths, and
by assuming a random loading mechanism for congested edges, where the probability of
entering an edge is proportional to its capacity and decreases with the amount of flow desiring
to traverse it. Every passenger wants to minimize the expected travel cost resulting from
their strategy. A whole series of works [28, 17, 16, 15, 33, 18] build upon this model and
expand it by incorporating boarding priorities of passengers, departure time choice with
early/late arrival penalties, different costs for seated and standing passengers, risk aversion,
or stochastic link travel times modelling variation due to weather or incidents.

An alternative to time-expanded graphs is the use of dynamic flows. For example, [31]
defines dynamic flows that traverse the public-transport edges in discrete chunks and employ
the method of successive averages (MSA) to find approximate equilibria. Side-constrained
equilibria for dynamic flows have been studied in [14] where also a dynamic variant of
BS-equilibria is analysed without stating any existence results for them.

2 Side-Constrained Equilibria for Schedule-Based Transit Networks

We first describe a schedule-based time-expanded network (cf. [29, 4]) and then formally
define the side-constrained user equilibrium concept.

2.1 The Schedule-Based Time-Expanded Network
Consider a set of geographical stations S (e.g., metro stations or bus stops) and a set of
vehicle trips Z (e.g., trips of metro trains or buses), specified by their sequence of served
stations and adhering to a fixed, reliable timetable. This timetable specifies the arrival and
departure times at all stations of the trip, where the arrival time at a station is always strictly
later than the departure time of the previous station. Each vehicle trip z ∈ Z also has an
associated capacity νz which represents the maximum number of users the corresponding
vehicle may hold at any time. We use the term vehicle synonymously with vehicle trip.

To represent the passengers’ routes through the network, we construct a time-expanded,
directed, acyclic graph G = (V, E) with a time θ(v) ∈ R assigned to each node v ∈ V .

There are three categories of nodes: an on-platform node for each station s ∈ S and each
time θ at which at least one vehicle departs or arrives in s, a departure node for each vehicle
z ∈ Z and each time θ at which z departs from a station s, and an arrival node for each
vehicle z ∈ Z and each time θ at which z arrives at a station s.

There are five categories of edges connecting these nodes: A waiting edge connects two
on-platform nodes v, w of the same station s with consecutive times θ(v) < θ(w). A boarding
edge connects an on-platform node with a departure node of a vehicle z of common time θ
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and station s. A driving edge connects a departure node with the next stop’s arrival node
of the shared vehicle z. An alighting edge connects an arrival node of a vehicle z with the
on-platform node of common time θ and station s. Finally, a dwelling edge connects an
arrival node of a vehicle z with the corresponding departure node at the same station s.

For ease of notation, let EB and ED denote the set of all boarding and driving edges,
respectively. We denote the time delay of an edge e = vw by τe := θ(w) − θ(v), the delay
of a v-w-path p = (e1, . . . , ek) by τp :=

∑
e∈p τe = θ(w)− θ(v). For a driving edge e ∈ ED

belonging to a vehicle z ∈ Z, we write νe := νz. Waiting and driving edges are always
time-consuming, dwelling edges may be time-consuming, and boarding and alighting edges
are instantaneous. For e ∈ EB , we denote the succeeding driving edge by e+.

Figure 1 shows a possible generated graph for two vehicles, a green one and a violet one,
and four stations a, b, c, and d. The nodes on the grey rectangles represent the on-platform
nodes, the other nodes are the departure and arrival nodes.

The non-atomic users of the network are partitioned into several groups: First, they are
grouped into finitely many origin-destination and departure-time triplets (sj , tj , θj) ∈ T ⊆
S×S×R. To model the elastic demand, there is a non-increasing function Qj : R≥0 → R≥0
for each triplet that given some travel time τ assigns the volume of particles of triplet j

that are willing to travel at cost τ . We assume Qj(τ) = 0 for all τ ≥ T for some T ∈ R.
Let P◦

j denote the set of paths from the on-platform node at time θj and station sj to any
on-platform node of station tj .

As the travel times of the paths are fixed, we can subdivide all triplets into a finite
number of commodities I of common willingness to travel and introduce an outside option
for each commodity: Let {τj,1, . . . , τj,kj} = {τp | p ∈ P◦

j } be the set of travel times of all
paths p ∈ P◦

j ordered by τj,1 < · · · < τj,kj
. For each j′ ∈ {1, . . . , kj + 1}, we introduce a

commodity ij,j′ consisting of all particles of triplet j whose willingness to travel is contained
in the interval [τj,j′−1, τj,j′) with τj,0 := 0 and τj,kj+1 := T . Thus, commodity i := ij,j′ has a
demand volume of

Qi := Qj(τj,j′−1)−Qj(τj,j′),

and we assign it an outside option pout
i with some constant cost τpout

i
chosen from (τj,j′−1, τj,j′).

Finally, we write Pi := P◦
j ∪ {pout

i }, and denote the set of all commodity-path pairs by
P := {(i, p) | p ∈ Pi}.

2.2 Side-Constrained User Equilibrium
A (path-based) flow f is a vector (fi,p)(i,p)∈P with fi,p ∈ R≥0. We call the flow f

demand-feasible, if
∑

p∈Pi
fi,p = Qi holds for all i ∈ I,

capacity-feasible, if fe :=
∑

i,p:e∈p fi,p ≤ νe holds for all driving edges e ∈ ED,
feasible, if f is both demand- and capacity-feasible.

Let FQ, Fν , Fν
Q denote the sets of all demand-feasible, capacity-feasible, and feasible flows,

respectively. For a given demand-feasible flow f and two paths p, q ∈ Pi with fi,p ≥ ε, we
define the ε-deviation from p to q

fi,p→q(ε) := f + ε · (1i,q − 1i,p)

as the resulting flow when shifting an ε-amount of flow of commodity i from p to q. We call
fi,p→q(ε) an admissible deviation, if fi,p→q(ε)e+ ≤ νe+ holds for all boarding edges e of q.
We say, q is an available alternative to p for i with respect to f , if there is some positive ε

such that fi,p→q(ε) is an admissible deviation. In other words, q is an available alternative, if
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after switching some arbitrarily small amount of flow from p to q, the path q does not involve
boarding overcrowded vehicles. Equivalently, all boarding edges e ∈ q fulfil fe+ < νe+ , if
e+ /∈ p, and fe+ ≤ νe+ , if e+ ∈ p. We denote the set of available alternatives to p for i with
respect to f by Ai,p(f).

▶ Definition 1. A feasible flow f is a (side-constrained) user equilibrium if for all i ∈ I and
p ∈ Pi the following implication holds:

fi,p > 0 =⇒ ∀q ∈ Ai,p(f) : τp ≤ τq.

This means, a feasible flow is a side-constrained user equilibrium if and only if a path
is only used if all its faster alternative routes are unavailable due to the boarding capacity
constraints. For the rest of this work, we use the shorthand user equilibrium for this concept.

3 Characterization and Existence

We characterize user equilibria as defined above in two different ways: as solutions to a
quasi-variational inequality and as BS-equilibria by defining appropriate, discontinuous cost
functions. By generalizing the existence result of Bernstein and Smith [2] for BS-equilibria,
we show that user equilibria exist. Some proofs are omitted in this conference paper due to
space constraints. They can be found in the full version [19] of the paper.

3.1 Quasi-Variational Inequalities
Traditional types of user equilibria without hard capacity constraints can be equivalently
formulated as a solution to a variational inequality of the form

Find f∗ ∈ D such that: ⟨c(f∗), f − f∗⟩ ≥ 0 for all f ∈ D, (VI(c, D))

where D is a closed, convex set, and c is a continuous cost function.
With the introduction of hard capacity constraints together with boarding priorities, an

admissible ε-deviation might lead to capacity violations. Therefore, such deviations may
leave the feasible set D = Fν

Q and, thus, are not representable in this variational inequality,
leading us to the concept of quasi-variational inequalities. We define the set-valued function

M : Fν
Q ⇒ RP

≥0, f 7→ {fi,p→q(ε) | fi,p→q(ε) is an admissible ε-deviation, ε > 0}

that returns for any given flow f the set of all possible flows obtained by any admissible
ε-deviation with respect to f . We now consider the following quasi-variational inequality:

Find f∗ ∈ Fν
Q such that: ⟨(τp)i,p, f − f∗⟩ ≥ 0 for all f ∈M(f∗). (QVI)

A feasible flow f is a solution to this quasi-variational inequality if and only if there is no
commodity i and a pair of paths p, q ∈ Pi with τq < τp such that fi,p→q(ε) is an admissible
ε-deviation for arbitrary ε > 0. Hence, we can characterize user equilibria as follows:

▶ Theorem 2. A feasible flow f∗ is a user equilibrium if and only if it is a solution to the
quasi-variational inequality (QVI).

While the existence of solutions to customary variational inequalities in the form
of (VI(c, D)) can be shown using Brouwer’s fixed point theorem, the existence of solu-
tions to quasi-variational inequalities is not clear upfront. To establish an existence result,
we therefore introduce an alternative characterization of our problem in the next section.
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3.2 Bernstein-Smith Equilibrium

In this section, we will reformulate the user equilibrium as a Bernstein-Smith equilibrium for
suitably chosen edge cost functions ce : FQ → R≥0. This way we dispense with the explicit
side-constraints and instead incorporate them as discontinuities into the cost functions, so
that any equilibrium must correspond to a feasible flow.

▶ Definition 3 ([2, Definition 2]). We are given a directed graph G = (V, E) and a set of
commodities I, each equipped with a demand Qi ≥ 0, a finite, non-empty set of paths Pi,
and a cost function ci,p : RP

≥0 → R≥0 for every p ∈ Pi. A demand-feasible flow f ∈ FQ is a
Bernstein-Smith equilibrium (BS-equilibrium) if, for all i ∈ I and p ∈ Pi, fi,p > 0 implies
ci,p(f) ≤ minq∈Pi

lim infε↓0 ci,q(fi,p→q(ε)).

We first define cost functions for the edges of our schedule-based transit network as
follows: The cost of a non-boarding edge e is given by the time it takes to traverse the edge,
i.e., ce(f) := τe ≥ 0. Passing a boarding edge takes no time, however, it is only possible to
board until the capacity of the vehicle is reached. We realize this by raising the cost of the
boarding edge when the capacity is exceeded to a sufficiently large constant M , which is
guaranteed to be higher than the cost of any available path, e.g., M := maxi∈I,p∈Pi

τp + 1.
This means, for a boarding edge e ∈ EB , the experienced cost is

ce(f) :=
{

0, if fe+ ≤ νe+ ,

M, if fe+ > νe+ .
(1)

For a v-w-path p in our time-expanded graph, we assign the cost

ci,p(f) :=
∑
e∈p

ce(f) = θ(w)− θ(v) +
∑

e∈p∩EB

ce(f). (2)

For the outside options pout
i , we assume that they are virtual paths consisting of a single

edge in E, which is exclusively used by the path pout
i , and we set the cost of this edge to

ci,pout
i

(f) := τpout
i

. The BS-equilibria with respect to these cost functions are exactly the user
equilibria, as the following theorem shows.

▶ Theorem 4. A demand-feasible flow f is a user equilibrium if and only if it is a BS-
equilibrium with respect to the cost functions ci,p defined above.

Proof. For any f ∈ Fν
Q and p, q ∈ Pi with fi,p > 0, it holds that

lim sup
ε↓0

ci,q(fi,p→q(ε))
{

= τq, if ∀e ∈ EB ∩ q : e+ ∈ p or fe+ < νe+ ,

≥M, otherwise.

Note that the condition in the case distinction is equivalent to q ∈ Ai,p(f).
If f is a BS-equilibrium, then ci,p(f) ≤ τpout

i
< M holds by the BS-equilibrium condition

and, thus, we must have ci,p(f) = τp. The same holds true, if we instead assume f to be a
user equilibrium. Therefore, the following equivalence holds:

∀q ∈ Ai,p(f) : τp ≤ τq ⇐⇒ ∀q ∈ Pi : ci,p(f) ≤ lim sup
ε↓0

ci,q(fi,p→q(ε)).

Hence, f is a BS-equilibrium if and only if it is a user equilibrium. ◀
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3.3 Existence
Bernstein and Smith [2, Theorem 2] proved the existence of BS-equilibria in the case that
each path cost function has the form ci,p =

∑
e∈p ce, where ce : FQ → R≥0, e ∈ E, are

lower-semicontinuous, bounded functions that satisfy the following regularity condition.

▶ Definition 5 ([2]). A cost structure c : FQ → RE
≥0 is regular if it satisfies

lim inf
ε↓0

ci,q(fi,p→q(ε)) =
∑

e∈p∩q

ce(f) +
∑

e∈q\p

c̄e(f)

for all f ∈ FQ, i ∈ I, and paths p, q ∈ Pi with fi,p > 0, where c̄e is the upper hull of ce

defined as

c̄e(f) := lim
ε↓0

sup{ce(x) | x ∈ FQ, ∥x− f∥ < ε}.

Unfortunately, the cost functions in our case as defined in (1) do not fulfil this condition,
as the network in Figure 1 illustrates: Assume there is a single commodity with source a and
sink d with demand 2, and assume that both vehicles have a capacity of one. Let p be the
a-d-path using only the green vehicle, and let q be the a-d-path using both vehicles. Let f

be the flow sending one unit along p and the remaining unit along the commodity’s outside
option pout

i . Then, for the boarding edge e of the green vehicle at station c, it holds that
c̄e(f) = M (as FQ contains fi,pout

i
→p(ε) for ε ≤ 1). This implies

lim inf
ε↓0

cq(fi,p→q(ε)) = τq < M ≤
∑

e∈p∩q

ce(f) +
∑

e∈q\p

c̄e(f).

On the left-hand side it is noticed that the flow on the last driving edge is unchanged and
boarding remains possible, whereas the right-hand side is oblivious to the flow reduction
along p.

Therefore, we introduce a weaker condition that is satisfied in our time-expanded networks
but still guarantees the existence of equilibria.

▶ Definition 6. A cost structure c : FQ → RE
≥0 is called weakly regular if the following

implication holds for all demand-feasible flows f ∈ FQ, i ∈ I, and p ∈ Pi with fi,p > 0:

ci,p(f) ≤ min
q∈Pi

∑
e∈p∩q

ce(f) +
∑

e∈q\p

c̄e(f) =⇒ ci,p(f) ≤ min
q∈Pi

lim inf
ε↓0

ci,q(fi,p→q(ε)).

It is easy to see that any regular cost structure is also weakly regular.

▶ Theorem 7. If c : FQ → RE
≥0 is a lower-semicontinuous, bounded, and weakly regular cost

structure, a BS-equilibrium exists.

The proof uses a similar approach to that in [2, Theorem 2], but we show that it applies
to the broader class of weakly regular cost structures.

Proof. Let M be an upper bound for all functions ce. There exists, for each e ∈ E,
a sequence of continuous functions c

(n)
e : FQ → [0, M ] such that c

(n)
e (f) ↑ ce(f) holds

for all f ∈ FQ. For each n ∈ N, there is a Wardrop equilibrium f (n) ∈ FQ w.r.t. the
path cost function (c(n)

i,p )(i,p)∈P defined by c
(n)
i,p (f) :=

∑
e∈p c

(n)
e (f), i.e., f

(n)
i,p > 0 implies

c
(n)
i,p (f (n)) ≤ c

(n)
i,q (f (n)) for all i ∈ I and paths p, q ∈ Pi [36]. Equivalently, we have

f
(n)
i,p > 0 =⇒

∑
e∈p\q

c(n)
e (f (n)) ≤

∑
e∈q\p

c(n)
e (f (n)). (3)
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The sequence (f (n), c(n)(f (n))) is contained in the compact set FQ × [0, M ]E , and therefore
has a convergent sub-sequence with some limit (f, x); we pass to this sub-sequence.

By the upper-semicontinuity of the upper hull and the monotonicity of the sequence of
cost functions, we have for all e ∈ E

c̄e(f) ≥ lim sup
n→∞

c̄e(f (n)) ≥ lim sup
n→∞

ce(f (n)) ≥ lim
n→∞

c(n)
e (f (n)) = xe. (4)

Let α > 0. First, since (c(n)
e )n converges pointwise to ce, there exist n0 ∈ N such that

c
(n0)
e (f) ≥ ce(f) − α/2. Second, since c

(n0)
e is continuous, there is δ > 0 such that for

all g ∈ FQ with ∥f − g∥ < δ we have c
(n0)
e (g) ≥ c

(n0)
e (f) − α/2. As (c(n)

e )n is a pointwise
increasing sequence, we then have for all n ≥ n0 that c

(n)
e (g) ≥ ce(f)−α. Third, since (f (n))n

converges to f , there is n1 such that
∥∥f − f (n)

∥∥ < δ holds for all n ≥ n1. In conclusion,
c

(n)
e (f (n)) ≥ ce(f) − α holds for n ≥ max{n0, n1}. Since α > 0 was arbitrary, we deduce

xe ≥ ce(f).
Let i ∈ I and p, q ∈ Pi with fi,p > 0. There exists n0 ∈ N with f

(n)
i,p > 0 for n ≥ n0.

Taking the limit of (3) yields
∑

e∈p\q xe ≤
∑

e∈q\p xe, and applying (4) and xe ≥ ce(f) we
get ∑

e∈p\q

ce(f) ≤
∑

e∈q\p

c̄e(f).

Adding ce(f) for each e ∈ p ∩ q to both sides , this shows

cp(f) ≤
∑

e∈p∩q

ce(f) +
∑

e∈q\p

c̄e(f).

Thus, we can apply weak regularity. ◀

While it is clear that the cost functions in (1) are lower-semicontinuous and bounded, some
effort is required to show that they fulfil weak regularity. The idea is that given a path p and a
path q minimizing lim infε↓0 ci,q(fi,p→q(ε)) we consider the last common node v of p and q, and
define q′ as the path that consists of p up until v concatenated with the suffix of q starting from
v. For boarding edges e on the second part of q′, we can then show lim infε↓0 ce(fi,p→q′(ε)) =
c̄e(f) while boarding edges e on the first part fulfil lim infε↓0 ce(fi,p→q′(ε)) = ce(f). The ob-
servation lim infε↓0 ci,q′(fi,p→q′(ε)) ≤ lim infε↓0 ci,q(fi,p→q(ε)) then concludes the argument.

▶ Theorem 8. For schedule-based transit networks, a user equilibrium always exists.

▶ Remark 9. Even for single-commodity networks, the price of stability, i.e., the ratio of the
total travel times in a best user equilibrium and in a system optimum, is unbounded. However,
Section 5 shows that this ratio is well-behaved in experiments on real-world networks.

4 Computation of Equilibria

We continue by discussing the computation of user equilibria. After describing an O(|E|2)
algorithm for single-commodity networks, we consider the multi-commodity case, for which we
outline a finite algorithm. To compute multi-commodity equilibria in practice, we propose a
heuristic based on insights gained by the characterization with the quasi-variational inequality.
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4.1 An Efficient Algorithm for Single-Commodity Networks
We begin with the description of an efficient algorithm for single-commodity networks. To
reduce noise, we omit the index i where applicable, i.e., we write P instead of Pi, etc.

▶ Definition 10. Let p, q ∈ P. We say that a driving edge e ∈ p∩ q is a conflicting edge of p

and q if its corresponding boarding edge eB lies either on p or on q (but not on both).
Assume p and q have a conflicting edge, and let e ∈ E be the first conflicting edge. We

say p has priority over q if the boarding edge eB preceding e lies on q (and not on p). Let
≺ ⊆ P × P denote this relation.

A ≺-minimal path ending in a given reachable node w can be computed by a simple
backward-search on the sub-graph of reachable nodes prioritizing non-boarding edges over
other edges. This in fact returns a ≺-minimal path as for any conflicting edge e with a
path q ∈ P , the corresponding boarding edge eB must lie on q. As the graph is acyclic, this
backward-search terminates in O(|E|) time.

▶ Lemma 11. For the end node w of any path in P, a ≺-minimal path ending in w can be
computed in O(|E|) time.

In order to compute single-commodity equilibrium flows, we can now successively send
flow along ≺-minimal and τ -optimal paths. In every iteration, the flow on this path is
increased until an edge becomes fully saturated. Then, we reduce the capacity on the edges
of p by the added flow, remove zero-capacity edges, and repeat this procedure until the
demand is met.

▶ Theorem 12. For single-commodity networks, a user equilibrium can be computed in
O(|E|2) time. The resulting user equilibrium uses at most |E| paths.

For general (aperiodic) schedules our algorithm is strongly polynomial in the input. For
compactly describable periodic schedules it is only pseudo-polynomial as it depends on the
size of the time-expanded network. The actual blow-up of the network depends on the ratio
of the time horizon and the period length.

4.2 The General Multi-Commodity Case
The approach of the previous section fails for the general multi-commodity case as the set of
paths

⋃
i Pi may not necessarily have a ≺-minimal element if there are commodities that do

not share the same destination station. Hence, we now describe a finite-time algorithm and
a heuristic for computing multi-commodity equilibria in practice.

4.2.1 A finite-time algorithm
In the following, we describe a finite-time algorithm for computing exact multi-commodity
user equilibria. As we know that an equilibrium f exists, the idea is now to guess the subset
EO of driving edges that are at capacity, i.e., EO = {e ∈ ED | fe = νe}, as well as a positive,
lower bound ε on the available capacity on all other edges, i.e., mine∈ED\EO

νe − fe ≥ ε.
Then, we check the following set defined by linear constraints for feasibility:

F(EO, ε) :=

 f ∈ FQ

∣∣∣∣∣∣
fe = νe, for e ∈ EO,

fe ≤ νe − ε, for e ∈ ED \ EO,
fi,p = 0, for i ∈ I, p ∈ Pi(EO)

 , (5)

where Pi(EO) is the set of paths p ∈ Pi for which there exists a q ∈ Pi with τq < τp such
that e+ /∈ EO holds for all edges e ∈ EB ∩ q with e+ /∈ p.
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▶ Lemma 13. The set of user equilibria coincides with
⋃

ε>0
⋃

EO⊆ED
F(EO, ε).

As the set F(EO, ε) only grows when reducing ε, a finite-time algorithm can iteratively
decrease ε and then check the feasibility of F(EO, ε) for every subset EO of ED. As a user
equilibrium must exist, an equilibrium will be found for small enough ε.

▶ Corollary 14. The procedure described above computes a user equilibrium in finite time.

4.2.2 Heuristic for computing multi-commodity equilibria
In the following, we describe a heuristic for computing multi-commodity equilibria. Start
with some initial feasible flow f ∈ Fν

Q, e.g., by sending all flow along their outside option.
Then, iteratively, find a direction d ∈ RP and change the flow along this direction while
preserving feasibility, until an equilibrium is found. More specifically, we replace f with
f ′ = f + α · d where α is maximal such that f ′ is feasible.

▶ Definition 15. Let f be a feasible flow. A direction d ∈ RP is called
balanced if

∑
p∈Pi

di,p = 0 for i ∈ I, and
feasible for f if the flow f + α · d is feasible for small enough α > 0.

Clearly, the choice of the direction is essential for this heuristic to approach an equilibrium.
The characterization in Theorem 2 indicates using a direction d such that f + α · d is a
deviation violating the quasi-variational inequality, i.e., d := 1i,q − 1i,p for some path p ∈ Pi

with fi,p > 0 for which q is a better available alternative, i.e., q ∈ Ai,p(f) and τq < τp.
However, not all such directions are feasible; even worse, sometimes no feasible direction is
of this form. Therefore, our approach is to start with such a direction d and, if necessary,
transform it to make it feasible.

If this heuristic terminates, it provides an equilibrium, but termination is not always
guaranteed, as we will see later. We first describe how we achieve feasibility of the direction.
For this, a key observation is stated in the following proposition:

▶ Proposition 16. Let f be a feasible flow and d a balanced direction that fulfils fi,p > 0
whenever di,p < 0. Then, d is a feasible direction for f if and only if there exists no boarding
edge e such that fe+ = νe+ , de+ > 0 and (fe > 0 or de > 0) hold.

In the case that d = 1i,q − 1i,p is an infeasible direction, we apply the following transform-
ation: As long as d is infeasible, there exists a boarding edge such that fe+ = νe+ , de+ > 0,
and fe > 0 ∨ de > 0, and we repeat the following procedure: Let (i, p′) be such that p′ is a
path containing e with positive flow fi,p′ > 0 or whose entry in the direction vector is positive,
i.e., di,p′ > 0. We decrease di,p′ by δ := de, if fi,p′ > 0, or by δ := min(de, di,p′), otherwise.
Next, we determine a best path q′ ∈ Pi that does not use full driving edges, i.e., driving
edges ẽ with fẽ = νẽ and dẽ ≥ 0. We increase di,q′ by min({δ}∪ {−de | e ∈ q′, fe = νe}), and
afterwards, decrease δ by the same amount. We repeat this until δ equals zero. A detailed
description of this transformation of the direction can be found in Algorithm 1.

▶ Proposition 17. Algorithm 1 transforms any direction d, that fulfils fi,p > 0 whenever
di,p < 0, to a feasible direction.

Using Algorithm 1 in the main loop, we can implement the heuristic mentioned above.
However, in some situations, the heuristic might apply changes along directions d1, . . . , dk

in a cyclic behaviour. We distinguish between terminating cycles, for which the heuristic
breaks out of the cyclic behaviour after some finite but potentially very large number of
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Algorithm 1 Establishing feasible directions.

Data: Time-expanded graph with outside options, feasible flow f , balanced
direction d ∈ ZP s.t. ∀(i, p) : di,p < 0 =⇒ fi,p > 0

Result: A feasible direction
while ∃e ∈ EB with fe+ = νe+ ∧ de+ > 0 ∧ (fe > 0 ∨ de > 0) do

(i, p)← any commodity i and path p containing e with fi,p > 0 or di,p > 0;

δ ←

{
de+ , if fi,p > 0,

min(de+ , di,p), otherwise.
;

Decrease di,p by δ;
while δ > 0 do

q ← best alternative to p not containing any e′ ∈ ED with fe′ = νe′ ∧ de′ ≥ 0;
δ′ ← min({δ} ∪ {−de′ | e′ ∈ q, fe′ = νe′});
Increase di,q by δ′;
Decrease δ by δ′;

return d

iterations, and non-terminating cycles. In practice, most terminating cycles can be detected
and prohibited by changing the flow along the common direction

∑k
i=1 di. Non-terminating

cycles, however, constitute a more serious problem. We can detect these cycles, as their
common direction

∑k
i=1 di vanishes. Randomizing the path selection in the main loop of the

heuristic might help in breaking out of the cycle.
We employ a technique to reduce the initial complexity of a given instance: There is a

class of paths for which the procedure will never remove flow from. Thus, we first fill these
paths directly when initializing the heuristic. In our experiments, this has shown to handle
between 10% and 25% of the total demand before entering the heuristic.

5 Computational Study

To gain insights into the applicability of the proposed heuristic, we conduct a computational
study on real world train networks. We analyse the performance of the heuristic and compare
the computed equilibrium solutions with system optima.

5.1 Experiment Setup
For each network in our dataset, we use a dynamic demand profile. As our dataset only
provides aggregate, static demand data, we generate a dynamic profile using a uniform
distribution of the demand over time horizon of a typical work day. This means, for every
origin-destination (OD) pair, we generate commodities ci with varying start time.

Since the performance of our heuristic varies with the utilization of network capacities,
we also apply it to rescaled demands. A demand scale factor of 1 reflects the real-world
demand.

The system optima are computed using a linear-programming based approach with
delayed column generation. A system optimum is an optimal solution to the linear program

min
f∈Fν

Q

∑
(i,p)∈P

τp · fi,p.

This problem is solved using a column generation approach. It is initialized with some
feasible solution, e.g., by sending all particles along their outside option. Then, after every
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Figure 2 Map of the considered S-Bahn Hamburg as operated until 2023 [1].

iteration, paths that reduce the objective function are added to the so-called Master-LP, and
if any path was added, the Master-LP is solved again. For this, we used software developed
by [21, 22].

Our implementation of the heuristic (available in [20]) uses the Rust programming
language. All experiments were conducted on an AMD Ryzen 9 5950X CPU.

5.2 Data
A pool of periodic timetables of real-world public transportation networks is provided in the
publicly available TimPassLib [35]. In our computational study, we unroll these periodic
timetables to match an observation period of a day (18 hours) and feed our heuristic the
resulting schedule. Table 1 describes the considered networks and schedules in more detail.

We present results for the Hamburg S-Bahn network (Figure 2) and the Swiss long-
distance train network. The nominal demand of 750.000 passengers per day in the Hamburg
S-Bahn network was taken from [34]. Due to a lack of real-world data, we set the capacity of
all vehicles to 1000 passengers, a number closely aligned to real-world train systems. For
example, a 2-unit train system of the DBAG Class 490 can hold up to 1028 passengers. The
average number of stops per vehicle is 19.14 in the Hamburg network and 8.25 in the Swiss
network. We equip all commodities in our experiments with an outside option of 180 minutes.

Table 1 Details of the considered networks.

Name # stations # vehicles nominal demand # commodities

Hamburg S-Bahn 68 1,512 750,000 219,240
Swiss Long Distance 140 2,772 1,347,686 2,609,712
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5.3 Results

For real-world demands, the heuristic computes user equilibria in both networks in less than
30 seconds. Starting with a demand factor of 0.5 for the Hamburg S-Bahn network and 0.55
for the Swiss network, capacity conflicts occur; for demand factors below these values, any
system-optimal flow is also an equilibrium flow as all agents can be assigned to a path p

minimizing τp over all paths p ∈ Pi. With an increase in demand, the number of iterations
of the heuristic increases heavily. For example in the Hamburg instance, when initializing
the heuristic by filling optimal paths until all of them have a full driving edge, only 1,015
iterations are necessary for the nominal demand while 10,280,576 iterations were necessary
for a demand factor of 2.5. For the Swiss long-distance train network, the computation time
increased similarly dramatically already when doubling the demand.

The average travel time in the computed equilibria is up to 3.3% higher, in the Hamburg
instance, and up to 7.4% higher, in the Swiss instance, compared to a system optimum. For
the nominal demand, these numbers are below 1%. Figure 3 shows the computation time of
the heuristic, and the mean travel times in the equilibrium and in the system optimum.
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Figure 3 Comparison of the mean travel time of the user equilibrium and system optimum, and
the computation time of the heuristic in the two networks.

6 Conclusion

We presented a side-constrained user equilibrium model for a schedule-based transit network
incorporating hard vehicle capacities. As our main results, we proved that equilibria exist and
can be computed efficiently for single-commodity instances. The existence result generalizes
a classical result of Bernstein and Smith [2]; its proof is based on a new condition (weak
regularity) implying existence of BS-equilibria for a class of discontinuous and non-separable
cost maps. For general multi-commodity instances we devised a heuristic, which was
implemented and tested on several realistic networks based on data of the Hamburg S-Bahn
and the Swiss railway.

Limitations of the Model

Our model assumes that passengers are associated with fixed start times for their travel. For
flexible departure time choices, however, a side-constrained user equilibrium need not exist
(see [28]). Non-existence also applies to a model with transfer penalties.
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Open Problems

First of all, a side-constrained user equilibrium is not unique and, hence, the issue of equilib-
rium selection or determining which equilibrium is likely to be observed in practice remains
unclear and deserves further study. From an algorithmic point of view, the hardness of the
equilibrium computation problem for multi-commodity networks is open. The computa-
tional complexity for single-commodity networks and periodic timetables (which leads to a
compactly representable time-expanded graph) is also open.
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Abstract
Traffic assignment is a core component of many urban transport planning tools. It is used to
determine how traffic is distributed over a transportation network. We study the task of computing
traffic assignments for public transport: Given a public transit network, a timetable, vehicle
capacities and a demand (i.e. a list of passengers, each with an associated origin, destination,
and departure time), the goal is to predict the resulting passenger flow and the corresponding
load of each vehicle. Microscopic stochastic simulation of individual passengers is a standard, but
computationally expensive approach. Briem et al. (2017) have shown that a clever adaptation of
the Connection Scan Algorithm (CSA) can lead to highly efficient traffic assignment algorithms,
but ignores vehicle capacities, resulting in overcrowded vehicles. Taking their work as a starting
point, we here propose a new and extended model that guarantees capacity-feasible assignments and
incorporates dynamic network congestion effects such as crowded vehicles, denied boarding, and
dwell time delays. Moreover, we also incorporate learning and adaptation of individual passengers
based on their experience with the network. Applications include studying the evolution of perceived
travel times as a result of adaptation, the impact of an increase in capacity, or network effects due
to changes in the timetable such as the addition or the removal of a service or a whole line. The
proposed framework has been experimentally evaluated with public transport networks of Göttingen
and Stuttgart (Germany). The simulation proves to be highly efficient. On a standard PC the
computation of a traffic assignment takes just a few seconds per simulation day.
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1 Introduction

Efficient, sustainable, and accessible public transport systems are critical to promoting
economic growth, reducing congestion and minimizing environmental impact. This calls for
innovative methods to optimize resource allocation, improve passenger comfort and ensure
the overall efficiency of transit networks. A crucial part in the planning process of public
transit systems is traffic assignment. Traffic assignment models are used to predict the
passenger flow and the estimated load of vehicles within a transit network for a given demand
scenario, making them a fundamental analysis and evaluation tool at both planning and
operational levels [4]. Results of traffic assignments provide valuable insights into possible
congestion problems due to insufficient capacity. They can be used to study the benefits of
introducing additional services, increased frequencies, larger vehicle capacities or possible
network extensions [5]. In this work, we consider the following variant of public traffic
assignment: As input we are given a public transit network, a corresponding timetable and a
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vehicle schedule with vehicle capacities. The demand is specified by a list of passengers, each
with an associated origin, destination, and departure time. The task is to assign for each
individual passenger a journey from his origin to his destination.

Microscopic stochastic simulation of individual passengers is meanwhile a standard, but
computationally expensive approach. Briem et al. [1] have shown that a clever adaptation
of the Connection Scan Algorithm (CSA) [7] can lead to highly efficient traffic assignment
algorithms. However, their approach ignores vehicle capacities, resulting in unrealistic
assignments and overcrowded vehicles (they report in their case study assignments of about
1200 passengers to a single vehicle). The commercial state-of-the-art tool PTV VISUM has
recently integrated CSA into their transport assignment for faster shortest path search [12].

Contribution. Taking the work of Briem et al. [1] as a starting point, we here propose a
new and extended model that guarantees capacity-feasible assignments. We use agent-based
modeling, a powerful tool to study the behavior of passengers, transport vehicles and the
interaction between them. By modeling passengers as autonomous agents, this approach
captures the different decision-making processes, preferences and adaptive behaviors that
individuals exhibit during their journeys. More specifically, our model incorporates dynamic
network congestion effects such as crowded vehicles, denied boarding, and dwell time delays.
Moreover, we also incorporate learning and adaptation of individual passengers based on
their experience with the network. The proposed model has been implemented as a prototype.
Computational experiments with public transport networks of Göttingen and Stuttgart
(Germany) demonstrate the efficiency of the approach. We present three case studies with
selected applications:
1. First, we study how passengers respond to network congestion. We find that the learning

process is quite effective. It helps to improve the average perceived travel times and to
reduce cases of denied boardings due to overcrowded vehicles.

2. Second, we examine the benefits of increasing capacity. It turns out that a moderate
increase in capacity leads to a significant reduction in average perceived travel times.

3. Third, we compare unlimited vs. limited vehicle capacity. As expected the passenger
flows with unlimited vehicle capacity turn out to be highly unrealistic.

Related work. There is a long history of research on traffic assignment in public transport,
see [9, 10, 11] for surveys. Conventional traffic assignment models distinguish between
frequency-based and timetable-based models. These two groups differ in the modeling of
the network. In frequency-based models [16, 20, 25, 24] the timetable is only modeled at
the line level. Each line has an assigned frequency. These models aim at determining the
average loads on the lines. In timetable-based models [13, 14, 17, 18, 19], the trips of a line
are explicitly modeled, and the task is to determine loads on each single trip. A prominent
example of the implementation of a schedule-based model is the commercial software VISUM,
which is primarily used for long-term planning. In agent-based models, passengers are not
considered as an aggregated flow, but are simulated individually on a microscopic level. The
individual vehicles are also modeled as individual agents, which allows great freedom in
modeling (for example, the development of vehicle-specific delays or seating and standing
capacities). Agent-based models focus on the dynamic interactions between passengers and
the network as well as interactions between passengers. Individual, adaptive decisions are
simulated as a reaction to dynamic network conditions. The network conditions are in turn
dependent on the individual decisions of the passengers. In addition to dynamic processes
within a day, a learning process lasting several days is usually modeled. The experiences on
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one day are incorporated into the expectations of the individual passengers and thus influence
the decisions on subsequent days. These learning processes model long-term adaptations
of passengers to the network conditions. In 2008, Wahba presented MILATRAS [26, 27],
the first agent-based simulation in public transport that models a learning process. In
MILATRAS, the traffic assignment is considered as a Markov decision problem, where the
possible positions of the passengers (stops, vehicles) are the states and the possible decisions
(choice of the next line or stop to alight) are the actions. In 2009, MATSim, an activity-based
agent simulation framework, was extended by Rieser et al. to include public transportation
trips [21]. In MATSim, each traveler has a population of plans representing journeys. Each
passenger randomly selects a plan from its population. This selection is based on journey
ratings and the learning process is implemented as a co-evolutionary algorithm.

With BusMezzo [2, 4, 5] another agent-based simulation was introduced by Cats in 2011,
designed as an operations-oriented model for short-term to mid-term planning [3]. The
probabilistic decisions in BusMezzo depend on the current expectations of passengers, based
on previous days’ experiences and current real-time information. The individual decisions
(boarding, alighting and walking) depend on pre-computed path sets, where each action (e.g.
alighting at a specific stop or boarding a specific vehicle) is assigned a path set (e.g. a subset
of all possible paths to the destination after alighting). In [4] a path is defined as a sequence
of stops, whereby the exact lines and transfers are not specified. A single path is therefore not
a concrete journey. The expected waiting time at a stop is calculated based on the combined
frequency of the lines at the stop. A SoftMax model is used when deciding between different
actions. Passengers learn the perceived travel times and the waiting times for the individual
path segments. In contrast to MILATRAS and BusMezzo, the model proposed in this paper
avoids the static pre-computation of alternative path sets. Instead, we consider and evaluate
all feasible actions dynamically on-the-fly in an event-based manner, allowing passengers to
react in a flexible way on network conditions such as unexpected delays or congestion. In our
model the evaluation of individual passenger decisions depends on explicit journeys, which
include specifically defined trips and transfers. Due to the explicit definition of journeys, the
model is also suitable for timetables that include routes with low frequencies or individual
special trips. Passengers can learn the expected load and reliability of specific trips, not only
about lines. Similarly, probabilities of failed transfers can be learned.

Overview. The remainder of this paper is structured as follows. First, we start with the
necessary preliminaries to formalize the problem in Section 2. In Section 3, we introduce
our framework in detail. In Section 4, we present a computational study evaluating our
framework and showcasing a few applications. Finally, we conclude with a short summary.

2 Preliminaries

This section describes the modeling of the network and provides basic definitions and notations.
A timetable is modeled as an event-activity network [15]. An event-activity-network is a
tuple (E ,A,S, T ,L,F ,D) whose components are described below. The events E and the
activities A form a network N = (E ,A), where the events correspond to the nodes and the
activities to the arcs. The events are divided into departure events Edep and arrival events
Earr. Each event e is associated with a time τ(e), a trip trip(e) ∈ T , and a stop stop(e) ∈ S.
We write dep(s) and arr(s) for the set of all departure and arrival events at stop s. An
activity (e1, e2) can be a driving, dwelling or transfer activity. A dwelling arc is an arc from
an arrival event to a departure event, modeling the waiting of a vehicle at a stop. Driving
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arcs are arcs from a departure to an arrival event and model driving from one stop to the
next. Driving and dwelling activities have an in-vehicle time τ ivt(e1, e2) := τ(e2) − τ(e1)
and a minimum in-vehicle time τ ivt

min(e1, e2). The difference between the regular duration
and the minimum duration of an arc corresponds to the catch-up potential in case of delays.
A driving or dwelling activity (e1, e2) has a reference to its trip trip(e1, e2) ∈ T .

A trip t ∈ T is an alternating sequence of departure and arrival events (e1
dep(t), e2

arr(t),
e2

dep(t), ...., e
|S(t)|−1
arr (t), e

|S(t)|−1
dep (t), e

|S(t)|
arr (t)), where S(t) is the set of stops served by the

trip t. Denote by ei
dep(t) the departure event and by ei

arr(t) the arrival event at the ith stop
of t. The times of the events of a trip are non-decreasing, so τ(ei

dep(t)) ≤ τ(ei+1
arr (t)) and

τ(ei
arr(t)) ≤ τ(ei

dep(t)) always apply. This sequence of events defines the alternating sequence
of driving and dwelling activities(t) of trip t. For a trip segment between the ith and jth
stop of a trip t, with i < j, we write ei

dep(t)→ ej
arr(t). This trip segment contains all driving

and dwelling arcs between the departure event at the ith stop and the arrival event at the
jth stop of trip t. Let activities(ei

dep(t)→ ej
arr(t)) be this sequence of arcs. Each trip has a

seat capacity capsit(t), which corresponds to the number of seats in the vehicle. The capacity
cap(t) ≥ capsit(t) of a trip is the sum of the seats and standing capacity. This capacity is
considered as a hard upper limit for the number of passengers that can be on a trip. Trips
are grouped into lines L, where each trip of a line serves the same sequence of stops. Let
line(t) be the line of a trip t and line(e) the line of an event e. We assume that two trips
of a line cannot overtake each other. A line is therefore a set of trips ordered according
to the first departure time. Let t1 and t2 be two subsequent trips of a line. The headway
headway(ei

x(t1)) := τ(ei
x(t2)) − τ(ei

x(t1)) of an event is the time until the corresponding
event of the next trip. A transfer is an arc from an arrival event to a departure event of
another trip. Such arcs are not explicitly modeled, but are implicitly defined by the stops S
and footpaths F . A footpath (s, s′) ∈ F between two stops can be passed at any time. The
time required for a footpath is given by ℓ(s, s′) ∈ N. A minimum transfer time mct(s) can
be specified for transferring at stop s. A transfer earr → edep with trip(earr) ̸= trip(edep)
is therefore valid if either stop(earr) = stop(edep) and τ(earr) + mct(stop(earr)) ≤ τ(edep)
applies, or if stop(earr) ̸= stop(edep) and the footpath (stop(earr), stop(edep)) exists with
τ(earr) + ℓ(stop(earr), stop(edep)) ≤ τ(edep). A valid transfer can become invalid in the
course of the simulation due to delays. Conversely, an invalid transfer can also become
valid if the departure event is delayed. The walking time τwalk(earr → edep) of a transfer
is ℓ(stop(earr), stop(edep)) if stop(earr) ̸= stop(edep), and 0 otherwise. The waiting time
τwait(earr → edep) of a transfer is τ(edep)− τ(earr)− τwalk(earr → edep). To model delays
that can propagate between different trips, dependency arcs (t1, t2) ∈ D are introduced
between two consecutive trips of a vehicle. Like activities, they have a minimum duration. If
a trip arrives late at its last stop, the next trip of the vehicle is delayed accordingly.

The agents are generated using an OD-matrix. The OD-matrix specifies how many
passengers per hour want to travel from a specific start stop origin to a specific destination
stop dest. Each passenger is assigned a fixed start time τstart. A more realistic modeling,
in which the start time is chosen by the agents themselves depending on the network, is
conceivable, but is not dealt with in this paper. During a simulated day, a journey is created
for each passenger, which is an alternating sequence of trip segments and valid transfers.
In addition to transfers between two trips, a journey can also have an initial walk at the
start or a final walk to the destination. We therefore extend our definition of transfers
to include the special cases origin → edep and earr → dest, where origin is the start and
dest is the destination. A final transfer earr → dest always has a waiting time of 0. A
journey J consisting of n trip segments therefore has the form J = {origin → ei1

dep(t1),
ei1

dep(t1)→ ej1
arr(t1), ej1

arr(t1)→ ei2
dep(t2), ...., ein

dep(tn)→ ejn
arr(tn), ejn

arr(tn)→ dest}.
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3 Agent-Based Dynamic Traffic Assignment Model

In this section we introduce our dynamic traffic assignment model step-by-step. We first
sketch and discuss the model of Briem et al. [1], as it serves in many respects as the basis
for the simulation presented in this work. Then we present a high-level description of our
simulation model. Afterwards, we provide details about the modeling of congestion effects,
passenger preferences, route choice, learning, and real-time reactions.

Traffic assignment using Connection Scan Algorithm. In [1], passenger preferences are
modeled using perceived arrival times. These are used to make decisions based on factors
such as arrival time, number of transfers, walking time, waiting time, and delay robustness.
The algorithm simulates different decisions for each passenger (boarding a vehicle, alighting
a vehicle, walking to another stop) and assigns probabilities to these options based on the
perceived arrival times of each option. The boarding and alighting decisions are binary
(board or stay at a stop, alight or stay on a trip). The perceived travel times for all options
are calculated with a single run of the Connection Scan Algorithm [7]. In a second scan
over all elementary connections, a random decision whether to board the vehicle is made
for each passenger waiting at the corresponding departure stop. Then, for all passengers in
the current vehicle, a random decision is made whether to alight at the arrival stop. Finally,
for each alighting passenger, a random decision is made as to which stop they will walk
to (or remain at the current stop). This approach is very efficient, but is based on some
unrealistic assumptions. First, the model assumes unlimited vehicle capacities. This leads to
traffic allocations in which individual vehicles have unrealistically high load factors. Second,
passengers do not react in any way to high occupancy rates and are treated as uniform
decision makers; personal preferences or experiences are not implemented. Third, movements
of vehicles are not simulated and transfer uncertainty is modeled by adding a random variable
to the arrival times. Consequently, it is not possible to model specific vehicle delays and
how passengers react to them. As capacities and occupancy rates are ignored and delays
are modeled as random variables, the network performance is completely independent from
passenger decisions.

3.1 High-level Description of Model
In our model, passengers are modeled as agents with their own preferences and experiences.
The individual decisions of the passengers influence the network dynamics and the passenger
decisions are in turn dependent on the network dynamics. The network flow is therefore the
result of the passengers’ interaction with the network. Each individual trip is modeled as a
separate entity whose performance depends on the decisions of the agents. The modeling of
vehicles as entities allows explicit delays and delay dependencies between vehicles. Section 3.2
describes three different network congestion effects that are implemented in this model:
crowded vehicles (including seat allocations), denied boardings and dwell time delays.

The model replicates the impact of network performance on passenger decisions. We
develop a flexible choice model that allows passengers to make adaptive decisions in response
to these dynamic network conditions. As in [1], we evaluate decisions by calculating a
perceived travel time (Section 3.3) for each option, but we incorporate the three modeled
congestion effects. In Section 3.4, we explain how probabilities are assigned to different
options based on the perceived travel times. Instead of binary choices, passengers choose
between boarding trips of different lines and alighting at different downstream stops. The
advantage of this is that passengers can react adaptively to the characteristics of different
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journeys, rather than just considering the current and optimal options. One drawback is that
the journey characteristics can change in the time between the decision and the execution of
the chosen event. In Section 3.6, we describe how passengers can change their decisions based
on real-time information. Individual passengers adapt their behavior to their experiences
with the network. Passengers’ decisions are influenced by the experience they have gained
by repeatedly traveling through the network on consecutive days (Section 3.5). Modeling
a learning process is of great importance as the network conditions vary from day to day.
The learning process models how passengers react to the fluctuating network congestions on
different days and allows them to avoid highly congested trips.

The model is developed as an event-oriented simulation with discrete time steps. We
keep the algorithmic framework and the overall structure of a simulated day from the model
in [1]. Changes to the algorithm are described in Section 3.3. As event times are no longer
static (in particular, due to dwell time delays), the connections cannot be pre-sorted and
we need a priority queue Q. This contains all events of the period to be simulated. The
events are sorted in ascending order according to the current time of the events. If two events
have the same time, arrivals are processed before departures. On each pass through the
main loop, the current event is extracted from Q. All passengers who have not yet started
their day are loaded into the network. They select their first boarding. The type of event is
then distinguished. In the case of a departure event, the passengers waiting at the current
stop are processed in random order. In the case of an arrival event, the passengers on the
current vehicle are processed. When a departure event is processed, a dwell time delay may
be generated and propagated. In this case, Q must be updated. At the end of each day, the
expectations and perceived travel times are updated.

3.2 Congestion Effects
Crowded vehicles. Seats are allocated as follows: We assume that passengers alight from
the vehicle before those waiting at the stop board. Seats may therefore become available.
First, passengers are drawn at random from those currently standing until either all seats are
occupied or all passengers are seated. Second, the waiting passengers then board the vehicle
in random order. We therefore assume that the passengers mix while waiting. Entering
passengers are assumed to take a seat if one is available. The main causes of dissatisfaction
in overcrowded vehicles are standing and physical proximity to other passengers. Let
qonboard(e1, e2) ≤ cap(t) be the number of passengers of an activity (e1, e2) of the trip t. The
discomfort depends on the current passenger load λ(e1, e2) := qonboard(e1, e2)/capsit(t) and
on whether a seat has been found. The load is defined relative to the number of seats. These
two properties give the crowding factor βcrowding

k (λ(e1, e2), seatedk(edep, (e1, e2))), where k

is the current passenger and edep is the departure event at which the passenger boarded the
current trip. The Boolean function seatedk, which indicates whether the passenger k has a
seat, thus depends not only on the current arc, but also on the time of boarding. We assume
that a passenger will not give up a seat once it has been found. The crowding factor is
modeled as a step function (see Table 1). The load of a vehicle is not known to the passenger
in advance and is therefore based on the passenger’s personal experience on previous days,
or a default value if no experience is available. Learning is described in Section 3.5. The
model also allows for real-time load information, but this is beyond the scope of this paper.

Denied boardings. As with the seat allocation, the standing room allocation depends on the
random order of boarding passengers. It is possible that the number of passengers wishing to
board a vehicle is greater than the remaining capacity. In this case, some of the passengers
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must therefore remain at the stop. We refer to this as denied boarding at a departure event
edep. The passengers must respect the minimum transfer time at the current stop and may
walk to another stop in response to the denied boarding. They are therefore treated as
passengers who alight at stop(edep) at time τ(edep). Such an unplanned complication is
associated with additional stress for the passenger. Therefore, the subsequent waiting or
walking time to the next boarding event is penalized by a multiplier βfail

k .

Dwell time delays. We model the dwell time as a monotonically increasing function based
on the number of boarding and alighting passengers. Let qalight be the current number of
alighting passengers and qboard the current number of boarding passengers. The required
dwell time is given by (qalight + qboard)/doorCapacity(t), where doorCapacity(t) is the
number of passengers that can board or alight per second. This value differs significantly
between different vehicle types, for example buses generally have a smaller doorCapacity

than trains. It should be noted that this is a greatly simplified model; for example, the
time to open and close the doors is ignored. Since boarding and alighting is the dominant
component [22], this is sufficient to capture the systematic evolution of delays caused by
the network flow. For more accurate modeling, more information is needed on the vehicles
used. If the required dwell time is greater than the scheduled one of a dwelling arc, the
corresponding departure is delayed by the difference. Occurring delays are propagated
downstream along the corresponding trip (as in [23]). Additionally, delays of trains are
propagated across shared rails.

3.3 Perceived Travel Time
Perceived travel time is a key characteristic that influences passenger satisfaction with public
transport. Unlike actual travel time, it takes into account that waiting times, walking
distances, transfers and in-vehicle crowding are perceived differently by passengers. Each
passenger in the model has its own preferences and experiences. The perceived travel time
is dependent on the network dynamics of the current day and the passenger’s experience
gained on previous days. Each passenger has different sources of information about expected
times and vehicle loads. These sources can be, in descending order of priority, real-time
information, experience, or default values (scheduled times or an input parameter for load).
Unless otherwise specified, the source with the highest priority is used.

During the simulation, each passenger is assigned a journey iteratively through partial
decisions. Two types of decisions are made: a passenger waiting at a stop, has to decide
which trip to board next (or whether to walk directly to the destination if there is a footpath).
The passenger chooses between departure events that can be reached from the current stop,
including departure events reachable by a footpath. Second, a passenger traveling in a
vehicle has to decide at which stop to alight. To implement these decisions, we calculate
for each passenger k an expected perceived travel time fk(e) for each boarding and alighting
event e, that corresponds to the optimal journey from the current event to the destination.
The initial perceived travel times are calculated before the start of the simulation and are
based on scheduled times. The perceived travel times are updated at the end of each day
after incorporating passenger experience, and are recalculated during a day when real-time
information is available. At the time of the decision, the passenger does not know the actual
perceived travel times, as the activities are in the future. These values are therefore only
estimates for the current day. We account for crowding by weighting the in-vehicle-travel
time by a crowding factor βcrowding

k depending on the vehicle load. Similarly, waiting and
walking times are weighted by passenger-specific factors βwalk

k and βwait
k , respectively. We
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also use an additive penalty βtransfer
k for each transfer and β̂fail

k (tr) for a possible failed
transfer tr. The penalty term for a failed transfer corresponds to the weighted additional
waiting time caused by the failed transfer, multiplied by an estimated probability pfail

k (tr).
The expected perceived travel time fk(e) of an event e is defined recursively as the minimum
over all possibilities to continue from this event to the destination. In the following, we derive
these calculations step by step. First, we define an expected perceived travel time pttk for
each transfer and for each trip segment. The perceived travel time of a journey is the sum of
the perceived travel times of all trip segments and transfers of the journey (including the
waiting time at the origin stop). The perceived travel time of a trip segment is the sum of
the perceived travel times of all driving and dwelling arcs of the trip segment. The perceived
travel time of an activity (e1, e2) is obtained by multiplying the crowding factor with the
duration of the activity, i.e.

pttk(edep, (e1, e2)) := βcrowding
k (λk(e1, e2), seatedk(edep, (e1, e2))) · τ ivt

k (e1, e2),

where edep is the departure event at which the passenger k boarded the current trip. Since
a passenger does not know in advance when he will find a seat, he assumes that he will
find a seat at the first arc with an expected load of less than 1. The Boolean function
seatedk(ei

dep(t), (ej(t), ej′(t))) is true if an arc (em(t), em′(t)) exists with λk(em(t), em′(t)) < 1
and i ≤ m ≤ j. This is a pessimistic estimate: even if the expected loads match the actually
experienced values, the passenger may find a seat earlier.

The perceived travel time of a trip segment is

pttk(ei
dep(t)→ ej

arr(t)) :=
∑

(e,e′)∈activities(ei
dep

(t)→ej
arr(t))

pttk(ei
dep(t), (e, e′)).

The real travel time of a transfer tr = earr → edep consists of the waiting time for the next
trip and, if a footpath is required for the transfer, the length of the footpath. These times are
multiplied by passenger-specific coefficients βwalk

k and βwait
k . In addition, there are penalty

terms βtransfer
k for the transfer itself and β̂fail

k (tr) for a possible failed transfer. The penalty
term for a failed transfer corresponds to the weighted additional waiting time caused by the
failed transfer. Since the additional waiting time after the failed transfer is not known at the
time of the decision, it must be estimated. To allow an efficient calculation, this estimate is
based only on the timetable. We define the expected additional weighted waiting time after
the failed boarding β̂fail

k (tr) as headway(edep) · βfail
k . The value β̂fail

k (tr) is then multiplied
by a probability pfail

k (tr) estimated by passenger k that boarding at edep is not possible due
to limited capacity of trip(edep) or delays of earr. This probability is assumed to be 0 at the
beginning of the simulation. It depends on two components, pdenied

k and pdelay
k . The overall

probability pfail
k (tr) is calculated as pdenied

k (edep) + pdelay
k (tr) − (pdenied

k (edep) · pdelay
k (tr)).

Both components are based on the passenger’s experience on previous days. The probability
pdelay

k is calculated using a weighted empirical distribution function of the arrival times
τ(earr). The perceived travel time of a transfer tr = earr → edep is

pttk(tr) := β̂fail
k (tr) · pfail

k (tr) + βwait
k · τwait

k (tr) + βwalk
k · τwalk(tr) + βtransfer

k .

We additionally define walkdest
k (s) = βwalk

k · ℓ(s, dest) as the weighted walking time from
stop s to destination dest of passenger k. Using these definitions, we can now recursively
define the expected perceived travel times fk(e). The minimum perceived travel time from
an arrival event earr to the destination stop is given by the minimum over all outgoing valid
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transfers and the weighted walking time to the destination stop. Transfers that are only
possible due to a learned delay of the departure event are ignored here. We first define the
minimum over all transfers:

f trans
k (earr) := min

earr→e′
dep

pttk(earr → e′
dep) + fk(e′

dep).

The value fk(earr) is the minimum of this value and the weighted walking time, i.e.

fk(earr) = min{f trans
k (earr), walkdest

k (stop(earr))}.

In particular, fk(earr) is 0 if stop(earr) is the destination of k. The minimum perceived
travel time of a departure event edep is the minimum over all possible trip segments. The
respective trip segment is defined by the arrival event at which the passenger alights. For a
departure event ei

dep(t) this results in

fk(ei
dep(t)) = min

j>i
pttk(ei

dep(t)→ ej
arr(t)) + fk(ej

arr(t)).

We have therefore defined a minimum perceived travel time fk(e) to the destination for each
passenger k and for each possible boarding and alighting event.

Calculation of initial perceived travel times. Algorithm 1 describes the calculation of
the initial perceived travel times fk(e). These initial values are independent of the network
dynamics. The times therefore correspond to the regular times according to the timetable, a
standard load λstd is assumed for each activity and the probability of a failed boarding is
assumed to be 0. The algorithm is based on the profile connection scan algorithm [7], with
the difference that we calculate perceived travel times instead of earliest arrival times. In
addition, dwelling activities must also be taken into account. As in [7], we first perform a
simple earliest arrival time query with CSA to determine the driving arcs C that can be
reached from the origin. We limit the time horizon to τarr(k) + ∆τ , where τarr(k) is the
earliest (real) arrival time of k at its destination dest. We therefore discard journeys that
arrive more than ∆τ later at the destination than the fastest journey. During the execution
of the algorithm, a set of Pareto-optimal journeys B[s] from s to the destination is calculated
for each stop s ∈ S. The criteria are the departure time and the minimum perceived travel
time to the destination. For each departure event edep, a label L = (τdep, ptt, trip) is created
consisting of the departure time τdep, the minimum perceived travel time to the destination
ptt and the first trip of the journey trip. For Pareto dominance, the difference between the
departure times of the labels must be added to the perceived travel time of the later label.

We iterate over the driving arcs C in descending order of departure times. In each loop
iteration, the invariant applies that pttcurr[t] is the minimum perceived travel time from
the earliest scanned departure event of the trip t to the destination. At the beginning
of the iteration for the travel arc (ei

dep(t), ei+1
arr (t)), pttcurr[t] therefore corresponds to the

minimum perceived travel time from ei+1
dep (t) to the destination. At the arrival event ei+1

arr (t),
the passenger has three options: he can change to another trip, walk to the destination or
stay in the vehicle. We calculate the minimum of these three options. First, we calculate the
perceived travel time for a transfer. The optimal transfer is the transfer to the Pareto-optimal
partial journey with the smallest departure time. Here we discard the case that a passenger
alights to get back on the current trip immediately. Let Lf be the label of this journey. The
perceived travel time for a transfer transfer is therefore the sum of the perceived travel time
of Lf and the cost of the transfer (waiting time and penalty for transfer). The perceived
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Algorithm 1 Calculation of the initial perceived travel times fk to the destination of
passenger k.

Input: list C of relevant driving arcs sorted by regular departure times
Output: perceived travel times fk(e)
foreach t ∈ T do

pttcurr[t]←∞
foreach driving arc (ei

dep(t), ei+1
arr (t)) ∈ C, descending by τ(ei

dep(t)) do
let Ltransfer be the label L ∈ B[stop(ei+1

arr (t))] with minimum departure time
τdep(L), for which τdep(L) ≥ τ(ei+1

arr (t)) and trip(L) ̸= t apply
if Ltransfer ̸= ⊥ then

transfer ← ptt(Ltransfer) + βtransfer
k + βwait

k (τdep(Ltransfer)− τ(ei+1
arr (t)))

else
transfer ←∞

alight← min{transfer, walkdest
k (stop(ei+1

arr (t)))}
remain← pttcurr[t] + βcrowding

k (λstd, λstd < 1) · τ ivt(ei+1
arr (t), ei+1

dep (t))
minptt← min{alight, remain}
if minptt =∞ then continue
pttcurr[t]← minptt + βcrowding

k (λstd, λstd < 1) · τ ivt(ei
dep(t), ei+1

arr (t))
fk(ei+1

arr (t))← alight

fk(ei
dep(t))← pttcurr[t]

Ls ← (τ(ei
dep(t))−mct(stop(ei

dep(t))), pttcurr[t] + βwait
k ·mct(stop(ei

dep(t))), t)
if Ls is not dominated: insert Ls into B[stop(ei

dep(t))] and remove dominated
labels

foreach footpath (s′, stop(ei
dep(t)) ∈ F do

Lf ← (τ(ei
dep(t))− ℓ(s′, stop(ei

dep(t)), pttcurr[t] + βwalk
k · ℓ(s′, stop(ei

dep(t)), t)
if Lf is not dominated: insert Lf into B[s′] and remove dominated labels

travel time for the passenger to walk to the destination is given by walkdest
k (stop(ei+1

arr (t))).
We summarize these two options under alight. The perceived travel time for staying in
the vehicle is equal to the sum of the minimum perceived travel time from ei+1

dep (t) to the
destination (i.e. pttcurr[t]) and the cost of the dwelling arc between ei+1

arr (t) and ei+1
dep (t). The

sum of these two costs is called remain. The minimum of all three options is minptt.
Afterwards, pttcurr[t] is updated. The minimum perceived travel time for the departure

event ei
dep(t) corresponds to the sum of the costs of the current driving arc and the costs

of the minimum option at the arrival event (minptt). We store the calculated minimum
perceived travel times in fk. We still need to update the Pareto sets. We create a label for
the current stop and for all footpaths. We incorporate the minimum transfer time or footpath
length directly into the labels. The departure time of the label therefore corresponds to
the departure time of ei

dep(t) minus the minimum transfer time or walking distance. For
the perceived travel time ptt of the labels, the corresponding costs for waiting or walking
must be added to the current perceived travel time pttcurr[t]. We first test whether a label
is dominated by another label of the corresponding Pareto set. If this is not the case, it is
inserted. The labels dominated by the inserted label are then removed.

Updating the perceived travel times. Updating the perceived travel times fk works in
a similar way to the initial calculation in Algorithm 1. This subsection only describes the
differences. Only a small subset of all events is affected by the update. It would therefore be
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suboptimal to scan the entire list C. Instead, we use a priority queue Q, which contains the
arcs in descending order according to regular departure times. At the beginning, Q contains
the arcs for which at least one property has changed. At the end of each iteration, all driving
arcs through which the current driving arc can be reached are inserted into Q. These are the
previous driving arc of the current trip t and all driving arcs (ej

dep(t′), ej+1
arr (t′)) for which the

transfer ej+1
arr (t′)→ ei

dep(t) is valid. Another difference is that during the update, each stop
is usually visited much less frequently, as only a small subset of the travel arcs are scanned.
We therefore do not calculate the Pareto sets. Instead, we calculate the minimum perceived
travel time for a transfer by scanning over all departure events e′

dep that are reachable from
ei+1

arr (t) via a valid transfer. Transfers that are only valid because of the learned delay of the
boarding event are ignored. We therefore use the regular time for e′

dep.
In the initial calculation, a default value λstd was assumed for the load of each arc. This

means that a passenger assumes that they are either always seated or always standing. This is
no longer the case with the update. As a reminder: A passenger assumes that they must stand
until they reach an arc (ei

dep(t), ei+1
arr (t)) for which they expect a load factor of less than 1, i.e.

λ̃k(ei
dep(t), ei+1

arr (t)) < 1. In addition to pttcurr[t], we store another value pttsitting
curr [t], which is

the minimum perceived travel time to the destination, assuming that the passenger is seated
for the rest of the journey. If we scan an arc (ei

dep(t), ei+1
arr (t)) with λ̃k(ei

dep(t), ei+1
arr (t)) < 1,

we set pttcurr[t]← pttsitting
curr [t]. The initial calculation of the minimum perceived travel times

and their update at the end of the day or in real-time reactions is independent of the other
passengers. The parallelization of these steps is therefore trivial.

3.4 Choice Model
We use a mixed (ϵ − greedy, SoftMax) decision model. With a probability of 1 − ϵ, the
optimal decision is made directly. In the other case, the SoftMax selection is used. This mixed
model results in the agents predominantly making the optimal decision, while occasionally
opting for a random action according to the SoftMax principle. The SoftMax function is used
to assign probabilities to the individual decisions based on the perceived travel times fk.

In general, the SoftMax selection for any actions a with costs f(a) has the following form:

p(a) := e(f(aopt)−f(a))/γ(d)∑
a′

e(f(aopt)−f(a′))/γ(d) ,

where aopt is the optimal action, γ(d) is the temperature and d is the current day. The costs
of an action are therefore considered relative to the optimal costs. If a high temperature
is chosen, the probability of making suboptimal decisions is higher. In the limit value for
γ → 0, the optimal decision is always made. The temperature therefore influences the average
perceived travel times of passengers.

Boarding and walking decisions. When a passenger k is waiting at a stop, he decides
on a trip, specifically a departure event, which he wants to board next. For simplicity,
assume that the passenger just alighted at an arrival event earr. The passenger decides
on the basis of the perceived travel time fk. We restrict the departure events in question
to the earliest available trips on each line. Let the set of relevant departure events be
reldep(earr) := {ei

dep(t)|earr → ei
dep(t) is valid and there is no valid transfer earr → ei

dep(t′)
with line(t) = line(t′) and τ(ei

dep(t′)) < τ(ei
dep(t))}. Here we only consider transfers if they

are valid for the regular time τreg(edep) of the departure event. Transfers that become valid
due to delays are handled as part of the real-time reactions in Section 3.6. The expected
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perceived travel time for a selected boarding event edep consists of the perceived travel time
of the transfer earr → edep and fk(edep). As we only consider valid transfers and the arrival
time τ(earr) is fixed at the moment of the decision, the probability pdelay

k (earr → edep) of
the transfer being invalid because of a delay is 0. Let

f∗
k (earr) := min

earr→edep,edep∈reldep(earr)
pttk(earr → edep) + fk(edep)

be the perceived travel time for the optimal transfer among the relevant ones. The passenger
first decides whether to walk to the destination or wait for a ride. The perceived travel time
of the optimal transfer f∗

k (earr) is compared with the weighted walking time walkdest
k (s).

Let fopt
k := min(walkdest

k (s), f∗
k (earr)) be the optimal decision. The probability that the

passenger decides to walk to the destination is

p(walk) := e(fopt
k

−walkdest
k (s))/γ(d)

e(fopt
k

−walkdest
k

(s))/γ(d) + e(fopt
k

−f∗
k

(earr))/γ(d)
,

If the passenger does not walk to the destination, he chooses a departure event from
reldep(earr). We define the relative perceived travel time for a transfer earr → edep with
edep ∈ reldep(earr) as

frel
k (earr → edep) := f∗

k (earr)− (pttk(earr → edep) + fk(edep)).

This value is therefore 0 for the optimal transfer and negative otherwise. The probability
that the passenger decides for the transfer earr → edep is

p(earr → edep) := efrel
k (earr→edep)/γ(d)∑

e′
dep

∈reldep(earr)
efrel

k
(earr→e′

dep
)/γ(d) .

If a walk is required for the selected transfer, the passenger changes the stop after making
the decision. So far, we have assumed that the passenger has just alighted at an arrival event
earr. However, it is also possible that a departure decision is made that does not immediately
follow an alighting event. This is not a problem because any tuple (s, τ) consisting of
a stop and a time can define a set of relevant boardings. We described the special case
(stop(earr), τ(earr)).

Alighting decisions. If a passenger has boarded at a departure event ei
dep(t) of the trip t, he

decides at which downstream stop of t he will alight. He therefore decides on an arrival event
ej

arr(t) with j > i. Together, ei
dep(t) and ej

arr(t) result in a trip segment ei
dep(t)→ ej

arr(t) of
the journey. The expected perceived travel time for a selected exit results from the sum of
the perceived travel time of this trip segment and fk(ej

arr(t)). We again define the perceived
travel time relative to the optimal decision. The perceived travel time for the optimal
alighting decision is

f∗
k (ei

dep(t)) := min
m>i

pttk(ei
dep(t)→ em

arr(t)) + fk(em
arr(t)).

The relative perceived travel time for an exit at the jth stop is

frel
k (ei

dep(t)→ ej
arr(t)) := f∗

k (ei
dep(t))− (pttk(ei

dep(t)→ ej
arr(t)) + fk(ej

arr(t))).

This value is 0 for the optimal decision and negative otherwise. The probability that the
passenger chooses the jth stop is

p(ei
dep(t)→ ej

arr(t)) := efrel
k (ei

dep(t)→ej
arr(t))/γ(d)∑

m>i

efrel
k

(ei
dep

(t)→em
arr(t))/γ(d) .
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3.5 Learning

After each simulated day, the expected perceived travel times fk are updated according to
the experiences on the current day. Thus, an explicit learning process is modeled through
which the passengers learn properties of the network. We mark the learned properties with a
tilde. The properties learned are the loads of driving arcs λ̃k(edep, earr), the probabilities
for denied boardings p̃denied

k (edep), the probabilities for failed transfers because of delays
p̃delay

k (earr → e′
dep) and the times τ̃k(e) of the events. The learned values are updated in two

steps: First, the expected properties are updated for the activities and events experienced
by the passenger on the current day. Then the perceived travel times fk are recalculated.
The recency parameter κ indicates how highly new experiences are weighted. For κ = 1,
the accumulated experiences correspond to the average of all experiences. For κ < 1 newer
experiences are weighted higher and for κ > 1 lower. The accumulated experiences are defined
as in [4] as a function of the experiences on the current day and the accumulated experiences
before the current day. Since not every event is updated every day, we need to memorize
the number of updates for each event and property. Let |λk(edep, earr)|, |pdenied

k (edep)| and
|τk(e)| be the number of updates. The respective number is incremented before the update.

At the end of each day, a passenger k has a journey Jk = {o → ei1
dep(t1), ei1

dep(t1) →
ej1

arr(t1), ej1
arr(t1) → ei2

dep(t2), ...., ein

dep(tn) → ejn
arr(tn), ejn

arr(tn) → dest} and a set of denied
boardings Dk. Let driving_arcs(Jk) be the set of all driving arcs of Jk, events(Jk) the set
of all events of Jk and eventsdep(Jk) the set of all departure events of Jk. In addition to the
times of the events and the utilization of the activities, the proportion of passengers who
were unable to board due to limited capacity out of those who attempted to on the current
day is also stored for each departure event. Let pdenied

d (edep) be this quantity.
Let λd(edep, earr), pdenied

d (edep) and τd(e) be the respective properties of the network on
day d. The first step is to integrate the properties of the current day into the learned values
λ̃k(edep, earr), p̃denied

k (edep) and τ̃k(e).
We update the load λ̃k(edep, earr) for the driving arcs (edep, earr) ∈ driving_arcs(Jk):

λ̃k(edep, earr)← λ̃k(edep, earr) · (1− |λk(edep, earr)|−κ) + λd(edep, earr) · |λk(edep, earr)|−κ,

for the departure events edep ∈ events(Jk) ∪ Fk the probabilities p̃denied
k (edep):

p̃denied
k (edep)← p̃denied

k (edep) · (1− |pdenied
k (edep)|−κ) + pdenied

d (edep) · |pdenied
k (edep)|−κ,

and for the events e ∈ events(Jk) the times τ̃k(e):

τ̃k(e)← τ̃k(e) · (1− |τk(e)|−κ) + τd(e) · |τk(e)|−κ.

We set the learned load of a dwelling arc (ei
arr(t), ei

dep(t)) to the learned load of the
following driving arc, i.e. λ̃k(ei

arr(t), ei
dep(t)) ← λ̃k(ei

dep(t), ei+1
arr (t)). In order to learn the

probability p̃delay
k (earr → edep) that a transfer fails because earr is delayed, the experienced

times for each arrival event in events(Jk) are memorized. Let T d(earr) be the sampled
arrival times of earr after day d. We calculate an inverse weighted empirical distribution
function based on this sample. The probability p̃delay

k (earr → edep) is equal to the weighted
share of sampled arrival times that are greater than τreg(edep)− τmin(earr → edep), i.e.

p̃delay
k (earr → edep) =

d∑
i=1

wd
i · 1Ti>τreg(edep)−τmin(earr→edep),
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where τmin(earr → edep) is the minimum required time for the transfer (either minimum
change time or footpath length) and 1Ti>τreg(edep)−τmin(earr→edep) is the indicator for Ti >

τreg(edep)− τmin(earr → edep) and

wd
i = i−κ ·

d∏
j=i+1

(1− j−κ).

These normalized weights are derived from the update formulas above. A problem arises when
updating the times: as only parts of a trip are updated, it may happen that τ̃k(e1) > τ̃k(e2)
applies to an activity (e1, e2). The property that the times of a trip are non-decreasing
is therefore violated. To restore this property, the delays at the first or last event are
extrapolated to the start or end of each trip.

After the values λ̃k, p̃denied
k , p̃delay

k and τ̃k have been updated, the expected perceived
travel times fk must be updated. However, a complete recalculation is not necessary as only
a small subset of all events and activities have changed.

3.6 Real-time Reactions
Until now, passengers’ decisions have been based on personal experience or, in the absence
of experience, on the timetable and default values. However, current circumstances may
differ from these experiences. Therefore, mechanisms are implemented that allow adaptive
behavior based on current information. Similar to Milatras [27], these mechanisms allow
to change the original decision. In general, a new decision is made if the currently selected
action is worse than expected or if an unselected action is better than expected. The affected
perceived travel times f(e) are updated with a CSA query, taking into account the current
information. The new decision then follows the same principle as the original, but with
updated scores for each option. Boarding and alighting decisions are reconsidered for various
cases, mainly due to differences between expected and actual event times or vehicle loads.

We distinguish between real-time reactions while a passenger is waiting at a stop and
real-time reactions while a passenger is in a vehicle. For real-time reactions at stops, we
further distinguish between two cases. In the first case, let the originally selected trip t∗ be
the currently departing trip (boarding_redo). If τ(ei

dep(t∗)) > τ̃k(ei
dep(t∗)) applies, the trip is

more delayed than expected and a change of decision is possible. After updating fk(ei
dep(t∗)),

a completely new boarding decision is made as described in Section 3.4. The current trip t∗

remains a possible option.
For the second case, let ej

dep(t) ̸= ei
dep(t∗). The passenger therefore has the option of

switching from the currently selected trip t∗ to trip t (boarding_switch). We distinguish
between four different reasons why a switch could be advantageous: (1) trip t is departing
earlier than expected, (2) there is still free capacity in t and p̃denied

k (ej
dep(t)) > 0 applies, (3)

boarding at ej
dep(t) is not possible according to regular times and was therefore not included

in the original decision, and (4) the current simulation time τcurr is greater than the expected
departure time of the current choice t∗, i.e., the current choice is more delayed than the
passenger expected.

A binary decision between these two options is made following the described (ϵ −
greedy, SoftMax) decision model with two restrictions after updating the values f(ej

dep(t))
and f(ei

dep(t∗)). To avoid a bias towards earlier departing but worse trips, the switch is
only executed if the updated perceived travel time for ej

dep(t) is not worse than the updated
perceived travel time for ei

dep(t∗). On the other hand, we also want to avoid that the passenger
switches to a better trip if the original choice was already suboptimal, as this would defeat
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the purpose of a probabilistic decision model. The switch is therefore not made if the original
choice was suboptimal and the original choice is not worse than expected under the current
circumstances.

The real-time reactions in vehicles work in a similar way to the real-time reactions at
stops. The current passenger k has a currently selected arrival event ei∗

arr(t) at which they
want to alight. If the trip t arrives at a stop, the passenger has the option to change his
decision. Let ei

arr(t) with i ≤ i∗ be the current arrival event. In the case where i = i∗, the
passenger has arrived at the stop where he plans to alight. A change of decision is possible if
the current trip is more delayed than expected. If the optimal transfer is still possible, no
change of decision is necessary, as the journey with the minimum perceived travel time to
the destination remains the same. If this transfer is no longer possible, the perceived travel
time for an exit at ei

arr(t) becomes worse. In this case, a new alighting decision is made,
taking into account the current information (alighting_redo). The current arrival remains a
possible option.

If i < i∗ applies, the passenger has the option of alighting early at the current stop
(alighting_switch). There are three reasons why early alighting might be attractive: (1)
the current trip t arrived earlier than expected, which could allow a new transfer at the
current stop, (2) the current trip t arrived later than expected and the optimal transfer at
the originally selected exit at ei∗

arr(t) is no longer possible with the projected downstream
delay, and (3) the passenger has no seat and seatedk(eh

dep(t), (ei−1
dep (t), ei

arr(t)) was true at the
time of the original decision (eh

dep(t) being the boarding event), in which case the passenger
expects to have to stand for the rest of the trip. If one of these causes is given, a binary
decision is made between the two events ei

arr(t) and ei∗

arr(t). As with the decision at stops,
the switch is only made if the expected perceived travel time for alighting at the current
event ei

arr(t) is not worse than for the current choice ei∗

arr(t). If the original choice ei∗

arr(t) was
suboptimal and the optimal transfer is still possible after the exit at event ei∗

arr(t) according
to the current information, the switch is also not made. It is still possible for a passenger to
find a seat sooner than they expected when they made their original decision. In this case,
later exits can become more attractive because the perceived travel time in the current trip
is smaller than expected. If the passenger finds a seat, a new alighting decision is made.

4 Experimental Study

In this section, the model is tested on two different public transportation networks. First, the
experimental setup and the choice of parameters are presented. Subsequently, three different
experiments are conducted to assess the proposed model.

4.1 Experimental Setup
The simulation was implemented in C++ and compiled with mvc 14.3 on Windows 10 using
the O2 compiler option. The experiments were run on an AMD Ryzen 7 5800X, clocked at
4.7 GHz during program execution, with 32 GB DDR4 memory with a latency of CL16 and a
clock frequency of 3600 MHz. As the model is probabilistic, the results are averaged over ten
runs. We simulate a total of two hours of the timetable per day and evaluate all passengers
who start their journey within the first simulated hour. For each run, we simulate 30 days.
The 2-hour timeframe is sufficient to demonstrate the learning process as the timetable is
hourly periodic. As we only simulate a limited timeframe, it is not guaranteed that passengers
can finish their journey, for example in the case of consecutive denied boardings. For this
case, we introduce a new penalty βunfinished, which we set to the Euclidean distance in
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Table 1 Crowding factor βcrowding
k .

load seated standing
0 ≤ λ ≤ 0.6 1.0
0.6 < λ ≤ 1.0 1.2
1.0 < λ ≤ 2.0 1.4 2.2

Table 2 Characteristics of the Stuttgart and Göttingen networks. The number of trips and
driving arcs refer to the 2-hour simulation frame.

Network #stops #lines #trips #driving arcs #footpaths # passengers per hour
Göttingen 257 22 205 2348 0 1943
Stuttgart 735 403 3175 17381 8732 44836

meters between the current stop and the destination. The parameters for the perceived
travel times are identical for each passenger k and are chosen as βwait

k = 1, βwalk
k = 1.5

and βtransfer
k = 300. We choose βfail

k = 2 as the multiplier for the additional waiting or
walking time after a failed boarding. The choice of the crowding factor βcrowding

k is based on
a British meta-study [28] and is summarized in Table 1.

We use datasets for the public transportation networks of Göttingen (goevb) and Stutt-
gart [8], provided in LinTim format [23], including the OD matrix. Stuttgart is a mixed
network, consisting of 25 train lines and 378 bus lines. Göttingen, in contrast, is a pure
bus network consisting of 22 lines. Table 2 shows the main properties of the two data
sets. The buses in Stuttgart have a total capacity of 70 and the total capacity of the trains
is between 400 and 1000. In Göttingen, buses have a capacity of 50. For simplicity, we
assume that the number of seats corresponds to half the total capacity. This is in line with
common bus models. We assume that for buses 0.4 passengers can board or alight per second
(doorCapacity), corresponding to the value recommended by the Transportation Research
Board [22]. For trains, let doorCapacity = cap/200. The value is chosen depending on the
capacity, based on a study for the French city of Nantes [6]. The minimum transfer times
mct are specified by LinTim for both data sets. For Stuttgart, the minimum transfer time is
60s and for Göttingen 180s. Footpaths were limited to a maximum of 1800s. We discard
journeys that arrive more than ∆τ = 3600s later than the fastest journey on the current day.
The rest of the parameters have been determined by testing. We have chosen a constant
temperature of γ = 400 for Göttingen and γ = 250 for Stuttgart. For both networks, we
chose ϵ = 0.2 for the probability of choosing a random option. Furthermore, we have set the
recency parameter to κ = 0.5 and the standard load to λstd = 0.5.

4.2 Performance

The simulation was run in parallel on 16 threads. For Stuttgart, an average runtime of
493 seconds was achieved for the whole simulation. Calculating the initial perceived travel
times took 70 seconds. On a single day, 89672 passengers were simulated in less than 14.1
seconds on average. For Göttingen, the whole simulation took about 6 seconds. The memory
consumption of the simulation is relatively high, as each passenger has to store their personal
experiences and expected travel times. For Stuttgart 10.5 GB and for Göttingen 0.2 GB
were used.
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(a) Göttingen. (b) Stuttgart.

Figure 1 Evolution and composition of the perceived travel times.

4.3 Experiments

Experiment 1: Evolution of perceived travel times. In a first experiment, we examine the
evolution of the average perceived travel times over 30 days. This evolution is shown for both
networks in Figure 1, including the components of the perceived travel times. For simplicity,
we assume that all passengers start their learning process on the first day. More complex
scenarios are possible in the model. The overall average perceived travel time decreases
from 6296s to 5792s for Göttingen and from 2707s to 2412s for Stuttgart. Perceived travel
times decrease significantly in the first few days. After 10 days, only minimal gains are
achieved. The variance between each of the ten runs was quite small with a maximum
deviation from the mean improvement of about 10% for Göttingen and 6% for Stuttgart.
The three effects of network congestion are directly reflected in the additional waiting time
for denied boardings, the real waiting time and the penalty term for overcrowded vehicles.
For both networks, these components of the total perceived travel time decrease over the
course of the simulation. The greatest difference is recorded in the additional waiting time
penalty for denied boardings. For Göttingen, this value decreases by 227s and for Stuttgart
by 118s. The average number of denied boardings per passenger decreases from 0.24 to 0.05
for Göttingen and from 0.21 to 0.01 for Stuttgart. For both networks, the real waiting time
decreases significantly during the simulation (108s decrease for Göttingen and 123s decrease
for Stuttgart). For Göttingen, it increases on the first few days and only drops below the
initial value on the fourth day. The reason for this is that passengers explore nominally
worse journeys due to the experienced network congestion effects. Similar effects can be
seen in the number of transfers, walking time and the real travel time. If the nominally
worse journeys are similarly congested as the journeys selected on previous days, the overall
perceived travel time can increase. The crowding penalty decreases by 201s for Göttingen and
64s for Stuttgart. Most of this improvement is due to passengers’ desire to avoid standing.
The average standing time drops from 495s to 307s for Göttingen and from 69s to 31s for
Stuttgart. In this experiment, we have shown how passengers respond to network congestion
through the learning process and improve their average perceived travel time by incorporating
personal experiences and avoiding congestion. We have found that denied boardings and the
resulting additional waiting times have the largest impact on passengers.

Experiment 2: Capacity expansion. In this experiment, we examine the benefits of
increasing capacity, targeted to trips operating on full capacity. To determine candidates
for a capacity increase, we simulate both networks for one day and determine the trips
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(a) Göttingen. (b) Stuttgart.

Figure 2 Evolution of denied boardings per passenger with regular and increased capacities.

that are affected by denied boardings. Each trip with at least one denied boarding has
its capacity increased by 40%. As a result, the capacities were increased for 41 trips in
Göttingen and for 236 trips in Stuttgart. A large benefit was achieved by this capacity
expansion for both networks, especially on the first day of the simulation. Compared to the
first day of Experiment 1, the total perceived travel time for Göttingen decreased from 6296s

to 5775s. For Stuttgart, the difference is smaller (from 2707s to 2585s). As the simulation
progresses, this difference becomes smaller as passengers adjust their behavior when capacity
is at its limit. At the end of the simulation, the difference compared to Experiment 1 is 321
seconds for Göttingen and 31 seconds for Stuttgart. The improvement is largely due to the
reduction in the number of denied boardings and the resulting improvement in real waiting
times. The average number of denied boardings is shown in Figure 2. On the final day, the
average number of denied boardings is below 0.01 for both networks, which is a substantial
improvement for Göttingen. This suggests that for Göttingen the regular capacity is too
limited to satisfy passenger demand.

Experiment 3: Unlimited capacities. In Experiment 3, we study the scenario of unlimited
vehicle capacities. As a result, some trips are highly overloaded. For Stuttgart, there are
buses with over 300 passengers and trains with over 1000 passengers. Similarly, buses with
over 130 passengers are found in Göttingen. For Göttingen, 7.9% of all driving edges have
loads greater than their regular capacity, compared to 2.6% for Stuttgart. In Figure 3, we
compare the vehicle load of normal capacities (left) and unlimited capacities (right). The
color coding is relative to the seat capacity. The value 2.0 corresponds to full capacity and 1.0
to full seat capacity. Values above 2.0 indicate overload. We observe that similar segments
of the network have high loads in both cases, but considering capacities avoids overloading.

5 Conclusions and Outlook

We presented a fine-grained framework for a dynamic agent-based simulation of traffic
assignment in public transit networks. This model is extendible to include real-time delay
information or real-time load rates. First experimental studies with our prototype prove to
be highly efficient for simulation tests with medium-sized metropolitan regions. As part of
future work, further case studies are needed to assess the model validity and scalability to
even larger networks as well as to calibrate model parameters.
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(a) normal vehicle capacities. (b) unlimited vehicle capacities.

Figure 3 Small excerpt from the Stuttgart network. Comparison of vehicle loads: normal (left)
vs. unlimited vehicle capacities (right). The maximum capacity utilization on the respective segment
is shown. The color coding is relative to the seat capacity. The value 2.0 corresponds to full capacity
and 1.0 to full seat capacity.
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