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Abstract
Model-based diagnosis of discrete-event systems (DESs) is afflicted by two major difficulties, the
former being the huge size of the search space, which has a heavy impact on the processing time, the
latter being a possibly large number of diagnoses explaining the perceived sequence of observations,
which may cause a cognitive overload in human diagnosticians or even delays in post-processing.
These difficulties add up and they are exacerbated in critical scenarios where an action must be taken
in real-time. To make DES diagnosis viable in these contexts, a Minimalist Diagnosis Engine is
presented, which is based on a parsimony principle: instead of computing the set of all diagnoses
inherent to the given sequence of observations, only minimal diagnoses are elicited as candidates.
Since in this paper, as in most contributions on model-based diagnosis of DESs in the literature,
a diagnosis is defined as a set of faults, minimal diagnoses are subset minimal. The proposal is
justified since minimal diagnoses are suitable for DESs, and since the new diagnosis engine is able to
prune the search space, thus reducing the computation effort with respect to a sound and complete
method. Moreover, in order to further decrease the execution time, whenever the method is dealing
with a new observation, it performs online a (partial) knowledge-compilation so as the portions of
the DES space that have already been processed and transformed into chunks of compiled knowledge
can speed up the next abductive reasoning steps, relevant to the upcoming observations.
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1 Introduction

Automated diagnosis, which is aimed at finding out what is wrong in a given (natural or
synthetic) system, is still a challenge to AI. Model-based diagnosis [9, 25] is a well-founded,
principled approach to accomplish this task. Its rationale is to process a model that is specific
to the considered system by means of a domain-independent reasoning engine. In 1987, a
fundamental work [24] (a) defined the concept of consistency-based diagnosis, by applying it
to static composite systems, and (b) adopted weak models, i.e. models that describe only the
normal behavior of each component.

A consistency-based diagnosis problem instance amounts to an observation that is in-
consistent with the given (modeled) system if all the components are assumed to behave
normally. Intuitively, a diagnosis (result) is a conjecture that some components are behaving
abnormally (they are faulty) and the rest (i.e. the components that do not belong to the
diagnosis) are behaving normally, where such conjecture is consistent with the system descrip-
tion and the observation. Notice that several alternative diagnoses can be found and that, if
the models are weak, given a set of components that is a consistency-based diagnosis, any
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superset of it is a consistency-based diagnosis itself. Hence, in consistency-based diagnosis,
when weak models are adopted, the set of all the diagnoses can be characterized by the only
diagnoses that are subset-minimal, where a diagnosis is subset-minimal if no subset of it
is a diagnosis. Computing only the minimal diagnoses adheres to the so-called parsimony
principle [24]. Unfortunately, as explained in [4], this characterization of consistency-based
diagnoses does not hold if the adopted models are strong, that is, they describe not only the
normal behavior of components but also (some) faulty behavioral modes. Analogously, the
above characterization does not hold for abduction-based diagnosis [23], which necessarily
adopts strong models. An abduction-based diagnosis (result) is an assignment of specific
modes to the system components such that the conjunction of this assignment with the
system description entails the (given) observation. The above theoretical distinction between
consistency-based and abduction-based diagnosis applies also to model-based diagnosis of
dynamical systems, where models have to describe the state changes over time.

This paper deals with model-based diagnosis of dynamical systems represented as discrete-
event systems (DESs). The models adopted in this paper are compositional, strong and
complete, that is, they encompass all the normal and abnormal behaviors of the considered
components. The complete behavior of each component is represented as a nondeterministic
communicating finite automaton endowed with an initial state, where each state transition is
either normal or affected by a specific fault and, orthogonally, either observable, through a
specific event, or unobservable. The state evolves over qualitative time, that is, time tags
are ignored. The system operation corresponds to a trajectory, which is a chronologically
ordered sequence of component state-transitions that starts from the initial state of the
overall DES (this being the composition of the initial states of its components) and generates
a sequence of observable events; each individual event that has been observed is called an
observation and the whole sequence of the observed events is called a temporal observation.
The considered DES diagnosis approach is abduction-based as a diagnosis is the set of
faults on a trajectory that entails the temporal observation perceived so far. Since several
trajectories (possibly an unbounded number, if the model allows for unobservable cycles of
state transitions) can generate the same given temporal observation, the number of distinct
diagnoses, each being a set of faults, may be very large, and a diagnosis may be a superset of
another one. Unfortunately, as already remarked, in this context subset-minimal diagnoses
do not characterize all the diagnoses (as in fact some trajectories whose relevant set of faults
is a superset of a diagnosis may not entail the given sequence of observable events). Hence,
most existing approaches to model-based diagnosis of DESs usually produce all the diagnoses
relevant to the given temporal observation. However, in this paper, where we focus on the
task of DES diagnosis during monitoring, which issues a new set of diagnoses upon the
reception of each new observation, we propose an algorithm that computes minimal diagnoses
only. This choice cannot be grounded just on the (legitimate) need to reduce the number of
outputted results, each called a candidate, since too many candidates may be overwhelming
for the human diagnostician who has to make a decision, possibly under stringent time
constraints, or even for an artificial real-time agent. In fact, if the intent of our proposal were
just reducing the number of candidates, it would be enough to implement a (purposefully
efficient) post-processor that could draw the minimal diagnoses from the collection of all
diagnoses computed by a sound and complete existing method. Proposing a new diagnostic
method is justified only if two conditions hold: minimal diagnoses are suitable for diagnosis
of DESs, and the diagnosis method can reduce the computation time with respect to a sound
and complete method. The first condition will be discussed in the next section, while Sections
3 and 4 will provide some background and introduce the new diagnosis method, respectively.
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The search space of the new method is smaller than that of a sound and complete method,
hence also the second condition above is fulfilled. Section 5 hints to previous works in the
literature that have some links with this one. A few summarizing remarks and intentions for
future research conclude the paper in Section 6.

2 Motivation

We have already distinguished the notion of a diagnosis, which is theoretical and defines a
domain, from that of a candidate, which is an output actually produced by the diagnosis
engine at hand. In this paper, as in most contributions on model-based diagnosis of DESs
in the literature, a diagnosis is a set of faults relevant to a trajectory that entails the given
temporal observation. If the method is sound, each candidate is a diagnosis; if it is complete,
each diagnosis is a candidate. Hence, if the method is sound and complete, the set of
candidates includes all and only the diagnoses relevant to the considered problem instance.
In this section, if a proposition or a definition mentions all diagnoses, it implicitly refers to
the output produced by a sound and complete DES diagnosis method. Analogously to all
contributions on model-based diagnosis of DESs by other authors, this paper assumes that
the observations are not affected by any uncertainty [12], that is, they are received, without
any alteration in their content and number, in their emission order. If the observations are
not affected by any uncertainty, then the set of all diagnoses outputted by a sound and
complete method includes the actual diagnosis, that is, the only diagnosis that reflects what
has really happened inside the system. In Section 4 we propose a method that is sound while
it is not complete, as it computes subset-minimal diagnoses only. This implies that the actual
diagnosis may not be one of the (computed) candidates. However, when several candidates
are outputted, rather that analyzing them individually, an interesting piece of information is
their intersection. In fact, if (there is no uncertainty in the observations and) all diagnoses
are provided (by a sound and complete method), their intersection is a set of faults that have
occurred with certainty, as all such faults are included in the actual diagnosis. Luckily, if
only the minimal diagnoses are provided, there is no loss in such information, as stated by
the following proposition (in this section, the proofs of all propositions are omitted for the
sake of space).

▶ Proposition 1. The intersection of all diagnoses equals the intersection of all the subset-
minimal diagnoses. If there is no uncertainty in the DES observations, all the faults in such
intersection have occurred with certainty.

Hence, if we compute minimal diagnoses only, we know the same set of faults that have
occurred with certainty as if we had computed all diagnoses. This property provides a
motivation for computing minimal diagnoses only and plays an important role in diagnosis
during monitoring of DESs, as it will be explained in Subsections 2.2 and 2.3.

2.1 Probability
Assuming that faults in a DES are reciprocally independent, following [5], the probability of
a candidate is the product of the individual probabilities of each fault in the candidate to
occur and each remaining fault not to occur. If the (possibly unknown) probability value is
(sensibly assumed to be) less than 0.5 for each fault, be the probabilities of faults equal to
each other or different from each other, each minimal diagnosis δ is more probable than any
of its supersets δ′ ⊃ δ. Hence, the (possibly not unique) most probable diagnosis is a minimal
diagnosis (although, unfortunately, the remaining minimal diagnoses are not necessarily
very probable). Therefore, the set of minimal diagnoses includes (among others) the most
probable diagnoses, which is a good point for minimal diagnoses.

DX 2024



12:4 Minimalist Diagnosis of Discrete-Event Systems

2.2 Monotonicity
When the task of diagnosis during monitoring is performed, the diagnostic engine processes
each observable event oi as soon as it has been perceived and produces a new output ∆i,
that is, a new collection of candidates that are inherent to the whole temporal observation
[o1, . . . , oi] received so far. If the method is sound and complete, at each monitoring step all
the diagnoses relevant to the temporal observation received so far are computed. A property
relevant to this task is monotonicity [15], which is recalled here below.

▶ Definition 2 (Monotonicity [15]). The results ⟨∆1, . . . , ∆n⟩ inherent to a DES (diagnosis
during) monitoring problem instance are monotonic iff ∀i ∈ [1..(n − 1)], we have ∀δi+1 ∈
∆i+1, (∃δi ∈ ∆i, δi ⊆ δi+1).

Monotonicity holds if not all the candidates in ∆i are refuted once a new observation
oi+1 is processed, instead, some of them, possibly extended through the addition of further
faults, will become the new candidates in ∆i+1. This property ensures that the faults in
the intersection of the candidates produced in a processing step will never be refuted in the
subsequent processing steps, as stated in Proposition 3.

▶ Proposition 3. If the results ⟨∆1, . . . , ∆n⟩ inherent to a DES (diagnosis during) monitoring
problem instance are monotonic, then, ∀i ∈ [1..(n− 1)], the intersection of the candidates in
∆i is a subset in all the candidates in any ∆j, j > i.

Notice that Proposition 3 is independent of the method for DES diagnosis during mon-
itoring, provided that it produces monotonic results. It can easily be proven that, if the
observations are not affected by any uncertainty, the results generated by a sound method
that is either complete or computes minimal diagnoses only are monotonic. This brings to
the following proposition.

▶ Proposition 4. Let ⟨∆1, . . . , ∆n⟩ be the results inherent to a DES (diagnosis during)
monitoring problem where each ∆i consists of either all diagnoses (produced by a sound and
complete method) or minimal diagnoses only. If there is no uncertainty in the observations,
the results are monotonic, which in turn implies that the intersection of the candidates in ∆i,
this intersection being a set of faults that have occurred with certainty, is a subset of faults in
all the candidates in any ∆j, j > i.

Hence, when considering minimal diagnoses only, we can identify the same set of faults
that have certainly occurred as when we compute all diagnoses, we do not lose any fault
identification ability. This is a really good point for minimal diagnoses.

2.3 Diagnosability
Which are the faults that we can identify? This depends on the diagnosability of DESs. In
order to recall the definition of diagnosability [26], let us introduce some formalism. Let L

be the language representing all the trajectories (sequences of state transitions) inherent
to a given DES D. Let Lf ⊆ L be the language of all the trajectories of D that include a
transition affected by fault f , and L̄f ⊆ Lf be the language of all the trajectories in Lf where
such transition is the last one. Let Obs be the function that provides the (chronologically
ordered) sequence of observable events that have occurred on a given (chronologically ordered)
sequence of state transitions. Let . be the concatenation operator for sequences of state
transitions.
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▶ Definition 5 (Diagnosability [26]). Given a DES D whose set of faults is Σf , a fault f ∈ Σf

is diagnosable if ∀τ1 ∈ L̄f ,∃k ∈ N,∀τ2 : τ1. τ2 ∈ L, |Obs(τ2)| ≥ k ⇒ (∀τ ∈ L), (Obs(τ) =
Obs(τ1. τ2)⇒ (τ ∈ Lf )). System D is diagnosable if all its faults are diagnosable.

In other words, a fault f is diagnosable if, for whichever sequence of transitions τ1 that
has preceded the occurrence of f , and for whichever sequence of transitions τ2 (generating a
finite number k of observable events) that has followed it, all the trajectories that produce
the same temporal observation as τ1. τ2 include the fault. The value k associated (according
to Definition 5) with a diagnosable fault is here called the (diagnosability) delay of that fault.

▶ Proposition 6. Given a DES D whose set of faults is Σf , let f ∈ Σf be a diagnosable
fault with delay k ∈ N. Let τ1. τ2 be the actual trajectory followed by D, where τ1 ∈ L̄f and
|Obs(τ2)| = k. Let Obs(τ1. τ2) be the temporal observation (with no uncertainty) provided
altogether as input either to a sound and complete method or to a method that computes
minimal diagnoses only. Then, all the diagnoses, and minimal diagnoses as well, include
fault f , which is therefore included in the intersection of all the diagnoses, as well as in the
intersection of all minimal diagnoses.

What is the impact of diagnosability when the task of diagnosis during monitoring is
performed? Proposition 7 provides an answer.

▶ Proposition 7. Given a DES D whose set of faults is Σf , let f ∈ Σf be a diagnosable
fault with delay k ∈ N. Let ⟨∆1, . . . , ∆n⟩ be the results inherent to a DES (diagnosis during)
monitoring problem instance, where every ∆i consists of either all diagnoses or the minimal
diagnoses only. Let us assume that fault f occurs after the reception of the i-th observation
and before or upon the reception of the (i + 1)-th observation. If there is no uncertainty in the
observations, fault f belongs to the intersection of the candidates in any ∆j, j ≥ i + k, that
is, for each step j ≥ i + k, it belongs to the set of faults that have occurred with certainty.

Thus, computing minimal diagnoses only (instead of all diagnoses) does not involve any
drawback in detecting and isolating diagnosable faults. Unfortunately, there is a drawback if
a fault is not diagnosable, that is, if there exists an (ambiguous) trajectory wherein the fault
occurs that is indefinitely observationally identical to a trajectory wherein the fault never
occurs. If the perceived temporal observation is consistent with an ambiguous trajectory,
there will be a pair of diagnoses, one that includes the fault and the other that does not.
Hence, the fault will not fall in the intersection of all diagnoses (nor in the intersection of
minimal diagnoses), since it is not certain. However, while the set of all diagnoses includes
both diagnoses, the set of minimal diagnoses does not necessarily include both of them (and
it may include neither of them). Anyway, if we are interested in the set of faults that have
certainly occurred rather than in knowing each and every diagnosis, computing minimal
diagnoses only does not cause any loss in the identified certain faults nor any longer delay
in their identification with respect to computing all diagnoses. This is why we stick to the
computation of minimal diagnoses only.

3 Preliminaries

A distributed, asynchronous DES is a network of components that are modeled as finite
communicating automata and are connected to other components via links. When a DES
starts its behavior, each component is in its initial state and links are assumed to be empty.
The occurrence of an external event (outside the DES) may trigger a state transition in a
component that is sensitive to that event, which may generate internal events towards other

DX 2024
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components, resulting in a cascade of state transitions, called a trajectory of the DES, which
moves the DES from its initial system state to a new system state. The trajectories of a DES
X are confined to a space, which is itself a finite automaton, namely Space(X ) = (T, X, τ, x0),
where the alphabet T is the set of component transitions, X is the set of (system) states,
where a state is a pair of a tuple of states of components and a tuple of the events within
links, τ is the transition function mapping a state and a component transition into a new
state, and x0 is the initial state. Formally, each string (sequence) of component transitions
in the language of Space(X ) is a trajectory of X .

Figure 1 DES watcher Xw (center), and models of protection p (left) and breaker b (right).

▶ Example 8. Outlined in the center of Figure 1 is a DES, called Xw (watcher), which
is designed to protect a power transmission line from short circuits. A watcher includes
two components, a protection p and a breaker b, and a link from p to b, which serves as a
communication channel for the commands sent by the protection to the breaker. When a
short circuit strikes a protected line, the protection is expected to command the breaker
to open in order to get the short circuit extinguished. If the short circuit is eventually
extinguished, the protection commands the breaker to close in order to restore the electric
power. The communicating automata (models) of both p (left) and b (right) involve two
states, namely normal and shorted for the protection, and closed and open for the breaker.
Transitions are represented as arrows between states, which are labeled with their identifiers.
Component transitions are described in Table 1 (first and second column). Each component
transition from a state s to a state s′ that is triggered by an input event e and generates
a set of output events E is denoted by a triple ⟨s, (e, E), s′⟩. If event e is ε, it means that
the transition is triggered by an event outside the DES, i.e. an event that is not sent by
another component via a link. For instance, transition p1 = ⟨normal, (ε, {op}), shorted⟩ of
the protection is triggered by an external event (drop in line voltage, which indicates the
occurrence of a short circuit on the line), generates the single event op (to open the breaker),
and moves the protection from state normal to state shorted. All transitions of the breaker

Table 1 Description of transition actions for protection p and breaker b in DES Xw (columns 1
and 2), along with observations and faults in Map(Xw) (columns 3 and 4).

Transition Action Obs Fault
p1 = ⟨normal, (ε, {op}), shorted⟩ p reacts to a short circuit by generating the open event p ε

p2 = ⟨shorted, (ε, {cl}), normal⟩ p reacts to a short circuit extinction by generating the close event p ε

p3 = ⟨normal, (ε, {cl}), normal⟩ p reacts to a short circuit by generating the close event ε pfo
p4 = ⟨shorted, (ε, {op}), shorted⟩ p reacts to a short circuit extinction by generating the open event ε pfc
b1 = ⟨closed, (op, ∅), open⟩ b reacts to the open event by opening b ε

b2 = ⟨open, (cl, ∅), closed⟩ b reacts to the close event by closing b ε

b3 = ⟨closed, (op, ∅), closed⟩ b reacts to the open event by remaining closed ε bfo
b4 = ⟨open, (cl, ∅), open⟩ b reacts to the close event by remaining open ε bfc
b5 = ⟨closed, (cl, ∅), closed⟩ b reacts to the close event by remaining closed b ε

b6 = ⟨open, (op, ∅), open⟩ b reacts to the open event by remaining open b ε

b7 = ⟨closed, (cl, ∅), open⟩ b reacts to the close event by opening b bop
b8 = ⟨open, (op, ∅), closed⟩ b reacts to the open event by closing b bcl
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are triggered by an event generated by the protection (either op or cl), and do not generate
output events (E = ∅). The space of Xw is depicted in Figure 2, where states are labeled
0 . . . 7, with 0 being the initial state. Each state is identified by a pair of states of components
p and b, along with the (possibly empty, namely ε) event within the link. For instance, a
trajectory of Xw is T = [p3, b5, p1, b3, p4, b3, p2, b5]. Due to cycles in the space, Xw may follow
(at least in theory) an infinite number of different trajectories.

Figure 2 Space(Xw), the space of the watcher, where 0 is the initial state.

To support the diagnosis of a DES X , we need to define both the observability and the
abnormality of X . This is specified by a table, namely Map(X ), which is a set of triples
(t, o, f), where t is a component transition, o is a (possibly empty, namely ε) observation,
and f is a (possibly empty, namely ε) fault. Specifically, if o ̸= ε, then t is observable,
otherwise t is unobservable; similarly, if f ̸= ε, then t is faulty, otherwise t is normal. Based
on Map(X ), each trajectory T of X is associated with a temporal observation, which is the
sequence of the observations associated with the observable component transitions in T ,
namely Obs(T ) = [ o | t ∈ T, (t, o, f) ∈ Map(X ), o ̸= ε ]. A trajectory T is said to conform
with a temporal observation O iff Obs(T ) = O. Map(X ) also associates T with a diagnosis,
which is the set of faults associated with the component transitions in T , namely Dgn(T ) =
{ f | t ∈ T, (t, o, f) ∈ Map(X ), f ̸= ε }. The diagnosis set D of O is the set of diagnoses of
the trajectories of X conforming with O (i.e. it is the set of all diagnoses, according to the
terminology in Section 2), namely: D(O) = {Dgn(T ) | T ∈ Space(X ),O = Obs(T )}. Let Oi

denote a nonempty prefix [o1, . . . , oi] of O, i ≥ 1. The temporal diagnosis set D of O is the
sequence of diagnosis sets D(Oi), i ≥ 1, namely: D(O) = [D(O1),D(O2), . . .].

▶ Example 9. For DES Xw, we assume two possible observations, namely p: the protection
performs a normal action, and b: the breaker performs a (possibly faulty) action. We also
assume six possible faults, namely pfo: the protection fails to send the open command, pfc:
the protection fails to send the close command, bfo: the breaker fails to open, bfc: the breaker
fails to close, bop: the breaker opens instead of closing, and bcl: the breaker closes instead of
opening. Based on these sets of observations and faults, the observability and abnormality of
Xw is defined in Map(Xw), which is embedded in Table 1 (third and fourth columns), where
both an observation label and a fault label are associated with each component transition.
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Accordingly, transition p1 is observable and normal, p3 is unobservable and faulty, while
b7 is both observable and faulty. Since the same observation is associated with several
transitions, the component transition that actually occurred cannot be univocally identi-
fied based on the given observation only. With trajectory T = [p3, b5, p1, b3, p4, b3, p2, b5],
we have Obs(T ) = [b, p, p, b] and Dgn(T ) = {pfo, pfc, bfo}. Based on Space(Xw), we
can find that the diagnosis set of Obs(T ) includes six diagnoses: {pfo, bfo}, {pfo, pfc, bfo},
{pfo, bfo, bop}, {pfo, pfc, bfo, bop}, {pfo, bfo, bfc, bop}, and {pfo, pfc, bfo, bfc, bop}. Even if
the diagnosis set involves the actual diagnosis {pfo, pfc, bfo} relevant to trajectory T , due
to ambiguity, five additional diagnoses are embodied in that set. The temporal dia-
gnosis set of O is [D1,D2,D3,D4], where D1 = {{pfo},{pfo, bop},{pfo, bfc, bop}}, D2 =
{{pfo}, {pfo, bfo}, {pfo, bop}, {pfo, pfc, bfo}, {pfo, bfc, bop}}, D3 = {{pfo, bfo}, {pfo, pfc, bfo},
{pfo, bfo, bop}, {pfo, pfc, bfo, bfc}, {pfo, pfc, bfo, bop}, {pfo, bfo, bfc, bop}, {pfo, pfc, bfo, bfc,

bop}}, and D4 = {{pfo, bfo}, {pfo, pfc, bfo}, {pfo, bfo, bop}, {pfo, pfc, bfo, bop}, {pfo, bfo, bfc,

bop}, {pfo, pfc, bfo, bfc, bop}}. We can easily appreciate that the results (in the tem-
poral diagnosis set) are monotonic (cf. Definition 2), as expected based on Proposi-
tion 4. The sequence of the intersections of all candidates in each Di, i ∈ [1 .. 4], is
[{pfo}, {pfo}, {pfo, bfo}, {pfo, bfo}], where each intersection provides a set of faults that have
occurred with certainty. Thus, after processing the first observation, we know that fault
pfo has certainly occurred, the same as after the second observation. Notice that each
intersection for i ∈ [1 .. 2] equals the actual diagnosis (relevant to Oi). After processing the
third observation, we know that also fault bfo has certainly occurred. The fourth observation
does not add any new certain fault. The intersections for i ∈ [3 .. 4] do not involve fault pfc,
although it has actually occurred in T . Given Map(Xw), fault pfc is not diagnosable. A
proof of its non-diagnosability is provided, for instance, by two trajectories, [p3, b5, p1, b3, p4]
and [p3, b5, p1], which are observationally identical and end in the same state (1). The former
trajectory is affected by fault pfc (associated with p4) while the latter is not. Both trajectories
can go on indefinitely, producing the same observations, and, if they will not follow p4 any
more, the occurrence of pfc will be uncertain for ever. For instance, if the next transitions
of both trajectories are [b3, p2, b5], the former is indeed T , which is why fault pfc does not
belong to the intersections for i ∈ [3 .. 4].

4 Minimalist diagnosis

We now present a Minimalist Diagnosis Engine for DESs, which generates the set of
minimal diagnoses at the reception of each newly-occurred observation with the support of
a minimalist diagnoser generated lazily. The algorithm makes use of the definitions given
below.

▶ Definition 10. Let D be the diagnosis set of a temporal observation O. A diagnosis δ ∈ D
is minimal iff there is no other diagnosis δ′ ∈ D such that δ′ ⊂ δ. The candidate set of O,
∆(O), is the set of minimal diagnoses in D.

▶ Example 11. With reference to Example 9, the candidate set of the temporal observation
O = [b, p, p, b] is the singleton ∆(O) = {{pfo, bfo}}, as every other diagnosis in the diagnosis
set of O is a superset of {pfo, bfo}.

▶ Definition 12. Let O = [o1, o2, . . .] be a temporal observation of X . The temporal candidate
set of O is the sequence of candidate sets ∆(Oi), i ≥ 1, namely, ∆(O) = [∆(O1), ∆(O2), . . .],
where Oi is the prefix of O up to the i-th observation.
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▶ Example 13. With reference to the temporal diagnosis set of O = [b, p, p, b] in Example 9,
the temporal candidate set of O is ∆(O) = [{{pfo}}, {{pfo}}, {{pfo, bfo}}, {{pfo, bfo}}],
where, incidentally and in contrast with the temporal diagnosis set, each candidate set is a
singleton. We can easily appreciate that also these results, relevant to minimal diagnoses only,
are monotonic, as stated by Proposition 4. The sequence of the intersections of all candidates
in each ∆i, i ∈ [1 .. 4], is [{pfo}, {pfo}, {pfo, bfo}, {pfo, bfo}], where each intersection consists
of faults that have occurred with certainty. As expected, this sequence is the same as when
all candidates are computed (cf. Example 9).

▶ Definition 14. An abduction item of a DES X is a pair ℑ = (x, δ), where x is a state in
Space(X ) and δ is a diagnosis of a trajectory of X ending in x. The frontier of ℑ, Front(ℑ),
is a set of triples (x′, f, o) where ⟨x, t, x′⟩ is a transition in Space(X ) and (t, o, f) ∈ Map(X ).
A candidate item of X is a triple (x, δ, o), where (x, δ) is an abduction item of X and o ≠ ε

is an observation such that (t, o, f) ∈ Map(X ) and t is the last transition of a trajectory of
X ending in x.

▶ Example 15. With reference to Space(Xw) in Figure 2 and Map(Xw) in Example 9, an
abduction item of Xw is ℑ = (4, {pfo, bop}), where 4 = ((shorted, open), op) is a state of Xw

and {pfo, bop} is the diagnosis of trajectory [p3, b7, p1] of Xw ending in state 4. The frontier of
ℑ is the set Front(ℑ) = {(6, b, ε), (7, b, bcl)}. A candidate item of Xw is (7, {pfo, bop, bcl}), b),
where 7 = ((shorted, closed), ε) is a state of Xw and {pfo, bop, bcl} is the diagnosis of trajectory
[p3, b7, p1, b8] of Xw ending in 7, with (b8, b, bcl) ∈ Map(Xw).

▶ Definition 16. Let O be the domain of observations of a DES X with initial state x0. The
minimalist diagnoser of X is a finite automaton

Mind(X ) = (O, D, τ, d0) (1)

where D is the set of states (I,D), with I being a set of abduction items of X and D a set
of diagnoses, d0 = ({(x0, ∅)}, {∅}) is the initial state, and τ : D ×O 7→ D is the transition
function, where τ((I,D), o) = (I′,D′) iff, for each (x, δ) ∈ I, there is in Space(X ) a sequence
[t1, . . . , tk] of contiguous transitions, k ≥ 1, where t1 exits state x, all transitions t1, . . . , tk−1
are unobservable while tk is observable via observation o and enters a state x′, δ′ is the
extension of δ by the faults involved in transitions t1, . . . , tk, (x′, δ′) ∈ I′ provided that there is
no other abduction item (x′, δ̄) ∈ I′ such that δ̄ ⊂ δ′, and D′ is the minimal set of diagnoses
in {δ′ | (x′, δ′) ∈ I′}.

▶ Example 17. A portion of the minimalist diagnoser of DES Xw is shown in Figure 5. The
upper and lower parts of each of the eight depicted states d0 . . . d7 display the relevant set I
of abduction items and the set D of minimal diagnoses, respectively.

▶ Proposition 18. Let O = [o1, . . . , on], n ≥ 0, be a temporal observation of a DES X .
Let d = (I,D) be a state of Mind(X ) = (O, D, τ, d0) such that, if n = 0, then d = d0, else
d1 = τ(d0, o1), d2 = τ(d1, o2), . . ., dn = τ(dn−1, on). D equals the candidate set ∆(O).

Proof. By induction on O.
(Basis). The property holds for O0 = [ ]. In fact, in this case, d = d0 = ({(x0, ∅)}, {∅}),

where D = {∅}. Based on Definition 10, the candidate set ∆(O0) is the set of minimal
diagnoses in the diagnosis set D(O0) = {Dgn(T ) | T ∈ Space(X ),O0 = Obs(T )}. Since O0 is
empty, the diagnosis relevant to the empty trajectory belongs to D(O0). Since the diagnosis
of the empty trajectory is ∅, the empty diagnosis cannot be a superset of any other diagnosis
in D(O0), and every other diagnosis in D(O0) is a superset of it. Hence, ∆(O0) = D = {∅}.
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(Induction). If the property holds for Oi = [o1, . . . , oi], 0 ≤ i < n, then it also holds
for Oi+1 = [o1, . . . , oi+1]. Considering state di = (Ii,Di), based on Definition 16, for each
trajectory T of X conforming with Oi, Ii includes all abduction items (x, δ) such that x

is the state reached by T , and δ is a minimal diagnosis in {Dgn(T ′) | T ′ ∈ Space(X ), T ′ =
Obs(O), T ′ ending in x}. This will not jeopardize the completeness of candidate sets because,
given two abduction items (x, δ) and (x, δ′) where δ′ ⊃ δ, all minimal diagnoses generated by
trajectories exiting x and generating δ′ in x can also be generated by the trajectories exiting
x and generating δ in x, since the conformity of a trajectory with the rest of the temporal
observation depends only on state x, not on the associated diagnosis in the abduction item.
On the other hand, in order to preserve completeness, it is necessary keeping both abduction
items (x, δ) and (x′, δ′) in Ii where x ̸= x′ and δ′ ⊃ δ, since we do not know whether the
trajectories exiting x will still conform with the rest of the temporal observation. Thus,
the set D′

i = {δ | (x, δ) ∈ Ii} will include all the diagnoses in candidate set ∆(Oi). This
is also (trivially) true for D′

0. Moreover, for the same reasons, based on Definition 16,
Ii+1 is such that D′

i+1 = {δ | (x, δ) ∈ Ii+1} includes all the diagnoses in ∆(Oi+1). Hence,
Di+1 = ∆(Oi+1). ◀

▶ Corollary 19. Let O = [o1, . . . , on], n ≥ 0, be a temporal observation of a DES X . Let
[d1, . . . , dn] be the sequence of states in minimalist diagnoser Mind(X ) = (O, D, τ, d0), where,
for each state di = (Ii,Di), i ∈ [1 .. n], d1 = τ(d0, o1), d2 = τ(d1, o2), . . . , di = τ(di−1, oi).
The sequence [D1, . . . ,Dn] equals the temporal candidate set ∆(O).

4.1 Minimalist diagnosis engine
The Minimalist Diagnosis Engine algorithm (lines 1–38) takes as input a temporal
observation O = [o1, o2, . . .] of a DES X (with initial state x0), and generates as output a
sequence ∆, which is in fact the temporal candidate set of O. The algorithm exploits four
main internal data structures: a set G of abduction items generated already, a stack U of
abduction items under processing, that is, relevant to the current observation, a set C of
candidate items (x, δ, o′) relevant to any possible next observation o′, and the minimalist
diagnoser of X , namely M = Mind(X ). Note that M is not constructed upfront (offline),
but only generated lazily based on the sequence of observations in O. In other words, at any
point of the processing,M represents the part of Mind(X ) materialized so far (online) by the
algorithm. In line 1, G and U are initialized with the abduction item ℑ0 = (x0, ∅). In line 2,
the initial state d0 of M is generated (as unmarked) and assigned to d, which represents the
state of M relevant to the matching of the current prefix of O (initially, this is the empty
sequence). The aim is to generate the transition function of d (if not materialized already,
that is, when d is unmarked), so that, at the next occurring observation o′, the relevant
candidate set is already computed and stored in the target state d′ ofM, based on transition
⟨d, o′, d′⟩. After the initialization of the data structures, the rest of the algorithm consists of
two nested loops. The main loop (lines 3–38) is repeated until the DES stops being operated
(no further observation can be generated). The nested loop (lines 5–22) is repeated until
stack U becomes empty, in which case no further new abduction item can be generated for
the current observation. The idea is to keep generating the frontier of the abduction items in
stack U up to any possible next observation, based on the corresponding trajectories of X ,
thereby possibly updating δ in each successive abduction item. In the first statement of the
main loop (line 4), if the current state d ofM is not marked (that is, if the transition function
of d has not been materialized already), the nested loop is executed. At each iteration, an
abduction item ℑ = (x, δ) is popped from U (line 6) and, if it is unmarked in G, that is,
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Algorithm 1 Minimalist Diagnosis Engine.

input :O = [o1, o2, . . .], a temporal observation of a DES X having initial state x0
output : ∆, the temporal candidate set of O

1 ℑ0 ← (x0, ∅), G ← {ℑ0}, U ← ⌊ℑ0⌋, C ← ∅, ∆← [ ]
2 Create the initial state d0 = ({ℑ0}, {∅}) of the minimalist diagnoser M of X , d← d0
3 repeat
4 if the current state d of M is not marked then
5 repeat
6 Pop an abduction item ℑ = (x, δ) from U
7 if ℑ is unmarked in G then
8 foreach (x′, f, o) ∈ Front(ℑ) do
9 δ′ ← δ ⊎ f , ℑ′ ← (x′, δ′)

10 if o = ε then
11 if ℑ′ /∈ G then
12 if (x′, δ̄) ∈ G where δ̄ ⊆ δ′ then
13 Mark ℑ′

14 else if x′ ̸= x then
15 Mark in G every (x′, δ̄) where δ̄ ⊃ δ′

16 Push the abduction item ℑ′ onto U
17 Insert (the possibly marked) abduction item ℑ′ into G

18 else if there is no (x′, δ̄, o) ∈ C where δ′ ⊇ δ̄ then
19 Insert (x′, δ′, o) into C
20 Remove from C every (x′, δ′′, o) where δ′′ ⊃ δ′

21 Mark ℑ in G
22 until U is empty
23 Let C = {C1, . . . , Ck} be a partition of C, where each Cj , j ∈ [1 .. k], includes the

candidate items (x, δ, o′
j) relevant to observation o′

j

24 foreach Cj ∈ C, Ij = {(x, δ) | (x, δ, o′
j) ∈ Cj} do

25 if dj = (Ij , _) is not a state already generated in M then
26 Dj ← ∅
27 foreach abduction item (x′, δ′) ∈ Ij do
28 if there is no diagnosis δ̄ ∈ Dj where δ̄ ⊆ δ′ then
29 Insert the diagnosis δ′ into Dj

30 Remove from Dj every diagnosis δ′′ where δ′′ ⊃ δ′

31 Generate a state dj = (Ij ,Dj) in M
32 Generate a transition ⟨d, o′

j , dj⟩ in M
33 Mark d

34 G ← ∅, C ← ∅
35 Let o′ be the next observation in O, ⟨d, o′, d′⟩ a transition inM, where d′ = (I′,D′)
36 Append D′ to ∆
37 d← d′, G ← I′, U ↞ I′

38 until X stops being operated.
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neither processed nor pruned, each triple (x′, f, o) in its frontier is considered (lines 8–20).
First, an abduction item ℑ′ = (x′, δ′) is generated (line 9), where δ′ = δ ⊎ f is the extension
of δ by f , which has no effect when f = ε. Then, two scenarios are considered: either when
o = ε (lines 10–17) or o ̸= ε (lines 18–20). When o = ε, abduction item ℑ′ is still relevant to
the current observation. Thus, if not already processed (line 11), in order to avoid processing
abduction items derived from ℑ′ that cannot lead to new minimal diagnoses, ℑ′ is marked in
case δ′ is a superset of a diagnosis δ̄ relevant to an abduction item sharing the same state x′

in ℑ′ (lines 12–13); otherwise (lines 14–16), if x′ ̸= x, every abduction item (x′, δ̄), where δ̄

is a (strict) superset of δ′, is marked to avoid computing non-minimal diagnoses: in this case,
ℑ′ is pushed onto U (line 16). In either case, ℑ′ (which may have been marked in line 13)
is eventually inserted into G (line 17). When, instead, o is observable (lines 18–20), a new
candidate item (x′, δ′, o) is inserted into C provided that there is no other candidate item
(x′, δ̄, o) in C (that is, relevant to same state x′ and same observation o) where δ′ is a superset
of δ̄ (otherwise, candidate item (x′, δ′, o) is bound to lead to a non-minimal diagnosis when
processing the next observation o). Furthermore, once inserted the new candidate item, all
the other candidate items (x′, δ′′, o) in C, where δ′′ is a (strict) superset of δ′, are removed
for the same reason (non-minimality). At the end of the iteration (line 21), once all triples in
the frontier of ℑ have been processed (and the corresponding new abduction items ℑ′ have
been generated), abduction item ℑ is marked in G. When U becomes empty, the nested loop
terminates (line 22). Now, the candidate set C contains the initial abduction items for every
possible next observation o′

1, . . . , o′
k, which makes it possible to materialize the transition

function of the current state d of M. To this end, a partition C of C is considered based on
the possible next observations o′

1, . . . , o′
k, so that the projection of each Cj ∈ C, j ∈ [1 .. k], on

the first two elements of the candidate items, namely x and δ, is in fact the set of abduction
items identifying state dj , where ⟨d, o′

j , dj⟩ is a transition in M to be materialized. This is
why, in the loop in lines 24–32, the set Ij of abduction items (relevant to observation o′

j) is
determined in order to possibly generate (if not already generated) the target state dj in M.
In lines 26–31, the corresponding candidate set Dj is computed. Specifically, in lines 27–30,
for each abduction item (x′, δ′) in Ij , δ′ is inserted into Dj provided that, in order to preserve
minimality, Dj does not include any diagnosis δ̄ that is a subset of δ′. Moreover, if δ′ is
inserted into Dj , every diagnosis in Dj that is a superset of δ′ is removed (line 30). Once Dj

is computed, a new state dj = (Ij ,Dj) is generated in M (line 31). Eventually, in line 32,
a new transition ⟨d, o′

j , dj⟩ is created in M, which allows for the immediate generation of
the candidate set Dj in case the next observation will be o′

j . Once all transitions exiting
d have been materialized, the current state d of M is marked (line 33), meaning that the
materialization of the transition function of d has been completed. At this point, in order to
process the next occurring observation, the sets G and C are emptied (line 34). When a new
observation o′ occurs (line 35), M surely includes the relevant transition ⟨d, o′, d′⟩, where
d′ = (I′,D′), with D′ being the next diagnosis (candidate) set, which is then appended to ∆
without any additional processing. Before ending the iteration of the main loop, the current
state d of M is changed to d′ (the state reached by d with observation o′), while set G is
set to I′, the new initial abduction items, which are also pushed into stack U (symbol “↞”
denotes this collective push operation): this way, the nested loop will start its computation
with the initial abduction items relevant to the newly-occurred observation o′.

▶ Example 20. Consider the temporal observation for the DES given in Example 9, which
has been extended by a further observation b, namely O = [b, p, p, b, b]. To trace the run of
Minimalist Diagnosis Engine on O, shown in Figure 3 is the space of Xw (cf. Figure 2)
where each component transition identifier t has been replaced by the observation and fault
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Figure 3 Space(Xw), with each component transition being replaced by the corresponding
observation and fault defined in Map(Xw) (Table 1), while space states are identified by numbers.

associated with t in Map(Xw). For instance, transition b7 marking the arc from state 2 to
state 3 in Space(Xw) is substituted by labels b and bop, as (b7, b, bop) ∈ Map(Xw). It should
be plain, however, that the labeling of transitions in Space(Xw) with observations and faults
is only instrumental for the clarity of the example: it is not necessary to the algorithm. Or
better still, Space(Xw) is neither available nor necessary to the engine. The generation of
the abduction and candidate items is outlined in Figure 4, where numbers 1 .. 5 on the left
indicate the iterations of the main loop, while the labels on the right are the observations
involved in O. The graphs displayed in the center represent the genesis of the abduction
items (ellipses), namely (x, δ), and the candidate items in C (rectangles), namely (x, δ, o).
Specifically, an arc from a node ℑ (an abduction item) to a node α (either an abduction
item ℑ′ or a candidate item), which is possibly marked with an observation o and/or a fault
f , indicates that α is somewhat derived from a triple (x′, f, o) ∈ Front(α) (line 8). The
figures of each iteration are listed in Table 2, specifically, the initial instance of stack U ,
the instance of sets G and C at the end of the nested loop (line 22), the newly-occurred
observation o′ (line 35), and the instance of the set D′ of state d′ (line 35), which is in fact
the new candidate set appended to ∆ in line 36. Furthermore, depicted in Figure 5 is the
part of minimalist diagnoser Mind(Xw) materialized in M by the algorithm based on O.
Details of each iteration are given below.

Iteration 1

Initially, the only item in U is ℑ0 = (0, ∅), which is in fact popped from U in line 6 at
the first iteration of the main loop. According to Figure 3, the frontier of ℑ0 includes two
triples: (1, ε, p) and (2, pfo, ε). Since the former involves observation p, there is an arc from
abduction item (0, ∅) to candidate item (1, ∅, p), which is inserted into C (line 19). The latter,
instead, leads to a new abduction item ℑ′ = (2, {pfo}), which is pushed onto U (line 16).
Note that each arc is marked with the same labels marking the corresponding arc in Figure 3.
The processing of the new abduction item (2, {pfo}) leads to the creation of candidate items
(0, {pfo}, b) and (3, {pfo, bop}, b), which are inserted into C. The relevant instances of U ,
G, and C pertaining to the first iteration are listed in the first line of Table 2. At the end
of the nested loop (line 22), the transition function of state d0 is generated based on the
partition C of C, which leads to the creation of the new states d1 and d2 in M, along with
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Figure 4 Trace of Minimalist Diagnosis Engine applied to O = [b, p, p, b, b] of DES Xw.

their entering transitions ⟨d0, p, d1⟩ and ⟨d0, b, d2⟩. Note how field D in state d2 includes
only the minimal diagnosis {pfo}, which is a subset of diagnosis {pfo, bop} within the other
candidate item associated with observation p. Then, at the occurrence of the first observation
b (line 35), the candidate set D′ = {{pfo}} is extracted from state d2 and appended to ∆
(which is initially empty). At the end of the iteration (line 37), G and U are initialized with
I′ = {(0, {pfo}), (3, {pfo, bop}}), as displayed in the first column of the second iteration in
Table 2, while the current state d of M is set to d2.

Iteration 2

At the second iteration, the two initial items included in U are the roots of the two graphs
in position 2 in Figure 4, namely (0, {pfo}) and (3, {pfo, bop}). The processing of (0, {pfo})
leads to the generation of a candidate item (1, {pfo}, p) in C, and a new abduction item
(2, {pfo}). The subsequent processing of (2, {pfo}) generates two candidate items, namely
(0, {pfo}, b) and (3, {pfo, bop}, b). On its part, item (3, {pfo, bop}) generates the candidate
item (4, {pfo, bop}, p) and a new abduction item (5, {pfo, bop}), whose processing leads to the
creation of the candidate item (0, {pfo, bop}, b) and a new abduction item (3, {pfo, bfc, bop}).
On the one hand, since C includes candidate item (0, {pfo}, b), where {pfo} ⊂ {pfo, bop},
condition in line 18 is not fulfilled, thus (0, {pfo, bop}, b) is ignored. On the other, since
G includes abduction item (3, {pfo, bop}), which is the root of the second graph, where
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Table 2 Data structures of Minimalist Diagnosis Engine with O = [b, p, p, b, b] of Xw.

i I G C o′ D′

1 (0, ∅) (0, ∅)
(2, {pfo})

(1, ∅, p)
(0, {pfo}, b)

(3, {pfo, bop}, b)}
b {{pfo}}

2 (0, {pfo})
(3, {pfo, bop})

(0, {pfo})
(2, {pfo})

(3, {pfo, bop})
(5, {pfo, bop})

(3, {pfo, bfc, bop})

(1, {pfo}, p)
(0, {pfo}, b)

(3, {pfo, bop}, b)
(4, {pfo, bop}, p)

p {{pfo}}

3 (1, {pfo})
(4, {pfo, bop})

(1, {pfo})
(4, {pfo, bop})
(7, {pfo, bfo})

(1, {pfo, pfc, bfo})

(6, {pfo}, b)
(2, {pfo, bfo}, p)

(7, {pfo, bop, bcl}, b)
p {{pfo, bfo}}

4 (2, {pfo, bfo}) {(2, {pfo, bfo})} (0, {pfo, bfo}, b)
(3, {pfo, bfo, bop}, b) b {{pfo, bfo}}

5 (0, {pfo, bfo})
(3, {pfo, bfo, bop})

(0, {pfo, bfo})
(3, {pfo, bfo, bop})

(2, {pfo, bfo})
(5, {pfo, bfo, bop})

(3, {pfo, bfo, bfc, bop})

(1, {pfo, bfo}, p)
(0, {pfo, bfo}, b)

(3, {pfo, bfo, bop}, b)
(4, {pfo, bfo, bop}, p)

b {{pfo, bfo}}

{pfo, bop) ⊂ {pfo, bfc, bop}, abduction item (3, {pfo, bfc, bop}) is marked in G (line 13), so
that it will be discarded without being processed when considered subsequently. Since now
U is empty (line 22), the nested loop terminates. The candidate abduction items relevant
to observation p lead to the creation of the new state d3 in M, along with its entering
transition. Those relevant to b, instead, lead to the set Ij = {(0, {pfo}), (3, {pfo, bop})},
which identifies state d2. Hence, the target state of the transition exiting d2 and marked
by b is already in M, so that a transition ⟨d2, b, d2⟩ can be created immediately in line 32.
Then, at the occurrence of the second observation p (line 35), the candidate set D′ = {{pfo}}
is extracted from state d3 and appended to ∆. At the end of the iteration (line 37), G and
U are initialized with I′ = {(1, {pfo}), (4, {pfo, bop})}, as displayed in the first column of the
third iteration in Table 2, while the current state d of M is set to d3.

Iteration 3

At the third iteration, the graph on the left (Figure 4, position 3) generates two candidate
items in C: (6, {pfo}, b) and (2, {pfo, bfo}, p). Note that the abduction item (1, {pfo, pfc, bfo})
is pruned on the grounds that the relevant diagnosis is a superset of the diagnosis in the root
(sharing the same state 1), namely {pfo, pfc, bfo} ⊃ {pfo}. The second graph (on the right)
generates a candidate item (6, {pfo, bop}, b), which, however, contrasts with (6, {pfo}, b),
which is already in C (cf. the first graph on the left); thus, this candidate item is not inserted
into C, as it was for the candidate item (0, {pfo, bop}, b) in the second iteration. The second
candidate item generated in the same graph, instead, namely (7, {pfo, bop, bcl}, b), is inserted
into C. Eventually, C includes three candidate items (cf. third row in Table 2). When
U becomes empty (line 22), the candidate abduction items relevant to observation b lead
to the creation of the new state d4 in M, while those relevant to p lead to the creation
of state d5, along with corresponding entering transitions. Then, at the occurrence of the
third observation p (line 35), the candidate set D′ = {{pfo, bfo}} is extracted from state
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Figure 5 Lazy generation of minimalist diagnoser Mind(Xw) based on O = [b, p, p, b, b] of Xw.

d5 and appended to ∆. At the end of the iteration (line 37), G and U are initialized with
I′ = {(2, {pfo, bfo})}, as displayed in the first column of the fourth iteration in Table 2, while
the current state d of M is set to d5.

Iteration 4

At the fourth iteration, the only initial item in U is (2, {pfo, bfo}), which is also the root of
the graph in Figure 4 (position 4). Now, since both transitions exiting state 2 in Space(Xw)
are observable, two candidate items are generated and inserted into C: (0, {pfo, bfo}, b) and
(3, {pfo, bfo, bop}, b). Since U is now empty, the partition C in line 23 is in fact a singleton,
which includes C (both candidate items in C are associated with observation b). Thus, a
new state d6 is generated in M, along with transition ⟨d5, b, d6⟩. At the occurrence of the
fourth observation b (line 35), the candidate set D′ = {{pfo, bfo}} is extracted from state
d6 and appended to ∆. At the end of the iteration (line 37), G and U are initialized with
I′ = {(0, {pfo, bfo}), (3, {pfo, bfo, bop})}, as displayed in the first column of the fifth iteration
in Table 2, while the current state d of M is set to d6.

Iteration 5

In the fifth iteration, the two graphs rooted in the abduction items (0, {pfo, bfo}) and
(3, {pfo, bfo, bop}), as outlined in the last row in Figure 4 and Table 2, involve the generation
of abduction items (2, {pfo, bfo}), (5, {bfo, pfo, bop}), and (3, {pfo, bfo, bfc, bop}), the last
of which is marked in G because the relevant diagnosis is a superset of the diagnosis
inherent to the root, namely {pfo, bfo, bop}. Furthermore, of the five candidate items
generated, (0, {pfo, bfo, bop}, b) is not inserted into C because the latter includes candidate
item (0, {pfo, bfo}, b), where {pfo, bfo} ⊂ {pfo, bfo, bop}. Then, partition C in line 23 leads to
the generation of a new state d7 inM, along with a new transition ⟨d6, p, d7⟩. Since, however,
the part associated with observation b leads to I′

j = {(0, {pfo, bfo}), (3, {pfo, bfo, bop}), which
equals the field I of the same state d6, a new auto-transition ⟨d6, b, d6⟩ is generated without the
need to materialize the (existing) target state d6. At the occurrence of the fifth observation
b (line 35), the candidate set D′ = {{pfo, bfo}} is extracted from state d6 and appended to
∆. At the end of the iteration (line 37), the current state d of M is still d6.

Since O includes five observations, the sequence of diagnosis sets generated by Minimalist
Diagnosis Engine is ∆ = [{{pfo}}, {{pfo}}, {{pfo, bfo}}, {{pfo, bfo}}, {{pfo, bfo}}]. Note
how, at the fourth observation, ∆ equals the temporal candidate set anticipated in Example 13.
Remarkably, as claimed in Proposition 21, this is no coincidence.
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4.2 Correctness of the algorithm
▶ Proposition 21. Algorithm Minimalist Diagnosis Engine is correct.

Proof. According to Corollary 19, it suffices to show that the part of Mind(X ) = (O, D, τ, d0)
materialized in M is correct, which can be proven by induction on the transition function τ .

(Basis) The initial state d0 generated in line 2 is correct. In fact, ℑ0 = (x0, ∅), d0 =
({ℑ0}, {∅}) = ({(x0, ∅)}, {∅}), which equals the initial state of Mind(X ) in Definition 16.

(Induction) If d = (I,D) is a state materialized in M, then all transitions ⟨d, o′
j , dj⟩

generated in line 32 are correct. Based on the abduction items in D, which have been pushed
onto U in line 37, the nested loop in line 5–22 is bound to generate in C all the candidate
items for every possible next observation o′

1, . . . , o′
k. To this end, an unmarked abduction

item (that is, an abduction item neither pruned not yet processed) at a time is popped from
U , and its successive abduction items ℑ′ = (x′, δ′), which are relevant to its frontier, are
computed (line 9). If the involved component transition from x to x′ is unobservable (o = ε),
then, provided that ℑ′ has not been generated already (line 11), some abduction items are
possibly marked in lines 12–16 in order to prune the trajectories that will not contribute to
the instances of Dj in the newly-materialized states dj of M. This pruning is dictated by
efficiency reasons only: if not performed, the processing in lines 18–20 still allows for the
eventual generation of the correct candidate set Dj , but at the expense of useless computation
of additional abduction items in Ij . In fact, if condition in line 12 is true, then any abduction
item derived from (x′, δ′) cannot have a diagnosis that is a subset of an abduction item
derived from (x′, δ̄), as all the additional faults involved in an extension of δ′ are also involved
in an extension of δ̄, precisely because the suffix of a trajectory starting in x′ depends only on
x′, not on the diagnosis associated in the abduction item. If, instead, condition in line 12 is
false, then we need to mark every abduction item (x′, δ̄) where δ̄ ⊃ δ′, for the same reason of
keeping only abduction items involving the same state of X that have the minimal diagnosis.
In contrast with the processing in lines 14–16, however, we do not impose in this case the
condition x′ ̸= x. In fact, in conformity with Definition 16, once a candidate item (x′, δ′, o)
is inserted into C (line 19), no other successive item needs to be generated (starting from its
frontier). Hence, the removal in line 20 is necessary even if x′ = x. When U becomes empty
in line 22 (end of the nested loop), it means that there is no other abduction or candidate
item that can be generated (we have reached the completeness). In line 23, the partition
C = {C1, . . . , Ck} allows us to associate with each possible next observation o′

j the relevant
candidate items (x, δ, o′

j). In other words, each part Cj ∈ C contains the information for
generating the field Ij of state dj in transition ⟨d, o′

j , dj⟩, which is performed in lines 24–32.
Specifically, Ij is distilled from Cj and, if there is no state dj in M identified by Ij , then it is
generated by first computing the set Dj based on Definition 16, that is, as the set of minimal
diagnoses in Ij (lines 26–31). Eventually, a transition ⟨d, o′

j , dj⟩ is generated in M. Since,
based on the argumentation expressed above, the set Ij of abduction items computed by the
algorithm equals the first field of the target state d′

j of the transition exiting d and marked
by observation o′

j , and the set Dj equals the second field of d′
j , the transition function of d

materialized in M is correct. ◀

5 Related work

The work presented in this paper stems from the active system approach [13, 16], which
represents DESs by means of complete explicit (i.e. operational) strong component models
and performs abduction-based diagnosis. More specifically, in this paper a DES is a network
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of communicating finite automata. Other explicit models for DESs are Petri nets [1, 3] and
labeled time Petri nets [19]. Strong models can be adopted to represent dynamical systems
also when consistency-based reasoning is performed. For instance, the diagnostic approach
in [7], which is applied to synchronous sequential circuits, is consistency-based. Both the
normal and abnormal behavior (fault modes) of system components are described by means
of the Finite Trace Next Logic, and minimum-cardinality diagnoses are computed. Weak
models and consistency-based diagnosis are applied to DESs in [18]. There are contributions
about diagnostic reasoning that ignore any explicit DES models, instead, they consider some
specifications. The specification of a dynamical system (i.e. the properties the system has to
exhibit over time) can be given as a formula in a temporal logic [6], such as Linear Temporal
Logic (LTL) [22]. An LTL specification is the implicit representation of an automaton,
where LTL operators describe the state transitions. Typical diagnostic tasks are aimed at
finding out whether a given behavioral evolution, called a trace, satisfies the specification
formula and/or uncovering the causes for a trace violates the specification formula, where
such causes can be searched for either in the trace [2] or in the specification [20, 21], that is,
the specification may be wrong.

To the best of our knowledge, the first work that adopted subset-minimal diagnoses for
DESs is [27], where, however, their appropriateness is not investigated: minimal diagnoses
are reckoned good as they are “more probable” and they reduce the cognitive load of a
human operator. The method in [27], differently from the proposal presented here, is based
on a total offline knowledge-compilation, aimed at generating a so-called minimal diagnoser.
In [27], computing minimal candidates only does not translate into any pruning of the search
space; on the contrary, the construction of the minimal diagnoser requires the previous
generation the whole DES space, which is unfeasible for real systems since the number of
states is exponential in the number of components. The process in this paper, instead,
performs online a (partial dynamical) knowledge-compilation, if and when needed (laziness),
and every observation-driven behavior reconstruction assumes the unavailability of the DES
space, which is only instrumental to the formalization, but never materialized.

6 Conclusion

From the computational viewpoint, diagnosis of real DESs is a complex task because of
the huge size of the DES space in which the search for the trajectories complying with a
temporal observation is carried out. This is why the total compilation of a DES into a
diagnoser is impractical, even when performed offline. Also the online reconstruction of the
DES trajectories based on the given temporal observation is no panacea. From the user (or
post-processing) side, analyzing all the candidates is possibly time consuming. Hence, in this
paper, instead of generating all the diagnoses, each being a set of faults, we generate (subset)
minimal diagnoses only. First, we have discussed the meaningfulness of minimal diagnoses
for task of DES diagnosis (and, more specifically, for diagnosis during monitoring). Then, we
have proposed a method that, at each newly perceived observation, updates the trajectories
built up to the reception of the previous observation, while pruning the trajectories that
either are not consistent with the new observation or are bound to bring to non-minimal
candidates, thus reducing the size of the DES space to be explored. In addition, every time a
new observation is perceived, the method updates (if needed) an (initially empty) compiled
knowledge structure, called a minimalist diagnoser, so as to speed up the next abductive
reasoning steps.
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The method presented in this paper comes with expectations of gains in spatial and
temporal performances with respect to the computation of all diagnoses; such expectations
are being confirmed by an ongoing experimental activity.

A future version of the method could generate candidates both incrementally and in a
sorted way based on a preference criterion, such as cardinality or likelihood, that is significant
in the considered domain so as every candidate that is preferred to another is outputted before
it. Further research could adapt the proposed algorithm to notions of DES diagnosis different
from that adopted in this paper. For instance, a recent work [11] defines a DES diagnosis as
the sequence of faults associated with a trajectory, namely a temporal fault. The adaptation
would require defining the concept of minimal temporal fault, representing concisely the
minimal temporal fault candidates, pruning the portions of the search space that lead to
non-minimal temporal faults, and progressively updating the relevant sequence-oriented
minimalist diagnoser.

In the literature the notion of a fault in a DES has been generalized to the violation of a
predefined behavioral property, as in [8], or to a pattern of transitions, called supervision
pattern [10]. A fault can also be defined as an event that arises when a sub-trajectory of
the DES matches a given pattern, like in [14, 17]. Minimal candidates could in principle be
computed also for generalized faults; their significance, however, needs some investigation.
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