
Leveraging Answer Set Programming for
Continuous Monitoring, Fault Detection, and
Explanation of Automated and Autonomous
Driving Systems
Lorenz Klampfl1 #

CD Laboratory QAMCAS, Institute of Software Technology, Graz University of Technology, Austria

Franz Wotawa #

Institute of Software Technology, Graz University of Technology, Austria

Abstract
Recent advancements in automated and autonomous driving systems have facilitated their integration
into modern vehicles, enabling them to accurately perceive their surroundings and support or even
fully undertake complex driving tasks. Given the complexity and unpredictable nature of driving
environments and traffic situations, ensuring the correct behavior of such systems is essential to
prevent hazardous situations, increase user acceptance, and avoid human harm. However, the
increased complexity of these systems and the extensive search space of possible scenarios introduce
significant challenges to testing and real-time fault management. Hence, besides rigorous testing
during the development phase, there is a need for additional validation and verification during
operation. This paper proposes utilizing Answer Set Programming (ASP), a form of declarative
programming, for continuous real-time monitoring, fault detection, and explanation to ensure the
correct functioning of automated and autonomous driving systems. Our approach aims to enhance
the reliability and safety of such systems by detecting violations and providing explanations that
can support fault-adaptive control or mitigation strategies. We demonstrate the effectiveness of our
methodology across diverse scenarios executed within a simulation environment, discuss the main
challenges encountered, and outline future research directions.

2012 ACM Subject Classification General and reference → Validation

Keywords and phrases Autonomous Driving, Answer Set Programming, Continuous Monitoring

Digital Object Identifier 10.4230/OASIcs.DX.2024.10

Funding The financial support by the Austrian Federal Ministry for Digital and Economic Affairs,
the National Foundation for Research, Technology, and Development, and the Christian Doppler
Research Association is gratefully acknowledged.

1 Introduction

In recent years, newly developed algorithms and software components utilizing artificial
intelligence (AI) have become central components integrated into modern vehicles. Smart
sensors reliably perceiving the vicinity of autonomous vehicles, as well as advanced algorithms
for path planning and handling complex driving situations, successfully demonstrate how Ad-
vanced Driver-Assistance Systems (ADAS) and Autonomous Driving (AD) technologies can
contribute to the vision of safe, efficient, and comfortable transportation. However, guarantee-
ing safety and robustness under all circumstances during driving remains an open challenge.
In both engineering and research, the necessity for comprehensive testing and validation to
comply with established standards and regulations, such as UN Regulation No. 157 [3], and

1 Corresponding Author

© Lorenz Klampfl and Franz Wotawa;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024).
Editors: Ingo Pill, Avraham Natan, and Franz Wotawa; Article No. 10; pp. 10:1–10:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lklampfl@ist.tugraz.at
https://orcid.org/0000-0003-2860-5098
mailto:wotawa@ist.tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


10:2 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

to ensure the reliability and trustworthiness of these systems has been widely recognized,
e.g., Wotawa and colleagues [20], Wotawa [17], and Koopman et al. [11]. It is essential to
consider that autonomous vehicles operate within domains characterized by unpredictability
and uncertainty, necessitating robust safety measures and testing methodologies. It is evident
that traditional mileage validation is impractical, as expressed by Kalra and Paddock [7],
stating that autonomous vehicles must operate 275 million miles for verification. As a result,
new methodologies have emerged over the last few years, emphasizing the advantages of using
virtual validation approaches and simulation frameworks to test ADAS/AD effectively, e.g.,
Klampfl et al. [8], Schuldt et al. [13] or Klück and colleagues [10]. Nevertheless, despite the
considerable advancements virtual validation methods have introduced compared to on-road
testing, these approaches also come with limitations. Considering the range of parameters
involved, e.g., environmental conditions, traffic signs, or road characteristics, alongside the
complex dynamics between other road users and the autonomous vehicle, verifying the
correct behavior for all scenarios within reasonable time seems unfeasible. Furthermore,
there may be unknown factors or a combination of factors that could lead to ADAS or AD
system malfunctioning. Unfortunately, numerous incidents in recent years have underscored
the complexities and challenges in testing and verifying autonomous driving systems. This
highlights the need for innovative solutions that ensure the continuous safe operation of
autonomous vehicles and their correct responses to unforeseen or unknown events.

Our Approach

In this paper, we aim to enhance the safety and reliability of ADAS/AD by introducing an
additional layer of quality assurance that can be deployed during vehicle operation and is
responsible for continuously monitoring and validating the behavior of autonomous vehicles
during operation, complementary to strict testing during the development phase of automated
and autonomous driving systems. Figure 1 depicts a high-level overview of our proposed
approach, combining vehicle sensors from an autonomous car or simulation data from a
simulation environment and a continuous validation setup (CVS) comprising formalized logic-
based expectations for vehicle behavior and solving mechanisms for monitoring, identifying,
and explaining potential ADAS/AD misbehavior. Through repeated interactions between the
autonomous vehicle or a simulation environment and the CVS, we aim to find discrepancies
between expected and actual behavior. It is worth noting that the general principles of the
CVS can be similarly implemented across different layers of abstraction, e.g., raising and
diagnosing sensor faults or recognizing physical impossibilities of objects detected by the
perception system.

Our Contributions

Within this paper, we contribute to the topic of safe and robust behaviors of deployed auto-
mated and autonomous driving systems based on the actions they perform. Specifically, we
investigate four different prototypical Automated Lane Keeping Systems (ALKS). In addition,
we assume that vehicle sensors work as expected and that the perception system correctly
detects and classifies all objects in the vicinity of the autonomous vehicle. This assumption
is ensured by generating virtual scenarios executed within a simulation environment, i.e.,
Esmini2, where ground truth data about the vehicle’s state, as well as positions and states of
other road users and objects, is available. Our primary contribution includes the development

2 https://github.com/esmini/esmini

https://github.com/esmini/esmini


L. Klampfl and F. Wotawa 10:3

Dynamic Knowledge Base:
• Vehicle measurements, e.g., velocities, 
accelerations, and positions.

• Perceived objects in the vehicle's 
vicinity.

Simulation Data Real-world Data

Formalized Requirements:

Spatial & Temporal 
Knowledge

Law & Regulation 
Knowledge

General Driving 
Knowledge

Safety-specific 
Knowledge

o"#$%&##'()* ← %&##' , ∧ (, > 0&##' 1(2(3)

Continuous Validation Setup (CVS)

Autonomous 
Vehicle

Sensor Data

Observations Formalized 
Requirements

ASP Solver

Potential ADAS/AD Misbehavior 

Detections & 
Explanations

Simulation

!"

W
ar
ni
ng

W
arning

Encoding & Grounding & Solving:
• Observations and properties are 
encoded in Answer Set Programming.

• Grounding: transforming the logic 
program including variables into a 
variable-free propositional logic 
program. 

• Solving: find models that satisfy all 
rules and constraints.

overspeeding :-
speed_ego(X), max_speed(M), X > M.

Figure 1 High-level schematic showing the general concept of our approach and how the frame-
work’s different components interact.

of a model incorporating formalized logic-based properties that an ALKS has to comply
with to ensure correct behavior. In more detail, we provide a model covering parts of the
requirements stated in regulation UN R157 [3] for Automated Lane Keeping Systems. We
leverage Answer Set Programming (ASP) [2] and the ASP solver Clingo 3 [4], which is using
an extended version of Prolog [1] as input language, to encode the regulations an ALKS
has to comply with. Using a declarative programming approach like ASP, combined with
advanced solvers like Clingo, allows us to efficiently monitor, detect faults, explain possible
misbehavior, and extend our model with additional or new rules without implementing
an entirely new model. Furthermore, we demonstrate the effectiveness of our model by
developing a framework and corresponding interfaces to integrate our requirement compliance
model into a simulation framework, enabling continuous interaction between our model and
the simulation.

Outline

The structure of our paper is as follows: First, we give a brief introduction to ASP, followed
by a description of our proposed model, detailing its design, implementation, and evaluation.
Finally, we discuss the implications of our findings and highlight the potential of ASP to
enhance the safety and reliability of Advanced Driver Assistance Systems (ADAS) and
autonomous driving (AD).

2 Background

The following paragraphs outline the theoretical and technical foundation for our research
and experimental evaluation, including a brief overview of ASP, our simulation framework,
and continuous validation setup.

3 https://potassco.org

DX 2024

https://potassco.org


10:4 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

2.1 Answer Set Programming (ASP)
Answer Set Programming is a programming approach that emphasizes specifying the problem
in a declarative way rather than in an imperative. ASP originates from several fields, including
deductive databases, logic programming, and knowledge representation and reasoning. It is
applied in various domains, such as planning, configuration, decision support, model checking,
robotics, and autonomous driving. In recent years, ASP has gained particular attention in the
automotive domain. For instance, Suchan and colleagues introduced a modular framework
for visual sensemaking using ASP and a qualitative model for tracking objects in traffic,
including occlusion handling, as detailed in their works [15] and [16]. Similarly, Wotawa and
Klampfl utilized logic models and ASP to identify critical situations in autonomous driving
during operation [9]. Additionally, Gilpin proposed methods for monitoring autonomous
driving systems and comparing them with driving knowledge, regulatory knowledge, and
safety requirements [5].

ASP is based on the stable model (or answer set) semantics of logic programming. Given a
program P , its answer sets can be understood as the intended models of P , each representing
a distinct scenario or world described by P . An ASP program is a collection of rules of the
form:

a0 ← a1, ..., am, not am+1, ..., not an. (1)

where (a0, ..., an) are atoms and not represents negation as failure. The semantics of ASP
facilitate the representation of default assumptions and exceptions, which is crucial for
modeling the dynamic and uncertain environments encountered by autonomous vehicles.

Let us consider the following example of approaching a traffic light. We can express a
rule stating that we are only allowed to drive when the traffic light is green as follows:

colorDrive(green). (2)
stop← trafficLightColor(X), not colorDrive(X). (3)

noStoppingTrafficLight← stop, not stoppingInitiated. (4)

Here, (2) encodes the fact that we are only allowed to drive if the traffic light color is
green. (3) is the formalization of the rule that stopping is required using ASP syntax with
not representing negation as failure, i.e., not colorDrive(X) is TRUE if all attempts to
prove colorDrive(X) fail. Therefore, for all other traffic light colors X, we would derive
the atom stop indicating that our autonomous vehicle needs to stop at the present traffic
light. Furthermore, with rule (4), where not stoppingInitiated represents, for instance, an
observation delivered by a sensor of an autonomous vehicle, we can derive a faulty behavior
of the system under test and its corresponding explanation, i.e., the autonomous vehicle has
not stopped at a traffic light although the traffic light color was not green.

It is worth mentioning that ASP has been already used to implement Model-based
Diagnosis (see [18, 19]). In the context of this paper, we utilize MBD for implementing fault
detection based on models, i.e., the formalized regulations, and reasoning.

Solving Procedure

The solving procedure for ASP can be divided into two main phases: grounding and solving.
1. Grounding: The grounding phase translates a high-level ASP program, which may

contain variables and complex expressions, into a variable-free propositional logic program.
This process involves generating all possible instances of the rules by substituting variables



L. Klampfl and F. Wotawa 10:5

with constants from the domain. The challenge in grounding is to manage the exponential
growth in the size of the program, which can lead to what is known as the “grounding
bottleneck.” To mitigate this, grounding tools included in solvers like Clingo apply
intelligent techniques to reduce the size of the grounded program, such as eliminating
irrelevant rules and facts.

2. Solving: Once the program is grounded, the solving phase involves searching for answer
sets of the grounded program that satisfy all rules and constraints included in the logic
program. Therefore, in our case, our answer sets represent potential misbehaviors of the
system under test and its corresponding explanations.

For a more detailed explanation of the grounding and solving procedure, we refer the
interested reader to the respective literature, e.g., [4].

2.2 Simulation Framework and Continuous Validation Setup

Figure 1 illustrates a high-level overview of our approach’s concept, including the different
artifacts implemented and their interactions. Our methodology comprises two main compo-
nents: the simulation framework or autonomous vehicle and the continuous validation setup
(CVS). The simulation framework, representing the autonomous vehicle in our use cases,
is responsible for providing sensor data. This data is used to generate a dynamic knowl-
edge base during runtime, which includes all necessary information to determine whether
the ALKS under test complies with all implemented regulations and expected behaviors.
Measurements of particular importance include accelerations and the positions of all objects
in the simulation environment. It is important to note that during our experiments, we
only used data gathered from simulation to evaluate our approach. This ensures that all
additional road users are correctly identified, particularly regarding their positions, allowing
us to evaluate the behavior of the four investigated ALKSs without interference from de-
tection and classification algorithms. As already mentioned, we decided to use Esmini as
our simulator. Esmini is an environment simulator for replaying ASAM OpenSCENARIO 4

files, which has become a widely adopted standard for virtual development, testing, and
validation in the autonomous driving domain. We utilize Esmini to load, execute, and collect
simulation data during scenario execution. Detailed descriptions of the scenarios used in
our experiments, as well as the integrated ALKS controllers, are provided in subsequent
sections. The CVS comprises the dynamic knowledge base, the formalized requirements
(see Table 1), the interface to our ASP solver Clingo, and a result post-processing pipeline.
At each simulation time step, i.e., every 0.1 seconds, the CVS retrieves simulation data,
encodes the provided observations to ASP syntax, grounds our logic program, and solves
it by finding all answer sets that satisfy our rules and constraints. Since simulation data
cannot be directly utilized by the CVS, an encoding approach similar to that proposed by
Jahaj et al. [6] has been implemented. Specifically, within each time step, a set of adaptors
is used to convert the incoming sensor data into ASP facts. For example, an adaptor may
take the input from the speed sensor and convert the received data into the fact speed(130).
Therefore, for each adaptor, we have a function that implements the conversion from the
sensor domains to ASP facts.

4 https://www.asam.net/

DX 2024

https://www.asam.net/


10:6 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

3 UN R157 Requirement Formalization

Table 1 showcases the requirements we implemented to test our methodology. As seen in
the table, only a subset of requirements was included, namely those dealing with system
activation, general traffic rules, and the dynamic driving task. Table 1 depicts from which
chapter the requirement was extracted, a short description of the requirement, as well as a
general formalization of the requirement demonstrating how we implemented it within our
logic model. It is worth noting that all requirements were implemented within one model.
With this, we ensure that at every time step, all requirements are checked and possible
faults are detected and explained appropriately. As an example, let us consider the first
requirement in the table, i.e., System Activation. Within regulation UNR157, it is stated
that an ALKS system can only be activated under certain conditions, i.e., the automated
or autonomous vehicle is driving on a specific road characterized by a physical separation
dividing the traffic moving in opposite directions and preventing traffic from cutting across
the street. Furthermore, road types where pedestrians and cyclists are prohibited are a
prerequisite for successfully activating the ALKS. Concerning vehicle speed, the ALKS is only
allowed to be activated up to operational speeds of 60 km/h. However, if the ALKS includes
the functionality of performing Minimum Risk Maneuvers (MRM), the maximum operational
speed increases to 130 km/h. Those requirements are implemented with three dedicated
rules as stated in Table 1. Each rule would infer prohAct in case of a prohibited activation
of the ALKS system. The first rule evaluates if the road type we are actually driving on is
suitable for activating the ALKS, which is encoded with the fact alksRoad, and if the ALKS
system is activated, i.e., alksActive. In case alksActive is true, and alksRoad is false, the
term not alksRoad will evaluate to true, resulting in deriving the fact prohAct. Similarly,
the second and third rule evaluate if alksActive is true and check if the vehicle speed is
within the allowed range. Furthermore, the second rule includes the term not alksMRM ,
which evaluates to true in case the ALSK system is not capable of performing a Minimum
Risk Maneuver. All other requirements are implemented similarly. For a detailed description
of the UN R157 requirements, we refer the interested reader to [3].

4 Unit Testing Evaluation

In order to demonstrate the correct implementation and outcomes of our CVS, we conducted
two separate evaluation approaches: a unit testing approach as well as an experimental
evaluation using a dedicated simulation framework (see Chapter 5). We implemented a total
of 41 unit tests, covering all requirements outlined in Table 1. To leverage Clingo’s dedicated
interfaces to Python, we used Python5, version 3.12.2, and the PyTest6 framework, version
7.4.3, to write and execute our unit tests. PyTest is a simple yet powerful framework that
simplifies the process of writing and running tests by providing a clean and readable syntax.
It also supports parameterized testing, allowing us to test, for instance, multiple vehicle
speed values within a single unit test.

Table 2 presents three example unit tests, describing their parameters and values. Each
unit test comprises different parameters and their respective values, meaning that each test
evaluates the model based on specific parameters and their combinations. For the unit
testing framework, we implemented dedicated Python classes and functions to encode these

5 https://www.python.org
6 https://docs.pytest.org/en/8.2.x/index.html

https://www.python.org
https://docs.pytest.org/en/8.2.x/index.html


L. Klampfl and F. Wotawa 10:7

Table 1 Overview depicting the implemented requirements included in UN Regulation No. 157 [3].

UN R157 Requirements

Reference Name Short Description
Formalization

Intro
5.2.3.1.

System
Activa-
tion

The system can be activated only under certain conditions, e.g., suitable
roads or speeds up to 60 km/h. If the ALKS is equipped with a Minimum
Risk Maneuver(MRM) functionality, the maximum speed limit for activation
increases to 130 km/h.

prohAct← alksActive ∧ not alksRoad.

prohAct← alksActive ∧ speed(X) ∧ (X > 60) ∧ not alksMRM.

prohAct← alksActive ∧ speed(X) ∧ (X > 130).

5.1.2 Traffic
Rules

The system shall comply with traffic rules, for instance, obey speed limits.
Additional regulations, such as the requirement to stop at stop signs or
traffic lights, are encoded similarly.

overspeeding ← speed(X) ∧ speedSign(Limit) ∧ (X ≥ Limit).
overspeeding ← maxSpeed(Country, Streettype, Limit) ∧ speed(X) ∧ (X ≥ Limit).

5.2.1
Dynamic
Driving
Task

The system shall ensure the vehicle’s lateral stability and position within
its lane, avoiding unintentional lane departures. Longitudinal rules are
implemented similarly considering accelerations. T hres defines at which
distance to a lane marking it is considered as crossing.

unintLaneChane← distLeft(DistLeft) ∧ (DistLeft < T hres) ∧ not laneChangeInitiated.

unintLaneChane← distRight(DistRight) ∧ (DistRight < T hres) ∧ not laneChangeInitiated.

5.2.2
Dynamic
Driving
Task

The system shall appropriately adjust the speed and the lateral position
within its lane in case another vehicle is detected in an adjacent lane. The
system shall not accelerate and ensure that the vehicle is not too close to
the lane boundaries.

noAdjustment← nextT oDrivingLane(V ehicle) ∧ not keepingSpeed.

noAdjustment← nextT oDrivingLane(V ehicle) ∧ not centricP osition.

5.2.3
Dynamic
Driving
Task

The system shall control the vehicle’s speed and adapt it when certain
conditions are present, e.g., environmental conditions or a vehicle in front.
sufficientSpeedAdaption is considered T rue when the vehicle speed is
lower than the allowed speed concerning properties like environmental
conditions (speed should be reduced appropriately) as well as if the distance
to the detected vehicle in front is greater than the minimum following
distance to the vehicle based on the table depicted in [3], paragraph 5.2.3.3.

noSpeedAdjustment← envCondition(Env) ∧ not sufficientSpeedAdaption(Env).
noSpeedAdjustment← roadUserOnLane(V ehicle) ∧ not sufficientSpeedAdaption(V ehicle).

5.2.4
Dynamic
Driving
Task

The system shall bring the vehicle to a complete stop behind a stationary
object. collisionAvoidable is considered T rue if the relative distance to the
object is greater than the minimum following distance.

noStoppingManeuver ← objectOnLane(Obj) ∧ collisionAvoidable ∧ not stoppingInitiated.

5.2.5
Dynamic
Driving
Task

The system shall detect the risk of a collision and shall perform appropriate
maneuvers, e.g., lane change or emergency maneuver. collisionAvoidable

is considered T rue if the relative distance to the object is greater than the
minimum following distance.

noCollisionAvoidance←
objectOnLane(Obj) ∧ not collisionAvoidable ∧ not collisionAvoidanceInitiated.

DX 2024



10:8 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

Table 2 Overview of some of the executed unit tests based on the requirements stated within
Table 1.

UN R157 Requirements - Unit Tests

Reference Name Description
Inputs

Intro
5.2.3.1.

System
Activation

Three dedicated unit tests were implemented covering the testing of a
prohibited ALKS activation for unsuitable road types as well as for a
prohibited activation at certain speeds dependent on the availability of
Minimum Risk Maneuver (MRM) functionality.
RoadT ypes = [0, ruralRoad, city, motorway]

V ehicleSpeeds = [0, 50, 59.999, 60, 60.001, 100, 129.999, 130, 130.001, 150, 200]
MRMF unctionality = [T rue, F alse]

5.1.2 Traffic
Rules

Three unit tests were performed to check if overspeeding is correctly identi-
fied. This includes a differentiation between the situation where a speed
sign is present and not as well as signs that restrict the speed to a lower or
higher maximum allowed speed.

RoadT ypes = [motorway]
V ehicleSpeeds =

[0, 95, 99.999, 100, 100.001, 120, 125, 129.999, 130, 130.001, 135, 139.999, 140, 140.001, 145, 200]
SpeedSignLimit = [notavailable, 100, 140]

5.2.3
Dynamic
Driving
Task

The system shall control and adapt the speed of the vehicle when certain
conditions are present, e.g., environmental conditions or a vehicle in front.
A dedicated unit test was implemented for both. In case of environmental
conditions like rain, we assume that a sufficient speed reduction is achieved
when the vehicle speed is equal to or lower than 75% of the maximum allowed
speed, i.e., for motorways in Austria where the speed limit is 130km/h,
this would result in 97.5 km/h. For a detected road user, sufficient speed
reduction is achieved when the vehicle obeys the minimum following distance
based on the table depicted in [3], paragraph 5.2.3.3.

RoadT ypes = [motorway], EnvironmentCondition = [rain]
V ehicleSpeeds =

[0, 50, 69.999, 70, 70.001, 79.999, 80, 80.001, 97.499, 97.500, 97.501, 100, 129.999, 130, 130.001, 150, 200]
DistanceT oRoadUser = [notavailable, 40]

parameters and values into the appropriate ASP syntax for passing them to the Clingo
solver and for post-processing the results. As shown in the provided examples, we included
boundary values within the allowable ranges to identify potential errors and defects in our
model. This approach ensures that any issues arising from incorrect assumptions are detected.

All 41 unit tests were successfully passed, providing a solid foundation for further
evaluation within a simulation environment that includes an actual ALKS controller and
test scenarios.

5 Experimental Evaluation

Building on the results obtained from unit testing, we conducted an extensive experimental
evaluation to demonstrate the applicability of our proposed methodology within a simulation
environment, including a vehicle equipped with a prototypical ALKS. As previously mentioned,
we established a simulation framework using Esmini and developed dedicated interfaces to
integrate our logic model. These interfaces facilitate continuous communication between the
simulation environment and the CVS, ensuring that sensor data is transmitted seamlessly.



L. Klampfl and F. Wotawa 10:9

The continuous validation setup (CVS) processes the received simulation data every
0.1 seconds. This involves encoding the data into the appropriate syntax and determining
whether potential misbehavior is occurring. To test our model on actual ALKS controllers,
we integrated four different controllers available within Esmini. Each controller was subjected
to 977 automatically executed and evaluated scenarios, totaling in 3,908 test scenarios.

The following sections provide an overview of several example scenarios, detailing the
maneuvers involved, the integrated ALKS controllers, and the evaluation outcomes. This
thorough experimental evaluation underscores the practical applicability of our methodol-
ogy, showcasing its effectiveness in ensuring safe and reliable behavior in automated and
autonomous driving systems.

5.1 ALKS Controllers
Advanced Lane Keeping Systems are designed to control the lateral and longitudinal movement
of a vehicle for extended periods without human intervention. Since obtaining sophisticated
controllers for automated or autonomous driving from companies is challenging due to their
proprietary nature, it is fortunate that Esmini includes several pre-built controllers for
vehicle control within their simulations framework. According to Esmini’s user guide, various
controllers are available, such as an interactive control using a simple vehicle model that can
be operated via keyboard inputs and more advanced controllers based on a ghost concept,
where a ghost-twin performs planned events in a few seconds ahead, and the vehicle under
control mimics its behavior. In addition, Esmini provides a pre-built ALKS controller named
ALKS_R157SM, inspired by the safety models described in UN Regulation No. 157 [3]. This
controller offers four different modes (safety models), though it is important to note that
these implementations are preliminary and experimental and not officially commissioned
ALKS controllers. The four safety models for the controller are described as follows:

1. Regulation: This model includes the characteristics of the expected system performance,
which is stated within paragraph 5.2.5.2 in [3].

2. ReferenceDriver: Within Annex 4 - Appendix 3 of [3], a reference model of a “typical”
human driver is specified, which is represented by this safety model.

3. RSS: Responsibility-Sensitive Safety: This mode includes the proposed performance
model described by Shalev-Shwartz and colleagues [14].

4. FSM: Fuzzy Safety Model was introduced and described by Konstantinos et al. [12].

Since the objective of this paper is not to describe the inner workings of each safety model
and the integrated ALKS controller, we refer interested readers to the respective literature.
However, all these controllers share the capability of maintaining longitudinal and lateral
stability and reacting appropriately to other road users. However, none of the models has
advanced steering and emergency maneuver capabilities. In the next section, an overview of
four example use cases and a description of the scenario properties will be given.

5.2 Test Scenarios
All of the executed and evaluated test scenarios are based on the ASAM OpenSCENARIO
and ASAM OpenDRIVE 7 standard. OpenSCENARIO is a widely adopted standard for
defining the dynamic part of complex traffic scenarios in a detailed and structured manner.
Furthermore, it provides an extensible framework for specifying the behavior of all entities in

7 https://www.asam.net/

DX 2024



10:10 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

the simulation, e.g., additional road users, pedestrians, and environmental factors. This allows
us the precise modeling of various driving situations, enabling thorough testing and validation
of automated driving systems under a variety of conditions. In contrast, OpenDRIVE is
used to define the static properties of the scenario, e.g., road networks, traffic signs, or road
geometry, ensuring that the environment is accurately represented. Both standards interact
closely with each other, as OpenSCENARIO uses the road network data to position and
move all entities within the simulation. Utilizing both of these well-established standards
ensures that our test scenarios are not only realistic and reproducible but also compatible
with industry practices. The integration of these standards enhances the reliability and
relevance of our experimental evaluation, providing a comprehensive framework for testing
and validating the behavior of the integrated ALKS with our proposed methodology for
continuous monitoring, fault detection, and explanation using ASP.

Although we generated a total of 977 scenarios per ALKS controller for evaluating our
approach, in this paper, we want to highlight four representative test scenarios and the
results we obtained from them. Figure 2 illustrates the maneuvers performed within each
scenario when executed within Esmini. Before detailing the sample scenarios, it is important
to note that NPC1 represents an additional road user within the scenario whose trajectories
and actions are predefined within the OpenSCENARIO files. EGO represents the automated
vehicle equipped with the previously explained ALKS controller that should accurately react
to maneuvers performed by NPC1. Below, we provide a brief description of each scenario
along with the expected behavior of the automated vehicle.

1. ALKS R157 Test Scenario (Figure 2a)
Scenario Description: This scenario is already included within Esmini, however, we

slightly adapted the starting positions and vehicle speeds as well as inserted speed
limit signs. As depicted, the scenario consists of four separate maneuvers executed
consecutively. The EGO vehicle is driving in the right lane and is overtaken by NPC1,
which accelerates and performs a cut-in maneuver in front of the automated vehicle.
After the successful cut-in, NPC1 decelerates in front of the EGO vehicle. In the last
two maneuvers of this scenario NPC1 accelerates before coming to a complete stop.

Expected EGO Behavior: After the first cut-in, a safe following distance should be re-
established. During the deceleration phase in maneuver two, the EGO should react
accordingly and also decelerate. For the stopping maneuver, EGO should detect the
obstacle in front and come to a stop as well since the controllers are not equipped with
lane change capabilities. Within the complete scenario, the EGO should avoid speed
limit violations.

2. Cut-In (Right) & Deceleration (Figure 2b)
Scenario Description: The EGO vehicle is traveling at a constant speed in its initial lane.

Vehicle NPC1 starts in the left adjacent lane with a longitudinal offset positioned
ahead of the EGO. NPC1 then performs a cut-in maneuver into the EGO’s lane and
begins decelerating.

Expected EGO Behavior: Initially, the EGO should continue driving without considering
NPC1 since it is in an adjacent lane. Once NPC1 cuts in front of the EGO, the EGO
should detect NPC1 as a target object and maintain a safe following distance behind
it.

3. Cut-In (Left) & Deceleration (Figure 2c)
Scenario Description: The EGO vehicle is traveling at a constant speed in its initial lane.

Vehicle NPC1 starts in the right adjacent lane with a longitudinal offset positioned
ahead of the EGO. NPC1 then performs a cut-in maneuver into the EGO’s lane and
begins decelerating.



L. Klampfl and F. Wotawa 10:11

Maneuver 1

EGO

NPC 
1

NPC 
1

accel.

Maneuver 2 Maneuver 3

EGO

NPC 
1

decel.

EGO

NPC 
1

stop

Maneuver 4

EGO

NPC 
1

accel.

(a) ALKS R157 Test Scenario.

EGO

NPC 
1

01
Cut-In & Lane Keep

decel.

(b) Cut-In (Right) & Decelera-
tion.

EGO

NPC 
1

Deceleration & Cut-In
S3_V2

decel.

(c) Cut-In (Left) & Decelera-
tion.

EGO

NPC 
1

decel.

04
Decelerating & Lane Keep

(d) Same Lane & Deceleration.

Figure 2 Representative scenarios for testing our approach for continuous monitoring, fault
detection, and explanation.

Expected EGO Behavior: Initially, the EGO should not recognize NPC1 as a target
object since it is in an adjacent lane. Once NPC1 cuts in front of the EGO, the EGO
should detect NPC1 as a target object and maintain a safe following distance to avoid
a collision.

4. Same Lane & Deceleration (Figure 2d)
Scenario Description: The EGO vehicle is traveling at a constant speed in its initial

lane. Vehicle NPC1 is driving at the same speed in the same lane, positioned ahead of
the EGO. NPC1 then begins to decelerate.

Expected EGO Behavior: The EGO recognizes NPC1 as a target object and follows
it at a constant speed. Once NPC1 starts decelerating, the EGO should decelerate
accordingly to maintain a safe distance and avoid a collision.

In the subsequent chapters, we illustrate the results of the presented ALKS safety models
and scenarios.

DX 2024



10:12 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

5.3 Results
In this section, we present the results of our experimental evaluation using Esmini as a
simulation environment, the defined ALKS safety model as our systems under test, and the
scenarios depicted in Section 5.2 as our use cases. We initially started our evaluation process
by conducting 41 unit tests to ensure the correctness of our Continuous Validation Setup
(CVS). This provided the foundation for performing an extensive experimental evaluation.
To demonstrate the practical applicability of our methodology, based on 29 initial scenarios,
we automatically generated 977 variations and integrated four different ALKS safety models,
resulting in a total of 3,908 simulations executed. This process included the automatic post-
processing of results and validation. All scenarios are based on the ASAM OpenSCENARIO
and OpenDRIVE standards, ensuring realistic and reproducible test conditions. We evaluate
the correct behavior of the system under test every 0.1 seconds. Considering all scenarios
executed and investigated, Table 3 shows the number of violations that were identified for
each safety model. It should be noted that each violation was counted, meaning that, for
example, a continuous violation of one second consists of ten consecutive violations. With
respect to Overspeeding, the number of violations is significantly lower compared to the other
violations due to the fact that speed limits are only present in the ALKS R157 Test Scenario.

Table 3 Overview of all violations identified for each ALKS controller safety model.

Regulation Safety Model
Overspeeding No Stopping Maneuver No Collision Avoidance Insufficient Speed Adaption

78 10705 14082 222306
Reference Driver Safety Model

Overspeeding No Stopping Maneuver No Collision Avoidance Insufficient Speed Adaption
63 23374 10789 37211

RSS Safety Model
Overspeeding No Stopping Maneuver No Collision Avoidance Insufficient Speed Adaption

59 12904 5346 3804
FSM Safety Model

Overspeeding No Stopping Maneuver No Collision Avoidance Insufficient Speed Adaption
76 9889 16694 141892

From these scenarios, we highlight the results obtained for four representative use cases
to illustrate the effectiveness of our approach. The scenarios involve various maneuvers
and interactions between the EGO vehicle, equipped with an ALKS controller, and other
road users (NPC1 ). The maneuvers and expected behaviors for each scenario are detailed
in Section 5.2, providing insight into how the EGO vehicle should maintain safety and
compliance with the regulations.

The following subsection will present a detailed description of the ALKS R157 Test
Scenario, along with the observed faults and corresponding explanations. This comprehensive
evaluation underscores the robustness of our proposed methodology for continuous monitoring,
fault detection, and explanation using ASP in automated and autonomous driving systems.
Within the Appendix, the results for the three other single maneuver scenarios are highlighted.

5.3.1 ALKS R157 Test Scenario (Figure 2a)
Within this section, we want to highlight the main results obtained for the scenario and
included maneuvers depicted in Figure 2a. Figure 3, 4, 5, and 6 display the simulation
output at the top as well as the output of our continuous validation setup at the bottom,



L. Klampfl and F. Wotawa 10:13

including the explanation of any misbehavior. As shown in the legend of the plots, the blue
line represents the speed profile of the EGO vehicle, whereas the green line represents the
vehicle speed of NPC1. Additionally, the dashed purple and magenta lines illustrate the
relative distance to NPC1 and the minimum following distance, respectively. Furthermore, it
is important to note that the minimum following distance is dependent on the EGO vehicle
speed. The current speed limit is depicted in red. At the bottom, we present the output
of our CVS, where FALSE indicates that a fault was detected and TRUE shows that the
ALKS controller complies with the regulations. Moreover, in case of a fault, the area below
the curve is filled with different patterns to explain the cause of the fault. It is noteworthy
to highlight the differences between No Stopping, No Collision Avoidance, and Insufficient
Speed Adaption.

Insufficient Speed Adaption: This fault is identified if the EGO and NPC1 are traveling
with similar vehicle speeds, no abrupt decelerations occur, and the relative distance to
the NPC1 is less than the minimum following distance.

No Stopping: This occurs when the EGO is approaching a road user in the same lane who
is traveling at low speeds or is performing a stopping maneuver, and the relative distance
is greater than the minimum following distance. Hence, stopping in front of the road user
would be possible without initiating a collision avoidance maneuver.

No Collision Avoidance: In contrast to No Stopping, this misbehavior is identified if the
relative distance to a road user in the same lane is less than the minimum following distance,
indicating that a collision would occur in case no avoidance maneuver is performed.

Additionally, since we receive no feedback from the integrated ALKS controllers on
whether stopping or collision avoidance is initiated, we assume it to be false. Therefore, with
more advanced controllers, some of the identified misbehaviors might be resolved when such
additional information is available. In the following, we will elaborate in more detail on what
faults occurred for the different safety models of the ALKS controller.

Figure 3 shows the results for the ALKS R157 Test Scenario and the ALKS controller
with the integrated Regulation safety model. From the beginning of the simulation until
around 2.5 seconds, we identify no faults since NPC1 is still driving on the adjacent lane.
However, after NPC1 performs an overtaking maneuver followed by a cut-in, the EGO vehicle
needs some time to re-establish a sufficient distance to the vehicle ahead. This delay results
in a fault indicating Insufficient Speed Adaptation until the appropriate distance is regained.
Furthermore, we see that between seconds 7 and 9, the controller fails to respect the present
speed limit. This issue recurs during the time frame from 11 to 17 seconds. Our approach
correctly detected both of these occurrences. Additionally, within seconds 11 and 20, we
observe another instance of Insufficient Speed Adaptation, caused by the decelerating NPC1.
At the end of the simulation, when NPC1 comes to a stop, the No Collision Avoidance flag
is raised because the relative distance to the road user is less than the minimum following
distance, and no avoidance maneuver is initiated.

Within Figure 4, we showcase the results for the Reference Driver safety model. Similar
to the previous results, the EGO vehicle’s controller initially struggled to establish a safe
following distance after NPC1 performed the cut-in maneuver, which is also detected by our
CVS. Additionally, unlike the Regulation model, the Reference Driver model successfully
maintains the minimum following distance during the deceleration phase of NPC1. This
indicates an improvement in adaptive behavior and responsiveness to changes in the relative
speed and distance of NPC1. Despite these improvements, the Reference Driver model still

DX 2024



10:14 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

Figure 3 Validation results showcasing the output of our CVS approach for the ALKS R157 test
scenario and the ALKS controller equipped with the Regulation safety model.

fails to comply with the speed limits present in the scenario. The EGO vehicle exceeds the
speed limit at several points during the simulation, which is marked as overspeeding in the
validation output.

Figure 4 Validation results showcasing the output of our CVS approach for the ALKS R157 test
scenario and the ALKS controller equipped with the Reference Driver safety model.

The outcome of our evaluation with the RSS safety model is depicted in Figure 5. As
with the previous safety models, the ALKS controller fails to comply with the speed limits
during certain time frames, i.e., between seconds 7 and 8 and from 12 to 17. Furthermore,



L. Klampfl and F. Wotawa 10:15

our CVS indicates a Insufficient Speed Adaption fault at the beginning of the simulation.
Close to the end of the scenario, a No Stopping violation was identified. This stems from
the fact that NPC1 performs a stopping maneuver, and the EGO vehicle does not adapt to
this reasonably. The RSS safety model demonstrates improvements over the previous safety
models with respect to responsiveness in attempting to maintain a safe following distance, it
still exhibits significant issues with speed limit compliance. However, as stated previously,
those safety models are experimental implementations, and different outcomes are expected
for more mature releases.

Figure 5 Validation results showcasing the output of our CVS approach for the ALKS R157 test
scenario and the ALKS controller equipped with the RSS safety model.

The results depicted in Figure 6 illustrate the outcomes for the FSM safety model. There
are noticeable similarities to the behavior of the Regulation safety model. We can observe that,
in this simulation, the controller fails to adhere to the speed limits during specific periods.
Additionally, it struggles to maintain a safe following distance to NPC1 at several points,
indicating that the vehicle does not consistently comply with the regulations. Furthermore,
at the end of the simulation, the No Collision Avoidance fault is raised again, demonstrating
that the FSM safety model reacts too late to the stopping maneuver performed by the NPC1.

The evaluation of our proposed methodology for continuous monitoring, fault detection,
and explanation leveraging ASP was conducted through a series of unit tests and extensive
experimental simulations using Esmini as a simulation environment. Initially, 41 unit tests
were performed to ensure the correctness of our Continuous Validation Setup (CVS), all of
which were successfully passed, providing a robust foundation for further testing.

Subsequently, 3,908 scenarios were executed, derived from 29 initial scenarios, incor-
porating four distinct ALKS safety models: Regulation, Reference Driver, RSS, and FSM.
Our methodology was applied to each model to assess their compliance with UN R157
regulations and their overall performance under simulated driving conditions. Overall, our
results demonstrate the successful identification of misbehaviors during various simulation
periods, as depicted by the simulation data illustrated in the respective figures.

DX 2024



10:16 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

Figure 6 Validation results showcasing the output of our CVS approach for the ALKS R157 test
scenario and the ALKS controller equipped with the FSM safety model.

6 Conclusion

In this paper, we proposed a novel methodology for continuous monitoring, fault detection,
and explanation of automated and autonomous driving systems using Answer Set Program-
ming (ASP). Our approach integrates ASP with data from simulation environments to
identify discrepancies between expected and actual vehicle behavior, providing explanations
for detected faults. Through a series of 41 unit tests, we validated the correctness of our
Continuous Validation Setup (CVS). Furthermore, we conducted an extensive experimental
evaluation within a simulation framework using Esmini as an environment simulator, encom-
passing 3,908 scenarios derived from 29 initial scenarios. These scenarios, in combination
with four distinct ALKS safety models, were used to test our methodology’s effectiveness in
identifying faults during runtime. Our results demonstrated the effectiveness of our approach
in identifying misbehaviors and compliance issues with UN Regulation No. 157 under various
simulated driving conditions. The successful detection and explanation of faults, which can
further serve as input to fault-adaptive control strategies and mitigation measures, highlights
the potential of our methodology to enhance the reliability and safety of automated and
autonomous driving systems. Future work will focus on extending our approach to more
complex scenarios and integrating additional regulations and general driving knowledge. Ad-
ditionally, challenges for real-world deployment, such as handling noisy signals and ensuring
real-time performance within vehicles, will be addressed.

References
1 William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer Berlin

Heidelberg, 2003. doi:10.1007/978-3-642-55481-0.
2 Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Programming:

A Primer, pages 40–110. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/
978-3-642-03754-2_2.

https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-03754-2_2


L. Klampfl and F. Wotawa 10:17

3 United Nations Economic Commission for Europe. Un regulation no 157 – uniform provisions
concerning the approval of vehicles with regards to automated lane keeping systems [2021/389],
March 2021. URL: http://data.europa.eu/eli/reg/2021/389/oj.

4 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-shot
asp solving with clingo. Theory and Practice of Logic Programming, 19(1):27–82, 2019.
doi:10.1017/S1471068418000054.

5 Leilani Hendrina Gilpin. Anomaly Detection Through Explanations. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2020.

6 Ledio Jahaj, Lorenz Klampfl, and Franz Wotawa. Knowledge-based monitoring for checking
law and regulation compliance. In Hamido Fujita, Richard Cimler, Andres Hernandez-
Matamoros, and Moonis Ali, editors, Advances and Trends in Artificial Intelligence. Theory
and Applications, pages 491–502, Singapore, 2024. Springer Nature Singapore. doi:10.1007/
978-981-97-4677-4_40.

7 Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy
and Practice, 94:182–193, 2016. doi:10.1016/j.tra.2016.09.010.

8 Lorenz Klampfl, Florian Klück, and Franz Wotawa. Using genetic algorithms for automat-
ing automated lane-keeping system testing. Journal of Software: Evolution and Process,
36(3):e2520, 2022. doi:10.1002/smr.2520.

9 Lorenz Klampfl and Franz Wotawa. Identifying critical scenarios in autonomous driving during
operation. In Artificial Intelligence. ECAI 2023 International Workshops, volume 1947 of
Communications in Computer and Information Science, pages 156–172, Cham, 2024. Springer.
Trustworthy AI for Safe & Secure Traffic Control in Connected & Autonomous Vehicles:
TACTFUL 2023. doi:10.1007/978-3-031-50396-2_9.

10 Florian Klück, Martin Zimmermann, Franz Wotawa, and Mihai Nica. Genetic algorithm-
based test parameter optimization for adas system testing. In Proceedings of the 19th IEEE
International Conference on Software Quality, Reliability and Security (QRS), pages 418–425,
2019. doi:10.1109/QRS.2019.00058.

11 Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing and validation.
SAE Int. J. Trans. Safety, 4:15–24, April 2016. doi:10.4271/2016-01-0128.

12 Konstantinos Mattas, Michail Makridis, George Botzoris, Akos Kriston, Fabrizio Minarini,
Basil Papadopoulos, Fabrizio Re, Greger Rognelund, and Biagio Ciuffo. Fuzzy surrogate
safety metrics for real-time assessment of rear-end collision risk. a study based on empirical
observations. Accident Analysis & Prevention, 148:105794, 2020. doi:10.1016/j.aap.2020.
105794.

13 Fabian Schuldt, Andreas Reschka, and Markus Maurer. A Method for an Efficient, Systematic
Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments, pages
147–175. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-61607-0_
7.

14 Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of safe and
scalable self-driving cars, 2018. arXiv:1708.06374.

15 Jakob Suchan, Mehul Bhatt, and Srikrishna Varadarajan. Out of sight but not out of mind:
An answer set programming based online abduction framework for visual sensemaking in
autonomous driving. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1879–1885.
International Joint Conferences on Artificial Intelligence Organization, July 2019. doi:
10.24963/ijcai.2019/260.

16 Jakob Suchan, Mehul Bhatt, and Srikrishna Varadarajan. Commonsense visual sensemaking
for autonomous driving – on generalised neurosymbolic online abduction integrating vision and
semantics. Artificial Intelligence, 299:103522, 2021. doi:10.1016/j.artint.2021.103522.

DX 2024

http://data.europa.eu/eli/reg/2021/389/oj
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1007/978-981-97-4677-4_40
https://doi.org/10.1007/978-981-97-4677-4_40
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1002/smr.2520
https://doi.org/10.1007/978-3-031-50396-2_9
https://doi.org/10.1109/QRS.2019.00058
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.1016/j.aap.2020.105794
https://doi.org/10.1016/j.aap.2020.105794
https://doi.org/10.1007/978-3-319-61607-0_7
https://doi.org/10.1007/978-3-319-61607-0_7
https://arxiv.org/abs/1708.06374
https://doi.org/10.24963/ijcai.2019/260
https://doi.org/10.24963/ijcai.2019/260
https://doi.org/10.1016/j.artint.2021.103522


10:18 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

17 Franz Wotawa. Testing Autonomous and Highly Configurable Systems: Challenges and
Feasible Solutions, pages 519–532. Springer International Publishing, Cham, 2017. doi:
10.1007/978-3-319-31895-0_22.

18 Franz Wotawa. On the use of answer set programming for model-based diagnosis. In Hamido
Fujita, Philippe Fournier-Viger, Moonis Ali, and Jun Sasaki, editors, Trends in Artificial
Intelligence Theory and Applications. Artificial Intelligence Practices, pages 518–529, Cham,
2020. Springer International Publishing. doi:10.1007/978-3-030-55789-8_45.

19 Franz Wotawa and David Kaufmann. Model-based reasoning using answer set programming.
Applied Intelligence, 52(15):16993–17011, 2022. doi:10.1007/s10489-022-03272-2.

20 Franz Wotawa, Bernhard Peischl, Florian Klück, and Mihai Nica. Quality assurance
methodologies for automated driving. Elektrotechnik & Informationstechnik, 135(4–5), 2018.
doi:10.1007/s00502-018-0630-7.

7 Appendix

In this section Table 4-6 showcase the results obtained for the scenarios depicted in Figure 2b,
2c, and 2d.

Table 4 Results obtained for the Cut-In (Right) & Deceleration scenario.

Scenario

EG
O

N
PC 
1

01Cut-In &
 Lane Keep

decel.

FSM RSS

Regulation Reference Driver

https://doi.org/10.1007/978-3-319-31895-0_22
https://doi.org/10.1007/978-3-319-31895-0_22
https://doi.org/10.1007/978-3-030-55789-8_45
https://doi.org/10.1007/s10489-022-03272-2
https://doi.org/10.1007/s00502-018-0630-7


L. Klampfl and F. Wotawa 10:19

Table 5 Results obtained for the Same Lane & Deceleration scenario.

Scenario

EGO

NPC 
1decel.

04Decelerating &
 Lane Keep

FSM RSS

Regulation Reference Driver

DX 2024



10:20 Continuous Monitoring, Fault Detection and Explanation for ADAS/AD

Table 6 Results obtained for the Cut-In (Left) & Deceleration scenario.

Scenario

EGO

NPC 
1

Deceleration &
 Cut-In

S3_V2

decel.

FSM RSS

Regulation Reference Driver


	1 Introduction
	2 Background
	2.1 Answer Set Programming (ASP)
	2.2 Simulation Framework and Continuous Validation Setup

	3 UN R157 Requirement Formalization
	4 Unit Testing Evaluation
	5 Experimental Evaluation
	5.1 ALKS Controllers
	5.2 Test Scenarios
	5.3 Results
	5.3.1 ALKS R157 Test Scenario (Figure 2a)


	6 Conclusion
	7 Appendix

