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Abstract
Structural analysis-based diagnosis allows for the extraction of a wealth of information and properties
by studying a structural model that represents a physical system. This diagnosis approach is centered
on structurally overdetermined sets, which enable the generation of residuals for fault detection
and isolation. As the ’for Dummies’ editorial collection, this article aims at taking on complex
concepts and making them easy to understand. It aims to clarify and compare key concepts in
structural analysis, focusing on Minimally Structurally Overdetermined (MSO) sets and Minimal
Test Equation Supports (MTES). Additionally, we explain and illustrate the Dulmage-Mendelsohn
decomposition, which helps identify structurally overdetermined parts of the system and plays
a important role in the structural analysis process. Through detailed exploration and practical
examples, we demonstrate the roles, applications, and interrelations of these sets, highlighting their
respective strengths and limitations. The paper provides an overview of the algorithms used to
identify and use these sets, including a theoretical and practical comparison of their computational
efficiency and diagnostic capabilities.
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1 Introduction

In the field of model-based fault diagnosis, the ability to detect and isolate faults within
complex systems is crucial for ensuring reliability and safety. By studying the model, it is
possible to identify faults, which are indicative of abnormal or faulty behavior within the
system.

Structural analysis consists in abstracting a model by keeping only the links between
equations and variables. The main advantages of structural analysis are that the approach
can be applied to large scale systems, linear or non linear, even under uncertainty. In
the field, the concept of Minimally Structurally Overdetermined (MSO) sets [6] has been
widely adopted due to its effectiveness in isolating faults by leveraging the redundancy in
system models. However, while MSO sets have proven valuable, they come with limitations,
particularly in terms of computational complexity when applied to large-scale systems.

To address these issues, more refined approaches have been introduced, such as Minimal
Test Equation Supports (MTES), presented in [5], or Fault Driven Minimal Structurally
Overdetermined (FMSO) sets introduced by [7]. These methods aim to enhance diagnosis
precision while aiming at reducing computational demands, yet their practical application
and comparative advantages remain areas of ongoing exploration.
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As the ’for Dummies’ editorial collection, this article aims at taking on complex concepts
and making them easy to understand. The objective is to clarify and compare various key
concepts used in structural analysis model-based fault diagnosis, specifically focusing on
MSO sets, MTES, or FMSO sets. By providing a detailed exploration of these concepts, this
paper seeks to clarify their roles, applications, and interrelations. Through carefully chosen
examples, we illustrate how each of these concepts can be applied to different scenarios,
highlighting their respective strengths and limitations. This comparative analysis is intended
to enhance the understanding of these diagnosis tools.

This paper is structured as follows. Section 1 gives some theoretical foundations on
structural analysis. Then in Section 3 MSO sets are defined and explained. The algorithm
for their identification is also presented. Next, Section 4 discuss the motivations behind
the introduction of MTES and describe the algorithm for their computation. A comparison
between the performance of MSO and MTES is then conducted in Section 5. To illustrate
the practical application of these concepts, a realistic example is provided in Section 6,
including structural modeling, algorithmic complexity analysis, and an evaluation of diagnostic
capability. Section 7 concludes the paper.

2 Background

One of the key concepts to understand the notion of MSO sets or even MTES is the Dulmage
Mendelsohn decomposition of a bipartite graph [4].

Let the system description consist of a set of ne equations involving a set of variables
partitioned into a set Z of nZ known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known variables as z and the vector
of unknown variables as x. The system may be impacted by the presence of nf faults that
appear as parameters in the equations. The set of faults is denoted by F and we refer to the
vector of faults as f.

▶ Definition 1 (System). A system, denoted Σ(z, x, f) or Σ for short, is any set of equations
relating z, x and f. The equations ei(z, x) ⊆ Σ(z, x, f), i = 1, . . . , ne, are assumed to be
differential or algebraic in z and x.

Consider the illustrative example given by system (1), from [8], named Σ1 that will be
taken as a running example in this section. It is composed of six equations e1 to e6 relating
the known variables Z = {z1, z2}, the unknown variables X = {x1, x2, x3, x4, x5} and the set
of system faults F = {f1, f2}. Besides a, b, c are constant parameters.

e1 : ẋ3 = ex3 − a

e2 : x2
3 = −bẋ4 + f1

e3 : z1 = x4

e4 : z2 = x1 + b2 + x4

e5 : ẋ1 = ex2 + x5

e6 : ẋ3 = x4 + c+ f2

(1)

We can represent a system Σ(z, x, f) by a biadjacency matrix, in which each row stands
for an equation and each column an unknown variable. An X in position (i, j) means that
equation i contains the unknown variable j. For example, Σ1 can be represented by the
biadjacency matrix of Table 1.
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Table 1 Biadjacency matrix of Σ1.

x1 x2 x3 x4 x5

e1 ×
e2 × ×
e3 ×
e4 × ×
e5 × × ×
e6 × ×

Equivalently, a system Σ(z, x, f) can be represented by a bipartite graph G(E,X). E
and X are the sets of nodes, an edge between node Ei and node Xj means that equation
i contains the unknown variable j. The bipartite graph associated with the illustrative
example Σ1 is shown in Figure 1 [8].

Figure 1 The bipartite graph of Σ1 [8].

▶ Definition 2 (Maximal Matching). A maximal matching is a set of edges such that these
edges do not share any common nodes, and no more edges can be added to this set without
losing this property.

In Table 1, as well as in Figure 1, a maximal matching is marked in red. It is the largest set
of edges such that there are no common nodes (each equation and each variable appears at
most once).

▶ Definition 3 (Free equation). For a given maximal matching, an equation is free if it is
not part of this maximal matching.

In the matching represented in Table 1, e1 and e2 are free.

▶ Definition 4 (Free variable). For a given maximal matching, a variable is free if it is not
part of this maximal matching.

In the matching represented in Table 1, x5 is free.

▶ Definition 5 (Alternating path). Let Mmax be a maximal matching. P , a path in the graph
G, is an alternating path if it successively passes through edges that belong to Mmax and
edges that do not belong to Mmax.

The Dulmage-Mendelsohn decomposition allows separating a model Σ into 3 parts:
an overdetermined part, denoted Σ+, an exactly determined part, denoted Σ0, and an
underdetermined part, denoted Σ−, as shown in Figure 2 .

DX 2024
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Figure 2 Dulmage-Mendelsohn decomposition of a model Σ.

The overdetermined part Σ+ of Σ is the set of equations e ∈ E such that, for any maximal
matching, there exists an alternating path between at least one free equation and e [6]. Σ+

can also be defined as the set of equations e ∈ E such that there is at least one maximal
matching in which e is free.

The part Σ0 contains equations that are not in Σ+ but are such that the set Σ0 ∪ Σ+ is
the maximal set of equations for which there exists a complete matching of the unknown
variables in Σ0 ∪ Σ+ into Σ0 ∪ Σ+ [6]. We can also say that Σ0 consists of the equations e
that are matched in every maximal matching and do not contain any free variables.

The rest of the equations belongs to Σ−. Σ− only contains equations if the maximal
matchings do not cover all the variables (if there exists at least one free variable in a maximal
matching). Σ− contains equations associated with the free variables.

Running example: Σ+
1 contains all the equations that are free in at least one maximal

matching. In the matching represented in Table 1, e1 and e2 are free so these two equations
are in Σ+

1 . But (e1x3, e2x4, e4x1, e5x2) is also a maximal matching, and in this matching, e3
and e6 are free. So e3 and e6 are also in Σ+

1 . So, we have Σ+
1 = {e1, e2, e3, e6}.

Σ0
1 = {e4} because the set {e1, e2, e3, e4, e6} is the biggest set such that there exists a

complete matching of the unknown variables in this set into this set. If we add e5 in that
set, it would not be a complete matching because either x2 or x5 would not be part of the
matching. Another way to see this is that e4 is necessary to every maximal matching, as it
is the only equation that contains x1 (e5 also contains x1, but e5 is used to cover x2 or x5).
Thus, it is impossible to obtain a maximal matching without e4, and e4 does not contain any
free variable, so e4 is part of Σ0

1.

The remaining equation, e5, is in Σ−
1 . That is because e5 is the only equation that

contains both x2 and x5, so for every maximal matching, one of these two variables is free.

Note that, as shown above with Σ1, if a set of equations Σ has more equations than
unknown variables, it does not necessarily mean that Σ0 and Σ− are empty.

▶ Definition 6 (PSO set). A set Σ of equations is a PSO set (proper structurally overde-
termined set) if Σ = Σ+. In other words, Σ is a PSO set if Σ0 = Σ− = ∅.

System represented Σ1 as a whole is not a PSO set because Σ0 and Σ− are not empty. But
the subset of equations {e1, e2, e3} is a PSO set: the three equations are free in at least one
maximal matching, so Σ = Σ+ (see Table 2).
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Table 2 The subset of equations {e1, e2, e3}.

x3 x4

e1 ×
e2 × ×
e3 ×

▶ Definition 7 (Structural redundancy). For a given set of equations Σ, the structural
redundancy φ(Σ) is defined by φ(Σ) = |Σ+| − |X+|, where |Σ+| is the number of equations
in Σ+, and |X+| is the number of unknown variables involved in Σ+.

PSO sets have structural redundancy, which is key to diagnosis since it allows residual
generation. We recall hereafter some important definitions [8].

▶ Definition 8 (ARR for Σ(z, x, f)). Let Σ(z, x, f) be a system. Then, a relation of the form
arr(z, ż, z̈, ...) = r is an Analytical Redundancy Relation (ARR) for Σ(z, x, f) if for each z
consistent with Σ(z, x, f) the relation evaluation is r = 0, i.e., the ARR is satisfied.

▶ Definition 9 (Residual Generator for Σ(z, x, f)). A system taking a subset of the variables
z as input, and generating a scalar signal r as output, is a residual generator for the model
Σ(z, x, f) if, for all z consistent with Σ(z, x, f), it holds that lim

t→∞
r(t) = 0.

ARRs are residual generators and are used to verify the consistency of observations with
the system model. The ARRs hold true if the observed behavior of the system meets the
model constraints. They can be derived from the system model by eliminating unknown
variables [7]. PSO sets can be used to generate ARRs as they identify the redundant parts
of the system’s model.

3 MSO sets

It is often more practical to focus on smaller, manageable subsets of the PSO sets that still
retain the necessary redundancy for effective fault diagnosis.

▶ Definition 10 (MSO set). A PSO set Σ is an MSO set (minimal structurally overdetermined)
if no proper subset is a PSO set. MSO sets are PSO sets such that φ(Σ) = 1.

MSO sets are interesting because they are just overdetermined and exactly identify a set of
equations from which a residual generator can be obtained. [6].

In our running example, the subset {e1, e2, e3} is an MSO set because it is a PSO set,
and there is no subset which is also a PSO set. Furthermore, φ(Σ) = 3 − 2 = 1.

A deep first search algorithm1 to find MSO sets is presented in [6]. The general idea is
to start with a PSO set Σ, to remove an equation e, and to compute the overdetermined
part of the remaining set (Σ \ {e})+. When an equation e is removed from a PSO set, the
structural redundancy decreases by one. So the previous process is done until the structural
redundancy becomes one. If φ((Σ \ {e})+) = 1, then an MSO set is found.

Running example: To illustrate that, let us apply the first steps of the algorithm to the
following example Σ2 (cf. Table 3).

1 All the algorithms presented in this article are provided in the “Fault Diagnosis Toolbox” available here:
https://faultdiagnosistoolbox.github.io/
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Table 3 Illustrative example Σ2.

x1 x2 x3

e1 ×
e2 × ×
e3 × ×
e4 ×
e5 × ×

The set Σ2 = {e1, e2, e3, e4, e5} is a PSO set of structural redundancy 2. First, e1 is
removed. By applying the Dulmage-Mendelsohn decomposition on the remaining set, we have
(Σ2 \ {e1})+ = {e2, e3, e4, e5}. φ((Σ2 \ {e1})+) = 1, which means that {e2, e3, e4, e5} is an
MSO set. Then, e2 is removed from Σ2. By applying the Dulmage-Mendelsohn decomposition
on the remaining set, we have (Σ2 \ {e2})+ = {e1, e4, e5}. φ((Σ2 \ {e2})+) = 1, which means
that {e1, e4, e5} is also an MSO set. And so on, until covering the entire tree.

Using this algorithm, all the MSO sets are found. However, this method is not optimal
in terms of computation time because some MSO sets can be found multiple times. For
example, here, when removing e2, (Σ2 \ {e2})+) = (e1, e4, e5) and when removing e3,
(Σ2 \ {e3})+) = (e1, e4, e5). Therefore, the same MSO set is found twice. That is why the
concept of equivalence class is introduced.

▶ Definition 11 (Equivalence class). Let Σ be a set of equations and (ei, ej), two equations
in Σ. ei and ej are in the same equivalence class [e] = {ei, ej} if ei ̸∈ (Σ \ {ej})+.

This enables grouping equations into the same class such that, if they are removed from Σ,
the same overdetermined part is obtained.

For the system Σ2, the equivalences classes are {e1}, {e2, e3}, {e4}, {e5} because e2 ̸∈
(Σ2 \ {e3})+ (the inverse is also true because it is an equivalence relation).

Thus, in the algorithm, it is no longer one single equation that is removed at each step,
but equivalence classes, which prevent the same overdetermined part from being computed
twice. At each step, equations that belong to the same equivalence class are lumped, one
equivalence class is removed, and the overdetermined part of the remaining equations is
computed. Note that for Σ2, this optimization does not make a huge difference in terms of
computation time, but it makes a big difference for huge models, with many equations and
MSO sets.

There is another issue handled by the algorithm. The same MSO set can be obtained
if the order of equations removal is permuted. Let us consider the following system Σ3 (cf.
Table 4).

Table 4 Illustrative example Σ3.

x1 x2 x3

e1 ×
e2 × × ×
e3 ×
e4 × ×
e5 ×
e6 ×
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At the beginning, e1 is removed. The overdetermined part of the remaining equations
(Σ3 \ {e1})+ is {e2, e3, e4, e5, e6}. Then, e2 is removed, and the overdetermined part of the
remaining equations (Σ3 \ {e1, e2})+ is {e3, e5}, which is an MSO set. But if e2 is removed
first, and then e1, the same MSO set is obtained. To handle this problem, the algorithm uses
a new input set R which contains the equivalence classes that are allowed to be removed.

At each node traversed by the algorithm, a Dulmage-Mendelsohn decomposition is
performed. This is the most time-consuming part of the computation. This algorithm
traverses a search tree, where each node represents a potentially overdetermined set of
equations. Each level of the tree corresponds to the removal of an equation from the system,
and each branch represents a subset of equations being tested. When an equation is removed
from Σ (i.e., when moving down a level in the search tree), the structural redundancy φ(Σ)
decreases by 1 [6].

Consider the worst-case scenario, where each equation belongs to a different equivalence
class (i.e., the equations are removed from Σ one by one). For a system with ne equations
and a redundancy degree of φ, the maximum number of nodes the algorithm might traverse
is given by the sum of possible equation subset for each level k of the tree. A bound on the
number of nodes traversed by the algorithm to find MSO sets is then given by Equation (2).

φ−1∑
k=0

(
ne

k

)
(2)

MSO sets are used to construct ARRs, and thus residual generators, but it is important
to note that MSO sets do not take faults into account. If we are interested in system
performance and we want to construct residual generators for diagnosis purposes, only MSO
sets that contain equations possibly disrupted by faults are important.

▶ Definition 12 (Detectable fault). A fault f is structurally detectable in a set of equations
Σ if f is in the overdetermined part Σ+.

▶ Definition 13 (Fault support). The fault support FΣ′ of a set of equations Σ′ ⊆ Σ is defined
as the set of faults that are involved in the equations of Σ′ [8].

A special class of MSO sets can be defined: FMSO sets (Fault-Driven Minimal Structurally
Overdetermined) that are MSO sets with a non empty fault support [8].

▶ Definition 14 (FMSO set). A subset of equations Σ′ ⊆ Σ(z, x, f) is an FMSO set of
Σ(z, x, f) if (1) FΣ′ ̸= ∅ and φ(Σ′) = 1 that means |Σ′ | = |XΣ′ | + 1, (2) no proper subset of
Σ′ is overdeterminated.

Therefore, if there exists a FMSO set in Σ which contains the fault f , then f is detectable
in Σ. Those special MSO sets are candidates as residual generators as they contain just the
necessary redundancy and their fault support is not empty.

4 MTES

4.1 Motivation

MSO sets can be used to obtain residual generators, but are they all useful ? Let us take the
previous system Σ3 and add faults of the set F = {f1, f2, f3} (cf. Table 5).

DX 2024
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Table 5 System Σ3 with faults.

x1 x2 x3

e1 × f1

e2 × × × f2

e3 ×
e4 × ×
e5 ×
e6 × f3

For this example, there are 8 MSO sets given in Table 6.

Table 6 MSO sets and their fault support for Σ3 with faults.

MSO sets Faults
MSO1 {e3, e5} {∅}
MSO2 {e2, e4, e5, e6} {f2, f3}
MSO3 {e2, e3, e4, e6} {f2, f3}
MSO4 {e1, e4, e6} {f1, f3}
MSO5 {e1, e2, e5, e6} {f1, f2, f3}
MSO6 {e1, e2, e4, e5} {f1, f2}
MSO7 {e1, e2, e3, e6} {f1, f2, f3}
MSO8 {e1, e2, e3, e4} {f1, f2}

MSO2 and MSO3 as well as MSO6 and MSO8 have the same fault support {f2, f3}
and {f1, f2}, respectively. This means that the generated residuals would be sensitive to
the same faults. Note also that if the equations of MSO2 and MSO3 are put together, the
fault support of the resulting subset of equations remains {f2, f3}. In addition, some MSO
sets have a non minimal fault support like MSO5 whose fault support is {f1, f2, f3} that
includes the fault support of MSO3 and MSO4. This indicates that it is not necessary to
compute all the MSO sets to obtain a parsimonious set of residual generators guaranteeing
maximal diagnosability.

The above remark tells us that we need to change the perspective and focus on the
possible fault supports of MSO sets rather than the MSO sets themselves. Hence the
following definitions from [5] focusing on fault supports.

▶ Definition 15 (Test Support (TS)). Given a model Σ and a set of faults F , a subset of
faults ζ ⊆ F is a TS if there exists a PSO set Σ′ ⊆ Σ such that FΣ′ = ζ.

▶ Definition 16 (Minimal Test Support (MTS)). Given a model Σ, a test support is an MTS
if no proper subset is a test support.

With the two above definition, it is now necessary to identify the subset of equations that
correspond to TSs and MTSs.

▶ Definition 17 (Test Equation Support (TES)). A PSO set Σ is a TES if (1) FΣ ̸= ∅ and
(2) for any PSO set Σ′ such that Σ′ ⊋ Σ, it holds that FΣ′ ⊋ FΣ.

▶ Definition 18 (Minimal Test Equation Support (MTES)). A TES Σ is an MTES if there is
no subset of Σ that is also a TES.
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The idea of MTES is to identify the PSOs with maximal number of equations that have a
given test support [5]. In other words, for a given test support ζ, it is important to identify
the maximal set of equations Σ′ = Σ′+ such that FΣ′ = ζ, thus avoiding that two MTES
have the same TS.

It is also important to pay attention to the minimality property, i.e., to identify MTES
instead of simply TES. Indeed minimality avoids obtaining redundant residual generators.
This can be proved by showing that, considering the set of MTES for a given system, an ARR
generated from a given MTES is never redundant with respect to the set of ARRs generated
from the other MTESs. This statement holds true based on the following proposition, which
is proved in [3], specifically due to the second condition.

▶ Proposition 19. A given ARRi is redundant with respect to a set of ARRs, i ∈ I, j /∈ I,
if and only if there exists I ′ ⊆ I such that:
1. ∀z(observations), if all ARRis , i ∈ I ′, are satisfied by z, then ARRj is satisfied by z.
2. The fault support of ARRj contains the fault support of each ARRi, i ∈ I ′:⋃

i∈I′

FARRi
⊆ FARRj

.

In summary, the fault supports of the MTESs are sufficient to guarantee maximal
diagnosability because they correspond to all the possible MTS, i.e. to all the fault supports
of possible MSOs. Every MTES has a different MTS and no MTES is redundant.

Interestingly, the set of MTES is much smaller than the set of MSO sets, which results in
computation time saving.

4.2 MTES based diagnosis process
The following steps, applied on system Σ3 illustrate the process of diagnosis based on MTES.

Step 1: Specification
The first step involves defining the isolability requirements for the faults in the system.

The pair of faults that need to be isolated are specified, for example:
I1: isolate f1 from f2.
I2: isolate f1 from f3.
I3: isolate f2 from f3.

Step 2: Compute the set of MTES
MTESs are computed for the system Σ3:
MTES1 = {e2, e3, e4, e5, e6} with corresponding MTS {f2, f3} and φ(MTES1) = 2.
MTES2 = {e1, e3, e4, e5, e6} with corresponding MTS {f1, f3} and φ(MTES1) = 2.
MTES3 = {e1, e2, e3, e4, e5} with corresponding MTS {f1, f2} and φ(MTES1) = 2.

Step 3: Find the subset of MTES that satisfies all the isolability specifications
In this step, we check if there exists a Minimal Hitting Set that satisfies the isolability

conditions defined in Step 1. We examine whether each specification can be satisfied by
finding a set of equations where the faults can be isolated according to the conditions.

For I1 (isolate f1 from f2), an MTES whose corresponding MTS includes f1 and not f2
is required. It could be MTES2.

DX 2024
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For I2 (isolate f1 from f3): an MTES whose corresponding MTS includes f1 and not f3
is required. It could be MTES3.
For I3 (isolate f2 from f3): an MTES whose corresponding MTS includes f2 and not f3
is required. MTES3 also works.

Step 4: Find an FMSO within each selected MTES
MTES2 includes only FMSO4 that can be used as residual generator.
MTES3 includes FMSO6 and FMSO8, so any of those could be used as residual
generator.

4.3 Algorithm

An algorithm for computing the set of MTES is presented in [5]. The concept behind this
algorithm is similar to the one used to find MSO sets. In each step, an equation is removed
from the model, and the overdetermined part of the remaining set is recalculated. The main
difference is that instead of removing all equations successively (or equivalence classes in
the improved version), only equations associated with faults are removed. By doing so, the
fault support of the resulting set decreases at each iteration, aligning with our goal of finding
minimal fault supports.

The algorithm begins with a TES (the largest PSO set, ensuring no larger PSO set has
the same fault support), and remains within the class of TES by progressively removing
the fault-carrying equations. Thus, as these equations are removed, it is ensured that the
resulting set continues to satisfy the properties of a TES.

The stopping condition for this algorithm is as follows: a TES Σ is considered an MTES
if all fault-carrying equations in Σ belong to the same equivalence class. Indeed, when
this condition is met, if the process goes on by removing a fault-carrying equation and
recalculating the overdetermined part, the resulting equation set will no longer contain any
fault-carrying equations. This stopping condition is tested at each iteration, and when it is
satisfied, the TES Σ is confirmed as an MTES.

Another stopping condition is given in [5]. A TES Σ′ ⊆ Σ is an MTES if and only if
φ(Σ′) = φ((Σ \ Σf )+) + 1, with Σf the set of equations in Σ affected by faults. (Σ \ Σf )+

represents the equations that can be added without modifying the fault support, while
remaining within the class of PSO sets. If we take any TES, it can be extended with the
equations from (Σ \ Σf )+. The consequence of this condition is that all MTES have the
same structural redundancy (for Σ3, the 3 MTES have structural redundancy equal to 2).
Thus, either all MTES are MSO sets, i.e., their structural redundancy is 1, or none of them
is exactly an MSO set because their structural redundancy is more than 1, in which case
MTES obviously include several MSO sets. If all the equations of a system are affected by
faults, then MTES are exactly MSO sets. The advantage of using this condition is that it
avoids performing a Dulmage-Mendelsohn decomposition at each step.

If nf is the number of fault-carrying equations, the number of nodes traversed by the
search algorithm is bounded by Equation (3).

φ−1∑
k=0

(
nf

k

)
. (3)

Running example: We now apply the algorithm step by step on the illustrative example
Σ4 presented in Table 7.
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Table 7 Illustrative example Σ3.

x1 x2 x3 x4 x5

e1 × × × f1

e2 × ×
e3 × f2

e4 × f3

e5 × ×
e6 ×
e7 ×
e8 ×
e9 ×

First, we consider the entire set. It is a PSO set, so there is no need to compute the
overdetermined part. The equivalence classes are: {e1, e5, e8}, {e2, e6}, {e3}, {e4}, {e7}, {e9}.
The stopping condition is not verified because all fault-carrying equations are not in the
same class. Thus, {e1, e2, e3, e4, e5, e6, e7, e8, e9} is only a TES, but not a MTES. Then,
an equivalence class containing a fault (f1) is removed. The set {e1, e5, e8} is eliminated
(equivalent to removing e1 and then computing the overdetermined part). The remaining set
is {e2, e3, e4, e6, e7, e9}. The equivalence classes are as follow: {e2, e6}, {e3}, {e7}, {e4, e9}.
Since the stopping condition is still not met, we proceed by removing the equivalence class
containing f2. The resulting set is {e2, e4, e6, e7, e9}. This time, the stopping condition is
satisfied (only one fault remaining), MTES1 is identified. The same process is applied to
find all the MTES.

5 Summary

To sum up the previous sections, MSO sets are sets of equations in a model where the number
of equations exceeds the number of unknowns by one. This overdetermination is minimal,
meaning that if any equation was removed, the set would no longer be overdetermined.

MSO sets are particularly useful in fault detection as they provide the basis for producing
residual generators. They retain the necessary and sufficient redundancy. However, as seen
in the previous sections, relying on the generation of MSO sets to generate the residual
generators that guarantee maximal diagnosability has some drawbacks. The first point is
that some MSO sets may not be sensitive to faults, making those irrelevant for fault detection
and diagnosis. Second, even if they can be generated systematically, finding all MSO sets
can be computationally expensive for large systems. Last but not least, they do not provide
any information about fault isolation.

FMSO sets are MSO sets but they only retain MSO sets with non-empty fault support,
so they are all relevant for fault detection and isolation. They are less numerous than MSO
sets, which reduces significantly computation time. However, as shown in Section 4.1, several
FMSO sets may have the same fault support and some may be redundant.

By focusing on fault supports rather than specific sets of equations, TESs effectively
identify exactly those fault supports that correspond to all the possible MSO sets. MTESs
gather all the equations from which all the FMSO sets with the corresponding fault support
can be generated. As a result, MTESs inherently address the problem of test selection. In
addition, generating MTES is obviously less computationally demanding than generating
MSO sets or FMSO sets. Note however that, once MTESs are obtained, one FMSO set must
be extracted for each of them to achieve maximal diagnosability.
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One should note that for some problem, in particular test selection for distributed systems,
having all the MSO sets at hand is an advantage because subsystem interconnections express
in terms of equations so equation subsets are as important as their fault supports [1, 7].

Table 8 gives a summary of the comparison of MSO sets, FMSO sets, and MTES.

Table 8 Summary comparison of MSO sets, FMSO sets, and MTES.

Aspect MSO sets FMSO sets MTES
Diagnosis target residual generation fault driven residual

generation
isolability driven re-
sidual generation

Scalability too complex for large sys-
tems

too complex for large
systems

good scalability

6 Application of the concepts on a real example: the ADCS

In this section, all the concepts discussed earlier are explored through a realistic example:
the Attitude Determination and Control System (ADCS) of a Low Earth Orbit satellite [2].

6.1 Structural model of the ADCS

In this example, the dynamics of a satellite’s motion are modeled using equations that
describe the behavior of torque and angular velocity. The total torque acting on the satellite,
T , is the sum of the torques generated by the magnetorquers, reaction wheels, and external
disturbances. The rotational dynamics are influenced by the satellite’s moment of inertia I
and angular velocity ω.

The global system is divided into 2 main parts: the Attitude Determination System (ADS)
and Attitude Control System (ACS). The ADS uses a combination of gyroscopes and vector
sensors (such as sun and star sensors) to estimate the satellite’s attitude state, including
pitch, roll, and yaw angles, along with their corresponding rates. The resulting state vector
for the satellite is X = [ψ, θ, ϕ, ψ̇, θ̇, ϕ̇]. These estimates are then fused together to provide
feedback to the ACS, which controls actuators like reaction wheels and magnetorquers to
adjust the satellite’s attitude.

The structural model of the satellite’s ADCS is enhanced by incorporating fault informa-
tion directly into the system’s equations, with faults modeled as signals. The model considers
faults affecting the rate and vector sensors of the ADS (respectively frs and fvs), as well
as the reaction wheels of the ACS (frw), including various types such as hard, soft, and
intermittent faults. Each fault can affect all three axes of the system (x, y, and z).

The ADCS’s structural model includes 42 equations including 42 unknowns variables, 15
known variables, and 9 faults that appear as parameters in the equations. The majority of
these equations are based on three behavioral equations that address the system dynamics
along the x, y, and z axes. The biadjacency matrix of the system is given by Figure 3. The
links between relations and unknown variables are represented in blue, those with faults in
red and those with known variables in black.
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Figure 3 Biadjacency matrix of the ADCS system.

6.2 Results
Using the “Fault Diagnosis Toolbox”2, 2448 MSO sets are found for this model, but only 9
MTES. There are also 2448 FMSO sets, as each MSO set has a non empty fault support.

In our example, we have ne = 42, nf = 9, and φ = 9. Applying Equation 3 results in a
maximum of 511 nodes traversed during the search for MTES, whereas applying Equation 2
gives a maximum number of nodes exceeding 109. These values clearly illustrate the difference
in complexity between the two algorithms, with the MSO algorithm requiring the traversal of
far more nodes. However, these are only upper bounds, as in practice, the equations can be
grouped into equivalence classes, significantly reducing the actual number of nodes traversed
by the algorithm. Table 9 presents the computation time required to compute both the MSO
sets and the MTES. It shows that the computation time for MSO sets is significantly higher
than for MTES in large systems.

Table 9 Computation time of both algorithms.

Algorithm Calculation time
MSO algorithm 0.534 s

MTES algorithm 0.239 s

It is clear that the 2448 MSO sets for this model are not all useful for the generation of
residuals. MSO sets with empty fault supports are not interesting, as they do not contribute
to fault driven residual generation. This is why we focus on FMSO sets, which contain faults
and are thus more relevant for diagnosis. However, in this case, all MSO sets contain faults,
making the use of FMSO sets less critical. There must still be some MSO sets with identical
fault supports or non-minimal ones. The MTES of this model, along with the associated
fault supports, are given in Table 10.

2 https://faultdiagnosistoolbox.github.io/
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Table 10 MTES and their fault support for the ADCS example.

MTES Fault support
MT ES1 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e24, e30} {fvsz}
MT ES2 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e23, e29} {fvsy}
MT ES3 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e28} {fvsx}
MT ES4 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e27} {frsz}
MT ES5 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e26} {frsy}
MT ES6 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e25} {frsx}
MT ES7 {e6, e9, e12, e15} {frwz}
MT ES8 {e5, e8, e11, e14} {frwy}
MT ES9 {e4, e7, e10, e13} {frwx}

For this example, all these MTES are MSO sets. These are the MSO sets with the
minimal fault supports, containing the largest number of equations. The other MSO sets are
not necessary as they have fault supports that are unions of these, or they can be expanded
with other equations without altering the fault support while still remaining MSO sets. These
9 MTES are necessary and sufficient to achieve maximal isolability as their fault support
only includes one fault.

7 Conclusion

In this paper, a thorough examination and comparison of key concepts in model-based fault
diagnosis is provided, specifically focusing on the structural analysis concepts named the
Minimally Structurally Overdetermined (MSO) sets, Fault driven Minimally Structurally
Overdetermined (FMSO) sets, and Minimal Test Equation Supports (MTES).

This article conducts a detailed analysis of the rules, applications and interrelationships
of MSO sets, FMSO sets and MTESs, providing insights into their respective strengths
and limitations. It then systematically examines the algorithms used to identify MSO and
MTES sets, discussing their computational efficiency and impact on diagnosis capabilities.
The final part of this work applies these concepts to a practical example, demonstrating
their effectiveness in a real-world scenario. More specifically, the algorithms are applied to
the Attitude Determination and Control System (ADCS) of a satellite in low Earth orbit,
and the structural model, algorithmic complexity involved and the possibility of diagnosing
faults are studied. This results highlight the practical usefulness of MTES in reducing the
computational load while maintaining robust fault isolation capabilities.
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