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Abstract
The Enabling Personalized Interventions (EPI) project, part of the COMMIT2DATA top sector
initiative, brings together research on data science, software-defined network infrastructure, and
secure and trustworthy data sharing, executed within the healthcare domain. The project applies
the digital twin paradigm, in which data science-driven algorithms monitor and perform functions
on a digital counterpart of a real-world entity, to enable proactive responses based on predicted
outcomes. The EPI project applies this paradigm in the healthcare context by developing and
testing applications that can act as personalized digital health twins for self/-joint management.

The EPI project addresses several challenges to digital twin applications in the healthcare
domain, such as: 1) strict health data sharing policies often lead to data being locked in silos, 2)
legal, policy and privacy requirements make data processing increasingly more complex, and 3)
significant limitations on infrastructure resources may apply.

In this paper, we report on the use cases the EPI used as the basis to develop possible solutions to
these challenges. In particular, we describe algorithms and tools for algorithmic real-time response and
analysis of distributed data at scale. We discuss the automatic enforcement of legal interpretations
and data-sharing conditions as executable policies. Finally, we investigate infrastructural challenges
by implementing and experimenting with the EPI Framework - consisting of a distributed analysis
infrastructure and BRANE for orchestrating multi-site applications. We conclude by describing our
Proof of Concept (PoC) and showing its application to one of the EPI use cases.
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2:2 Overview of the “Enabling Personalized Interventions” Project

1 Introduction

Recent advances in healthcare are largely due to improved technologies that allow for early
diagnosis [10]. Data analytic technologies have strong potential to help solve complex
problems in many industries: knowledge is power – and in healthcare, that holds true in
particular. Yet, for an industry that is under financial stress, the increasing complexity of
disease and comorbidity, data-centric advances in health have been burdened by capacity
constraints – why has data analysis not been healthcare’s saviour? A number of challenges
have inhibited this. For example, data is not accessible and remains (predominantly) in silos;
data is not widely analysed to derive meaningful clinical insights; insights are not accessible
as actionable information for healthcare providers or patients to self/joint manage the
patient’s condition. The project described in this publication - EPI - Enabling Personalized
Intervention1 - addresses these challenges with the ultimate objective of improving cost
efficiency, quality, and outcomes of care, while ensuring patient and public health data and
results are processed safely and with respect for the digital (privacy) rights of patients.

The EPI project vision is structured around the concept of the digital health twin (DHT)
as defined by [5]. “Digital Twins stand for a specific engineering paradigm, where individual
physical artefacts are paired with digital models that dynamically reflect the status of those
artefacts.” This leads to the hypothesis that with a DHT: “one would be in the possession of
very detailed bio-physical and lifestyle information of a person over time. This perspective
redefines the concept of “normality” or “health” as a set of patterns that are regular for
a particular individual, against the backdrop patterns observed in the population.” The
development of personalized digital health twin algorithms will inherently benefit from the
ability to collect as much relevant data as possible in order to better cluster patient groups,
and cater diagnosis treatment and outcome prediction according to the patients’ genetic
makeup and medical history. Given the emphasis on the individual and on the dynamic
nature of a DHT, our main research question is if the existence of a DHT indeed enables
instant (real-time), effective, personalized guidance to prevent health related incidents and/or
helps improve intervention effectiveness.

The paper starts by going over the project organization in Section 2, then we introduce
the DHT use cases investigated in Section 3. We address the challenges of building a real-time
algorithmic response to enable collecting and analysing patients’ data within a DHT use
case in Section 4. On the other hand, data is often distributed and hosted across healthcare
domains, and we discuss the methods to analyse data at scale utilizing distributed learning
algorithms and privacy preserving machine learning in Section 5. In Section 6, we introduce
automated policy interpretation, management, and enforcement to enable data usage abiding
to set policies and defined purposes. On a lower level, we address infrastructural heterogeneity
and security-based challenges by formalizing the data-sharing framework built with BRANE
in Section 7, and the security service orchestrator in Section 8. Finally, we show the Proof of
Concept of the framework running the use cases in practice in Section 9.

2 Project organization: partners roles and partners interactions

The EPI project was funded by the Commit2Data Data2Person call from NWO, the Dutch
national funding agency. The project partners started their work in 2019 and are now in the
concluding phase of their collaboration.

1 https://enablingpersonalizedinterventions.nl/

https://enablingpersonalizedinterventions.nl/
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Already in the preparation phase of the project, it was clear to all involved that the only
chance to develop a working solution was to create a cooperation of an interdisciplinary
team of medical specialists, data scientists, ICT infrastructure experts as well as experts
in artificial intelligence and law. In accordance with that, the EPI project brings together
academic and research partners, healthcare providers and the private sector to tackle the
challenges related to enabling personalized intervention.

The University of Amsterdam (UvA), the Centrum Wiskunde and Informatica (CWI)
and the Vrije University Amsterdam (VUA) provide their scientific expertise and employ
PhD researchers to work closely with the other project partners. The three hospitals within
the consortium, St. Antonius, Princess Maxima Center, University Medical Center Utrecht
(UMCU) provide three representative health-related case studies. The use cases all have their
own requirements for the operational analysis environment. It is obviously not scalable nor
desirable to have to manage yet another environment for each use-case: the infrastructure
developed as part of EPI solves that problem. To accomplish this the medical institutions
have put their domain experts in contact with the researcher at the universities and created
close collaborations on the individual use cases. SURF, also involved in the project, provides
the infrastructural components; it fulfils the role of platform manager, established to manage
the operation of the platform and to monitor and enforce that its participants behave as
expected. Finally, KPMG and Philips as commercial partners in the project contribute
insightful direction towards long term sustainability of the EPI results. During the whole
duration of the project, all partners have maintained very close interactions, even in periods
of Covid lockdowns.

As the project is now in its concluding phase the partners are actively working for the
results to see broader adoption, beyond the time span of the project. It is clear that EPI
offers models, tools, and software that are also broadly applicable, not just to the medical
field. A first and concrete outcome of these efforts is that the collaboration of EPI with
AMdEX2. AMdEX is an innovation field lab initiated by AMS-IX, SURF, UvA, DEXES and
Amsterdam Economic Board and co-funded by the European Regional Development Fund.
The EPI partners have already acquired funding for integration of the EPI result in AMdEX,
and are looking for further commercialization possibilities.

3 Use Cases

3.1 Personalized predictions for stroke rehabilitation (St. Antonius
Hospital)

The goal of this Use Case is to provide personalized outcome predictions for the rehabilitation
of patients that suffered from a cerebrovascular accident (CVA), utilizing the data of these
patients that is distributed among different care institutions, in a privacy preserving manner.

Outcome predictions based on the complete care path. After the acute care for a CVA
in the hospital, patients often receive therapy in the form of in- or outpatient rehabilitation.
As CVA patients are a diverse group of people in different conditions and different stages of
life, the rehabilitation treatments and the long-term health outcomes after rehabilitation
vary [28]. While both patients and healthcare professionals express the importance of personal

2 This work is partially funded through the AMdEX Fieldlab project supported by Kansen Voor West
EFRO (KVW00309) and the province of Noord-Holland. https://amdex.eu
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prognoses, little is known about these outcomes at discharge from the hospital. To provide
personalized outcome predictions for these patients, and create an overview of the chain
of care, this project aims to develop a DHT that includes their entire care path. However,
this is complicated due to the involvement of multiple healthcare institutions in these paths,
including hospitals, rehabilitation clinics and nursing homes. The data of each patient is
spread out among these institutions, and organizational, compatibility and privacy issues
will often surface. We need to create personalized outcome predictions while only sharing
information in a privacy-preserving manner. This project aims to achieve this by developing
a distributed method to create prediction models while retaining the privacy of the data of
the participating clinics.

Clinical interface to assist with shared decision-making. Within health care, there has
been a movement to shift towards shared decision-making (SDM) [12], where the health care
professionals create a care plan not only based on their own clinical expertise but also actively
taking into account the personal needs and want of each individual patient. For patients
who have experienced a CVA, a large, heterogeneous patient group, the rehabilitation in
post-acute care is a situation where SDM can be beneficial [27] To aid the SDM process, we
aim to develop a clinical interface that provides personalized insights into the prognosis of the
patients, dependent on the different care paths. The basis of this interface will be developed
using distributed prediction models. These models will depict the predicted outcome of
different individual care paths to aid clinicians during the SDM process.

3.2 Personalized recommendations in Psychiatry

The goal is to provide personal and explainable treatment recommendations with the aim of
accelerating the process of finding the right treatment for individual psychiatry patients.

Determining the information that the clinical interface should display. We aim to develop
a clinical interface where, based on their DHT at the psychiatry department, patients and
their clinicians receive insightful treatment recommendations and predictions. What the
nature of these recommendations should be in order for them to be the most useful to patients
and clinicians is not entirely clear. In psychiatry, there is currently no consensus on the
best ways to measure and predict treatment effects, especially not for large, heterogeneous
groups of patients with multi-morbidity. Currently, in clinical trials, hundreds of different
kinds of symptom rating scales (which are not suitable for heterogeneous groups of patients)
and quality of life rating scales are used to assess treatment effects, as well as measures
on autonomy, social participation and the occurrence of side effects [35]. To work toward
a solution, interviews with patients and clinicians at the participating mental health hubs
were carried out to determine which of these different treatment outcomes would be most
useful to predict and present to patients and clinicians. The feasibility of extracting the
proposed outcome measures from the digital health twin was explored; could the information
be extracted from the mix of structured and unstructured data available in the digital health
twin? And could this be done in real time, i.e., when new patient outcome data becomes
available, for example when a patient reports to the clinician that they experience side
effects, would this information then be transferred to the digital health twin, and could the
recommender system use this to adapt the predictions? Results of this study are found in
[35].
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Developing personalized recommender systems for psychiatry patients. Psychiatry syn-
dromes are heterogeneous, and side effects play a major role in treatment adherence and
outcome. Hence, personalizing the predicted outcomes of the recommender algorithm could
vastly improve the time to find the right treatment. One patient might be interested in
experiencing as few side effects as possible, while another might be mainly interested in going
back to work as soon as possible. In a third patient, a clinician might recognize an overlap
of two syndromes, where they know the interaction between two symptoms plays a crucial
role in the persistence of the disease, and they aim to target these specific symptoms early
during treatment. To enable this, we aim to develop and train a recommender algorithm
that predicts the best treatment for a given patient, for either one outcome or a mixture of
outcome measures. In the clinical user interface, the clinician and patient will then be able
to decide on this weighted mixture together, before receiving the recommendations.

Sharing recommender systems between mental health hubs. After a recommender system
has been trained and validated it will be shared with other mental health hubs, with two aims.
Firstly, before medical recommender systems can be used in practice, their generalizability
needs to be demonstrated through validation in an independent cohort of patients. Secondly,
after validation, the algorithm should be shared such that it can be used to enrich the digital
health twins in other mental health hubs.

To enable the exchange of the algorithm, a secure infrastructure should be employed,
where all the mental health hubs’ policies are enforced, e.g. it is controlled who has access
to which parts of the recommender system. For example, it should be controlled that data
from individual patients cannot be retrieved through (requests to) the shared algorithm
(see section 7). The sharing platform should also integrate the different informed consent
systems from the mental health hubs. Another major challenge, not currently addressed in
this project, is the potential difference in the structure of the digital health twins employed
by each hub. When the recommender system takes structured data as in- or output, this will
cause problems. For example, in one hub, previous medication of a patient might be stored
in a structured manner by the pharmacist, whereas in another hub, previous medication
might be written down by the clinician in a free text field in the electronic health records.
When our system is then built in the first hub, it will not ‘know’ where to find the right
information in the second. Preprocessing the data of the digital health twins in each hub is a
process that might have to be automated for future real-time applications, possibly through
introducing a meta-layer around the recommender algorithm.

3.3 Princess Maxima Center
The EPI project’s goal for this use-case is to enable compliant data-sharing by automating
privacy policies from privacy legislation and contractual agreements on data sharing in
order to facilitate stakeholder collaboration in discovering new treatments and prognosis
factors for the Diffuse Intrinsic Pontine Gliomas (DIPG) disease, a rare and deadly childhood
malignancy[19]

A Data sharing agreement specification for compliance and interoperability of access
to data. Despite the fact that there have been almost 40 years of single-centre and non-
randomized trials, there has not been significant improvement in survival rates of DIPG
patients [16]. Consequently, there is an urgent need to share data for international collab-
orations to discover new treatments, prognosis factors, and other significant achievements.
For this reason, the European Society for Paediatric Oncology (SIOPE) Brain Tumour

Commit2Data
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Group established a DIPG registry and image repository to collect data of DIPG patients
[3]. However, strict privacy laws and high non-compliance fees are obstacles to seamless data
sharing among stakeholders. The automation and enforcement of such privacy policies can
possibly reduce the amount of non-compliance caused by, either intentional or non-intentional,
violation of such rules. Unfortunately, current data sharing infrastructures and policy reas-
oning mechanisms, to some extent, fail to provide the necessary languages and methods to
enforce privacy rules. These challenges become more prevalent when sources of legal norms
are considered, such as Data Sharing Agreements (DSAs) and privacy regulations (e.g., the
GDPR).

In this work, a domain specific language, eFLINT is used to specify data sharing policies
expressed in DSAs [40]. The eFLINT language is developed to formalize legal norms, as such
we found the language suitable to specify data sharing rules, conditions and duties specified
in DSAs and privacy regulations. The extensions made to the eFLINT language allow us to
connect higher level and abstract privacy policies to lower level system policies, such as read
and write access rights [39].

A purpose-based access control mechanism. Current traditional access control models
lack the necessary mechanism to specify and enforce data access and usage policies specified
in privacy legislation and contractual agreements. In this work, we propose an access control
model that simplifies the process of granting researchers access to datasets based on research
purposes. The main component of this model is the specification of higher level abstract
purposes as system level action or sequences of actions which are the basis for purpose based
access control policy.

Develop a user-interface. The current user interface for the DIPG use-case was developed
by the AMdEX fieldlab project. The prototype can be used by all stakeholders, a researcher
and the DIPG executive committee to submit project proposals and approve project proposals
respectively. Additionally, our main objective, to allow researcher access to data based on
the approval of a project proposal, has been implemented on the prototype.

4 Algorithmic real-time response

A DHT involves collecting and analysing patient data in real-time. Predictions of treatment
effects for individual patients can be improved in real-time as the amount of available
information keeps increasing. For these predictions to be useful, adequate information about
their uncertainty and rationale should be provided to patients and clinicians. Unfortunately,
there are currently many challenges with the way statistical learning and hypothesis testing
techniques can be applied in healthcare, and merging real-time response with an adequate
confidence measure is one of them. When we peek continuously at our results throughout an
experiment (“real-time” analysis), biased and misleading results are retrieved with classical
hypothesis testing methods [43]. Similar problems arise when we want to combine insights
collected over multiple healthcare facilities, or when we want to adapt our experiments
post-hoc [34, 14].

A new framework of hypothesis testing and estimation that can deal with these challenges
especially well is called “safe anytime-valid inference” (SAVI) [32]. This framework allows
for dynamically analysing studies as their designs may change during data collection and
analysis while avoiding the previously mentioned misleading results. SAVI tests may also be
extended to estimation through anytime-valid confidence intervals: confidence intervals that
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provide robustness, at any time during a study [17]. Further, multiple SAVI tests can easily
be combined into one big test, for example when researchers are not willing to share an entire
dataset, but only summary statistics. SAVI tests also allow for increasing test power when
datasets collected from several institutions are heterogeneous. They can, for example, handle
switching of outcome measures or predictors, when the data sources available for research
change dynamically over time. We are developing models that can capture confidence of
intervention outcomes for (small groups of) patients, with guarantees on the error bounds
of the model [37, 36]. The resulting ‘patient-tailored’ advice can be presented through an
application as part of the clinical user interface, where input and outcome measures can
be adapted dynamically by all main parties involved: the patient, clinician and researcher.
The SAVI test or confidence results in such an application can even be combined with SAVI
results from other healthcare centres, not affecting the reliability of the estimates.

So far we have discussed inferential models for studies that are ongoing, in real-time. We
also consider historical, observational data to build a model that can be adapted later. As
data infrastructure and data sharing possibilities keep improving in healthcare, an abundance
of this kind of data will become available as well. However, with observational data, the
discovery of (treatment) effects might be masked by confounding factors or bias due to
(unknown) fallacies in study design. These issues go beyond straightforward statistical
significance and make it necessary for learning models to provide a form of explainability,
i.e. the rationale for a model’s decision needs to be transparent to clinicians, healthcare
researchers and patients [11]. To this end, we explore the application of more complex
methods that also provide strong explainability properties, such as constraint-based Bayesian
networks [4]. Multiple predictors and outcome variables of interest can be included in these
models, and the associations between them can be presented to the user in the form of a
directed acyclic graph. With the resulting network, groups of or even individual patients
that are more likely to respond well to certain treatment strategies can be highlighted.

In summary, for the algorithmic real-time response in the DHT, we strive to develop
relatively simple and explainable mathematical models that provide robust recommendations
and insights to aid decisions and expand knowledge on clinical diagnostic methods and
therapies. The SAVI tests for inference and the network-based models incorporate prior
knowledge based on expert knowledge and pre-training of the models, resulting in a low
computational cost when using the algorithms in real-time. As both proposed models offer
a lot of flexibility, new insights gained during real-time analysis can be used to update the
models dynamically and change the hypotheses tested and the nature of the predictions
made, while maintaining robustness and guarantees on estimation error bounds.

5 Analysing distributed data at scale

Besides the need for a real-time response, another challenge that a DHT has to address is
scale. Specifically, for more advanced machine learning and deep learning methods to be
accurate, large amounts of data are necessary for training and evaluation [44]. Yet, in health
care, large collective sets of medical data are rarely available, because data is collected and
stored in many different, independent institutions and strict privacy laws and regulations
apply in regard to sharing this data to preserve the privacy of the dataset and patients
participating in it. A solution for this is to take the computation to where the data is stored.
In order to adapt to this setting, two main modifications need to be made. Firstly, the
algorithms themselves need to be altered to be able to train themselves on distributed data.
The form of data distribution influences the way the algorithm should be adapted. Second,

Commit2Data
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we need to make the machine learning mechanism itself inherently privacy preserving to
ensure no information is leaked by simply exposing the predictions or other outputs of these
models. These are the two topics we address in this section.

5.1 Distributed learning algorithms
Data can be distributed “horizontally” or “vertically” among parties. With horizontal
partitions, each partition contains a number of instances, but has all features of this instance,
as in section 3.3. There, the dataset includes patients from different hospitals in multiple
countries, but for every patient, their individual data is only recorded in one hospital. This
is the opposite in vertical partitions, where features of one instance are spread out over
different parties, such as in the CVA use case where the data of a patient is spread out over
the different healthcare institutions they visited. Distributed learning has focused on these
challenges by developing methods that deal with this data parallelism, where collaborative
models are trained on distributed data while the individual parties keep ownership of their
local data. Most notable has been the development of federated learning [26], which is
based on local parties creating their own models that, through iterative model parameter
sharing, converge to one central model. The developed models for horizontal learning have a
similar predictive performance as models trained on fully centralized data [21]. Distributed
learning on vertically partitioned data has so far been less explored [21], for it comes with
additional complexity: the feature set of the participating parties is different, so they cannot
simply all train the same model and exchange parameters. Particularly, it is common in
vertically partitioned data that only one party has the label that the model is trying to
predict. Recently, several studies have developed methods to utilize vertically partitioned
data for deep learning, but these distributed learning solutions still have issues in terms of
predictive performance, privacy and efficiency [15, 6].

For this project, we adapted and evaluated Vertical Split Learning, where a neural
network is distributed over the locations, similar to the data [6], for a set of medical and
other use cases. We saw that depending on the use case, feature distribution and models
used, predictive performance could vary greatly [2]. This shows it is essential to properly test
vertically distributed learning techniques, and there is still a need for more robust vertically
federated learning techniques. This requires not only the adaptation of distributed learning
methods to retain predictive performance but also the implementation of appropriate privacy
and security methods. As the goal of this project is to make DHTs broadly applicable, this
includes meeting requirements for various forms of vertically partitioned data, as in the
stroke rehabilitation use case. Therefore, we aim to further develop and adapt distributed
learning methods that can use vertically partitioned data, while retaining robust predictive
performance, as well as privacy and efficiency.

5.2 Privacy Preserving Machine Learning
In recent years, distributed machine learning methods have been gaining traction due to
them being able to address either or both principal concerns in data analysis: privacy
and scalability. On top of that, there has been a paradigm shift in large-scale, big-data
computation towards distributed and cloud systems [20]. The increasing maturity of these
methods in other domains makes employing them in a healthcare context - with its inherent
need for privacy and big-data processing needs [31] - extremely compelling.

A whole new area of research has developed to study privacy aspects in machine learning
under the name “Privacy Preserving Machine Learning (PPML)”. PPML-based models usually
employ methods based on Cryptography and/or Perturbation to preserve the privacy of the
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data and/or model. Cryptography-based approaches for PPML utilize cryptographic methods
and protocols to encrypt data while perturbation-based methods work by transforming the
data, usually by adding some noise to the training data, algorithm parameters or the
algorithm output. There are other (less explored) methods falling outside these categories,
e.g. Synthetic Data [45], private aggregation of Teacher Ensembles [30].

Although several PPML methods have proven to serve their purpose, each comes with
its own caveats. For these methods to work, not only do we need to enable our machine
learning models to work on encrypted, perturbed or otherwise-transformed data, we also
need to ensure that the model trained on the garbled data has similar performance and
generalizability as the same model trained on unprotected data. If it works at all, the extra
compute overhead resulting from taking these measures is certainly a downside. Especially
in healthcare, parallel to the crucial need for guaranteeing preservation of privacy, the
performance of a model in terms of accuracy and its computational needs is a decisive factor
for its adoption in the field.

Our aim is to not only provide privacy-preserving methods of machine learning suited for
medical use-cases, but also to provide a framework for setting up a PPML pipeline tailored
to the needs of our stakeholders. This framework will serve the purpose of preservation
of privacy in distributed/federated machine learning scenarios. The distributed nature of
the data brings up new challenges, e.g. bias and class imbalance, potential unreliability of
learning parties, communication costs, all of which need to be addressed specifically for our
target use-cases. This approach on the one hand enables algorithms introduced in Section 4
to run in a distributed privacy-preserving manner; On the other hand, it is integrated closely
in a decentralized distributed scheme with the policy specification (Section 6), infrastructure
(Section 7) and orchestration (Section 8) layers to ensure the PPML process adheres to
governing rules and regulations and is correctly set up and deployed at stakeholders’ site.

Adopting PPML in a DHT is in line with the remaining recommendations on mathematical
modelling of [9]. PPML enables the simultaneous processing of disparate, distributed private
datasets without creating privacy preservation concerns. Thus, it allows establishing private
online repositories, including repositories containing sensitive data of individual patients,
whilst guaranteeing data processing is privacy preserving independent of the analytical
models built on top. A framework providing a common PPML foundation helps to seamlessly
combine phenomenological and mechanistic models as it shifts the focus from the prevention
of data leaks to the development of hybrid integration methods and strategies. Furthermore,
it prevents privacy incidents when relations across scales are identified, potentially leading to
homogenization and distribution strategies for the development of a theoretical framework
for the analysis of scale separation.

6 Automated policy interpretation, management and enforcement

Current approaches to access to healthcare data for research purposes can be complicated
due to strict privacy regulations and contractual agreements such as data sharing agreements.
Privacy regulations and data sharing agreements are usually written in natural language,
which can lead to ambiguous and inconsistent interpretations [1]. Resolving these challenges
demands suitable policy specification languages to specify policies. The main objective of
this work is to automate data access requirements from privacy regulations and data sharing
agreements (DSAs) to reduce the complexity of data access for research purposes and enable
the enforcement of different sources of legal norms via access control mechanisms.

Commit2Data
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6.1 Data sharing agreements and access control
The General Data Protection Regulation (GDPR) states the principles and rights that must
be met for processing any personal data [7]. These principles are lawfulness, fairness and
transparency; purpose limitation; data minimization; accuracy; storage limitation; security
and accountability. The GDPR provides strict privacy norms, and there is no (access control)
mechanism that enables the enforcement of all such norms. These challenges become more
prevalent when several sources of legal norms (e.g., GDPR and DSAs) are simultaneously
applicable, as is often the case with medical research. Additionally, when data is merged
from several sources and different controllers are allowed to author their own policies that
dictate for each source, it can cause policy conflicts. The gap between legal requirements
and its technical realization is due to the lack of machine-readable representation of privacy
policies.

The goal of this work is to formalize privacy policies and to enable their enforcement via
(novel or existing) access control mechanisms. In the initial stage of our work, we analysed
different policy specification languages to determine which of them met the privacy policy
requirements from GDPR and DSA of the DIPG Registry use-case. The Open Digital Rights
language (ODRL) [18] and the eXtensible Access Control Markup Language (XACML) [33]
were concluded not to be sufficiently expressive. The analysis of ODRL is reported in [25].
Instead, we are applying the eFLINT language, originally developed within the SSPDDP
project3, to formalize GDPR and DSA articles relevant to the DIPG use case.

The eFLINT language is a domain specific language that was specifically designed to
formalize legal norms [40]. The eFLINT language extensions enabled us to interconnect
higher level privacy policies such as those expressed by the GDPR and DSAs with system
level policies such as those specified by access control policies [39]. Additionally, we formalized
the access request workflow of the DIPG registry use-case, a researcher submitting project
proposals and approving proposals and the duties that follow as a result of these transitions.
Finally, we demonstrate how actions described by the GDPR such as “collecting personal
data” can be synchronized with actions from DSA such as “making data available” to the
registry. This approach allows for the modular specification of norms by permitting re-use
between specifications as well as defining alternative specifications.

6.2 Purpose Based Access control mechanism
In this work, we propose an access control model that simplifies the process of granting
researchers access to datasets based on research purposes. Article 5(1(b)) states that personal
data shall be collected for specified, explicit and legitimate purposes and not further processed
in a manner that is incompatible with those purposes. Additionally, If personal data is
collected for more than one purpose and these purposes are related, then the GDPR allows
for processing to take place under an “overall purpose” under which a number of separate
processing operations can take place. Therefore, the purpose limitation principle minimizes
the risk that might arise when personal data is processed by confining the possibilities of its
usage by limiting instances of lawful processing.

Our purpose based model is based on these requirements. The main component of this
model is the specification of higher level abstract purposes as system level action or sequences
of actions which are the basis for defining purpose based access control policy. We model
action relationships based on the purpose specification requirements from the GDPR and

3 The SSPDDP project (628.009.014) is part of the NWO program Big Data: Real-Time ICT for Logistics
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express constraints over these relationships using the eFLINT language. The goal of this
work is to design and implement an access control model that allows access to data based on
the purpose of research plans.

7 BRANE - A heterogeneous, distributed research platform

Different DHT functionality requires different physical infrastructures to be deployed. On a
software level, they have different hardware- and software requirements, such as dependencies
on accelerators or specific software packages; and on an application level, they need different
data flows and might impose different security requirements. Therefore, there is a need to
dynamically map a logical infrastructure dictated by a DHT functionality onto a physical
pool of resources. This pool of physical resources is often heterogeneous and dispersed as
well. The exact composition varies but may consist of resources in the cloud, high-performant
grid computers or even small, ARM-based devices that operate only locally. This variety
introduces interoperability issues on the software level (different software stacks, transfer
protocols or granted system privileges), hardware level (processor architectures, availability of
accelerators, networking capabilities) and administration level (different costs, usage quotes
or service-level agreements). Furthermore, heterogeneous trust relationships between resource
providers may exist [29]. This restricts how data can flow between resources, or sometimes
even if the provider of a resource is willing to do a task at all if this violates their own trust-
or security policies. This issue becomes even harder when some of the policies involved are
sensitive themselves and must thus be kept private; it may be, for example, that a dataset
can only be processed by a resource if a patient has given consent to do so, where this consent
itself already reveals sensitive information about the patient.

Traditionally, the mapping of a logical infrastructure on a physical pool of resources is
done (semi-)manually. However, this approach does not scale in the case of DHTs, as both
ends of the mapping are dynamic: new DHT functionality may be introduced or adapted,
resources may be introduced or removed and the policies of existing resources may change.
Hence, a mechanism is required to perform this mapping automatically and dynamically.

Figure 1 Conceptual role of BRANE. During implementation, a scientist writes a workflow
that composes elementary functions (f, g and h in this example). These elementary functions are
implemented by packages, which are written beforehand and made publicly available by software
engineers. At runtime, the BRANE runtime understands the dependencies between the functions
and can map them onto a physical pool of resources.

To solve the software and hardware interoperability issues, the BRANE Framework [38] is
introduced as the mechanism to provide the logical infrastructure for physical resource pool
mapping. It frames DHT functionality as workflows, which are compositions of elementary
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functions to form (data) pipelines that implement the desired behaviour. These elementary
functions, in turn, are implemented by packages, which are containerized pieces of software
such as data preprocessing steps or (parts of) algorithms that are executed on the resource
pool. The runtime of the framework can then orchestrate these containers based on the
requirements and dependencies laid-out by the workflow, providing the mapping discussed;
this act is called planning a workflow. A visualization of this process is given in Figure 1.

To handle the administrative-, privacy- and trust-related interoperability issues, the
BRANE framework is extended with a notion of policy [13]. These policies are expressed on a
per-resource level, which effectively makes policies representative of a resource owner’s wishes
within the system. By consulting with the policy both during the planning of a workflow,
and during execution, the policies restrict what a resource is used for and what happens
to the resource’s data, as well as express administrative limits or costs on the resource. A
key feature of this notion of policy is that the policies are abstracted away behind a service,
the checker service (Figure 2). Using an interface like this allows resource owners to make
their policies arbitrarily complex since the system has no requirements on how they are
implemented. For example, they can use languages like eFLINT [40] that can capture norms,
allowing policies to express legal concepts like GDPR. Moreover, addressing the need for
private policies, the interface allows every participant to hide as much of their policy as
desired. This can range from “metadata” of a policy, such as the name of the person who
gave consent, to the policy rules themselves; although the latter requires advanced reasoning
about what policy information is leaked through the interface. This ability to keep policies
private is what sets BRANE apart from similar workflow systems, like [41] or [8].

Figure 2 Policy enforcement in BRANE. There are two phases when executing a workflow:
in the first, the planning phase, the runtime maps tasks in a workflow to resources that will execute
the tasks. Here, checker services (and thus policies) act as filters to separate plans they would
allow from plans they would deny, preventing the system from having to execute every possible
plan. Then, during the execution phase, the runtime starts traversing the planned workflow and
attempts to execute each task on the resource it was planned on. The checker of that specific
resource examines the task again, to prevent any staleness introduced by the arbitrarily long delay
between the planning-check and the execution of that specific task.

In summary, we present an automatic mapping of the logical infrastructure dictated
by DHT functionality to a physical pool of resources using the BRANE infrastructure. It
frames the functionality as workflows and packages, and complements that with high-level
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constraints on that mapping by introducing (potentially private) policies that are hosted
on the resources themselves. To enforce lower-level policies related to (network) security, a
more complex extension to BRANE is required and described in the following section.

8 Distributed Analysis Infrastructure

Currently, “working in silos” is still dominating the healthcare industry, but data-sharing
between health domains is key on the road towards DHT. We aim to lay the foundation of
distributed infrastructure and to utilize it in deploying the previously mentioned use-cases. In
the context of this project, we define a data-sharing framework that allows parties in specific
(research) networks to share patient information securely in an ad-hoc way in the course of
treatment or a specific research question, as well as structurally for long-term studies, while
maintaining control and tractability/suitability to data controllers and subjects at the source.

Developing a generic solution to comply with the dynamic security policies is difficult,
mainly because the infrastructure between different healthcare domains is heterogeneous in
terms of computing, networking and storage functionalities. Moreover, when various use
cases have to be deployed (e.g. for running an ML algorithm, monitoring, sharing EHRs,
etc.), different requirements or rule sets (policies) apply (e.g. privacy related) and have to be
enforced to ensure proper control over the data flow/ usage. The infrastructure and security
models need to support these different applications, therefore need to be adaptive to be able
to support dynamic and often application-specific sets of requirements.

The main design properties we consider while setting up a secure, collaborative networked
environment [23] between different EPI parties are: 1) the low level security and network
policies formalizing and enforcement, 2) compatibility with higher-level policies, and dynamic
workflow schemas, 3) evaluating data-sharing domains, and adaptively provision network
service chains to maintain security and quality of service, 4) reacting to any policy change
while flexibly trading and routing packets via the chain via proxies (different implementation
presented in [24]). The proposed framework considers the intended data sharing use case, and
the policies associated. We map the mandated network services to the defined enforcement
primitives: filter traffic and/or transform traffic. The framework dynamically provisions
these services by placing the functions on available N-PoPs (Network Points of Placements),
assigning the service requests to the running function, and routing traffic along the function’s
chain to enforce a policy. We optimize provisioning decisions to maximize the quality of
service based on the infrastructure state, the use case’s requirements, and the CPU profiles
of services [22]. The hyperparameters are tuned to prioritize resource utilization or latency in
an effort to comply with the performance requirements. Three provisioning tools are used: a
greedy heuristic approach, Deep Q-Learning (DQL), and a Heuristic-boosted DQL (HDQL).

We manage and orchestrate virtualized networked services on top of the existing client’s
infrastructure to increase the security level of the communication channels and enforce
policies. A cloud-native network orchestrator is defined on top of a multi-node cluster mesh
infrastructure for flexible and dynamic containerized function scheduling. The expected
challenges include verification of rules with laws and international policies, integration
with legacy systems, and acceptability of the framework by health institutions. The latter
includes providing the health institutions with sufficient oversight and control over the
sharing and usage of their data so that they are confident that this exchange is compliant and
controllable. We address these challenges by working closely together with the responsible
entities (IT departments, ethical boards, and data privacy officers) in the associated hospitals.
The approach we will be taking is to formalize a logic to automate infrastructure setup
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Figure 3 Schematic overview of the PoC setup. Three domains participate in the proof-of-
concept, each of which has their own resources hosting their part of the framework: each hospital
(UMC Utrecht and St. Antonius) have local instances of the ECT dataset, and host a worker node
to perform local computations; SURF, meanwhile, acts as an entry point, and hosts a worker to
aggregate the local results into a global one. Domains are contained in each dotted sphere, where
each sphere shows the relevant components for that domain. The arrows indicate network traffic
between the domains, where the direction of the arrow indicates the direction of the initial message.

per application scenario by utilizing virtualized services hosted by a bridging node. The
framework runs a middleware in a virtualized manner and offers network services to secure
data sharing and consider policies.

9 The EPI Proof of Concept

In order to experimentally validate the work presented in this paper, a proof-of-concept
(PoC) has been deployed in cooperation with various organizations in the EPI consortium.
The goal of the PoC is to create an environment in which federated applications may be
executed which involve one or more “local” processing steps followed by a centralized “global”
step that aggregates the local results. In the PoC, local steps are executed by St. Antonius
and UMC Utrecht, each having a part of a horizontally split dataset. To test use-case 3.2, as
well as our methods of analysing distributed data at scale (section 5), we use a dataset that
has been previously collected in both hospitals with characteristics and treatment outcomes
of patients who received electroconvulsive therapy. Results of the local computations on this
dataset are sent to SURF, which plays the role of a trusted third-party that can aggregate
the results (see figure 3). SURF also hosts the BRANE runtime that acts as an orchestrator.

The PoC is used to assert that the framework discussed in sections 7 and 8 can support
the resource pool hosted by the three participating organizations. Specifically, the resources
provided are heterogeneous in three of the aforementioned dimensions: they differ in hardware
capabilities, software stacks and trust relations. Regarding trust: only the hospitals are
allowed to see only their own ECT dataset. SURF is only allowed to see the local results
produced on each site, and the global result they produce. These rules are ideal to experiment
with automated policy enforcement (section 6). The setup also validates whether the
framework can operate within the administrative and security restrictions imposed by the
security requirements of the hospitals. Most notably, virtual private networks (VPNs) [42] are
used to safeguard the data as it travels over the public network, network access is restriced
to the outside world and some domains only offer restricted rights to the framework runtime.
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10 Conclusion

Employing digital health twin applications to empower personalized medicine is only feasible
utilizing medical data sharing and patient-generated data. On the other hand, data sharing
introduces a plethora of challenges ranging from effective data processing modules, to policy
compliance, and the underlying heterogenous infrastructure. That is especially true in
healthcare, where data privacy and patients’ confidentiality is a concern.

In the EPI project, we address these challenges by, focusing on solving three use cases
involving consortium members. These serve as exemplary applications of personalized
medicine and help us to build applicable solutions. Subsequently, we introduce health data
processing solutions (real-time response statistical learning) to provide robust personalized
recommendations. Data in the real world is distributed, so we investigate distributed
learning and various methods to include privacy preserving techniques. Then, we build policy
reasoning tools, where we formalize policies around these use case to control data usage whilst
running workflows. Additionally, we implement BRANE; which is a distributed research
platform; to build and run said workflows irrespective of the heterogeneous nature of the
underlying computing resources. Lastly, we address any network and security discrepancies
across the data sharing members by provisioning dynamic network and security services and
ultimately enforce any policies in place. This is further showcased by running a proof of
concept and utilizing the EPI Framework features by running a data sharing use case across
consortium members. The infrastructure for running the PoC was provided by the hospitals
to run local functions, and by SURF to manage and orchestrate these services.

Altogether, these result bring us closer to the creation of Health Digitial Twins, a
necessary component in enabling personalised interventions. Still the EPI experiences and
insights trascend the medical domain. In fact, a major ambition of the EPI project, and in
general of the Commit2Data funding scheme to which the project belongs, was to create
long term and broadly applicable results. To this aim, we are working to migrate the EPI
software framework, which incorporates all project results, to other generic data sharing
infrastructures, such as AMdEX.
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