
Property Learning-Based Fault Detection for
Liquid Propellant Rocket Engine Control Systems
Andrea Urgolo1 #

Silicon Austria Labs GmbH (SAL), Graz, Austria

Ingo Pill #

Institute of Software Technology, Graz University of Technology, Austria

Günther Waxenegger-Wilfing #

University of Würzburg, Germany
German Aerospace Center (DLR), Lampoldshausen, Germany

Manuel Freiberger #

Silicon Austria Labs GmbH (SAL), Graz, Austria

Abstract
Accommodating the dynamic and uncertain operational environments that are typical for aerospace
applications, our work focuses on robust fault detection and accurate diagnosis in the context of
Liquid Propellant Rocket Engines. To this end, we employ techniques based on learning temporal
properties which are then dynamically adapted and refined based on observed behavior. Leveraging
the capabilities of genetic programming, our methodology evolves and optimizes temporal properties
that are validated through formal methods in order to ensure precise, interpretable real-time fault
monitoring and diagnosis. Our integrated strategy enables us to enhance resilience, safety and
reliability when operating rocket engines – due to the proactive detection and systematic analysis
of operational deviations before they would escalate into critical failures. We demonstrate the
effectiveness of our method via a rigorous evaluation across varied simulated fault conditions, in
order to showcase its potential to significantly mitigate the fault-related risks in aerospace systems.

2012 ACM Subject Classification Computing methodologies→Machine learning; Computer systems
organization → Embedded and cyber-physical systems

Keywords and phrases Machine learning, Runtime verification, Property learning, Monitoring, Fault
detection, Diagnosis, Genetic programming, Explainable AI

Digital Object Identifier 10.4230/OASIcs.DX.2024.15

Funding This project has been financially supported by the Austrian Research Promotion Agency
(FFG) under grant no. 897989.

1 Introduction

With the visionary goal to become the first climate-neutral continent by 2050 [17], the
European Union claims a global leadership role in the world-wide sustainability efforts. In
the European aerospace sector, we still see a strong need for new technology that allows us
to contribute to implementing this ambitious agenda. This need naturally fosters the advent
of reusable rocket technology, such as to minimize the ecological footprint and maximize
resource utilization. SpaceX’s Falcon 9 [32] exemplifies the feasibility of reusable launch
vehicles even today and illustrates a tangible path towards a more sustainable space sector.

The deployment of reusable rocket engines requires precise and dynamic control algorithms
for Liquid Propellant Rocket Engines (LPREs) that need to be capable of compensating
large and systematic deviations from expected behavior. In particular, intelligent control

1 Corresponding author

© Andrea Urgolo, Ingo Pill, Günther Waxenegger-Wilfing, and Manuel Freiberger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024).
Editors: Ingo Pill, Avraham Natan, and Franz Wotawa; Article No. 15; pp. 15:1–15:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrea.urgolo@silicon-austria.com
https://orcid.org/0000-0002-4217-9980
mailto:ingo.pill@gmail.com
https://orcid.org/0000-0002-8420-6377
mailto:guenther.waxenegger@dlr.de
https://orcid.org/0000-0001-5381-6431
mailto:manuel.freiberger@silicon-austria.com
https://orcid.org/0000-0002-8643-9609
https://doi.org/10.4230/OASIcs.DX.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2 Property Learning-Based Fault Detection

approaches must (a) choose the operating point considering component wear (life extension),
(b) robustly address internal and external disturbances, and (c) enable a seamless transition
between alternate operation modes – during different flight phases, but also to mitigate
issues.

Such intelligent control stands in contrast to classic rocket control designs though. Those
rely mostly on open-loop control or, at best, steady-state controllers (see [31] for an overview)
– requiring us to evolve our current concepts. Achieving intelligent control in a resource-limited
LPRE scenario naturally entails the integration of resource-optimal, quick, and resilient
monitoring and diagnosis systems. These systems must provide critical data by tracking
component wear, detecting anomalies, and identifying system faults that are paramount for
a comprehensive understanding of the current state of the entire system. This awareness is
essential for enabling effective closed-loop control with fault management capabilities.

In this paper, we focus on monitoring LPREs and investigate the applicability of learning
monitorable properties for fault detection. To that end, we develop and evaluate a property
learning-based approach for fault detection and isolation, leveraging temporal logic and
genetic programming techniques. Our contributions are as follows:

a multi-objective genetic programming approach for automatically learning fault detec-
tion/isolation properties in Signal Temporal Logic (STL),
its application to monitoring and diagnosing LPREs, enabling the detection and isolation
of various fault types, including sensor drifts, offsets, and mechanical failures,
a method for exploiting virtual sensing in the fault detection/isolation process,
a comprehensive evaluation of our technology.

We structured our presentation as follows: We start with an introduction of preliminaries
in Sec. 2. After discussing our approach and contributions in Sec. 3, we introduce the LPRE
control application (domain) in Sec. 4, in which we furthermore discuss our experiments
and evaluate the effectiveness of our methodology. A detailed analysis of the strengths and
weaknesses is provided in Sec. 5, followed by a discussion of related work in Sec. 6. Finally,
we summarize our main findings as well as outline future research directions in Sec. 7.

2 Preliminaries

In this section, let us introduce essential concepts and our notation. Covered topics include
the Signal Temporal Logic and the basics of monitoring as well as evolutionary algorithms.

2.1 The Signal Temporal Logic STL
Similar to the well-known Linear Temporal Logic (LTL) [30], Signal Temporal Logic (STL) [23]
enhances propositional logic with temporal modalities that allow us to reason about the future.
Unlike LTL, which requires the discretization of signals and time, STL allows direct reference
to continuous-valued signals and continuous real-time in formulae, making it particularly
interesting for real-time monitoring and analyzing signals from cyber-physical systems (CPS).
By leveraging STL, we can define and monitor nuanced temporal properties that are critical
for assessing a system’s behavior, ensuring that any deviation from the expected performance
is detected promptly. This is essential for maintaining the safety and reliability of rocket
engines in dynamic conditions, where even minor anomalies can have significant consequences.

Before defining a trace as aggregation of observed signals, we briefly introduce parts of
our notation. Let ⊤ and ⊥ denote the constants True and False, and let ¬ denote negation.
A signal τ defines for each point in time 0 ≤ t ≤ T (τ) a real value, where the temporal

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:3

horizon T (τ) of signal τ may be finite (so that the execution ends at T (τ)), or infinite. For
continuous time, some signal τ can thus be described by a function fτ : R+

0 → R that maps
a (non-negative) point in time to some (real) signal value. While STL can operate in a
continuous domain, practical implementations often discretize time or restrict the signal
values to rational numbers for computational reasons.

In our work, we will consider (clocked) time series data with a finite temporal horizon –
which we will also refer to as a finite trace. Now, let us furthermore assume that we observe
for each point in time all the signal values in a single vector π, such that we refer with (a)
Π to the entire trace (so to say the sequence of vectors for the individual time steps), (b)
π = Π(t) to the signal vector at time t, (c) Πi to the trace of signal i, (d) Πi(t) to the value of
signal i at time step t, and (e) Π[j, k] to a partial trace that is restricted to the time interval
[j, k]. For a finite trace, we can thus define signals as finite sequences of signal values (one per
T (Π) + 1 time steps), or as a function mapping each element in the sequence [0, . . . , T (τ)] to
a value in R. Hereafter, for convenience, the length of a signal τ will be denoted by len(τ),
equal to T (τ) + 1. For an infinite temporal horizon and clocked time, we can define signals
and traces either as functions mapping from N to R or R|τ | respectively, or as finite sequences
with a finite stem and an infinite loop (k,l loops) like in model-checking [12]. With this
notation, let us now define the syntax and semantics of STL:

▶ Definition 1. Let µ = f(Π(t)) > c be an atomic predicate that compares a function over
the signal values for some time step t to a real-valued constant c. With φ and ψ being STL
formulae, and I being one of the intervals (a, b), (a, b], [a, b), or [a, b] for two points in time
such that a ≤ b, we can define the syntax of STL inductively as

φ ::= ⊤ | µ | ¬φ | φ ∧ ψ | φ UI ψ

▶ Definition 2. Let It be the interval of an until operator applied at time step t. The
satisfaction of an STL formula φ as of Def. 1 by a trace Π at time t is then defined as follows

Π(t) |= µ iff f(Π(t)) ≥ c

Π(t) |= ¬φ iff ¬(Π(t) |= φ)
Π(t) |= φ ∧ ψ iff Π(t) |= φ ∧ Π(t) |= ψ

Π(t) |= φ UI ψ iff ∃t′ ∈ It s.t. Π(t′) |= ψ ∧ ∀t′′ ∈ [t, t′] : Π(t′′) |= φ

As with LTL, we can introduce syntactic sugar that does not increase STL’s expressiveness
but improves its usability and intuitiveness. Prominent examples include the or φ ∨ ψ =
¬(¬φ∧ ¬ψ), exclusive or φ⊕ψ = φ∧ ¬ψ ∨ ¬φ∧ψ, and implication φ ⇒ ψ = ¬φ∨ψ on the
logic level, and temporal operators like finally a.k.a. eventually for denoting FI φ = ⊤ UI φ,
or globally a.k.a. always for denoting GI φ = ¬(FI ¬φ).

Let us stress that for our definitions we adopt a simplified view of having only a scalar
value per signal. It is easy to see that we can easily accommodate also multiple values for one
signal (this does not change τ), or modify the definitions such that signals can take values
other than reals numbers (affecting only µ); e.g., a 64-bit data signal interpreted at the logic
or voltage level, can be split into individual signals for each data line. Please note that Def. 2
offers very simple STL semantics, with alternative ones discussed in the following subsection.

2.1.1 Monitoring STL: Bounded STL Formulae
Traditional offline verification methods, such as model checking or testing, enable comprehens-
ive analysis of a system’s behavior. Model checking, for instance, allows us to prove or falsify
properties expressed in some temporal logic for a system’s entire behavior. Testing involves

DX 2024

15:4 Property Learning-Based Fault Detection

stimulating a system with specific inputs (defined in test cases) and observing the resulting
behavior. In either case, we investigate complete executions or runs, i.e., the observable part
coined as trace. However, when monitoring a system at run-time, we only have a finite prefix
of an execution available. In contrast to implementations of a test oracle [29], we thus have
to implicitly or explicitly consider the entire set of executions that extend this prefix.

Consequently, monitoring not only entails different semantics of expressed properties [5,
29], but also presents the challenge that not all properties are indeed monitorable. A property
is positively monitorable if any satisfying trace can conclusively demonstrate this through a
finite prefix, while it is negatively monitorable if any violating trace provides such evidence
within a finite prefix. Safety properties, for instance (see [3] for a discussion of safety and
liveness), are negatively monitorable because any trace showing a bad event violates the
property, meaning that such events should never occur. Conversely, co-safety properties are
positively monitorable since a finite trace can affirm a positive event within its scope.

As for LTL [5], there are alternative semantics that are of special interest for monitoring
purposes, like the following quantitative one taken from [14]. The idea is that atomic
predicates do not evaluate to ⊤ or ⊥, but to a real value, i.e., f(Π(t)) − c from µ in Def. 1,
propagated along the entire formula. These quantitative semantics provide a robustness
measure ρ, which indicates the degree to which a signal satisfies a formula at a given time.

▶ Definition 3. The robustness ρ of an STL formula φ for a trace Π at time t is defined as:

ρ(⊤,Π, t) = + ∞
ρ(Πi ≥ c,Π, t) = Πi(t) − c

ρ(¬φ,Π, t) = − ρ(φ,Π, t)
ρ(φ1 ∧ φ2,Π, t) = min{ρ(φ1,Π, t), ρ(φ2,Π, t)}
ρ(φ1UIφ2,Π, t) = max

t1∈t+I
min{ρ(φ2,Π, t1), min

t2∈[t,t1)
ρ(φ1,Π, t2)}

With the latter concept outlined, we can now formalize the definition of STL monitoring.

▶ Definition 4. Let X (resp., X̄) be the set of infinite signals (resp., finite signals), and
C(Π), the set of completions of a given finite signal Π ∈ X̄ over {0, . . . , t} ⊂ N, defined as
C(Π) = {Π̂ ∈ X | Π̂(t′) = Π(t′) for all t′ ∈ N, 0 ≤ t′ ≤ t}. STL monitoring is defined by the
function mon : X̄ × STL → ⊤,⊥, ? s.t. mon(Π, φ) returns ⊤ iff Π̂, 0 |= φ for all Π̂ ∈ C(Π),
⊥ iff Π̂, 0 ̸|= φ for all Π̂ ∈ C(Π), equivalent to ρ(φ, Π̂, 0) < 0 for all Π̂ ∈ C(Π), or ? otherwise.

Currently, there are no tools that support the monitoring of unbounded STL formulas
as defined in our work. However, bounded-time STL (bSTL), a specific fragment of STL,
supports monitoring in practical applications [26]. This is achieved by restricting the temporal
modality time interval I in bSTL to finite boundaries, specifically to I = [a, b], where a, b ∈ N
are both finite. bSTL formulas are characterized by a temporal horizon H(ϕ), which quantifies
the maximum future time span necessary to evaluate the truth of the formula. For instance,
the formula ϕ = x ≥ 3 U[0,3] x ≥ 5 has a horizon of 3, indicating that its validation requires
data spanning at least three time units from the initial point of evaluation.

▶ Definition 5. Formally, the bSTL formula’s temporal horizon H : bSTL → N is defined
as: (i) H(⊤) = 0; (ii) H(Πi ≥ c) = 0; (iii) H(¬φ) = H(ϕ); (iv) H(φ1 ∧ φ2) =
max{H(φ1), H(φ2)}; (v) H(φ1 U[a,b] φ2) = b+ max{H(φ1) − 1, H(φ2)}.

Furthermore, to address real-world monitoring scenarios, which require responsive system
behavior analysis where conditions may need to be evaluated at any given point across a
signal, we extend monitoring capabilities to apply to any suffix beyond the horizon.

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:5

▶ Definition 6. bSTL monitoring operates through the function eb-mon : X̄ × bSTL →
{⊤,⊥, ?}, which relies on the function mon from Def. 4, and is defined as:

eb-mon(Π, φ)=
{

? if len(Π) < H(φ) + 1∨
0≤i≤len(Π)−1−H(φ)

mon(Π[i, len(Π) − 1], φ) otherwise

This formulation ensures that a monitor can definitively issue truth values ⊤ or ⊥, or
an undefined verdict ? if the horizon has not yet been reached, thus safeguarding against
premature evaluations. The effectiveness of this extended monitoring is captured by the tool
rtamt [26], which supports practical implementation of bSTL monitoring for both discrete
and dense-time properties, facilitating robust and reliable system evaluations.

Fault detection in system monitoring typically involves identifying anomalies or operational
deviations that could lead to system failures. In the following, the concept of fault detection
grounded on the definitions provided in the existing literature on system verifiability and
monitorability [1, 21], is formalized as it is applied within the scope of our study.

▶ Definition 7. Given a set P of properties formulated in bSTL, a fault is detected on an
execution trace Π ∈ X̄ at a time step i ∈ N if there exists at least one fault property ψ ∈ P
such that the monitoring function eb-mon(Π[0, i], ψ) returns ⊤. Here, X̄ represents the set
of all considered (finite) engine run traces, and Π[0, i] denotes the prefix of the trace Π from
the start up to the i-th time step.

This formalization captures the essence of real-time fault detection by leveraging the
temporal properties specified in bSTL, allowing for the proactive identification and subsequent
handling of system anomalies before they escalate into more severe problems.

2.2 Evolutionary Algorithms
Evolutionary Algorithms (EAs) are population-based metaheuristics inspired by natural
evolution, effectively addressing combinatorial optimization challenges by using historical data
to guide search efforts towards promising areas [16]. These algorithms involve a population
of individuals, each representing a solution to an optimization problem, evaluated through
a fitness function based on adaptation criteria. This fitness may be assessed via single- or
multi-objective approaches, depending on the problem’s complexity. The evolutionary cycle
advances through generations, with a selection mechanism favoring higher fitness individuals
for reproduction. Genetic operations such as crossover and mutation facilitate diversity and
prevent premature convergence by introducing variations. The process iterates until meeting
predefined criteria such as optimal fitness or maximum generation count.

This research specifically utilizes genetic programming (GP), a branch of EAs where
individuals are represented by means of computational trees evolving towards optimal
solutions over successive generations through tree-specific genetic operations. Additionally,
this study leverages multi-objective EAs to optimize multiple objectives simultaneously,
generating diverse Pareto-optimal solutions. This approach enhances solution exploration,
allows customization of the evolutionary process, supporting a detailed investigation into
optimal configurations for the extraction of complex properties in diverse scenarios. The
algorithm used in this study, as previously defined in [7], is implemented through DEAP
(Distributed Evolutionary Algorithms in Python), a versatile framework for rapid prototyping
of EAs [18]. Operationally, two sets containing nominal and anomalous finite traces are
processed, and a bSTL formula is subsequently derived to distinguish between these two
conditions. Below, we present the main implementation characteristics of this algorithm.

DX 2024

15:6 Property Learning-Based Fault Detection

Population and its Initialization. The population within our evolutionary algorithm frame-
work consists of individuals, each represented as a computation tree φ encoding a syntactically
correct bSTL formula. The population is generated using the genHalfAndHalf method from
DEAP, which adheres to guidelines established by Koza [20]. This method ensures diversity
in the tree structures by alternating between generating trees with uniform leaf depths and
trees where leaves may vary in depth.

Nodes of the Computation Tree. In the evolutionary framework, each node within a
computation tree can represent various structural and functional components of a bSTL
formula. Nodes primarily encapsulate constraints such as Πi ≥ c, where Πi is a signal
identifier and c is a constant. They can also represent complex bSTL formulas where the
outermost operator is temporal, for example, φU[a,b]ψ, or Boolean expressions like φ ∨ ψ.
Here, φ and ψ themselves are bSTL sub-formulas, recursively structured as trees within
the main computation tree. Moreover, nodes may embody terminal values crucial for the
construction and evaluation of formulas such as: (i) interval bounds of temporal operators,
expressed as I = [a, b], where a, b ∈ N and a ≤ b; (ii) signal identifiers Πi, with 1 ≤ i ≤ |Π|,
linking the formula directly to the specific components of a multi-dimensional signal; (iii)
constants c, used within constraints, where each c is chosen from the domain Dom(Πi) of
the signal component Πi. To facilitate the dynamic and ephemeral representation of values
such as constants and interval bounds, DEAP employs EphemeralConstants. These are
particularly useful for encoding values that are not fixed but need to be generated anew for
each instantiation of the tree, thus supporting a rich diversity in the evolutionary process.

Crossover. The crossover operation is a key genetic mechanism in evolutionary algorithms,
used to generate new individuals from existing parent solutions. In our implementation,
this process involves a one-point crossover technique facilitated by DEAP’s cxOnePoint
function. This function selects a random node within the computation tree of each parent and
exchanges the subtrees rooted at these nodes, thereby producing two offspring with combined
genetic traits from both parents. To manage the complexity of the resulting computation
trees and prevent bloat – a growth in program size without fitness improvement – a static
height limit of 17 is imposed on the offspring’s computation trees (DEAP’s staticLimit), once
again following Koza’s guideline [20]. If this limit is exceeded, the child is discarded and
replaced by a randomly selected parent. Similarly, the crossover process might occasionally
produce invalid individuals, especially in terms of computation tree’s horizon. Specifically, if
an offspring’s formula φ results in a horizon H(φ) that exceeds the permissible range (i.e.,
H(φ) ≥ len(Π)), this offspring is deemed non-viable and replaced by a randomly chosen
parent. This strategy ensures that only viable solutions with valid and effective genetic
configurations persist in the population for further evolutionary processing.

Mutation. Mutation in evolutionary algorithms introduces variability and helps explore
new genetic landscapes. In our implementation, two mutation operators are employed,
each selected with equal probability to modify individuals within the population. The first
operator, mutNodeReplacement, targets a randomly chosen node in the computation tree of an
individual and replaces it with another node that maintains the tree’s syntactical correctness.
The second operator, mutEphemeral, is designed to alter the value of a single constant in the
individual’s tree. Consistent with our approach to manage program complexity and avoid
bloat, the same staticLimit is applied to the height of the trees after mutation, mirroring
the constraints imposed during the crossover process. Post-mutation, it is crucial to verify

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:7

the validity of the resulting individual. If the individual’s horizon or height does not align
properly with the problem’s constraints, the mutation is considered unsuccessful, and the
original pre-mutation individual is retained in the population, hence preserving the overall
quality and relevance of the evolving population.

Selection. To foster diversity within the population, our approach utilizes the elitist selection
strategy as outlined in NSGA-III [13]. This method incorporates reference points and niche
preservation principles, ensuring a diverse set of solutions by adequately covering all areas of
the Pareto front. For a detailed explanation of these concepts, readers are directed to the
foundational work by Deb et al. [13]. Finally, before mutation and crossover, elite individuals
from the previous generation are selected to form the elite set. This set is then added
to the next population, ensuring the persistence of high-performing individuals and their
contribution across the evolutionary process.

Termination Criteria and Extraction of Final Solutions. The termination criteria for our
evolutionary algorithm are twofold. First, an upper limit is set on the number of generations,
a standard practice in evolutionary computations to ensure the process concludes in a timely
manner. Second, we employ an early stopping strategy based on the hypervolume indicator.
This measure quantifies the volume covered by the Pareto front relative to a reference point
and gauges the diversity and quality of the solutions [8]. Termination occurs if there is
no improvement in the hypervolume over a predetermined number of generations. Once
the evolutionary process is completed, the final solutions are extracted by analyzing the
Pareto front. Initially, we filter this front to retain only those individuals whose formula φ
achieves an accuracy over 0.5, thereby outperforming a random classifier. Among these viable
solutions, the individual contributing most significantly to the hypervolume – indicative of
its excellence in diversity and fitness – is selected for output.

Algorithm Hyperparameters. The configuration of hyperparameters for the evolutionary
algorithm (EA) utilized in this study was methodically determined through a grid search
approach, conducted on a synthetic dataset of binary labeled bSTL traces. These traces were
distinctively marked by a diverse assortment of formulas, representing two separate classes.
The optimal hyperparameters were selected as follows: population size was set at 100, after
evaluating a range from 50 to 1000; crossover probability was established at 0.7, with tested
values ranging from 0.5 to 0.8; mutation probability was dynamically set to 0.5/ 2

√
num_gen,

encouraging robust initial exploration of the search space, which tapers off to enhance
exploitation of promising solutions as generations progress; for this hyperparameter values
between 0.3 and 0.6 were tested; maximum generations was conservatively capped at 500
to ensure computational feasibility while allowing ample evolution within the population;
hypervolume early stopping was activated after 25 generations without improvement, with the
threshold tested at intervals from 10 to 50 generations; elite rate was set at 0.05, determining
the size of the elite set as 0.05 times the population size. This parameter governs the
proportion of the population considered elite, influencing the selection process by favoring
individuals associated to a higher hypervolume for reproduction. Additionally, a critical
hyperparameter specific to this EA implementation, which leverages bSTL and rtamt, is the
max horizon. This parameter intuitively sets an upper boundary h on the horizon of the
formulas explored by the EA, leading to the following implications: formulas are restricted to
capturing phenomena that extend no more than h+ 1 time points; experimental observations
have shown that the computational demand of rtamt increases more than linearly with

DX 2024

15:8 Property Learning-Based Fault Detection

the horizon length of a formula. For the purposes of expediting experimentation, which
includes multiple runs to gather statistically significant results, the max horizon was set
to 15. Although this may appear restrictive, it remains adequate for extracting significant
and effective properties from the data, while also adhering to latency requirements typically
considered for control systems in LPREs. In more general applications, the appropriate max
horizon should be determined by domain experts, considering the aforementioned factors.

3 Material and Methods

Let us now describe our genetic programming-based methodology for learning STL properties
that are capable of distinguishing between nominal and anomalous conditions, as well as the
salient characteristics of the simulated dataset employed in our evaluation.

3.1 Our STL Property Learner
As outlined in the introduction, we use a genetic programming-based property learner,
building on previous work discussed in Section 2.2. We extend this approach by employing a
multi-objective fitness function that we define as follows.

To evaluate an individual in the population, the set of STL traces X is first “partitioned”
into nominal (Xneg) and anomalous (Xpos) traces. This partitioning is necessary to distinguish
between normal and faulty behavior, enabling the algorithm to effectively learn and optimize
properties that are sensitive to anomalies while minimizing false positives from nominal traces.
A multi-objective fitness function is then defined by using the rtamt monitoring algorithm
for bSTL. Formally, our first objective measures how good a formula φ is in discriminating
between nominal and faulty behavior traces.

▶ Definition 8. For each trace Π ∈ X and each formula φ, the numerical counterpart
of eb-mon(Π, φ) is the function NUM : {⊤,⊥, ?} → {0, 1} s.t. NUM(eb-mon(Π, φ)) =
1 if eb-mon(Π, φ) = ⊤, or 0 otherwise.

▶ Definition 9. The first objective measure, referred to as accuracy, is defined as follows:

Acc(Xneg,Xpos, φ) =

∑
Π∈Xneg

1 −NUM(eb-mon(Π, φ)) +
∑

Π∈Xpos

NUM(eb-mon(Π, φ))

|Xneg| + |Xpos|

It is worth noting that, in order to maximize Acc(Xneg,Xpos, φ), a formula φ should evaluate
to ⊥ on the nominal behavior traces and to ⊤ on the anomalous ones.

The second objective measures the robustness of the formula (normalized in the [0, 1]
interval) by means of bSTL quantitative semantics. As a preliminary step, at the beginning
of the execution of the genetic algorithm, every signal in X is normalized in the [0, 1] interval
so that ρ ranges between −1 and 1. This step is handled implicitly and it does not alter
the constant value c of constraints Πi ≥ c in the generated output formula, which are still
represented with their raw, non-normalized value.

▶ Definition 10. This second objective, the robustness, is defined as follows:

Rob(Xneg,Xpos, φ) =

|Xneg| + |Xpos| −
∑

Π∈Xneg

max
0≤i≤len(Π)−1−H(φ)

{ρ(φ,Π, i)}

+
∑

Π∈Xpos

min
0≤i≤len(Π)−1−H(φ)

{ρ(φ,Π, i)}

2 · (|Xneg| + |Xpos|)

The third objective measures the recall of the formula, denoted as Rec, which quantifies
the ability to correctly identify all anomalous traces.

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:9

▶ Definition 11. The recall is calculated as follows:

Rec(Xpos, φ) =

∑
Π∈Xpos

NUM(eb-mon(Π, φ))

|Xpos|

In order to optimize Rec(Xpos, φ), the formula φ should evaluate to ⊤ for as many traces in
Xpos as possible, effectively maximizing the detection of anomalous behavior.

The fourth objective measure, the specificity, evaluates the ability of a formula φ to
accurately reject anomalous behavior in nominal traces.

▶ Definition 12. The specificity is defined as follows:

Spec(Xneg, φ) =

∑
Π∈Xneg

1 −NUM(eb-mon(Π, φ))

|Xneg|

This measure is crucial for ensuring that φ maintains a high rejection rate of anomalous
conditions in traces classified as nominal, thereby minimizing false positives. The ideal
outcome for Spec(Xneg, φ) is a value close to 1, indicating that most nominal traces are
correctly identified as such by φ.

The fifth objective measure, the parsimony, emphasizes the simplicity of the derived
formulas, aiming to minimize their complexity.

▶ Definition 13. The parsimony measure is defined as follows:

Pars(φ) = 1 − height(φ)
max height

In this context, the function height(φ) takes a bSTL formula φ and returns a natural
number in N+ representing the height of the formula’s computational tree. The term max
height refers to a predefined static limit on the height of the computational trees within
our genetic programming algorithm. This objective aims to minimize the complexity of
the formulas by favoring those with shorter computational trees, thereby enhancing the
understandability and efficiency of the derived models.

The sixth objective is the responsiveness which evaluates the promptness of a formula φ
in reacting to changes in behaviors. Responsiveness is crucial for ensuring that the formula
not only discriminates and measures robustly but also reacts in a timely manner to deviations
from nominal behavior.

▶ Definition 14. The responsiveness is formally defined as follows:

Resp(φ) = 1 − H(φ)
max horizon

Here, H(φ) represents the horizon of the formula φ, and max horizon the maximum horizon
considered as defined in Def. 5. This metric aims to maximize the timeliness of the response
by minimizing the horizon length relative to the maximal allowed horizon, thereby ensuring
that φ is both effective and efficient in signaling anomalies.

To conclude, the seventh objective, the detection timeliness measure, quantifies the
relative delay in detecting the farthest anomaly within the anomalous traces in Xpos. This
measure is critical in assessing the timeliness of φ in identifying anomalies, particularly in
systems where detection delays may compromise functionality or safety.

▶ Definition 15. Formally, the detection timeliness is defined as follows:

Time(Xpos, φ) = 1 −
max

Π∈Xpos

{dect_point(Π, φ)}

max
Π∈Xpos

{len(Π)}

DX 2024

15:10 Property Learning-Based Fault Detection

Figure 1 Simulated nominal run values for the engine under standard starting conditions.

In this definition, the detection point function, dect_point(Π, φ), determines the earliest
time point within a trace Π at which the formula φ is satisfied.

▶ Definition 16. The detection point is calculated using the robustness measure ρ as follows:

dect_point(Π, φ)= min
0≤i<len(Π)

({i ≥ 0 | ρ(φ,Π, i) ≥ 0} ∪ {len(Π)})

To maximize Time(Xpos, φ), φ should ideally detect anomalies as close to the start of
each trace in Xpos as possible, thus ensuring minimal detection latency.

Since seven objectives are taken into consideration, no single best-performing solution can
be directly selected from a given population by means of the fitness function. Rather, a Pareto
front of optimal solutions can be identified, containing all non-dominated solutions.2 Hence,
once the evolutionary process is completed, the final solution, maximizing the hypervolume,
is extracted from the Pareto front as previously described in Section 2.2.

3.2 Dataset
The dataset used in this work consists of transient state simulation of a representative
pump-fed rocket engine of expander-bleed type similar to the LUMEN engine developed and
tested by DLR Lampoldshausen [15, 33]. Each simulation was run for a total length of 60 s
at a sampling frequency of 10 Hz. For a subset of runs, after a time of 15 s a fault had been
injected. The faults considered were: a sensor drift, a sensor offset, a frozen sensor and a
leakage in the methane sub-system. To formally define the dataset utilized in our study, let
X represent the complete set of traces, where X = N ∪ A1 ∪ A2 ∪ A3 ∪ A4. Here, N denotes
the set of traces simulated under nominal conditions, and A1, A2, A3, and A4 represent the
traces corresponding to the sensor drifting, sensor offset, sensor frozen, and leakage faults,
respectively. Each subset Ai captures the distinct characteristics of the respective fault type,
introduced to assess its impact on the system’s performance and detectability.

The dataset captures various signals from the engine, categorized into several groups based
on the type of measurement: pressure sensors measure the pressure inside the combustion
chamber, at the inlet of the fuel and oxidizer turbines, and at the outlets from both the fuel

2 A set S of solutions for an n-objective problem with fitness function f = ⟨fi, . . . , fn⟩ is said to be
non-dominated if and only if for each x ∈ S, there exists no y ∈ S such that (i) fi (y) improves fi (x)
for some i, with 1 ≤ i ≤ n, and (ii) for all j, with 1 ≤ j ≤ n and j ̸= i, fj (x) does not improve fj (y).

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:11

(a) (b)

(c) (d)

Figure 2 Simulated run values for the engine under standard starting conditions with the injection
of faults: (a) sensor drift on MOV.m, (b) sensor offset on MOV.m, (c) sensor freezing on MOV.m, and
(d) leakage on methane side (BPV.pos). For each case, the fault is injected after 15 seconds.

and oxidizer pumps, including inlet and outlet pressures of the cooling system; temperature
readings are taken from the injected oxidizer and fuel and at the inlet and outlet of the
cooling system, as well as at the input of both turbines; valve positions are recorded for the
oxidizer control valve, fuel control valve, and the valves upstream of both turbines; finally,
the rotational speeds of both the fuel and oxidizer pumps are also monitored.

Specifically, the features include Chamber.Combustor.Ptot representing the total pres-
sure in the combustion chamber, Chamber.Combustor.f_red.Tup for the fuel injection
temperature, FCV.pos indicating the fuel control valve position, Chamber_Inj_red_dP_loss
and Chamber_Inj_oxy_dP_loss for pressure losses at fuel and oxidizer injection respect-
ively. Pump_Fuel.sh_in.n and Pump_Oxid.sh_in.n measure the shaft velocity of the fuel
and oxidizer turbopumps. TFV.pos and TOV.pos reflect the positions of the turbine fuel
and oxidizer valves. Pressures at the inlets of fuel and oxidizer turbines are captured by
Turbine_Fuel.f1.P and Turbine_Oxid.f1.P. XCV.pos logs the crossfeed control valve posi-
tion, while LOX_Inj.Pressure and Fuel_Inj.Pressure represent the pressures at the liquid
oxygen and fuel injection. BPV.pos denotes the position of the bypass valve, MOV.m measures
the mass flow of the main oxidizer valve, OCV.pos indicates the oxidizer control valve position,
LNG_tot.m represents the total mass flow of liquefied natural gas (LNG), MFV.m measures
the flow rate through the main fuel valve, and Bleed.m captures captures the LNG mass
flow that is not used for combustion.

These features were selected and analyzed to model the behavior of the propulsion system
under nominal conditions and to identify deviations indicative of potential faults. An example
of simulated values of these features for a nominal run of the engine under standard starting
conditions is depicted in Figure 1, while Figure 2 illustrates four instances of fault injections
performed on the MOV.m and BPV.pos features.

To rigorously evaluate the proposed methodologies for fault detection, the dataset X
was randomly partitioned into training and testing splits to ensure unbiased assessment
and validation of the learned properties. This split was done at the level of execution runs,
allocating 80% of the data for training and 20% for testing. Formally, the dataset X was

DX 2024

15:12 Property Learning-Based Fault Detection

divided into two subsets: |Xtrain| = 128, with |N | = 64, |A1| = |A2| = |A3| = |A4| = 16, and
|Xtest|=32, with |N |=16, |A1|= |A2|= |A3|= |A4|=4. This structured approach to dataset
division ensures a balanced representation of both nominal and anomalous conditions across
the training and testing phases, providing a robust foundation for the evaluation of the fault
detection algorithms developed in this study.

4 Experimentation

Our evaluation of the genetic algorithm’s capabilities in distinguishing between nominal
and faulty operational states under various predefined scenarios showcases our approach’s
applicability in real-world applications, where the timely and accurate detection of faults
can enhance safety and operational efficiency significantly.

4.1 Experimental Setup
In the experimental setup, the genetic algorithm defined in Section 2.2 and 3.1 is employed
to learn monitorable temporal properties that are critical for the fault detection task. The
learning process is structured around three experimental cases, each designed to test various
scenarios of property learning, pertaining to different splits of the trace set Xtrain:

Anomaly vs. All: in this scenario, the genetic algorithm is run separately for each type
of anomaly (A1, A2, and A3) related to the MOV.m sensor, where each run aims to
learn a distinctive monitor encoded as a temporal property in bSTL that can detect the
specific fault. Formally, for each anomaly type Ai, with i ∈ {1, 2, 3}, Xpos = Ai, and
Xneg = N ∪

⋃
j ̸=i,j∈{1,2,3} Aj . This setup facilitates targeted learning for each fault type.

All vs. Nominal: the algorithm runs with Xpos = A1 ∪ A2 ∪ A3, encompassing all types of
anomalies, and Xneg = N , consisting of only nominal traces. The objective is to extract
a general property that differentiates any faulty condition from normal operations.
Anomaly vs. Nominal: similar to the first case, this setup runs the algorithm for each
anomaly type Ai, but although, Xpos contains traces from Ai for all i ∈ {1, 2, 3}, and
Xneg is exclusively composed of nominal traces in N . This configuration is intended to
refine the detection properties to distinguish specific faults directly from normal behavior.

These experimental designs are critical in validating the robustness and specificity of the
learned properties, ensuring that the fault detection system is both effective in identifying
various faults and efficient in differentiating these from normal operational states.

In each experimental scenario, the learning phase produces a pool of properties denoted as
P . These properties are temporal formulas derived through the genetic algorithm, designed to
effectively monitor and detect faults within the system. By integrating the rtamt monitoring
algorithm within the genetic algorithm’s fitness function, the properties in P are designed
to be runtime-verifiable. This design allows them to be evaluated on a finite prefix of each
execution trace, making them suitable for online monitoring. The efficacy of these properties
is subsequently evaluated during the testing phase, where their performance is critically
assessed. In this stage, the algorithm as of Listing 1 applies the learned properties to the test
dataset Xtest to validate their accuracy and reliability, a crucial step for verifying whether
the properties can correctly identify faults without excessive false positives or negatives.

Operationally, the algorithm initializes counters for nominal traces (nn), anomalous traces
(np), true positives (tp), and false positives (fp) (line 2). It then iterates through each trace
in the test dataset, applying the learned temporal properties to detect faults as in Def. 7
(lines 3–21), determining whether each trace is correctly identified as faulty or nominal.

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:13

Listing 1 Fault monitoring (testing phase)
1 input: non -empty pool P of formulas , test dataset Xtest

2 nn , np , tp , fp ← 0, 0, 0, 0
3 for Π ∈ X
4 if LABEL(Π, len(Π)− 1) % faulty trace
5 np ← np + 1
6 else % nominal trace
7 nn ← nn + 1
8 end if
9 for i← 0 to len(Π) -1

10 Σ← Π[0, i]
11 F ← { ψ ∈ P | eb -mon(Σ, ψ) returns true }
12 if F ̸= empty % fault detected
13 if LABEL(Π, i) % true positive
14 tp ← tp + 1
15 else % false positive
16 fp ← fp + 1
17 end if
18 break
19 end if
20 end for
21 end for
22 P ← tp / (tp + fp) % Calculate performance metrics , first Precision
23 R ← tp / np % Recall
24 FAR ← fp / nn % False Alarm Rate
25 F1 ← 2 * (P * R) / (P + R) % F1 -score
26 return P, R, FAR , F1

The function label : X × N → {⊤,⊥}, is defined such that label(Π, i) = ⊥ if Π ∈
N ∨ i < 150, and label(Π, i) = ⊤ otherwise. Intuitively, this function categorizes each trace
as either nominal (⊥) or anomalous (⊤), facilitating the classification and evaluation of the
test results. Here, 150 corresponds to the point in the signal where faults were injected,
which, in a general case, may vary across different runs of the system.

The calculated metrics – precision (P), recall (R), false alarm rate (FAR), and F1-score
(F1) – provide a comprehensive quantitative assessment of the properties’ performance.
Precision (P) measures the accuracy of fault detection, recall (R) assesses the algorithm’s
ability to identify all relevant instances, the false alarm rate (FAR) indicates the frequency
of incorrect fault predictions among nominal traces, and the F1-score (F1) balances precision
and recall in a single metric.

This detailed evaluation ensures the robustness and specificity of the learned properties,
affirming the fault detection system’s effectiveness and efficiency in distinguishing between
normal and faulty operational states.

4.2 Experimental Results
Following the detailed description of the experimental setup, we now present and analyze
the outcomes of our experiments to showcase the performance of the proposed property
learning methodology. For each experimental scenario, a set of 10 trials was performed using
10 different random seeds to ensure the statistical robustness of the results. This led to 10
different pools of properties for each evaluated scenario.

The final experimental results are obtained by running the procedure from Listing 1 on
the test set Xtest. As summarized in Table 1, the results show that the Anomaly vs. Nominal
scenario achieved the best overall performance across all metrics, indicating a strong ability

DX 2024

15:14 Property Learning-Based Fault Detection

to detect distinct types of faults compared to normal behaviors with minimal false alarms.
This effectiveness is due to the targeted training approach, where properties were tuned to
distinguish specific anomalies from nominal traces.

On the other hand, the Anomaly vs. All scenario showed lower precision but very high
recall and FAR. This suggests that while the model is effective in identifying nearly all fault
conditions, it also misclassifies many normal operations as faults, leading to a high rate of
false alarms. This could be due to the inclusion of multiple fault types in the negative class,
which can complicate and reduce the effectiveness of the learning phase, as it contains a
diverse range of behaviors difficult to characterize within a single property.

The All vs. Nominal scenario yields intermediate performance compared to the others,
with moderate values across all metrics. This outcome results from the learned properties
needing to generalize across various types of anomalies, which leads to higher false alarm
rates than those observed in the Anomaly vs. Nominal scenario.

These insights are instrumental for refining the fault detection strategies, particularly
emphasizing the need for scenario-specific tuning of the learning process to enhance precision
and reduce false alarms, thereby making the fault detection system more reliable and
applicable in operational settings.

4.2.1 Extended Scenario: Fault Isolation
In this extended scenario, we focus on a simple fault isolation case. Specifically, this scenario
advances the Anomaly vs. Nominal setup by considering an additional fault type, A4 (methane
leakage), as Xpos, while maintaining nominal traces in Xneg = N . Through this extension,
the genetic algorithm was tasked with learning properties able to effectively distinguish
methane leakage anomalies from normal operational states, culminating in a tailored pool of
properties optimized for this specific detection challenge.

Following this learning phase, we obtained two distinct pools of properties: Psens for
sensor-related anomalies (previously learned for traces in A1, A2, and A3 associated with
MOV.m sensor’s anomalies) and Pleak for methane leakage anomalies in A4. Subsequently,
we embarked on an evaluative phase to assess how these properties, contained within Psens
and Pleak, perform in classifying these two distinct sources of faults. For this purpose, we
applied a modified version of Listing 1 to the combined property pool P ′ = Psens ∪ Pleak on
the subset of all test traces with anomalies, X ′

test = {Π | Π ∈ Xtest ∧ Π ̸∈ N }.
We computed several key metrics to evaluate our performance. First, we consider accuracy,

defined as the number of correct detections divided by the total number of traces in X ′
test. We

also measured the rate of missed detections which quantifies instances where no property in P ′

is satisfied. Additionally, we assessed the rate of overlapping detections, which measures cases
where a trace simultaneously satisfies properties from both Psens and Pleak. The experimental
results from this extended scenario demonstrate a high degree of accuracy, with an average
of 0.96 and a standard deviation of 0.03. The rate of missed detections, where neither type
of fault was identified, averaged at 0.01 with a standard deviation of 0.01. Furthermore,
the rate of overlapping detections, which indicates instances where both types of faults were
erroneously detected simultaneously, averaged at 0.04 with a standard deviation of 0.03.

Table 1 Summary of experimental results for each testing scenario.

Scenario Precision Recall FAR F1-score
Anomaly vs. All 0.42± 0.00 0.99± 0.01 0.99± 0.01 0.60± 0.01
All vs. Nominal 0.71± 0.05 0.88± 0.06 0.34± 0.08 0.78± 0.05
Anomaly vs. Nominal 0.92± 0.05 0.99± 0.01 0.10± 0.07 0.95± 0.03

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:15

These metrics underscore the robustness of the proposed solution in adapting to a new
fault isolation task and illustrate the model’s flexibility and effectiveness in differentiating
between types of faults that could occur within the system. Nevertheless, the potential of
this methodology to be applied in more complex, real-world settings where multiple faults
may occur simultaneously requires further validation through tailored experimentation.

5 Discussion

In this section, we delve into a comprehensive analysis of the experimental outcomes derived
from our research, addressing both the strengths and limitations of our approach. This
exploration aids in understanding the nuanced implications of our methodology and situates
our contributions within the broader landscape of fault detection technologies.

The results presented in this study underscore the efficacy of our property learning-based
approach in fault detection for LPREs. Particularly in the Anomaly vs. Nominal scenario,
our method exhibited exceptional precision and recall, highlighting its capability to effectively
pinpoint specific fault conditions. Such precise detection is crucial for minimizing operational
disruptions and enhancing system safety.

5.1 Strengths and Limitations of the Property Learning Approach
In the following, we present a detailed analysis of the strengths and limitations of our
property learning-based approach to fault detection. This evaluation aims to comprehensively
understand the potential impact and practical implications of our methodology within the
field, providing a balanced view of its practical applicability in real-world settings.

The primary strength of our method lies in its high specificity and sensitivity, particularly
notable in scenarios such as Anomaly vs. Nominal, where the method demonstrated precise
fault detection capabilities. The genetic algorithm’s adaptability allows it to tailor properties
specifically for different fault types and operational contexts, which is evident from the high
performance metrics achieved in targeted scenarios. Furthermore, the integration of the
rtamt monitoring algorithm facilitates real-time application, a critical feature for operational
settings where timely fault detection is paramount. This capability ensures that the learned
properties can be applied in real-time, providing timely detections crucial for operational
safety. Additionally, the interpretability of the learned properties enhances their usability,
making the approach more accessible to domain experts who can understand and trust
the detection logic. It is important to point out that the genetic algorithm at the core of
our proposed methodology can effectively be integrated in a preemptive failure detection
framework, as demonstrated in [7]. This further showcases the versatility of the approach
across various operational settings.

However, the complexity of the training process forms a notable challenge. The need to
encompass all potential fault scenarios in the training dataset makes the process resource-
intensive and potentially cumbersome. Furthermore, our approach faces generalization
challenges, as demonstrated by the elevated false alarm rates in scenarios requiring property
generalization across diverse fault types. This indicates a trade-off between specificity and
generalizability, highlighting the dependence on comprehensive, high-quality training data
for effective property learning. Due to the extensive resources required for the property
learning phase, this phase should ideally be executed offline. Once learned, monitoring of the
properties can occur in real-time and can be executed even on hardware with limited resources,
such as the control systems present in launch vehicles, ensuring operational feasibility in
critical applications. Additionally, in all anomalous traces considered for this study, a single

DX 2024

15:16 Property Learning-Based Fault Detection

AND

≥

Chamber.Combustor.f red.Tup 381.23 K

≥

MOV.m 5.44 Kg/s

(a)

until[0:1]

≥

Turbine Fuel.f1.P 51.77 bar

≥

BPV.pos 0.25

(b)

Figure 3 Syntactic trees of two properties extracted from the property learning phase representing
(a) a MOV.m sensor fault and (b) a methane leakage.

fault is simulated while in a real-world scenario multiple faults may happen in parallel. This
aspect has not been investigated, and it may affect the capability of our solution to function
effectively under such conditions.

In summary, the adaptability and real-time application capabilities of our method provide
significant advantages for fault detection in complex systems. However, the training com-
plexity and challenges in generalization underscore the need for careful implementation and
dataset preparation to fully realize the potential of the proposed approach.

5.2 Interpretability
Interpretability stands as a critical dimension in the assessment of fault detection methods,
particularly when applying complex algorithms like genetic algorithms for property learning.
The properties extracted in this study underscore not only the method’s effectiveness but
also its transparency, essential for practical implementation and trust by domain experts.

Figure 3 presents two representative properties derived from the pool obtained during
the Anomaly vs. Nominal scenario, which exhibited the best performance metrics. These
properties are interpreted below, demonstrating the method’s ability to link observable
engine behaviors to potential underlying faults, making the solution both effective and
understandable.

The first property (Figure 3a) relates to the MOV.m sensor, crucial in measuring the mass
flow of the main oxidizer valve. The condition expressed in this property asserts that if the
temperature at the Chamber.Combustor.f_red.Tup remains above 381.23 K, while MOV.m
is simultaneously above 5.44 Kg/s, a fault is likely occurring. This scenario suggests an
anomaly where high fuel mass flow does not lead to expected increases in temperature,
possibly indicating a sensor reading failure or calibration issue.

The second property (Figure 3b) concerns methane leakage, a critical safety hazard. This
property’s logic uses the temporal until operator, highlighting conditions that persist over
a specific period. It specifies that the pressure at the Turbine_Fuel.f1.P should remain
above 51.77 bar until the BPV.pos exceeds 0.25, indicating abnormal conditions likely due to
a leakage affecting a pipeline or manifold close to the bypass valve.

These examples illustrate how genetic algorithms help derive actionable insights from
complex data streams in real-time applications. The derived properties are not only high
performing but also provide clear, interpretable logic for domain experts. This interpretability
bridges the gap between automated fault detection systems and practical engineering ap-
plications, ensuring that the outputs are understandable and, hence, adoptable for practical
implementation in real-world applications.

Statistics from the Anomaly vs. Nominal scenario further highlight the effectiveness and
sensible application of the learned properties. Defined by properties with an average horizon of
5.37 (corresponding to 0.537 s in our setup) and an average height of 4.60, the monitors cover
sufficient complexity to capture essential dynamics without overfitting, ensuring robustness
across different operational settings, while preserving their understandability.

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:17

0 5 10 15 20 25
Mixture ratio relative error [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Fault detection-based solution
Naìve solution

Figure 4 Empirical Cumulative Distribution Function (ECDF) of the mixture ratio relative
prediction error for the naïve and fault detection-based virtual sensing solutions.

In order to enhance the intuitiveness of the generated properties, our genetic algorithm’s
objectives such as parsimony, responsiveness, and timeliness (as defined in Section 3.1) aim to
limit the size and temporal horizon of the generated properties. From a structural perspective,
let us point out that we can easily deduce from the STL syntax that there are at most two
sub-trees for any STL operator, so that there is a direct link between an STL formula’s parse
tree depth and the size of the formula – both associated with a property’s intuitiveness.
With the objectives, we thus aim at enhancing the properties’ interpretability indirectly (via
their structure). Currently, we do not employ an optimization stage that would consider a
user’s preferences though, which could be implemented, e.g., via rewriting the properties
during the generation or a posteriori. A future evaluation of the generated properties by
STL engineers in terms of interpretability, and deriving corresponding optimization options
(automatically or using a human in the loop) as well as evaluating their effectiveness and
efficiency will help us to further improve our concept’s usability aspects.

5.3 Virtual Sensing Optimization
Once a fault is detected and identified, leveraging this detection allows for the implementation
of various mitigation strategies to reduce the impact caused by the fault. One such strategy
involves the use of a virtual sensing model to replace faulty measurements.

We demonstrate this capability on an estimator for the mixture ratio – the ratio of
oxidizer to fuel within the combustion chamber – a critical factor in maintaining optimal
combustion efficiency and engine performance. This quantity is hard to measure directly
due the dynamic conditions during rocket operation. The XGBoost regressor [10] used for
the estimation is trained on nominal training data, Xtrain ∩ N , ensuring that it learns from
fault-free operational conditions, as discussed in [34].

In our experiment, two approaches were evaluated: (i) Naïve, where the estimator utilizes
test data in Xtest that includes both faulty sensor readings and nominal runs without any
adjustments, providing a baseline performance measure; (ii) Fault Detection-Based, which
involves feeding the estimator with test data in Xtest that has been adjusted based on real-
time monitoring of the engine’s operational traces, following the steps outlined in Listing 1.
Specifically, when a fault is detected by the monitoring algorithm, mitigation strategies
are applied within the if branch (lines 12–19) for the remaining timesteps of the run. In
this scenario, MOV.m sensor values are estimated using a virtual sensing model (another
XGBRegressor) that has been previously trained exclusively on the partition of nominal
training data Xtrain ∩ N . This approach aims to correct sensor data anomalies before they
are used in mixture ratio estimations, thereby enhancing the accuracy of predictions.

DX 2024

15:18 Property Learning-Based Fault Detection

The effectiveness of solution (ii) is supported by Figure 4, which compares the empirical
cumulative distribution functions (ECDF) of the mixture ratio prediction relative errors
for both (i) Naïve and (ii) Fault Detection-Based approaches. The Fault Detection-Based
solution exhibited a clear improvement in prediction accuracy over the Naïve one, highlighting
the benefits of integrating real-time fault detection with virtual sensing.

6 Related Work

Detecting anomalous behavior in CPS is a vibrant research domain. Machine learning and
deep learning are featured prominently in this field, due to their efficacy, even though the
resultant black-box models lack interpretability. Recent work highlights neural networks
which learn temporal relationships in the data in order to detect faults and failures in cloud
data centers [19], aero-propulsion systems [2], disk drives [2, 22] and electrocardiogram
(ECG) data [28]. To foster explainability and ensure that solutions are applicable to different
domains and contexts, recent approaches combining machine learning and formal techniques
have emerged. Specifically, [25, 6, 9] present STL property mining techniques, using genetic
algorithms, decision trees, and reinforcement learning to distinguish between different time
series data. Bartocci et al [4] provide a survey of 15 procedures covering template-based
and template-free, model-based and model-free, active and passive, and supervised and
unsupervised methods. According to their categorization, the method presented in here is
template-free, model-free, passive, and supervised, i.e. learning from labeled data.

Diagnosis in CPS is an established field that focuses on identifying the root causes of
system malfunctions, which is crucial for maintaining system reliability and safety. Notably,
[27] has contributed significantly to ML-based diagnosis, highlighting techniques that combine
machine learning with model-based approaches for effective monitoring and diagnosability
of CPS. Additionally, [11] has explored diagnostic methods specifically for assessing the
diagnosability of systems, ensuring that potential faults can be accurately detected and
isolated during system operation. Furthermore, [24] demonstrates the application of classifier-
based approaches in real-time fault detection scenarios. Unlike these cited works, which
primarily address diagnosability and model-based diagnosis, our approach integrates property
learning directly into the monitoring process, enabling both real-time fault detection and
subsequent diagnosis in a unified process.

7 Conclusions

In this work, we tackled the challenge of developing a multi-objective genetic programming
methodology that automatically learns STL properties for fault detection in LPREs, effectively
distinguishing between nominal and faulty behaviors. This methodology was validated with
a comprehensive dataset simulating various fault conditions, ensuring the robustness and
accuracy of the learned properties.

The experimental results demonstrated the effectiveness of the proposed approach in
learning STL properties essential for run-time fault detection in LPRE control systems.
The high precision and recall in distinguishing normal from faulty behaviors ensure timely
and accurate fault detection, which is crucial for maintaining LPRE operational integrity.
Moreover, incorporating virtual sensing, guided by detected faults, significantly improved the
accuracy of critical parameter estimations, such as the combustion chamber’s mixture ratio,
underscoring our solution’s practical applicability. The interpretability of the learned STL
properties further enhances our approach’s value, making it both effective and accessible to
domain experts, thereby facilitating adoption in real-world aerospace applications.

A. Urgolo, I. Pill, G. Waxenegger-Wilfing, and M. Freiberger 15:19

Future research avenues include developing models for nominal engine behavior to enable
(unsupervised) anomaly detection, evaluating cases with simultaneous faults in multiple
sensors to assess and improve the robustness in complex scenarios, and devising strategies to
minimize redundant physical sensors ensuring the operational functionality of the engine.

References
1 A. Abid, M. T. Khan, and J. Iqbal. A review on fault detection and diagnosis techniques:

basics and beyond. Artificial Intelligence Review, 54(5):3639–3664, 2021. doi:10.1007/
S10462-020-09934-2.

2 K. Aggarwal, O. Atan, A. K. Farahat, C. Zhang, K. Ristovski, and C. Gupta. Two birds with
one network: Unifying failure event prediction and time-to-failure modeling. In Proc. 6th Big
Data, pages 1308–1317. IEEE, 2018. doi:10.1109/BIGDATA.2018.8622431.

3 B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987. doi:10.1007/BF01782772.

4 E. Bartocci, C. Mateis, E. Nesterini, and D. Nickovic. Survey on mining signal temporal logic
specifications. Information and Computation, 289:104957, 2022. doi:10.1016/J.IC.2022.
104957.

5 A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime verification.
Journal of Logic and Computation, 20(3):651–674, 2010. doi:10.1093/LOGCOM/EXN075.

6 G. Bombara and C. Belta. Offline and online learning of signal temporal logic formulae
using decision trees. ACM Transactions on Cyber-Physical Systems, 5(3):1–23, 2021. doi:
10.1145/3433994.

7 A. Brunello, D. Della Monica, A. Montanari, N. Saccomanno, and A. Urgolo. Monitors that
learn from failures: Pairing STL and genetic programming. IEEE Access, 11:57349–57364,
2023. doi:10.1109/ACCESS.2023.3277620.

8 Y. Cao, B. J. Smucker, and T. J. Robinson. On using the hypervolume indicator to compare
Pareto fronts: Applications to multi-criteria optimal experimental design. Journal of Statistical
Planning and Inference, 160:60–74, 2015.

9 G. Chen, M. Liu, and Z. Kong. Temporal-logic-based semantic fault diagnosis with time-
series data from industrial internet of things. IEEE Transactions on Industrial Electronics,
68(5):4393–4403, 2020. doi:10.1109/TIE.2020.2984976.

10 T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proc. 22nd SIGKDD,
pages 785–794. ACM, 2016.

11 A. Cimatti, C. Pecheur, and R. Cavada. Formal verification of diagnosability via symbolic
model checking. In Proc. 18th IJCAI, pages 363–369, 2003.

12 E. M. Clarke, O. Grumberg, D. Kroening, D. A. Peled, and H. Veith. Model checking. MIT
Press, 2nd edition, 2018.

13 K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part I: Solving problems with box constraints.
IEEE Transactions on Evolutionary Computation, 18(4):577–601, 2013. doi:10.1109/TEVC.
2013.2281535.

14 A. Donzé, T. Ferrère, and O. Maler. Efficient robust monitoring for STL. In Computer Aided
Verification, pages 264–279. Springer, 2013. doi:10.1007/978-3-642-39799-8_19.

15 K. Dresia, M. Boerner, W. Armbruster, S. Klein, T. Traudt, D. Suslov, J. Hardi, G. Waxenegger-
Wilfing, and J. Deeken. Design and Control Challenges for the LUMEN LOX/LNG Expander-
Bleed Rocket Engine. In Proc. 34th ISTS, 2023.

16 A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Springer, 2003.
17 European Commission. Communication from the commission to the european parlia-

ment, the european council, the council, the european economic and social commit-
tee and the committee of the regions- the european green deal. Technical report,

DX 2024

https://doi.org/10.1007/S10462-020-09934-2
https://doi.org/10.1007/S10462-020-09934-2
https://doi.org/10.1109/BIGDATA.2018.8622431
https://doi.org/10.1007/BF01782772
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.1093/LOGCOM/EXN075
https://doi.org/10.1145/3433994
https://doi.org/10.1145/3433994
https://doi.org/10.1109/ACCESS.2023.3277620
https://doi.org/10.1109/TIE.2020.2984976
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/978-3-642-39799-8_19

15:20 Property Learning-Based Fault Detection

European Commission, 2019. URL: https://eur-lex.europa.eu/resource.html?uri=
cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF.

18 F. A. Fortin, F. M. De Rainville, M. A. Gardner, M. Parizeau, and C. Gagné. DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(70):2171–2175,
2012. doi:10.5555/2503308.2503311.

19 J. Gao, H. Wang, and H. Shen. Task failure prediction in cloud data centers using deep
learning. IEEE Transactions on Services Computing, 15(3):1411–1422, May 2022. doi:
10.1109/TSC.2020.2993728.

20 J. R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87–112, 1994.

21 M. Leucker and C. Schallhart. A brief account of runtime verification. The Journal of Logic
and Algebraic Programming, 78(5):293–303, 2009. doi:10.1016/J.JLAP.2008.08.004.

22 S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi. Making disk failure predictions
smarter! In Proc. 18th FAST, pages 151–167. USENIX, 2020.

23 O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166.
Springer, 2004. doi:10.1007/978-3-540-30206-3_12.

24 I. Matei, J. de Kleer, A. Feldman, M. Zhenirovskyy, and R. Rai. Classification based diagnosis:
Integrating partial knowledge of the physical system. In Proc. 11th PHM, 2019.

25 L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi. A robust genetic algorithm for learning
temporal specifications from data. In Proc. 15th QEST, pages 323–338. Springer, 2018.
doi:10.1007/978-3-319-99154-2_20.

26 D. Ničković and T. Yamaguchi. RTAMT: Online robustness monitors from STL. In Proc. 18th
ATVA, volume 12302, pages 564–571. Springer, 2020. doi:10.1007/978-3-030-59152-6_34.

27 O. Niggemann, G. Biswas, J. S. Kinnebrew, H. Khorasgani, S. Volgmann, and A. Bunte. Data-
driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things
for diagnosis and control. In Proc. 26th DX, pages 185–192, 2015.

28 G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J. A. Rogers, A. K.
Katsaggelos, and N. Maglaveras. Automated atrial fibrillation detection using a hybrid CNN-
LSTM network on imbalanced ECG datasets. Biomedical Signal Processing and Control,
63:102194, 2021. doi:10.1016/J.BSPC.2020.102194.

29 I. Pill and F. Wotawa. Automated generation of (F)LTL oracles for testing and debugging.
Journal of Systems and Software, 139:124–141, 2018. doi:10.1016/J.JSS.2018.02.002.

30 A. Pnueli. The temporal logic of programs. In Proc. 18th SFCS, pages 46–57. IEEE, 1977.
31 S. Pérez-Roca, J. Marzat, H. Piet-Lahanier, N. Langlois, F. Farago, M. Galeotta, and S. Le Goni-

dec. A survey of automatic control methods for liquid-propellant rocket engines. Progress in
Aerospace Sciences, 107:63–84, 2019.

32 V. S. Reddy. The SpaceX effect. New Space, 6(2):125–134, 2018.
33 T. Traudt, W. Armbruster, C. Groll, R. Hahn, K. Dresia, M. Börner, S. Klein, D. I. Suslov,

J. Haemisch, M. A. Müller, J. Deeken, J. Hardi, and S. Schlechtriem. LUMEN, the Test Bed
for Rocket Engine Components: Results of the Acceptance Tests and Overview on the Engine
Test Preparation. In Proc. 9th 3AF Space Propulsion, 2024.

34 A. Urgolo, C. Gei, K. Dresia, M. Freiberger, E. Kurudzija, H. Neumann, I. Pill, F. Pittino,
G. Radchenko, and G. Waxenegger-Wilfing. Feature selection and virtual sensing based
mixture ratio estimation for liquid propellant rocket engine control systems. In Proc. 9th 3AF
Space Propulsion, 2024.

https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://doi.org/10.5555/2503308.2503311
https://doi.org/10.1109/TSC.2020.2993728
https://doi.org/10.1109/TSC.2020.2993728
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1016/J.BSPC.2020.102194
https://doi.org/10.1016/J.JSS.2018.02.002

	1 Introduction
	2 Preliminaries
	2.1 The Signal Temporal Logic STL
	2.1.1 Monitoring STL: Bounded STL Formulae

	2.2 Evolutionary Algorithms

	3 Material and Methods
	3.1 Our STL Property Learner
	3.2 Dataset

	4 Experimentation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Extended Scenario: Fault Isolation

	5 Discussion
	5.1 Strengths and Limitations of the Property Learning Approach
	5.2 Interpretability
	5.3 Virtual Sensing Optimization

	6 Related Work
	7 Conclusions

