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Abstract
Anomaly detection in multivariate timeseries is used in various domains, such as finance, IT, or
aerospace, to identify irregular behavior in the used applications. Prior research in anomaly detection
has focused on estimating the joint probability of all variables. Then, anomalies are scored based on
the probability they receive. Thereby, the variables’ dependencies are only considered implicitly. This
work follows recent work in anomaly detection that integrates information about the causal relations
between the variables in the timeseries into the detection mechanism. The causal mechanisms of
the variables are then used to identify anomalies. An observation is identified as anomalous if at
least one of the variables it contains deviates from its regular causal mechanism. These regular
causal mechanisms are estimated via the conditional distribution of a variable given its causal parent
variables, i.e., the variables having a causal influence on a variable. We further develop previous
work by gathering information about the causal parents of the variables by applying causal discovery
algorithms adapted to the timeseries setting. We apply Conditional Kernel Density Estimation
and Conditional Variational Autoencoders to estimate the conditional probabilities. With this
causal approach, we outperform methods that rely on the joint probability of the variables in
our synthetically generated datasets and the C-MAPPS dataset, which provides simulation data
of turbofan engines. Moreover, we investigate the causal approach’s inferred scores on the C-
MAPPS dataset to gather insights into the measurements responsible for the prediction of anomalies.
Furthermore, we investigate the influence of deviations from the true causal graph on the anomaly
detection performance using synthetic data.
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1 Introduction

Sensors generate data throughout the operational lifespan of assets across various domains,
including aerospace and manufacturing [9]. These assets, such as turbofan engines, are
susceptible to deterioration and spontaneous faults [26]. Consequently, one of the primary
objectives when operating these assets is to assess their condition. Once an asset has reached
a certain point of degradation, it is necessary to maintain or replace it to ensure the safety of
ongoing operations [10, 9]. The continuous monitoring of assets with the assistance of sensors
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11:2 Leveraging Causal Information for Multivariate Timeseries Anomaly Detection

generates multivariate timeseries data. In recent years, data-driven approaches have emerged
to monitor the health status of these assets, which is coupled with detecting anomalies in
multivariate timeseries [36, 9]. In anomaly detection (AD), the objective is to identify data
samples that deviate from the prevailing patterns within the dataset [5]. An increase in the
number of anomalous observations may indicate asset degradation [9].

Several approaches exist to tackle AD in multivariate timeseries, which consider the
multivariate timeseries holistically and only implicitly consider the variables’ dependencies.
These approaches, for example, rely on Autoencoders (AEs) and variants thereof, such
as the Variational Autoencoder (VAE), which estimate the joint probability of individual
observations or of observations in a row to describe the regular behavior of the system
under consideration [9, 37]. Inference with these methods is then done by assessing the
likelihood of given observations. Lower probabilities indicate that an observation could be
anomalous [37]. However, when modeling the joint probability of the individual observations
directly, we do not explicitly consider the relations of the variables. Recent work on AD
in multivariate timeseries explicitly considers the relations among the individual sensors
uni-variate timeseries [4, 35]. However, the considered relations are not the causal relations of
the underlying system. Thus, recent work by Yang et al. [33] integrates the causal relations
amongst the component timeseries into AD. Using the causal relations, the estimation of the
joint probability of a sample is factorized into a product of the conditional distributions of
the variables given their causal parents, i.e., the variables causing a variable. The conditional
distributions are used to characterize the causal mechanisms of the variables. In the causal
approach, an anomaly is present if the causal mechanism is disturbed at least on one variable
of the multivariate timeseries [33].

However, the causal relations among the variables are often unknown. One approach
to obtaining the causes and effects present in a process is to intervene with a system to
conduct experiments actively. This is often impracticable since it can be time-consuming,
cost-intensive, or requires domain knowledge. However, we can gather multivariate timeseries
data from the system through observation [23]. Then, we can reconstruct the timeseries
graph embodying the causal parents of the variables based on observational data via Causal
Discovery (CD) [24]. The timeseries graph contains the variables at the different timesteps
as nodes, and directed edges indicate the causal relations. Thereby, an edge is directed from
the causal parent to the child.

In this work, we further develop the causal approach by Yang et al. [33] by applying
constraint-based CD algorithms tailored for the multivariate timeseries case, PCMCI [25],
and PCMCIplus [22]. Using the reconstructed timeseries graph, we estimate the conditional
distribution given its causal parents for every variable. For inference, we use the ensemble of
estimates to check whether the causal mechanism of at least one variable is deteriorated. To
analyze the effect of the causal relations used, we generate synthetic data that we model
as a structural causal process. This way, we know the ground truth causal relations and
can evaluate the effects of using relations that differ from the correct ones. Furthermore, we
benchmark the causal approach on the publicly available C-MAPPS dataset, which provides
simulations of turbofan engines. In addition, we use the inferred anomaly scores from the
causal approach to gather insights into the anomalies’ emergence.

Our contributions are as follows:
We develop the causal approach by Yang et al.[33] further by applying CD algorithms
tailored for the multivariate timeseries case.
We use synthetic data to examine the impact of deviations from the true causal graph on
the anomaly detection capability.
We benchmark the causal approach on the publicly available C-MAPPS dataset.
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The remainder of this paper is structured as follows: In Section 2, we give an overview of
approaches in anomaly detection for timeseries data and introduce the necessary concepts
our approach builds upon in Section 3. Afterward, in Section 4, we describe the approach in
detail, and in Section 5, we explain our experiments, which we use to evaluate our models.
In Section 6, we discuss this work, point out directions for future work, and end this paper
in Section 6 with our conclusion.

This paper is the result of work carried out as part of Lukas Heppel’s Master’s thesis,
which was supervised by Günther Waxenegger-Wilfing.

2 Related Work

This section reviews related work on anomaly detection, focusing on detecting anomalies in
multivariate timeseries.

Methods for AD comprise distance-based techniques such as the k-nearest Neighbour
(kNN) algorithm. In addition, statistical approaches exist to tackle detecting anomalies in
timeseries data [30]. Furthermore, Support Vector Machines (SVMs) are trained to classify
anomalies in timeseries data [3, 18, 1]. Moreover, anomalies are detected using Isolation
Forests (IFs) [11]. Additionally, Yaacob et al. [32] fit an Auto-Regressive Integrated Moving
Average (ARIMA) on the timeseries. Afterward, observations are classified based on the error
between the prediction of the ARIMA model for the current value and the actual observed
value.

In recent years, deep learning methods have been applied to identify anomalies in
multivariate timeseries data [5]. Several approaches use Autoencoders (AEs) to detect
anomalies [19, 9, 20]. Jakubowski et al. [9] and Reddy et al. [19] train AEs to reconstruct
the input data. Anomaly scores are then obtained as the error between the input and
its reconstruction. Other AE variants, besides the vanilla AE, are also used to detect
anomalies. For example, Variational Autoencoders (VAEs) [9, 31] allow obtaining the
reconstruction probability of the data points and then computing anomaly scores. Zong
et al. [37] introduce Deep Autoencoding Gaussian Mixture Model (DAGMM) for AD in
multivariate timeseries. This approach consists of an AE, which provides lower-dimensional
representations of the input, i.e., the latent representation. The latent representation and the
corresponding reconstruction error are then used to estimate the density of a sample using
the estimation network, which is trained as a Gaussian Mixture Model (GMM). In addition
to the aforementioned AE variants, where the encoder and decoder consist of Feedforward
Neural Networks, the approach of Park et al. [14] combines LSTMs with VAEs to encode
the temporal dependencies of the timeseries. However, these methods implicitly consider
the dependencies among the variables and ignore explicit knowledge, which is sometimes
available. In addition, these approaches cannot trivially be used to explain an anomaly since
they only provide one score/classification per observation.

Further approaches arise that strive to include knowledge of the dependencies of the
variables contained in the multivariate timeseries [4, 6]. Dai et al. [4] use normalizing
flows to estimate the joint probability of all variables in the multivariate timeseries. They
incorporate a Directed Acyclic Graph (DAG) into the probability estimation to factorize
the joint probability into a product of conditional densities. The DAG used for factorizing
the joint probability is optimized with the normalizing flow. In addition, Deng et al. [6]
apply graph attention-based forecasting of future sensor values for AD while relying on graph
structures that represent as nodes the sensors, which are connected by edges with the k
nodes they have the most similar timeseries with. However, the variables’ relations used in
these approaches are not necessarily causal relations.
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Therefore, Yang et al. [33] explicitly consider the relations among the variables. Thus,
they reconstruct the causal relations present in the multivariate time via the CD algorithm PC
and score-based CD algorithms. Based on the causal relations, they estimate the conditional
distribution of each variable, given its causal parents, via CVAEs. For the inference, they
predict an anomaly if one variable’s model predicts an anomaly smaller than a given threshold.

Our approach differs from the methodology proposed by Yang et al. [33] in detecting
the causal relations and the used density estimation techniques. To this end, we rely on
the constraint-based approaches PCMCI [25] and PCMCIplus [22], which are adaptions for
the timeseries setting and show superior performance compared to the PC algorithm [28],
as shown by Runge et al. [25, 22]. Moreover, we examine in greater detail the impact of
deviations from the true graph structure on the AD performance of the causal approach.

3 Preliminaries

This section introduces the necessary concepts this paper builds upon.

3.1 Reconstruction-based AD
This work is concerned with detecting anomalies in the multivariate timeseries setting. Thus,
we define a multivariate timeseries as x = (x1, . . . xd) ∈ RT ×d, which is an ordered sequence
of d univariate timeseries xi ∈ RT , where each describes a feature xi over a period of length
T . We denote the value of feature i at time t by xi

t ∈ R. Furthermore, xt = (x1
t , . . . , xd

t ) ∈ Rd

is the vector describing the value of all features at time t.
Autoencoders (AEs) are used to identify anomalies [9]. The AE architecture consists

of an encoder and a decoder. The encoder maps an input vector x ∈ Rdinput into a latent
representation z ∈ Rdlatent . In most cases, AEs apply a bottleneck, i.e., the dimension
dlatent < dinput of the latent space is smaller than the dimension of the input. Introducing a
bottleneck pushes the AE to learn meaningful latent representations from the input. Next,
the decoder transforms the latent representation z into a reconstruction x̂ ∈ Rdinput of the
input dimension. We train the AE to minimize the error between the input x and the
reconstruction x̂ using the Mean Squared Error (MSE). For inference, the reconstruction
error of a sample can be used as an anomaly score, assuming that anomalous data differs
from the known training data and, therefore, cannot be properly reconstructed.

The Variational Autoencoder (VAE) is a variant of the AE that estimates the distribution
of a given dataset [13]. Thereby, the assumption is made that the generative process of
the data points includes continuous latent variables z. To this end, the VAE’s encoder
approximates the distribution q(z | x), and the decoder estimates the distribution p(x | z).
We can then formulate the variational lower bound of log p(xi), which is also referred to as
evidence lower bound (ELBO), as follows [13]:

log p(xi) ≥ Ez∼q(z|xi)[log p(xi | z)]−DKL(q(z | xi) || p(z)) (1)

Thereby, DKL represents the Kullback-Leibler (KL) divergence [34]. The initial term
represents the KL divergence between the encoder distribution q(z | xi) and the prior p(z),
which we assume to be a standard normal distribution N (0, 1). Consequently, the learned
posterior distribution is regularized to be close to a standard normal distribution. The second
term is the expected negative log-likelihood of the input given the latent representation. We
compute the expectation by sampling a number of latent representations zi for which the
decoder network provides the reconstructions. These reconstructions are then used to derive
the parameters of the decoder distribution, which we assume to be Gaussian. The VAE can
then be trained by minimizing the negative ELBO.
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To detect anomalies, we are then required to infer the likelihood of a sample that should
be assessed whether it’s anomalous. We assume that anomalies obtain smaller likelihoods
since they deviate from the distribution of the normal samples. Throughout this work, we
measure a sample xi’s density p(xi) by the decoder’s distribution based on the reconstructions
resulting from the latent samples zi ∼ p(z | xi).

3.2 CVAE
The Conditional Variational Autoencoder (CVAE) [27] is an extension of the VAE that allows
for conditional inputs. The CVAE allows us to guide its generative process via attributes,
e.g., in image generation [2]. Thus, the CVAE estimates the conditional log-likelihood of
the data. Consequently, the encoder is extended to approximate q(z | x, c). Moreover, the
decoder is extended to model p(x | z, c). Then, to estimate the conditional log-likelihood,
the variational lower bound of a data point xi given ci is defined as follows [27]:

log p(xi | ci) ≥ Ez∼q(z|xi,ci)[log p(xi | z, ci))]−DKL(q(z | xi, ci) || p(z | c)) (2)

We assume the prior p(z | c) = N (0, 1) to be a standard Normal distribution. The CVAE
can then be trained by minimizing the negative variational lower bound.

3.3 Causal Discovery
The AD approach proposed in this work requires information about the causal relations
underlying the observed system, which is the origin of the multivariate timeseries data.
However, the causal relations are often unknown and need to be discovered. We could intervene
and actively conduct experiments to gather information about the causal relationships in the
system under consideration. However, active experimentation is often impossible because it
is time-consuming, cost-intensive, demands expert knowledge, or is infeasible, e.g., in our
case, where we do not have the knowledge to work with the simulation software providing
our dataset. Nevertheless, the systems under consideration can often be observed to obtain
multivariate timeseries data [23].

In CD in the timeseries setting, we aim to reconstruct the underlying timeseries graph that
embodies the temporal dependency structure of a given dynamic system. For this purpose,
we assume a discrete-time structural causal process xt = (x1

t , . . . xd
t ), which is defined as

follows [22]:

xi
t = fi(pa(xi

t), ηi
t), (3)

with fi denoting arbitrary measurable functions that non-trivially depend on their arguments.
Moreover, pa(xi

t) are the causal parents of the variable xi
t, and ηi

t represents noise, which is
assumed to be independent between the variables and the timesteps.

The timeseries graph G = (V, E) is defined as follows:
The set of nodes V represents the variables xi

t at the different timesteps t.
E is the set of edges containing an edge xj

t−τ → xi
t iff xj

t−τ ∈ pa(xi
t)

Furthermore, we define the variables a variable xi
t causally depends on, as its causal parents

pa(xi
t) ⊂ (xt, xt−1, . . . ). Thereby, we refer to links with τ = 0 as contemporaneous links and

those with τ > 0 as lagged links. In the case i = j, we refer to such links as autodependency.
In addition, we assume the graph to be acyclic. Moreover, we assume the case of Causal
Stationarity, which means that the causal relationships are assumed to be invariant in time,
i.e., if there exists a link xj

t−τ → xi
t for a t, then we assume xj

t′−τ → xi
t′ for all t′ ̸= t.

DX 2024
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Alternatively, different parts of a time series can be represented by different graphs to model
non-stationarity [24]. Theoretically, the graph is infinite. However, we consider the graph
only up to a maximum time lag τmax.

The predominant methodologies employed in the field of CD can be broadly classified
into three main categories: score-based, asymmetry-based, and constraint-based [24]. We are
concerned with applying constraint-based methods to detect causal relations in multivariate
timeseries. Score-based and asymmetry-based approaches are still in their infancy for
timeseries [24]. One popular approach for CD is the PC algorithm [28], originally developed
for independent and identically distributed data.

The PC algorithm is the base for the PCMCI [25], and the PCMCIplus [22] algorithms,
which we use for multivariate timeseries data in this paper. Constraint-based methods for
CD, such as the PC algorithm, are conducted in two steps. In the initial phase, the graph’s
skeleton is reconstructed. This skeleton is an undirected graph that merely indicates whether
two nodes are connected. In this phase, we employ an iterative approach to ascertain which
pairs of variables are conditionally independent based on tests of the form:

H0 : xi ⊥⊥ xj | xk H1 : xi ̸⊥⊥ xj | xk,

thereby H0 states the conditional independence of xi and xj given xk, whereas H1 states
their conditional dependence. In the second phase, the skeleton’s links are oriented, i.e., the
directions for the undirected edges are determined. Therefore, time provides an orientation
for lagged links, as causes precede effects. The orientation of contemporaneous links (τ = 0)
is not a straightforward process and is determined by applying additional rules. In general,
constraint-based approaches can only detect the contemporaneous graph’s Markov equivalence
class [23]. The Markov equivalence class is the set containing all DAGs that embody the
same conditional independence [16]. Thereby, the directions of the edges must not be the
same in all DAGs of the Markov equivalence class. Thus, links between variables xi

t and
xj

t where both directions, i.e., xi
t → xj

t and xi
t ← xj

t are present in at least one DAG of the
equivalence class, are represented as unoriented links in the resulting graph.

Since we can only measure statistical dependencies from data in the constraint-based
approaches, we need several assumptions to interpret the graph structure obtained from
constraint-based approaches as the timeseries graph, which describes the causal relations.
We make the following assumptions to be able to apply the later discussed CD algorithms:

Causal Sufficiency: This assumption states that no other unobserved variables directly or
indirectly influence any other set of observed variables [25, 29].
The Causal Markov condition states that the connectivity from the causal structure
imprints the marginal and conditional (in)dependencies into the observed distribution
[24, 29].
The Faithfulness assumption states that all conditional independencies result from the
causal structure [24, 29].

Using the Causal Markov condition and the Faithfulness condition, the following equi-
valence holds [24]: xi ⊥⊥ xj | xk ⇐⇒ xi d-sep xj | xk. This equivalence relates the graph
structure, i.e., the contained d-separations [24], to the conditional independencies detected
in the data.

The PCMCI algorithm addresses issues of the conditional independence framework when
applied to the timeseries setting, e.g., the PC algorithm is prone to high false positive rates
when facing auto-correlation [25]. In addition to the aforementioned assumptions, the PCMCI
algorithm relies on the assumption that no contemporaneous links exist (τ = 0) since PCMCI
cannot orientate these. However, when we cannot assume the absence of contemporaneous



L. Heppel, A. Gerhardus, F. Rewicki, J. Deeken, and G. Waxenegger-Wilfing 11:7

links, we apply the PCMCIplus algorithm to detect contemporaneous graph structures up to
the Markov equivalence class [22]. It is possible that some links remain unoriented, which
indicates that both directions exist for this link in the Markov equivalence class. In addition,
conflicts may arise when applying the orientation rules, in which case the links are marked
accordingly. One advantage of constraint-based approaches for CD is that they can be
combined with several variants of conditional independence tests based on the dependencies
assumed in the observed data. Thereby, they test xi ⊥⊥ xj | xk. In the following, we provide
information on the conditional independence tests considered in this paper:

The Partial correlation test [25] (ParCorr) assumes a linear additive noise model with
Gaussian noise. The test consists of two steps. First, ordinary least square regressions
for xi and xj on xk are fitted. Afterward, the Pearson correlation test is applied to the
residuals.
The Robust Partial Correlation [25] (RobParCorr) assumes the existence of a linear
additive noise model with Gaussian noise and that the observed variables emerge thereof
by component-wise transformation. RobParCorr can be applied when linear dependencies
exist among the variables. In addition, RobParCorr is suited for different marginal
distributions. Thus, RobParCorr extends ParCorr by first transforming the marginal
distributions of the variables to standard normal marginals. Afterward, ParCorr is
applied.

When applying the CD algorithms, we must determine the appropriate conditional
independence test. To ascertain the dependency types among the variables, we visually
inspect the scatter plots of pairs of variables with varying time lags. Furthermore, we visually
inspect the marginal densities of the variables and the joint densities of the pairs of variables.
Based on these observations, the most appropriate test for using the CD algorithm can be
selected. Furthermore, we need to determine the minimum time lag τmin and the maximum
time lag τmax. The choice of τmin has to be made based on assumptions on the data. Thereby,
the case that it is necessary to set τmin = 0 can occur when the sampling rate of the data
is smaller than the rate at which the effects occur in reality. Domain knowledge is thereby
a good help. The selection of τmax is contingent upon the maximum anticipated time lag
within the data. Consequently, the optimal value for τmax can be determined by applying
domain knowledge or by investigating the lagged dependencies of the pairs of variables, which
refers to the lagged cross-correlation function between the pairs of variables, i.e., by testing
the unconditional independence of the pairs of variables for varying time lags [25].

4 Methodology

This section describes the methodology we evaluate in this paper to detect anomalies in
multivariate timeseries. First, we describe the decomposition of the task by incorporating
the causal relations among the variables as described by Yang et al. in [33]. We explain
how to obtain causal relations by conducting CD. Then, we outline the model fitting process
for estimating the necessary (conditional) distributions. Finally, we present the inference of
anomaly scores from the estimated models.

4.1 Factorization using Causal Relations
We assume x = (x1, . . . , xd) ∈ RT ×d to be a multivariate timeseries as defined in Section 3.
Furthermore, we assume x to represent the regular behavior of the considered system, i.e., not
containing anomalous points. Then, the task is to detect anomalous observations occurring
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𝑁

𝑀1 ≈ P(xt
1|xt−1

1 , xt−1
6 )

𝑀2 ≈ P xt
2 xt−1

2 , xt−1
1

𝑀3 ≈ P(xt
3|xt−1

3 , xt−1
2 )

𝑀4 ≈ P(xt
4|xt−1

4 , xt−1
3 )

𝑀5 ≈ P(xt
5|xt−1

5 , xt−1
1 )

𝑀6 ≈ P(xt
6|xt−1

6 )

Figure 1 Illustration of how we obtain the models estimating the conditional distributions
representing the causal mechanism of the variables from the process graph, which summarizes a
timeseries graph resulting from a CD. The links indicate the causal parent relations and the time
lag for the corresponding relation is noted at the link. For the autodependencies, the time lag is
depicted next to a node. The color of the links and the nodes indicate the value of the conditional
independence tests.

after time T . To detect anomalies xt with t > T , we aim to identify data points xt, where at
least one xi

t ∈ xt deviates from the causal mechanism so that the observed xi
t and its causal

parents pa(xi
t) deviate from the conditional distribution P (xi

t | pa(xi
t)), which characterizes

the ordinary causal relation between xi
t and its causal parents pa(xi

t). The causal relations
of the timeseries can be represented by the corresponding discrete-time structural causal
process xi

t = fi(pa(xi
t), ηi

t), as described in Section 3. Using the causal relationships between
the variables, the joint distribution can be computed according to the Markov factorization
as follows [16, 33]:

P (xt) =
∏

xi
t∈xt

P (xi
t | pa(xi

t)) (4)

Thus, we decompose the task of estimating the joint distribution P (xt) into estimating one
model Mi for the conditional distribution P (xi

t | pa(xi
t)) per variable xi

t ∈ xt given its causal
parents pa(xi

t). Figure 1 illustrates how we obtain the models Mi from an exemplary process
graph, which summarizes a timeseries graph.

In some cases, we know these relations and can directly use them. In general, we do
not know these relations. Therefore, we are concerned with retrieving the causal relations
amongst the variables xi

t ∈ xt. To this end, we apply CD to obtain the causal relations.
We execute a data analysis of the data to be discovered. Based on the dependency types
of the variables, their joint and marginal distributions, their τmin, and τmax, and their
lagged cross-correlations, we can select the adequate CD algorithm in combination with the
proper conditional independence test. The result of the CD is then the timeseries graph
representing the causal dependencies among the variables xi

t ∈ xt. However, the result of
the PCMCIplus algorithm potentially provides unoriented links since the algorithm can
only detect the Markov Equivalence class of contemporaneous links. Furthermore, we can
encounter conflicting links where the application of the orientation rules is impossible. Thus,
we consider the following post-processing options for the CD results to obtain the causal
parents for each variable:

One approach only considers the directed links in the detected timeseries graph. The
unoriented and the conflicting links are not further considered. We refer to this technique
as partial factorization throughout this paper.
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A further approach would be to consider using both possible directions of an unoriented
link xi

t − xj
t , i.e., xi

t → xj
t and xi

t ← xj
t . The conflicting links are also not considered

further.

4.2 Inference of Anomaly Scores

After discovering the causal relationship of the variables, we train one model Mi for every
variable xi

t ∈ xt to estimate the corresponding conditional probability distribution P (xi
t |

pa(xi
t)). We follow Yang et al. [33] and employ a CVAE to estimate the respective density

functions. Additionally, we consider Conditional Kernel Density Estimation (CKDE) [17]. In
theory, further approaches can be integrated to estimate the conditional distributions. We
estimate the conditional distributions P (xi

t | pa(xi
t)) using normal data samples {(xi

t, ci
t) |

1 ≤ i ≤ T}, with ci
t = pa(xi

t) and T being the length of our training data.
Depending on the obtained timeseries graph, variables xi

t ∈ xt may exist without causal
parents pa(xi

t) = ∅. This paper evaluates several methods to estimate these variables’
distribution P (xi

t), i.e., the respective density functions. The following approaches are
considered:

We estimate the density p(xi
t) using a VAE. However, we encounter that variables without

causal parents lead to one-dimensional inputs, so we cannot apply dimensionality reduction
in the VAE.
A further approach is to estimate p(xi

t) for a variable xi
t without causal parents using

Kernel Density Estimation.
To estimate p(xi

t), the corresponding training data is defined as follows {xi
t, | 1 ≤ i ≤ T}.

In addition, if multiple variables xi
t exist without causal parents, we can apply a VAE to

estimate the joint probability of these variables. We train the respective CVAEs and the
VAEs by minimizing the negative variational lower bounds, which are described in Section 3.

After training the models Mi to estimate (conditional) distributions on the training data,
we use the ensemble of the models to infer anomaly scores for previously unseen data samples
xt, with t > T .

In the following, we describe the inference of anomaly scores from the ensemble of models
Mi. For every variable xi

t, we infer log p(xi
t | pa(xi

t)), i.e., the logarithm of the likelihood of
the variable’s current value xi

t given the current observed values of its parents. For variables
without causal parents, we infer log p(xi

t), the log-likelihood of the current value. We assume
that the lower the detected likelihood, the more anomalous a variable’s current value is
considered to be. Thus, to obtain an anomaly score, where higher values indicate a higher
likelihood of an anomaly, we use the negative log-likelihoods as the anomaly scores of the
variables. Thus, the anomaly score si

t of model Mi for an observation xi
t is defined as follows:

si
t = Mi(xi

t) =
{
−log p(xi

t) if pa(xi
t) = ∅,

−log p(xi
t | pa(xi

t))

To obtain the final anomaly score st of the ensemble, we consider using the maximum of the
scores from all models. Since we assume that one variable violating its causal mechanism is
sufficient to mark the complete observation as an anomaly, we consider taking the maximum
of all local anomaly scores as the final score:

st = max
{

si
t | xi

t ∈ xt

}
(5)
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Figure 2 The ground truth process graph defining causal relations in the structural causal process
to generate synthetic multivariate timeseries data. The coefficients for the causal dependencies are
not depicted. E.g., pa(x2

t ) = {x1
t−1, x2

t−1}.

5 Experiments

This section presents the experiments conducted to evaluate the proposed methodology.
To this end, the methodology is evaluated on synthetically generated data with a known
ground truth graph structure. Furthermore, the impact of the applied graph structure on
AD performance is examined. Finally, the approach is benchmarked on the publicly available
C-MAPPS dataset [26].

5.1 Synthetic Data
We evaluate the causal approach on synthetically generated data. Thus, we define a structural
causal process as a generalized additive model. The model is defined as follows [22]:

xi
t = ηi

t + aixi
t−1 +

∑
xj

t−τ
∈pa(xi

t)\xi
t−1

cj
τ f j

τ (xj
t−τ ) (6)

with variables i ∈ {1, . . . , d} and ηi
t ∼ N (µi, σi) denoting the additive Gaussian noise term

of variable i at timestep t, which is sampled from a Gaussian distribution with mean µi and
standard deviation σi. In addition, ai represents the coefficient for the autodependency of
variable i, and cj

τ refers to the dependency coefficient of variable j over time lag τ . Moreover,
pa(xi

t) denotes the set of causal parents xj
t−τ of the variable i with the corresponding time

lag τ and f j
τ (xj

t−τ ) corresponds to the dependency function.
Next, we define the ground truth causal relations of the model, i.e., for every variable

xi
t, its causal parents pa(xi

t). The process graph depicting the causal relations used for our
datasets is depicted in Figure 2.

Furthermore, we use for all (auto)dependency coefficients 0.3, and we sample all variables’
noise terms from N (0, 0.1). The applied dependency function is defined as f(x) = (1 −
4e

−x3
2 )x. We use these parameters to generate the multivariate timeseries data to train the

models based on regular data.
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Moreover, we add anomalous datapoints into the test data. Therefore, we follow Yang et
al. [33] and differentiate between the following types of anomalies:

Intervention: We insert an anomaly at a variable i at time t. The anomaly is then
propagated along the causal mechanism to the causal children variables j. In our case,
we chose variable x2.
Measurement: We insert an anomaly at a variable i at time t. The anomaly is not
propagated along the causal mechanism. We imitate a measurement error, i.e., the system
works correctly, but, e.g., a sensor reported a wrong value. In our case, we chose variable
x6.
Effect: We insert an anomaly at a variable i at time t. We chose a variable i, which does
not have causal children. In addition, we remove the autodependency of this variable. In
our case, we chose variable x5.

Furthermore, we control the number of anomalies we insert into the test data. Thus, we
randomly corrupt ten % of data points as anomalies. Thus, we transform normal data points
into anomalous data points by defining a Uniform distribution U(2, 10), which we use to
sample factors to scale a normal sample to be anomalous. We limit the resulting values of
anomalous data to the range of the train data. We generate 7000 samples for model training,
where we use 15 % for validation. In addition, we generate 3000 samples for testing.

For the causal approach, we apply Conditional Kernel Density Estimation (CKDE) or
CVAEs to fit the conditional density of a variable xi given the causal parents pa(xi).

Throughout this work, we assume the AEs (and variants thereof) to be symmetric,
i.e., the encoder and decoder contain the same number of layers with the same number
of neurons but reverse in their order. Furthermore, we assume all variants discussed and
used in this paper to apply steady compression, that is, the number of neurons contained
in one layer decreases/increases to the next layer by a constant factor. The constant is
obtained when knowing the input and latent dimensions, i.e., how much compression should
be applied. Doing this removes the need to tune the hidden layer dimensions as additional
hyperparameters [9].

For the CVAE, we apply one hidden layer in the encoder and the decoder and a latent
dimension of one. We train the CVAE over 50 epochs and apply early stopping with a
patience of ten epochs. Furthermore, we sample 64 latent representations per data point.
We use the ADAM optimizer [12] for any model training in this work. In the synthetic data
experiments we apply a learning rate of 0.001.

We use the implementation by Rothfuss et al. [21] with the default settings. Inference is
done as described for the CVAE. In addition, we provide the VAE and KDE as a baseline,
which estimates the joint density p(xt) for all sensors using the train samples xt. The anomaly
score of these models for a sample xt is then the negative log-likelihood −log p(xt).

For the VAE, we apply two hidden layers in the encoder and the decoder and a latent
dimension of two. Furthermore, we sample 64 latent representations per data point. We
train the VAE over 100 epochs and apply early stopping with a patience of 10 epochs.

We apply the KDE implementation from scikit-learn [15] with the Epanechnikov kernel
and Scotts’s rule for the bandwidth selection, which worked best in preliminary experiments.
The other parameters are kept default.

Moreover, we report as a benchmark the performance of the conditional density estimate
of the variable xi

t, where the anomalies are injected, given its causal parents pa(xi
t). We use

the negative conditional log-likelihood −log p(xi
t | pa(xi

t)) of a variable xi
t at time t as the

anomaly score for inference.
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We investigate the impact of the used causal relations. Thus, we apply the causal approach
with causal structures that deviate from the ground truth. In the following, we list the
considered graph structures:

We apply the ground truth graph structure.
We evaluate the fully connected graph for τ = 1, including the autodependencies. This
scenario includes, besides all true links, all possible false positives.
We investigate the graph structure obtained when we apply the PCMCI algorithm to
CD in combination with the ParCorr conditional independence test on non-linear data,
with τmin = 1, and τmax = 2. This graph structure yields all true links and several false
positives (FPs). However, we consider more realistic false positives in this experiment,
resulting in lower dimensions for the distributions to estimate than when applying the
fully connected graph structure.
We examine the graph structure consisting of all links at τ = 1 except for the true links.
Thus, the used graph structure contains all false negative (FN) and FP links.
We investigate the graph structure containing no links at all, i.e., we assume no variable
is the cause or effect of another.

We report the average precision (AP) in Table 1, and the TPR@{0.05,0.1} in Table 2. The
causal approach using CVAEs performs superiorly over the VAE and KDE baselines regarding
the AP for all anomaly types. Similar observations can be made regarding the reported
TPRs. Furthermore, the individual CVAE of the anomalous variable shows the best AD
performance regarding all anomaly types and all reported metrics. Regarding the varying
graph structures, we observe the best performance when using the ParCorr graph, which
performs better for measurement anomalies than the true graph structure and is on par for
intervention anomalies regarding the AP. This indicates the importance of detecting the
true causal parents, but also the ability to deal with several false positives (ParCorr graph).
However, when the amount of false positives increases, the performance decreases, as can be
seen by the performance of the fully connected graph. In addition, when the causal parents
are not integrated, as when using no links at all, we obtain performance decreases. Moreover,
the true graph structure performs better than all other graph structures in all metrics for
effect anomalies and regarding TPR@{0.05,0.1} for measurement and intervention anomalies.
We see smaller performance degradations for the differing graph structures for measurement
anomalies than for intervention and effect anomalies.

5.2 C-MAPPS
We evaluate the causal approach on the publicly available C-MAPPS dataset [26], which
was initially used to predict turbofan engines’ Remaining Useful Life (RUL) [8, 26]. The
dataset provides multivariate timeseries data from turbofan engine simulations conducted
with the Commercial Modular AeroPropulsion System Simulation (C-MAPPS) software [7].
The simulation software can simulate different operation conditions, such as the altitude
or the temperature. The dataset comprises four sub-datasets: FD001, FD002, FD003, and
FD004. These sub-datasets differ in the simulated operation conditions and the reasons
for engine failure. They consist of multiple engine simulations, which can be considered a
fleet of engines. Therefore, every dataset contains multiple timeseries, each describing the
simulation of one engine. The multivariate timeseries contain 21 measurements/variables of
the turbofan engine, such as the fan speed or the temperature at the low-pressure turbine
(LPC), for all sensor values, refer to the paper by Saxena et al. [26]. Thus, for every engine,
multiple flights are simulated, and the corresponding timeseries reports one measurement
value per sensor per flight. The initial wear differs among the engines. We follow Jakubowski
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Table 1 Results for AD on the synthetic data with non-linear dependencies. Metric is AP. The
best and the second-best results are denoted in bold.

Model Measurement Effect Intervention

CVAE of Anomalous Variable 0.716 0.667 0.495

VAE with xt 0.434 0.241 0.191

KDE 0.338 0.250 0.215

Causal + CVAE
+ True Graph 0.621 0.464 0.245

Causal + CKDE
+ True Graph 0.470 0.429 0.124

Causal + CVAE
+ Fully Connected Graph 0.273 0.163 0.190

Causal + CVAE
+ ParCorr Graph 0.633 0.358 0.243

Causal + CKDE
+ All FPs & FNs 0.604 0.104 0.110

Causal + KDE
+ No Links 0.514 0.226 0.156

et al. [9] and use the dataset FD004, which they consider the most challenging scenario since
six different operation conditions are present and two possible failure modes occur. Training
and test sets are provided for every sub-dataset. The train set contains run-to-failure of
individual engine simulations. In contrast, the test set’s timeseries stop at a point in time
before the engines fail. The test set also contains the RUL values of each timeseries, which
will be predicted in the original task.

Jakubowski et al. [9] use the dataset for anomaly detection. We follow their definition for
labeling the data points as anomalies or normal. Concrete data points with an RUL greater
than 130 are assigned to the normal class. Samples with an RUL smaller than 20 are assigned
to the anomaly class. The intermediate samples are not considered further. Following the
labeling procedure, the test set for RUL prediction yields only a small amount of anomalous
samples due to the truncated runs, which often miss the anomalies. Therefore, we use the
run-to-failure simulations from the initial train set and assign each run from the C-MAPPS
train dataset to the train, the validation, or the test set. In contrast to Jakubowski et al. [9],
we do not use labeled validation data to fit a threshold. In Table 3, we depict the number of
samples per split. The train and validation splits do not contain anomalous samples since we
train unsupervised.

For the causal approach, we first discover the causal relations of the C-MAPPS dataset.
Thus, we inspect the joint and marginal densities for the pairs of variables, encountering
non-Gaussian densities. In addition, we examine the scatter plots for the pairs of variables, we
encounter a strong tendency for linear dependencies. Therefore, we select the RobParCorr test
for conditional independence. The analysis of the lagged dependencies, i.e., the unconditional
dependencies of the pairs of variables over the various time lags, indicates that the selection
of τmin = 0 is adequate, especially since we work with data with a small sample rate, i.e.,
one measurement per flight. Thus, we apply the PCMCIplus algorithm to be able to obtain
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Table 2 Results for AD on the synthetic data with non-linear dependencies. Metric is TPR@FPRs.
The best and the second-best results are denoted in bold.

Measurement Effect Intervention

Model TPR@0.05 TPR@0.1 TPR@0.05 TPR@0.1 TPR@0.05 TPR@0.1

CVAE of
Anomal. Variable 0.668 0.702 0.657 0.733 0.505 0.672

VAE with xt 0.395 0.565 0.140 0.264 0.148 0.236

KDE 0.313 0.490 0.195 0.346 0.154 0.262

Causal + CVAE
+ True Graph 0.626 0.678 0.458 0.581 0.204 0.383

Causal + CKDE
+ True Graph 0.599 0.643 0.384 0.486 0.079 0.131

Causal + CVAE
+ Fully Connect.

Graph
0.260 0.359 0.110 0.198 0.16 0.242

Causal + CVAE
+ ParCorr Graph 0.594 0.648 0.359 0.559 0.233 0.247

Causal + CKDE
+ All FPs & FNs 0.585 0.629 0.051 0.116 0.059 0.115

Causal + KDE
+ No Links 0.548 0.602 0.058 0.385 0.059 0.134

Table 3 The number of samples contained in the datasplits of the C-MAPPS dataset.

# normal samples # anomal samples

Train Set 19057 -

Validation Set 5052 -

Test Set 4898 760

also directed contemporaneous links. We select τmax = 3 to integrate the peak in the lagged
dependencies at τ = 0 and provide a buffer. We use the implementation from the tigramite
package by Runge et al. [22]. Thereby, we do not specify a pcα value, which is used for the
selection of the conditions used in the conditional independence tests, refer to Runge et al.
[25, 22]. The remaining parameters of the algorithm are kept default.

Next, we apply the detected graph structure in the causal approach by only using the
detected directed links (partial factorization). Thus, we encounter at least one causal parent
for every variable. We provide the results for the causal approach based on CVAEs and
CKDEs. In addition, we provide a mixture of CVAEs and CKDEs. Thus, we use a CKDE
for variables with less than three causal parents and a CVAE for others. For the CVAEs, we
keep the hyperparameters as for the synthetic data, except that we evaluate per variable the
number of hidden layers, either one or two, and the latent dimension, either one or half of
the input dimension of the CVAE (variables dimension plus number of causal parents).
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Besides the synthetic data’s baselines, we provide the AE as a baseline for the C-MAPPS
dataset. Furthermore, we provide the VAE based on the data (xt, . . . , xt−3). For the VAEs
and the AE, we search for the best latent dimension, number of hidden layers, and learning
rate in a hyperparameter search. In addition, we search for the number of latent samples for
the VAEs.

We report the Area Under the Receiver Operating Characteristic Curve (AUROC), the
AP, and the TPR@{0.05,0.1,0.2,0.3} in Table 4. For the VAEs, the causal approach with
CVAEs, and the causal approach consisting of CVAEs and CKDEs, we report the mean and
the standard error (SE) of the mean of the respective metrics obtained when retraining the
best model configuration ten times.

Our results indicate that the VAE outperforms the KDE when considering the joint
probability of all variables concerning all reported metrics. Thus, for the VAEs, we encounter
superior performance when considering individual observations instead of a row of four
observations. Additionally, the SEs are higher when using multiple observations in a row.
Moreover, when considering all variables of the timeseries, the AE outperforms the KDE. In
contrast, the VAEs show stronger performance than the AE. In the following, we refer with
VAE to the variant relying on one observation. The outperformance becomes especially clear
when considering the AP, where the VAE achieves with 0.911 a 14 % higher AP than the AE
with 0.798. When we look at the results of the causal approach, we encounter worse results
for the variant solely relying on the CVAE for the estimation of the conditional distributions
than the baselines AE and VAE. For the AP, the causal variant with CVAEs reaches 0.691
with an SE of ca. 0.09, whereas the VAE achieves 0.911 with an SE of approximately
0.004. The VAE reaches for TPRs@{0.05, 0.1} with ca. 0.06 as its highest SE, while for
the other metrics, the SE is limited to roughly 0.02. The SE of the causal approach using
CVAEs is for all metrics between 0.08 and 0.1, which indicates that the CVAE’s ability to
estimate the distributions can vary strongly. Thus, we develop an ensemble of CVAEs if the
conditional dimension is larger than three and CKDEs otherwise. This variant of the causal
approach outperforms the causal variants solely relying on CVAEs or CKDEs. In addition,
it outperforms the VAE (one observation) in all metrics by approximately 0.01, by 9.3 %
regarding the TPR@0.05, and by 10.9 % regarding the TPR@0.1. In addition, the SE of the
causal approach with a mixture of CKDEs and CVAEs is approximately 0.

6 Conclusions

In this paper, we leverage causal information to detect anomalies in multivariate timeseries.
Therefore, we develop previous work further by discovering the causal relations of a mul-
tivariate timeseries using the CD algorithms adapted to the timeseries setting. Next, the
causal relations provide the decomposition of the problem into estimating the conditional
distribution given its parents for every variable.

Our results from experiments conducted with synthetically generated data indicate that
the causal approach performs better than the VAE, relying on the joint probability of the
individual observations. In addition, evaluating graph structures that deviate from the
ground truth graph structure indicates the importance of detecting the true causal parents,
even when detecting some additional false parents. Furthermore, missing out on the true
causal parents leads to strong performance degradation. Additionally, we observe that the
performance is less dependent on the causal structure for measurement anomalies than for
effect and intervention anomalies.
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Table 4 The results for AD on the C-MAPPS dataset. The best results are denoted in bold.

Model AP AUROC TPR@0.05 TPR@0.1 TPR@0.2 TPR@0.3

AE with xt 0.798 0.926 0.720 0.814 0.878 0.917

VAE with xt
0.911

± 0.004
0.976

± 0.011
0.876

± 0.060
0.888

± 0.058
0.969

± 0.015
0.987

± 0.008

VAE with
(xt, . . . , xt−3)

0.859
± 0.068

0.960
± 0.023

0.822
± 0.106

0.867
± 0.085

0.936
± 0.046

0.966
± 0.031

KDE with xt 0.570 0.711 0.518 0.522 0.542 0.546

Causal + CVAE 0.691
± 0.086

0.852
±0.057

0.662
± 0.096

0.692
± 0.093

0.754
± 0.091

0.796
± 0.082

Causal
+ CVAE & CKDE

0.924
± 0.001

0.988
±0.000

0.958
± 0.001

0.985
± 0.002

0.994
± 0.002

0.998
± 0.000

Causal + CKDE 0.711 0.955 0.729 0.859 0.963 0.995

Moreover, the experiments on the C-MAPPS dataset show that the causal approach,
consisting of an ensemble of CKDEs and CVAEs, performs better than the VAE baselines,
which rely on individual observations and rows of observations. We recognize the importance
of the individual conditional density estimates being well-fitted since the causal approach,
when relying on either one CVAE or CKDEs, performs worse than the mixture.
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