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Abstract
This paper addresses the capability of autonomous robots to achieve flexible goals in dynamic
environments. In such a setting numerous challenges jeopardize the robustness of such systems.
Thus, we propose a hierarchical diagnosis concept for layered control architectures, that can detect
and deal with such challenges to maintain a consistent knowledge about the world and to allow
reliable decision-making. Layered control systems use various knowledge representations and
decision-making mechanisms teamed with specialized isolated fault-handling approaches. However,
some issues can only be identified if the information from different layers is combined. Our
approach addresses challenges like failing actions, uncertain observations, and unmodeled events by
propagating observations and diagnoses results throughout the hierarchy. This enhances adaptability
and dependability in various domains. In this paper, we present a prototype architecture following
this approach.
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1 Introduction

There is an increasing demand for autonomous robots that can pursue flexible goals in an
open and dynamic context. This asks for true autonomy, requiring minimal or no human
intervention. In contrast, even commercial robot systems often fail to pursue their goals
and interact with an unpredictable dynamic environment. There are various reasons for this
shortcoming such as failing actions, not modeled or observed changes in the environment,
or issues in the perception. In this paper, we propose a hierarchical diagnosis concept for a
common control architecture for autonomous robots. Such architectures are usually organized
in layers. When progressing from one layer up to the next usually information is abstracted
and the scope of the decision-making is narrowed conceptually (e.g. aggregated predicates)
and widened temporally (e.g. sequence of intermediate actions). Moreover, the higher
layer uses the lower one to refine and execute its decisions. In this interplay information,
commands, and execution results need to be exchanged while performing abstraction and
concretization respectively (i.e. instantiation of parameter or aggregation of results). In
order to allow dependable decision-making and execution the knowledge and information
on the various levels needs to be kept consistent with the evolution of the environment [15].
A standard architecture is a three-tier architecture that combines a deliberative layer with
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1:2 A Hierarchical Monitoring and Diagnosis System for Autonomous Robots

planning capabilities, an executive layer able to execute intermediate tasks by refining them
into skills (atomic actions), and a skill-layer able to handle the execution of such skills [12].
Monitoring and diagnosis need to be performed on the various levels in the corresponding
layer context. The main challenges for an intelligent agent and its control architecture
performing non-trivial tasks in dynamic environments are: (1) skills (actions) that are not
able to establish all its intended effects, (2) observations about the environment that are
uncertain or wrong, (3) exogenous events changing the environment in a way the agent
has not modeled or is not aware of, and (4) failed or interrupted skills (actions) where the
resulting situation is not entirely clear. All these challenges may render the local context of
the various levels inconsistent jeopardizing dependable decision-making and execution. In
order to address these challenges we propose a holistic hierarchical diagnosis concept that
propagates local observations, execution results, and diagnoses up and down the control
hierarchy to allow reasoning with a broadening context if issues cannot be detected or handled
within the corresponding layer. The diagnosis concept presented in this paper augments our
planning and execution framework, which was designed in a general way and can be easily
adapted to different domains.

2 The Control Architecture

In this section, we briefly describe the general architecture of the control framework. It
resembles the general structure used for multi-robot systems, and the main parts of the
software are divided into a three-level hierarchy, as shown in Figure 1. The most abstract
layer, namely the High-Level, involves task generation, task assignment, and coordination
between robots. It is responsible for the long-term strategy and monitoring of its execution.
The Mid-Level is concerned with task refinement and execution by a specific agent through
Behavior Trees [7]. Given a High-Level action, this layer transforms it into the corresponding
Behavior Tree. The Behavior Tree decomposes the actions into a set of subtasks, represented
as an extended state machine. To give an insight, consider a high-level action of passing
through a closed door. Such action will be transformed into a set of different subtasks by
the Mid-Level. Passing to the door might be represented by a sequence of checking the door
state, opening the door if needed, passing it, and finally closing it. This level of detail is
neither useful nor helpful for the High-Level. The Low-Level deals with the basic behaviors
of the robot platform, i.e., sensing, low-level monitoring and control of actuators as well as
basic skills such as localization and navigation. Here the subtasks generated at the Mid-Level
are further refined.

2.1 The High-Level Planning and Dispatching System
The Planning and Dispatching Framework implements a control strategy for multi-agent
systems in dynamic domains. It is based on three main components: (1) a Goal Reasoner,
(2) a Planner, and (3) a Dispatching and Monitoring system. In the upper part of Figure
1, the interaction between the components is shown. It follows the idea of Goal-Driven
Autonomy. The Dispatching and Monitoring component plays the role of the main controller
that invokes the Goal Reasoner [1], and consequently the planner, and executes the obtained
plan, by sending the tasks to the Mid-Level which builds the corresponding Behavior Trees.
The plan execution is constantly monitored for issues that may require regeneration of the
goals of the plan, e.g., failed actions, deadline violations, or external events. The planner
module is based on Temporal PDDL [11]. Given a fixed domain, namely the description
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Figure 1 Basic hierarchical control architecture for multi-agent systems.

of possible actions, and the problem instance, generated from the Knowledge Base and the
selected goals, the result of the planning process is a temporal plan, which is represented by
the schedule σ, formed by a set of triples ⟨a, ta, da⟩, where a is an action, ta is the time when
the action a needs to be started, and da is the duration of the action. The Knowledge Base,
namely the set of beliefs about the status of the world, is a crucial component. For easier
integration with PDDL planning, the Knowledge Base reflects PDDL syntax. It consists of
a set of atoms. An atom is a grounded predicate. For instance, the atom (at r l) specifies
that the robot r is at location l. Each Temporal PDDL action of the plan features a set
of preconditions and effects. The preconditions of an action a are formed by three sets of
atoms: the start condition cond⊢(a), the invariant condition cond↔(a), and the end condition
cond⊣(a). The effects are instead divided into the start positive (add) effects eff+

⊢ (a), the
start negative (remove) effects eff−

⊢ (a), the end positive (add) effects eff+
⊣ (a) and the end

negative (remove) effects eff−
⊣ (a). Every time an action is dispatched, the Knowledge Base

KB is checked for consistency by making sure that cond⊢(a) ∈ KB and cond↔(a) ∈ KB.
If it holds, we then apply the starting effect of the action, with KB ← KB ∪ eff+

⊢ (a) and
KB ← KB \ eff−

⊢ (a). The same procedure is applied for end actions, considering end
conditions and effects instead. ROSPlan follows a similar approach [5]. As a consequence, in
case of failures or mismatches between the Knowledge Base and the real world, it is crucial
to diagnose the problem accurately and identify the actual effects on the belief. In fact, a
Knowledge Base inconsistent with the state of the environment may compromise the entire
decision-making. By using monitoring and diagnosis, it may be possible to track the specific
problem in the interaction of the agent with its environment and fix the KB accordingly,
allowing it to pursue its goals. Therefore, the diagnosis system presented in the next chapter
has been developed.

2.2 Control and Recovery Strategy in the Mid-Level
The use of Behaviour Trees (BT) in Mid-Level not only allows realizing action refinement
easily but also the integration with supervison and recovery strategies. Conditions, fallbacks,
and other predefined types of nodes allow for an easy implementation of both supervision
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Figure 2 Hierarchical Organization of Layer Interaction, Monitoring, and Diagnosis.

and recovery. For this, the original BT that refines an action is transferred into a de-
pendable failsafe version, where patterns for fault monitoring and mitigation are encoded
using domain/expert knowledge. An example is the use of a ReactiveSequence node, to
continuously check guarding conditions. Moreover, this pattern is a subtree of a BT having a
RetryUntilSuccessful node as the root. This node retries to execute the whole subtree in case
of failure, within a predefined maximum number of attempts. This allows the implementation
of a simple local recovery strategy. If recovery fails on this level, the problem has to be
handled either through local diagnosis or by the deliberative layer.

3 Hierarchical Monitoring and Diagnosis for Decision Making and
Execution

The use of an architecture with various levels of abstraction, necessary to tackle complex
dynamic domains requiring planning, synchronization, and skill execution, poses numerous
challenges regarding the implementation of a holistic monitoring and diagnosis system. In
order to correctly detect and identify problems in task planning and execution, the system
must be aware of the different layers and heterogeneous knowledge representations and
decision-making mechanisms used at the different layers. Moreover, it needs to understand
how the different layers interact and whether there is already a local mechanism for fault
detection and handling on some layers sufficient to deal with a problem.

Hierarchical diagnosis is a well-known concept, to speed up diagnosis in complex systems
using functional abstraction and clustering [6]. Functional abstraction establishes a frame-
work that maps structural and behavioral knowledge, typically found at the low-level, and
teleological knowledge, which pertains to the system’s goals at the high-level. Functional
knowledge, situated at the mid-level, bridges the gap between these two types of knowledge.
The core concept of a functional description is to link behavioral and teleological knowledge
by identifying how the structural components contribute to fulfilling the system’s overall
goal, showcasing the functional roles these components play in achieving the desired goals.
In our case, the challenge is to combine information and diagnosis results from different
levels of the architecture into a globally consistent diagnosis. Functional abstraction provides
the means to interpret the results of one level into the other levels. An interesting aspect
regarding diagnosis is that the temporal context and the conceptual context show an inverse
proportional nature along the levels. While the level of granularity of facts shrinks when
moving up the hierarchy (abstraction of actions and beliefs), the temporal context becomes
wider (a sequence of actions versus only one behavior).

In order to address these challenges, we propose a hierarchical monitoring and diagnosis
system where the interaction between a layer i+1 and i follows the pattern shown in Figure 2.
We assume that each layer i possesses its individual set of the following components: (1)
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context, (2) decision-making and execution (DME), (3) monitoring, and (4) diagnosis. The
implementation of the individual components depends on the layer. In the subsequent
sections, we will provide details for the layers used in our architecture. The context holds all
information relevant for decision-making and execution. We assume the context is represented
using some language Li. DME can come up with a decision on what activities need to be
performed to achieve a given goal or command and can execute that decision. The monitor
supervises the correct execution of the decision while the diagnoser provides explanations
of why an execution failed. DME might be able to use those diagnoses to reconfigure the
decision and execution or propagate them to the higher layer if it is not able to handle it
sufficiently.

In order to represent the interaction between layer i+ 1 and i we assume that layer i+ 1
issues commands represented in Li+1. For layer i we assume a function ϕ : Li+1 → Li which
performs the concretization of that command. Layer i will work on the achievement of that
command. During the handling of the command intermediate observations o represented in
Li will be propagated to layer i+1 that can use these observations for monitoring. In order to
allow an integration of o in the context i+1 we assume an abstraction function ψ : Li → Li+1.
If the processing of the command concludes (nominal or abnormal) the feedback tuple ⟨s,∆⟩
where s ∈ {success, fail} represents the execution result and ∆ (represented in Li) potential
explanations for a failed execution.

A reported failure occurs if a monitor at layer i detects a problem or if a lower layer’s
issue is propagated and unresolved. Even reported success may not mean correct completion,
as issues might only be detectable in higher layers utilizing the broader context. Thus,
higher-layer monitors must verify lower-layer execution results. For instance, in a production
setting a skill to insert a piece into a machine may drop it without noticing it due to limited
sensing but at the deliberative layer the issue can be revealed because the following processing
action fails due to the missing implicit precondition of the inserted piece.

3.1 Skill Layer (Low-Level)

The lowest layer is responsible for the execution of atomic skills like navigation or manipulation.
As usual, such a layer is implemented using the Robot Operating System (ROS) [20]. Besides
means of structuring data communication (topics) and computation (nodes), it provides
concepts for implementing behaviors (skills) via the action concept. It allows running a
concurrent behavior such as navigating to a goal [18] while reporting intermediate feedback
on the progress as well as the final result of the skill execution. Standard implementations
such as the ROS navigation stack contain hand-coded monitors (e.g. tracking the progress of
the robot pose) but do not provide detailed explanations in the case of a failure. Diagnosers
such as the one proposed in [10] that can provide detailed explanations about a navigation
fault need to be integrated. Moreover, only rudimentary recovery behaviors are implemented
in the navigation stack. Thus, a diagnosis and an interpretation utilizing the corresponding
context need to be done at the higher layers. Intermediate observations might be provided by
dedicated perception modules such as a localization module that tracks the robot pose [23].
The context and observations of the skill layer is built up by continuous values representing
circumstances such as the robot pose (⟨x, y, θ⟩). Also, more detailed information such as the
particle set used in the localization can be utilized to create a local monitor for problems in
the navigation [9].
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1:6 A Hierarchical Monitoring and Diagnosis System for Autonomous Robots

3.2 Executive Layer (Mid-Level)

The task of the executive layer is to refine the abstract actions dispatched by the deliberative
layer and supervise the execution of the refined actions. While it is common to use the concept
of hierarchical task networks (HTNs) [19] or BDI architectures [14] for the implementation
we use the concept of Behavior Trees [8] because of its simpler use and ROS integration. In
contrast to a declarative approach such as planning BTs are composed of different nodes
(e.g. conditions, sequence, fallback, atomic action) and represent a control policy. The
execution leads to a trace of atomic actions that is dependent on the actual development of
the context. Any legal termination of a tree counts as a success. If any node in the tree fails
a fail is reported. The issue is that BTs can replicate a complete imperative programming
language, necessitating runtime verification and full operational semantics for complete
diagnosis [22, 3]. For now, we consider a BT as an ordered sequence of sub-tasks (skills) for
the sake of simplicity. After the execution of each sub-task, feedback from the low-level is
returned, stating the successful or failed execution of the sub-task. In case of failure, the
following sub-tasks are not concluded, and the Mid-Level notifies the failed execution of the
PDDL action to the High-Level. In case of a successful execution of the entire Behavior
Tree, the Knowledge Base is updated at the High-Level with the effect of the PDDL action.
However, determining which effects have to be applied and which do not in case of a failure
in the execution of the BT is not trivial. In order to make the KB consistent, we need to
know the nature of the failure and how it affects the other elements of the environment. For
this reason, a local diagnosis needs to be performed on the Behavior Tree, supported by
observations made at the Mid-Level and the structure of the entire BT execution. Moreover,
such a technique is applied even in the case of positive feedback from the Low-Level. Some
failures may not have been detected at the Low-Level because of its limited context. The
application of a diagnosis technique, which takes into consideration a temporally broader set
of observations (obtained by a sequence of skills rather than one skill in isolation), may help
to detect hidden faults in the execution.

3.3 Deliberative Layer (High-Level)

As described above a High-Level PDDL action is refined at the Mid-Level into a Behavior
Tree. The diagnoser on the high level is based on History-Based Diagnosis [16] and follows
the idea presented in [13]. It is triggered either by the monitor at its level or by failure reports
and diagnoses reported from the lower levels. The monitor is currently a simple consistency
check between the Knowledge Base and reported observations. As pointed out above the
Knowledge Base is updated with an action’s effects in the case of its successful execution or by
the integration of observations from the lower levels. In the latter case we follow the concept
of sensing actions [21] that can update facts in the Knowledge Base besides integrating action
effects only. Once an inconsistency is triggered the diagnoser aims to find an alternative
sequence of the actions executed so far whose effects are consistent with the Knowledge Base
and the recently made inconsistent (unexpected) observation. Alternatives are generated
by exchanging actions with a variant modeling a specific fault mode or by adding actions
that represent exogenous events. This approach is computationally demanding and requires
explicit models for all action faults and exogenous events. If a consistent execution trace is
found, the Knowledge Base is updated according to the effects of its actions.
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4 What is missing?

The integrated architecture proposed in this paper is still a work in progress. However,
the control architecture and monitoring and diagnosis schema have been implemented as
a proof of concept and successfully applied in domains like the RoboCup Logistics League
(RCLL) [4]. The limitation is that the approach was implemented ad-hoc, with mostly separate
concepts at individual levels, and a fully formalized hierarchical diagnosis integration is
still lacking. In fact, in the RCLL domain, our diagnostic approach ensures robust and
solid execution, preventing from ending up in unresolvable situations and always allowing
for some recovery strategy. However, the lack of better integration of diagnostics across
different levels and the uncertainty about the true state of the robot and its environment
necessitates aggressive recovery strategies, potentially discarding more beneficial situations
unnecessarily. The difficulty is here still the proper mapping of the individual representations
of contexts, decision-making approaches, execution semantics, diagnosers, and monitors a
unified representation. A promising way is shown in [2] where the Situation Calculus and
the agent language ConGolog are used as a unified representation across levels in agent
supervision. Unfortunately, such methods rely heavily on first-order reasoning and are
therefore computationally very expensive. Moreover, also challenges remain on the individual
levels such as the complete monitoring and diagnosis of complex Behavior Trees because
of the operational semantics. Another important aspect is the reuse of domain knowledge
and common sense knowledge which are of utmost importance for feasible monitoring and
diagnosis of robot systems interacting with a real open environment. Here still a lot of manual
work is needed hindering the automation of knowledge reuse and also limiting the amount
of usable knowledge. This is currently particularly interesting as we see Large Language
Models (LLMs) as compiled common sense knowledge that is richer and easier to access as
attempts like Cyc [17]. A learning module is needed for a complete cognitive architecture to
handle novel fault situations and update fault and background models accordingly. While
autonomous agents are the goal, interaction with humans remains relevant. The ability of a
system to recognize when a situation is unclear and seek human advice would be a significant
step toward creating truly dependable agents.

With this paper, we like to stimulate a discussion about the idea of an integrated
monitoring and diagnosis approach for cognitive architecture and look forward to valuable
feedback on our ideas.
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