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Abstract
Drones, or unmanned aerial vehicles (UAVs), are becoming increasingly vital across various industries,
where their reliable operation is crucial for safety and efficiency. Ensuring this reliability requires
the early detection of sensor-related faults, which are critical for maintaining the performance
and safety of UAVs. This study addresses this challenge by leveraging real-world data from an
Aero-Sentinel Military UAV Sentinel G2 quadcopter. The data was collected through a collaboration
with Maris-Tech Ltd, using their advanced Mercury Nano system to capture detailed communication
between the drone and its control unit. A set of correlation-based algorithms was developed and
evaluated, specifically tailored to address the unique complexities of drone sensor data, which is often
influenced by environmental factors. Among the algorithms tested, two novel methods emerged as
particularly effective, demonstrating significant improvement compared to previous methods, in fault
detection accuracy. These methods, designed to accurately identify and predict sensor malfunctions,
offer a robust solution for enhancing the reliability and safety of UAV operations.
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1 Introduction

Drones, also known as unmanned aerial vehicles (UAVs), have seen a significant rise in their
utilization across various industries such as agriculture, construction, and transportation.
They are employed for an array of tasks, including aerial surveillance, data collection, and
cargo delivery, functioning effectively in diverse environments ranging from remote areas to
densely populated urban centers. Despite their growing adoption and versatility, drones are
susceptible to faults, which can result in accidents and potential damage to the equipment.
This makes fault detection and prediction a critical area of research in the realm of UAV
technology.

Drones rely on data collected from a multitude of sensors, such as cameras, GPS,
accelerometers, and barometers. This sensor data is necessary for controlling the drone’s
movements and executing various tasks. Typically, the data collected by these sensors is in
the form of time-series, meaning it is recorded over time at varying frequencies. Analyzing
time-series data presents significant challenges due to its inherent noisiness, irregularity, and
the potential presence of gaps, often caused by network failures or other technical issues.
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17:2 Real-Time Sensor Fault Detection in Drones

Figure 1 Aero-Sentinel Military UAV Sentinel G2 quadcopter drone.

Drones are vulnerable to several types of faults, including sensor malfunctions, structural
failures, and communication errors within the control unit. These faults can be triggered by
numerous factors, such as adverse weather conditions, mechanical wear and tear, or human
error. Identifying and predicting these faults before they manifest is crucial to preventing
accidents and ensuring the safety of both the drone and the surrounding environment.

Although many studies have been conducted on drone fault prediction, few have addressed
the challenge of detecting different types of faults while accounting for data from a wide
array of sensors sampled at varying frequencies. For instance, works such as [5] and [14]
focus primarily on individual sensor faults or specific fault types, without considering the
complexities introduced by multiple sensors. Additionally, most existing research, such as
[10] and [5], primarily involves experiments conducted using simulated data or controlled
laboratory environments. This leaves a gap in evaluating fault detection methods under
real-world conditions, where diverse sensor inputs and environmental factors come into play.
One of the significant advancements of our research is addressing situations with real-world
conditions. We conduct our experiments on data collected from actual drones operating in
real-world environments, providing a more practical and robust evaluation of fault detection
methodologies, particularly focusing on sensor-related faults.

A crucial aspect of our research is the collaboration with Maris 1, a company specializing
in Intelligent Video Surveillance and Analytics. Maris, a pioneer in high-performance AI edge
video and analytics technologies, played a key role in enabling the collection of real-world
data. Utilizing their Mercury Nano system 2 – an advanced, dual-channel low-power encoder
designed to integrate with a wide range of platforms – we recorded communication between
an Aero-Sentinel Military UAV Sentinel G2 quadcopter drone 3 and its control unit, as shown
in Figure 1. This process captured detailed sensor data influenced by various environmental
factors, resulting in a dataset that encompasses approximately 17 hours of flight data collected
under diverse conditions.

Our first contribution lies in the creation and presentation of this unique dataset derived
from real-world drone flights. Unlike simulated or laboratory-generated data commonly used
in existing studies, our dataset includes genuine environmental noise and other real-world

1 https://www.maris-tech.com/
2 https://www.maris-tech.com/solutions/mercury/
3 https://www.aero-sentinel.com/military-drones/military_drone_sentinel_g2/
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variables, offering a comprehensive and authentic foundation for evaluating and validating
fault detection models. This dataset addresses a significant gap in the literature by reflecting
the complexities inherent in drone operations.

Our second contribution is the development of a reliable fault prediction model capable
of real-time detection of sensor failures in operational drones. To achieve this, we present a
sensor-based approach for Fault Detection specifically tailored for drones. This approach
builds upon the methodology initially introduced in [11], which combines data-driven and
model-based techniques to enhance fault detection capabilities. We have adapted and
refined this methodology to address the unique challenges associated with drone operations
by implementing both the basic Sensor Fault Detection and Diagnosis (Simple-SFDD)
and an extended version that incorporates additional features for improved performance
(Extended-SFDD). In addition to these, we have developed two more versions of our own.
The Combined-SFDD version combines elements of both the basic and Extended-SFDD
methods, aiming to leverage the strengths of each. The Knowledge-Based-SFDD version
introduces a novel variation of this algorithm, which integrates modeling to learn and predict
the normal behavioral patterns of drones through data-driven analysis. These enhancements
collectively contribute to more accurate and efficient detection of sensor-related faults in
drone systems.

Our experiments on this dataset demonstrate the robustness and effectiveness of our
approach. The results indicate that the fourth variation of our algorithm, which is based on
sensor behavior learning, achieves notable improvements. Specifically, this variation shows
superior performance in both True Positive Rate (TPR) and False Positive Rate (FPR),
effectively bridging the gap in fault detection accuracy.

2 Related Work

Unmanned Aerial Vehicles (UAVs) are aircraft that operate without a human pilot, crew, or
passengers on board. UAVs can be controlled remotely by a human operator, referred to
as Remotely Piloted Aircraft (RPA), or they can operate with varying levels of autonomy,
ranging from autopilot assistance to fully autonomous flight with no human intervention.
UAVs are categorized based on various criteria, including the number of propellers, their
configurations, and construction types, which include rotary wing, tilt-rotor, fixed wing, and
flapping wing designs. Our study focuses specifically on quadrotor drones, which are UAVs
equipped with four rotors and are commonly used due to their stability and maneuverability
[19]. Drones, a subset of UAVs, are versatile, robot-like aircraft that can range in size from
as large as a full-scale aircraft to as small as the palm of your hand.

Drones are now employed in a wide range of roles and responsibilities [3]. Over time, drones
have evolved to serve various purposes, including monitoring climate change, conducting
search and rescue operations during natural disasters, photography, cinematography, and
delivering commodities. Drones are also heavily involved in research that addresses diverse
tasks such as path planning, communication networks, autonomous control, and more [18].
These tasks are critical for enhancing drone capabilities, making them more intelligent, but
they also increase the complexity of both their software and hardware – thereby making
them more susceptible to faults. Given that a drone malfunction today can have serious
consequences, the importance of fault detection has become paramount.

The topic of fault prediction and detection is vast and crucial for maintaining operational
systems. It aids professionals in managing components or systems and even in prioritizing
testing procedures. In the field of UAVs, several studies have endeavored to address this
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challenge. UAV failures are typically classified into two main categories: actuator faults
and sensor faults. Although there have been studies focused on damage to circuit boards
[21], the drone’s frame [2], or the surface of the flying vehicle itself [1], these areas are not
the primary focus of most research. In our study, we will concentrate specifically on the
challenge of identifying faults using the drones’ sensors.
The most current survey on the topic was conducted by Puchalski et al., who categorize the
available methodologies in the field into two groups [16], model-based and data-driven.

2.1 Model-Based
Model-based methods involve mathematical models that describe and predict the behavior
of a system using a set of equations and algorithms. These models are developed based
on assumptions and hypotheses derived from expert knowledge, and they are commonly
employed to simulate and assess the system’s performance under various scenarios [20].
Currently, model-based methods are the most widely used approach for detecting faults in
unmanned aerial vehicles.
Herdjunanto et al. [9] were among the first to apply a model-based fault detection technique
to an unmanned quadrotor. Their goal was to address actuator fault signal isolation during
hovering motion. Their work focuses on isolating actuator fault signals using a detection
filter, capable of managing various fault types without the need for adjusting filter settings.
By modeling the quadrotor and simulating specific fault signals, they demonstrate effective
fault detection through a virtual actuator approach.
The Kalman filter is a mathematical algorithm for estimating system states from noisy
observations. Classified as a model-based method, the Kalman filter employs a mathematical
model to describe and predict system behavior, making it a valuable tool in UAV fault
detection research. [13]. Several studies have utilized the Kalman filter for this purpose. For
instance, [22] applied an adaptive two-stage extended Kalman filter to detect sensor faults in
UAVs, successfully modeling quadrotor kinematics and testing various fault scenarios using
the Quanser Qball-X4 model. Their results confirmed the filter’s effectiveness. The extended
Kalman filter has also been utilized by [23] and [6] for similar applications.

In their study, Zhong et al. [23] proposed an actuator fault detection and diagnosis
method specifically for quadrotors. This method is based on a linearized dynamic UAV
model and a decomposed adaptive augmented state Kalman filter. Through simulation
experiments, they demonstrated the effectiveness of their approach in accurately detecting
actuator faults. Similarly, Demircan et al. [6] explored the capability of a nonlinear extended
Kalman filter to detect aileron locking in fixed-wing aircraft. To estimate the state of the
roll rate, which is directly influenced by the aileron, they employed an extended Kalman
filter and conducted simulations using MATLAB. Their results indicated that the faults
were successfully detected. Further advancing the use of Kalman filtering in UAV fault
detection, Hamadi et al. [8] applied both the basic and extended versions of the Kalman
filter to address faults in quadrotors. Their approach targeted faults caused by hardware
sensor issues (e.g., GPS, IMU, and magnetometer) as well as software errors, including faults
within the Kalman filters themselves or incorrect parameter settings.

Fu et al. [7] introduced a singular Markov switching system for detecting sensor and
actuator faults in quadrotors. They developed an adaptive observer and validated their
approach through simulations.
Maqsood et al. [14] proposed a system for detecting faults in angular rate sensors. Their
approach predicts faults using a chain differentiator integrator and enhances detection
accuracy with a modified high-gain observer, incorporating a sliding mode effect to improve
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detection and reduce overshoot and chattering. They simulated both gradual and abrupt
faults, comparing their method to traditional detection techniques. The results showed a
clear advantage over other nonlinear strategies.

The Model-Based approach, while effective, faces several challenges that limit its reliability
and practical application. One major issue is its reliance on expert knowledge for model
building and validation, which can be difficult or impossible to obtain in some cases, reducing
the model’s usefulness. Additionally, the complexity of the mathematical models involved
makes them challenging to understand, interpret, and implement. These models often require
specialized software and expertise, making the Model-Based approach both time-consuming
and difficult to apply in practice.

2.2 Data-Driven
These models are constructed using data rather than relying on expert knowledge. Typically,
machine learning or statistical methods are employed to automatically uncover patterns and
correlations within the data. Data-driven models offer several advantages over model-based
approaches. They can capture complex and nonlinear patterns that may be challenging
or impossible for model-based methods to represent. Additionally, data-driven models can
evolve and improve over time as new data becomes available, thereby enhancing the model’s
accuracy and reliability [15].

Chen et al. [5] proposed a data-driven model using a backpropagation neural network
(BPNN) optimized by a genetic algorithm. They trained the model with pitch rate data
from the speed gyroscope during UAV flight. The sensor signal was first divided into eight
frequency bands using a three-layer wavelet packet, and the energy feature vector of each
band served as input to the neural network. Their MATLAB simulations, which tested
various sensor faults, demonstrated that this method outperformed the standard BPNN
in terms of accuracy and error. Continuing their research, Chen et al. [4] introduced an
enhanced sensor fault detection method using the same wavelet packet and BPNN framework,
but with adaptive fireworks to improve local search capability and algorithm convergence.
This approach also utilized a distributed mechanism for parallel information sharing and
multi-scale analysis via wavelet transform. Compared to the initial method, the adaptive
fireworks algorithm showed superior classification efficiency, faster convergence, shorter
runtime, and improved global search ability.

Iannace et al. [10] employed sound analysis to detect faults in quadrotor propeller blades.
A microphone placed 1.2 meters from the drone captured the rotor noise, with strips of paper
tape attached to the blade surface to simulate faults. Frequency analysis was then used
to extract 31 features from the recorded sounds, which were used to train a feed-forward
multilayer neural network. The authors reported high accuracy in fault detection, though
the method’s main limitation is that it can only be tested in indoor conditions.

Sadhu et al. [17] developed a method for real-time fault detection and identification
using deep Convolutional and Long Short-Term Memory Neural Networks. They collected
data from accelerometer, gyroscope, and magnetometer sensors, dividing it into timestep
windows of 100, 50, and 25. Initial experiments on a small drone (CrazyFlie 2.0) produced
poor results, leading them to conduct further tests with a larger drone using Microsoft’s
AirSim simulator. These later experiments demonstrated good accuracy, as reported by the
authors. However, a significant drawback is that the method was only tested in a simulated
environment, raising concerns about its effectiveness in real-world scenarios.

Data-driven models, while powerful, have certain limitations. They often require large
datasets for training and validation, and they can be sensitive to noise and outliers. While
these models are valuable for modeling and evaluating complex systems, they must be used
with caution, considering their limitations.
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3 Background and Problem Definition

Drones are typically equipped with a variety of sensors capable of measuring different physical
quantities and converting them into signals that can be interpreted by the onboard computer
systems. These sensors are essential for monitoring the drone’s status and its interaction
with the environment.

To formalize this, let S = {s1, s2, . . . , sn} represent the set of sensors deployed in a
drone. In this work, we specifically experimented with the following sensors: accelerometer,
magnetometer, gyroscope, barometer, and temperature sensors.

▶ Definition 1 (Sensor). Let si ∈ S denote a sensor within the drone’s sensor set S, si,
reflects distinct observations or readings about the environment or the drone itself.

These sensor readings are paramount, forming the foundational data points required for
evaluating the reliability and functionality of the sensors, and consequently, ensuring the
optimal performance of the drone. Each sensor provides a stream of data over time, which
we can represent as an observation vector. This vector captures the sensor’s readings within
a specific time frame.

▶ Definition 2 (Observation Vector). For each sensor si, the collected values or readings
over a period form an observation vector, Osi

j,j+t = [osi
j , osi

j+1, . . . , osi
j+t], where each element

represents an individual observation of sensor si from j to j + t.

When considering all sensors together, we can aggregate their observation vectors over
the same time frame into what we refer to as Window Observation Vectors. This gives a
comprehensive snapshot of the drone’s sensor readings during a particular interval.

▶ Definition 3 (Window Observation Vectors). We denote Oj,j+t as the Window Observation
Vectors, which consolidates all individual sensor observation vectors within a window time
frame from j to j + t. Formally expressed as Oj,j+t = {Os1

j,j+t, Os2
j,j+t, . . . , Osn

j,j+t}.

Understanding the relationships between different sensors is crucial for fault detection.
Sensors that are correlated may exhibit patterns that can indicate potential issues.

▶ Definition 4 (Correlated Sensors). Let si, sf ∈ S. The predicate σ(si, sf ) = − − xttrue

asserts that sensors si and sf are correlated, implying that their respective Observation
Vectors exhibit a correlated relationship.

In our implementation, we computed the correlation between sensors using Pearson
correlation calculations, which identify meaningful relationships between sensor readings.

Observation Vectors can exhibit various patterns, where a pattern is defined as a specific
trend or behavior in the sensor readings over a period of time. For instance, a “constant”
pattern signifies that the sensor readings do not change over time. We categorize these
patterns into a set P, which includes patterns like “constant,” “drift,” and “abrupt.”

▶ Definition 5 (Pattern Recognition). Let the function π : O → P signify that a given
Observation Vector Osi

j,j+t exhibits a pattern p ∈ P, where P is the set of all possible patterns.

For example, the predicate π(Osi
j,j+t) = “constant” if all values in the Observation Vector

of sensor si within the time window j to j + t are identical. Similarly, π(Osi
j,j+t) = “drift” if

the derivative of the values in the Observation Vector shows a consistent increase or decrease
beyond a certain point in time. Finally, π(Osi

j,j+t) = “abrupt” if the Observation Vector
demonstrates a sudden and significant change in values, indicating a potential abrupt in the
sensor readings.
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In our research, we focus on detecting faults characterized by three primary patterns:
abrupt, drift, and constant behaviors. These patterns often raise suspicion of malfunctions
and can serve as indicators of potential sensor issues. In contrast, other patterns, such as
fluctuations with varying intensities, are typically indicative of normal sensor operation.
These normal patterns are explored further in the article in the evaluation section. Any
sensor behavior can be considered a type of pattern, and while most are associated with
normal drone function, recognizing and categorizing these patterns is essential for identifying
potential malfunctions.

With these concepts in place, we can now define the Fault Detection Problem, which
is central to our work. The goal is to determine whether any sensor within the drone is
exhibiting patterns indicative of a fault.

▶ Definition 6 (Fault Detection Problem). Given the set of sensors S and their corresponding
Window Observation Vectors Oj,j+t, the fault detection mechanism aims to determine whether
sensor si ∈ S is exhibiting a pattern x ∈ P indicative of a fault.

Accurately identifying correlated sensors, as represented by the predicate σ(si, sf ) and
recognizing predefined patterns within the sensor Observation Vectors, denoted by the
predicate π(Osi

j,j+t, p) are key components in approaches that rely on correlation-based fault
detection. A robust solution must carefully analyze these correlations and patterns to
differentiate genuine faults from innocuous variations or sensor noise, ensuring the reliability
and safety of drone operations.

3.1 The sensor-based fault detection
Previous studies [11] proposed leveraging sensor correlations to identify faults in drone
systems. The idea is to examine whether a sensor is displaying abnormal patterns, and then
determine if this abnormality disrupts its usual correlation with other sensors. This brings
us to the discussion of two significant methodologies:

Algorithm 1 Simple-SFDD.
Input: sensor data stream D, window size W , threshold

Output: faulty sensor identification F

1 for each sliding window do
2 for each pair of sensors (i, j) do
3 Calculate Pearson correlation coefficient ρi,j from first half of the window;
4 if |ρi,j | > threshold then
5 Mark sensors i and j as correlated;
6 end
7 end
8 end
9 for each sensor i in the second half do

10 if i has a pattern of a fault then
11 if no other correlated sensor in the first half of the window has the same pattern

then
12 Mark sensor i as faulty;
13 end
14 end
15 end

DX 2024



17:8 Real-Time Sensor Fault Detection in Drones

Simple-SFDD

The first strategy is named Simple-SFDD [12], and it operates in real-time. This method
begins each flight with the assumption that all sensors are functioning correctly. It uses the
initial portion of each sliding window to analyze the relationships between every pair of sensors,
utilizing Pearson correlation to identify clear and linear relationships. A predetermined
threshold is used to determine whether the sensors are indeed correlated. In the latter
portion of the window, each sensor is assessed for abnormal patterns such as drift, abrupt, or
constant readings. If a sensor exhibits such patterns, we look for another sensor that was
correlated with it in the initial portion and is displaying the same abnormal pattern. If no
such correlated sensor is found, the original sensor is flagged as faulty. This approach enables
the timely detection of sensor faults, allowing for immediate corrective action and preventing
potential damage. A detailed algorithm can be found in Algorithm 1.

The Simple-SFDD method analyzes correlations within a sliding window to identify
temporal correlations. However, it has two key limitations. First, normally uncorrelated
sensors may temporarily appear correlated, leading to false negatives. Second, sensors
expected to be correlated may occasionally show a lack of correlation, resulting in false
positives and incorrect fault reports. Additionally, the method’s requirement for correlated
sensors to exhibit identical patterns is overly strict. A more flexible approach that allows for
varying patterns could improve the heuristic’s versatility and applicability.

Extended-SFDD

The observed limitations of the Simple method paved the way for the development of an
enhanced approach, referred to as Extended-SFDD [11] builds on its predecessor by integrating
both online and offline components. The offline phase includes several key steps: First, feature
extraction adds a virtual sensor sd for each sensor si created from the differentials of si’s
raw readings. Next, the correlation detection process is conducted offline, using a fault-free
historical record. This step evaluates every pair of sensors for correlation throughout the
entire flight, ensuring that only correlations sustained over the full operation are considered,
thus filtering out insignificant temporal discrepancies.

This approach allows for a more flexible fault detection heuristic by accommodating
diverse patterns that represent normal behavior. For correlated sensor pairs, a tuple set
is constructed offline, capturing the various patterns observed during normal flights. For
example, if a sensor typically shows a ’drift’, the correlated sensor’s common patterns during
normal operation – such as small fluctuations – are included in the set. These patterns are
mapped to the corresponding dynamic window size, meaning that for a specific time window
(e.g., 10 seconds), the system expects to see the ’drift’ in one sensor and corresponding
behavior, such as fluctuations, in the correlated sensor.

In the online phase, each time window during the flight is carefully analyzed. The focus is
on identifying sensors that are now exhibiting patterns suggestive of a fault. If such patterns
are detected, the system checks whether a correlated sensor is showing an unrecognized,
abnormal pattern. For instance, if sensor X shows an abrupt pattern and a correlated sensor
Y shows slight fluctuations, the system will verify whether this combination has been observed
during normal flight conditions. If this combination of patterns has been seen before, the
current operational state is considered normal, and no fault is flagged. However, if this
combination is new or abnormal, it signifies a potential fault.
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The Extended-SFDD method, while innovative, has its limitations. A key challenge is
the requirement for sensors to maintain correlation throughout the entire flight, which can
lead to the oversight of intermittently correlated sensors. While lowering the correlation
threshold might address this, it risks falsely identifying uncorrelated sensors as correlated,
which hinders accurate fault detection.

A more complex issue arises from the way sensors exhibit patterns in normal data. For
example, a sensor displaying a drift pattern might normally correlate with another sensor
that shows all possible patterns alongside the drift. As a result, if sensor X shows a drift
pattern, it might never be flagged as a fault because there will always be a corresponding
sensor Y exhibiting some pattern that has been observed before in normal conditions. This
means that sensor X’s drift will always appear normal, even if it indicates a fault, because
the correlation with sensor Y’s varied patterns has already been established as standard.
This situation underscores the overly generalized nature of the fault detection heuristic,
highlighting the need for refinement to accurately detect faults.

In light of these challenges, and the increased complexity within the domain of drones,
we developed the methodologies presented in this article. Two new algorithms, Combined-
SFDD and Knowledge-Based-SFDD, were created, both utilizing correlation detection. These
methodologies will be discussed in the ensuing section.

4 Methodology

In this paper, we introduce two innovative methods for detecting faults in drones, with a focus
on analyzing correlations within their operational components. These methods are crafted to
address the shortcomings of previous correlation-based approaches, which have been found
lacking in certain scenarios. By combining offline analysis with real-time monitoring, and
leveraging a data-driven knowledge-based system, our methods offer a comprehensive and
more effective solution. These approaches not only tackle the challenges faced by earlier
models but also excel in situations where the original methods struggle due to the complex
nature of data patterns and distributions.

4.1 Combined-SFDD
The first methodology, termed Combined-SFDD is a hybrid approach that integrates the
strengths of both the Simple and Extended-SFDD methods. The goal is to leverage the
advantages of each, leading to a more accurate and reliable fault detection system. This
method operates in two phases: the offline phase and the online phase.

Offline Phase. The process begins with the execution of the Extended-SFDD method,
where the following steps are performed offline:
1. For each identified feature, an additional feature is generated by calculating the differences

between consecutive values of the original feature.
2. Sensors are correlated based on data from the entire flight duration, rather than within a

temporary window, to identify sustained correlations over time.
3. For sensors that are correlated during normal flight conditions, a set of coexisting patterns

is established and stored for reference.

Online Phase. In the online phase, flight data is continuously analyzed within a moving
time window. Sensors are monitored for any patterns indicative of potential faults, such as
constant, abrupt, or drift behaviors. If a sensor shows a suspicious pattern, the system first
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checks whether a correlated sensor displays a pattern that has been previously identified
as normal based on the offline analysis. If such a correlated sensor is found, the system
considers the situation normal and no fault is flagged.

However, if no correlated sensor with a normal pattern is identified, the Combined-SFDD
approach does not stop. It then applies the Simple-SFDD method to the same time window
as an additional step. This involves examining the correlations observed in the first half of
the time window and verifying whether these correlations persist in the second half. If the
correlation fails to hold, a fault is declared.

This dual approach ensures that if the Extended-SFDD method fails to detect a fault,
the Simple-SFDD method is used as a secondary check to identify issues that may have been
missed. While this thorough process may slightly increase the likelihood of false positives, it
significantly enhances the detection of true positives, ensuring that potential faults are not
overlooked, especially in complex and varied operational scenarios.

Figure 2 Flowchart of the Knowledge-Based-SFDD Algorithm. This diagram illustrates the
process of offline and online phases for detecting sensor faults in real-time.

4.2 Knowledge-Based-SFDD
The Knowledge-Based-SFDD strategy introduces an advanced method that merges elements
from Extended-SFDD with sophisticated knowledge-based system techniques. This approach
is designed to deliver a deeper and more precise analysis of sensor behavior, providing a
robust framework for fault detection.
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Offline Phase. In the offline phase, Knowledge-Based-SFDD goes far beyond the basic
steps outlined in the Combined-SFDD approach. This phase involves an exhaustive learning
process that thoroughly analyzes all available data from previous flights, focusing on each
sensor individually to understand its “normal” behavior and patterns. The aim is not
merely to identify existing templates but to refine and model these templates within defined
parameters.

For example, instead of simply noting that sensor X exhibits drifting while sensor Y shows
slight fluctuations, Knowledge-Based-SFDD details the behavior more precisely: sensor X
typically drifts at a slope between -5 and 5, while sensor Y fluctuates within a range of 2 to
4. By modeling the behavior of each sensor in this way, the system defines what constitutes
normal and abnormal patterns, considering both the type of pattern and the specific range
of values associated with it.

This meticulous modeling process allows for a comprehensive understanding of each
sensor’s behavior, distinguishing between normal variations and true anomalies. All identified
patterns and correlations, along with their precise parameters, are compiled into an extensive
knowledge base. This repository serves as a reference for real-time analysis, enabling the
system to distinguish between normal operational variations and genuine anomalies effectively.

Online Phase. In the online phase, Knowledge-Based-SFDD continuously monitors real-time
flight data within a moving time window, meticulously analyzing sensor readings for patterns
that might indicate potential faults, such as constant values, abrupt changes, or unusual drifts.
When a suspicious pattern is detected, the system references the comprehensive knowledge
base developed during the offline phase to determine whether a correlated sensor exhibits
a corresponding normal pattern within the expected parameter ranges. This assessment is
not limited to merely recognizing patterns; it involves a detailed evaluation of whether the
detected patterns fall within the predefined safe operational limits. If a correlated sensor
is found that displays a recognized and acceptable pattern within these ranges, the system
considers the situation normal, and no fault is declared. However, if no such correlated
sensor is identified, or if the patterns observed fall outside the established safe ranges, the
system conclusively flags the sensor as faulty. This rigorous process ensures a more accurate
and reliable fault detection, minimizing false positives while effectively identifying genuine
anomalies.

In summary, the process of Knowledge-Based-SFDD, including its offline and online
phases, is visually represented in Figure 2. This flowchart provides a clear depiction of
how the algorithm models sensor behavior, checks correlated patterns, and makes real-time
decisions based on predefined parameters.

Benefits of Knowledge-Based-SFDD: The precision of Knowledge-Based-SFDD offers
several critical advantages:

Enhanced Accuracy: By defining normal behavior with specific parameters, Knowledge-
Based-SFDD significantly reduces the risk of false positives and negatives, ensuring that
only genuine faults are flagged.
Comprehensive Analysis: This approach provides a holistic understanding of sensor
interactions, considering both the patterns and their permissible ranges, which leads to
more informed and accurate fault detection.
Adaptability: The model adapts to the unique characteristics of each sensor, offering
a tailored analysis that can accommodate various operational scenarios and sensor
configurations.
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By modeling the entirety of each sensor’s behavior, Knowledge-Based-SFDD offers a
nuanced and highly accurate fault detection system. This method not only identifies deviations
from expected patterns but also assesses the severity and relevance of these deviations in
real-time. The result is a robust and reliable system that enhances the safety and efficiency
of drone operations, ensuring that anomalies are detected early and accurately.

5 Evaluation

Next, we precisely define the experiments we conducted to validate our methodologies. This
will include detailed descriptions of the test scenarios, the datasets used, and the specific
metrics employed to assess performance. Following that, in the Results chapter, we will
present and analyze the outcomes of these experiments, demonstrating the effectiveness and
superiority of our proposed methods, Combined-SFDD and Knowledge-Based-SFDD, in
accurately detecting faults under various conditions.

5.1 Data set

One of the primary contributions of this study is the use of real-world data, collected in
real-time during the communication between a drone and its control unit. This data is
subject to various external factors such as weather conditions, heat, and humidity, which can
significantly influence the drone’s behavior and sensor readings. We have taken meticulous
care to ensure the accuracy and reliability of the data used in our experiments, thereby
guaranteeing that the results obtained are robust and applicable to real-world scenarios.

Collecting such data presents significant challenges. To overcome these obstacles, we
partnered with Maris, a company specializing in Intelligent Video Surveillance and Analytics.
Maris provided us with the technical expertise and tools necessary for capturing high-quality,
real-world data.

For our study, we used drones from Aero Sentinel, a leading manufacturer in the tactical
UAV industry, known for its high-performance military drones used in various applications,
including combat, Homeland Security (HLS), police operations, and civilian use. We leveraged
a substantial amount of raw flight data collected from these actual Aero Sentinel drones.
This collaboration allowed us to gather a comprehensive dataset that includes detailed sensor
data recorded during real-world drone operations under various environmental conditions.

The data was gathered during controlled flights, with sensor data recorded and stored
in files, each containing approximately 35 minutes of flight time. A total of 30 flights were
conducted, resulting in about 17 hours of documented flight data. To maintain consistency,
all flights were conducted using the same drone model: Aero Sentinel Military UAV Sentinel
G2 4). This extensive dataset comprises approximately 611,000 records, underscoring the
substantial volume of data collected for analysis and model training.

The controlled flights involved testing a variety of real-world flight scenarios to capture
diverse operational conditions. These included hovering at different altitudes under varying
wind speeds, flights at multiple velocities, and takeoff and landing maneuvers at different
angles. By incorporating such a range of flight conditions, we were able to simulate the types
of environments a drone might encounter in practice, ensuring that the dataset reflected a
comprehensive spectrum of sensor behaviors.

4 https://www.aero-sentinel.com/military-drones/military_drone_sentinel_g2/

https://www.aero-sentinel.com/military-drones/military_drone_sentinel_g2/
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Table 1 Summary information for the sensors.

Sensor Measure Description Units
Accelerometer Xacc X acceleration int

Yacc Y acceleration int
Zacc Z acceleration int

Magnetometer Xmag X Magnetic field int
Ymag Y Magnetic field int
Zmag Z Magnetic field int

Gyroscope Xgyro Angular speed around X axis int
Ygyro Angular speed around Y axis int
Zgyro Angular speed around Z axis int

Barometer Press abs Absolute pressure hPa
Temperature Absolute pressure temperature cdegC

The collected data encompasses readings from all of the drone’s sensors, recorded at
varying sampling intervals for each sensor. Our study specifically focused on sensors providing
information about gyroscope, accelerometer, magnetometer, barometer, and drone temperat-
ure. Detailed information about the available sensors is provided in Table 1.

The dataset we created, with the help of capturing and translating packets transmitted
over the network during real flights, represents a significant contribution of this study.
Developing this dataset was a challenging process, involving the meticulous collection and
interpretation of data under diverse environmental conditions. After extensive pre-processing
operations, this unique dataset is now available for use, offering a rich and authentic resource
that is crucial for evaluating and improving fault detection methods in drones. Its real-world
applicability makes it an invaluable tool for advancing research and ensuring that our findings
are relevant and effective in practical scenarios.

The entire dataset, including the original data and the data post-fault injection, is
available in the parent Git repository. Access is via the following link:
https://github.com/inbalros/SensorFaultDetection_Correlation

Data Collection and Processing

Sensor data was collected from the communication between the drone and its control unit,
recorded in a binary LOG file. Using the Mavlink v1 protocol, relevant sensor data packets
were identified and processed, with timestamps provided every 0.1 seconds to create a
time-series dataset for fault prediction.

Due to the high data collection frequency, a large volume of records was generated, requir-
ing significant processing time. To optimize this process, we explored whether resampling
the data at longer intervals, specifically half a second and one second, could still maintain
accuracy while reducing the dataset size. Although this approach decreased the number
of records, initial experiments showed that the algorithm’s performance was less effective
compared to using the full dataset at the 0.1-second frequency.

After collecting the data, we encountered two challenges in creating a usable tabular
dataset. The first challenge involved handling multiple samples recorded from certain sensors
within the same time interval. The second issue was dealing with missing samples from other
sensors during certain time intervals.

To solve the multiple samples problem, we implemented two methods:
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1. Avgcomb (Averaging Combination): This method averages the values when multiple
samples exist within a time window and fills in missing values accordingly.

2. Lastcomb (Last Value Combination): This method takes the last value in cases of
multiple samples within a time window and completes any missing values.

Preliminary experiments indicated that the Lastcomb method yielded the best results.
To address the missing values issue, four strategies were employed for imputing the

missing data:

1. Lastmissing (Last Value Imputation): This method fills in missing values with the
last available value for that sensor. If no prior value exists, a default value is assigned.

2. SMAmissing (Simple Moving Average): A weighted moving average is calculated
using the last 10 samples from the same sensor, with statistical prediction applied to
estimate the missing value. If fewer than 10 samples are available, a default value is used.

3. LRmissing (Linear Regression): Linear regression is applied by gathering all available
samples of the sensor up to the missing point and predicting the missing value based on
this data.

4. ARIMAmissing (Autoregressive Integrated Moving Average): ARIMA, a time
series forecasting model, is used to predict missing values. This model requires careful
parameter configuration, achieved through an offline grid search to identify the best-
performing ARIMA model for each sensor. The chosen ARIMA model is then used to
predict missing values based on all available sensor data up to that point.

Extensive experiments demonstrated that the Lastmissing method consistently provided
the best results in terms of accuracy and reliability.

Simulating Sensor Faults in Flight Data

A critical challenge in this research is the lack of real fault data, as the available dataset only
contains normal flight information. To address this, we employed simulation techniques to
generate artificial sensor faults, which were then integrated into the normal flight data. This
approach allows for effective training and evaluation of our fault detection models.

An automated simulation tool was developed to generate data files containing simulated
faults, providing a controlled environment for testing and refining our models. The types of
faults simulated include: (1) Constant Faults: Represent a persistent deviation from normal
sensor readings. (2) Drift Faults: Describe a gradual change in sensor readings over time.
(3) Abrupt Faults: Indicate sudden and significant changes in sensor readings, which can be
expressed as sharp increases or decreases.

To ensure realistic simulations, expert insights from the Maris and Aero-Sentinel companies
were combined with thorough statistical analysis of the sensor data. This analysis helped
establish the range of values each sensor can sample, including averages and standard
deviations, which served as guidelines for creating realistic fault simulations. The simulated
faults were carefully designed to stay within the possible value ranges for each sensor.

The following ranges were defined for each type of fault:
1. constant:

Fixed to the first instance value within the current time window.
Fixed to the maximum possible sensor value.
Fixed to the minimum possible sensor value.
Fixed to 0, simulating a scenario where the sensor stops receiving information (if 0 is
a possible value for that sensor).
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2. drift:
A decrease from the first value in the time window, following the steepest negative
slope observed for that sensor.
An increase from the first value in the time window, following the steepest positive
slope observed for that sensor.

3. abrupt:
A sudden increase from the initial value in the time window, based on the largest
positive jump the sensor is capable of.
A sudden decrease from the initial value in the time window, based on the largest
negative drop the sensor is capable of.

To ensure comprehensive testing, the normal flight data was segmented into slightly larger
time windows than those used in the fault detection algorithm. Three distinct data files
were created, each containing a different type of fault: constant, abrupt, and drift. Faults
were systematically introduced into every second time window, covering all sensors and
representing all possible values of the specific fault type for each file. In total, 90 files (3
types of faults × 30 different scenarios) were generated, each containing various faults across
different sensors and flight conditions.

5.2 Competing Approaches and Pattern Analysis
To evaluate the effectiveness of our correlation-based algorithm, several different approaches
were tested:
1. Simple-SFDD: This method, based on the work of Khalastchi et al. [11], uses a

straightforward approach to detect faults by analyzing sensor correlations within a
dynamic time window. Further details can be found in the Background section (3.1).

2. Extended-SFDD: An enhancement of the Simple-SFDD, based on the work of Khalastchi
et al. [11], this method introduces offline analysis to refine correlation detection, making
it more robust. It is also detailed in the Background section (3.1).

3. Combined-SFDD: Building on the principles of Simple and Extended-SFDD, this
method integrates both approaches to improve fault detection accuracy and is specifically
adapted for drone operations. This method is discussed in detail in the Methodology
section (4).

4. Knowledge-Based-SFDD: An advanced method that incorporates knowledge-based
system techniques to model and analyze sensor behavior, offering enhanced fault detection
capabilities. This approach is also detailed in the Methodology section (4).

5.3 Experimental Process and Setup
To evaluate the effectiveness of our fault prediction model, we conducted a series of experi-
ments using K-fold cross-validation, with K set to 3. In each experiment, 20 flight files were
randomly selected for training, while 10 flight files were designated for testing. These test
files were drawn from the simulated fault files generated during the fault simulation phase,
with each test file corresponding to three different simulated fault scenarios, resulting in a
total of 30 variations of test files.

The training data plays a crucial role in the offline phases of the correlation-based
algorithms, allowing the models to learn and adapt. In contrast, the testing data, used for
the online phase only, (the Simple-SFDD approach, which operates solely online) did not
utilize the training files within its fold.
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For correlation-based detection, we applied a Pearson correlation coefficient of 40%
between two sensors to identify meaningful relationships and detect faults.

Additionally, during the Knowledge-Based-SFDD algorithm, we managed the Knowledge
Base to contain the modeling of patterns that were suspected to indicate faults, such as
abrupt and drift patterns. The Knowledge-Based approach not only identifies patterns but
also models their specific values, such as the magnitude of the jump in abrupt patterns and
the slope in drift patterns, against the maximum possible values observed for two correlated
sensors. This modeling is context-specific. Instead of comparing a sensor’s behavior across
its entire history, we analyze how a pattern like a drift behaves when a correlated sensor
exhibits a particular pattern.

Moreover, we tested different sizes of time windows across all four algorithms: 6 seconds,
10 seconds, 14 seconds, and 20 seconds. The number of instances varied depending on the
data representation method used. For raw data, where each record represents 0.1 seconds, a
10-second window contains 100 records.

5.4 Evaluation Metrics
In addressing the problem outlined in this article, the most relevant metrics for evaluating
the success of our fault detection algorithms are the True Positive Rate (TPR) and the False
Positive Rate (FPR).

True Positive Rate (TPR). This metric measures the proportion of time windows where
the algorithm correctly identified a fault when one was actually present. It is calculated
as the number of true positives (correctly identified faults) divided by the total number of
actual faults (TP/(TP + FN)). Importantly, a true positive (TP) is only considered valid if
the fault is detected in the correct sensor. If the algorithm detects a fault but incorrectly
diagnoses it in a different sensor, this is not counted as a correct detection. Thus, TPR
reflects the algorithm’s success rate in accurately detecting both the fault and the affected
sensor. Essentially, TPR reflects the algorithm’s success rate in detecting genuine faults.

False Positive Rate (FPR). This metric indicates the proportion of time windows where
the algorithm incorrectly flagged a fault when none existed. It is calculated as the number of
false positives (incorrectly identified faults) divided by the total number of windows where
no fault was present (FP/(FP + TN)). In addition, FPR includes cases where a fault is
present, but the algorithm incorrectly identifies the wrong sensor. So, even if a fault exists, if
the diagnosis points to the wrong sensor, this is counted as a false positive, highlighting the
algorithm’s error rate in both detecting non-existent faults and misdiagnosing sensor faults.

In addition to these primary metrics, we also considered using Precision and Recall. Recall,
is identical to TPR, measuring the accuracy of the algorithm in identifying actual faults.
Precision, evaluates how many of the time windows identified as faulty by the algorithm
were indeed faulty, out of all the time windows flagged as faulty, whether correctly or not.
However, Precision may be less relevant in our context due to the significant imbalance
between the number of time windows without faults and those with faults.

6 Results

In the following figures 3a, 3b, we present a comparison of the four algorithms – Simple-SFDD,
Extended-SFDD, Combined-SFDD, and Knowledge-Based SFDD – using two key metrics:
Average False Positive Rate (FPR) and Average True Positive Rate (TPR). These graphs
visually demonstrate how each algorithm performs across various time window sizes (6, 10,
14, and 20 seconds), providing a clearer illustration of the algorithm’s effectiveness.
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Figure 3a depicts the Average FPR for each algorithm. A lower FPR indicates fewer
instances of false fault detection, where a malfunction is falsely identified. It can be observed
that Knowledge-Based SFDD consistently outperforms other methods, achieving the lowest
FPR across all window sizes, while Combined-SFDD demonstrates the highest FPR values.

Figure 3b shows the Average TPR, which reflects the accuracy of each algorithm in
detecting genuine faults. A higher TPR suggests better fault detection. Once again,
Knowledge-Based SFDD stands out with the highest TPR in all configurations, while
Simple-SFDD yields the lowest TPR.

(a) Average False Positive Rate (FPR).

(b) Average True Positive Rate (TPR).

Figure 3 Comparison of FPR and TPR for Simple-SFDD, Extended-SFDD, Combined-SFDD,
and Knowledge-Based SFDD across different time windows (6, 10, 14, and 20 seconds).

The results show that our Knowledge-Based-SFDD algorithm consistently delivers ex-
cellent performance, achieving an average TPR of 98%, with an impressively low FPR of
just 0.03%. This indicates that the Knowledge-Based-SFDD not only accurately predicts
malfunctions but also minimizes the instances of false alarms – where a fault is indicated,
but none exists. The model’s algorithm systematically outperforms the other approaches
across all configurations, clearly demonstrating its robustness and reliability.
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The Simple-SFDD, which operates exclusively online, achieves the lowest success rates
in fault detection. Its performance is hampered by its reliance on short-term correlations,
which often fail to capture the complexity of sensor interactions over time. Consequently,
it struggles with both lower TPR and a higher incidence of false positives. Expanding the
window size does little to alleviate these issues, as the difficulty in detecting correlations
within larger windows further complicates fault detection.

The Extended-SFDD improves upon the Simple approach by incorporating offline analysis,
yet it still falls short in several areas. The primary limitation here is that the presence
of multiple potential patterns for each sensor makes it difficult to pinpoint specific faults.
However, as the window size increases, the algorithm gains confidence in identifying patterns,
resulting in a gradual improvement in TPR.

The Combined-SFDD, which integrates elements of both the Simple and Extended
approaches, shows a notable improvement in fault detection. In this method, if the Extended-
SFDD does not detect a fault, the algorithm applies the Simple-SFDD, but with additional
features such as differentials. This enhanced version of the Simple-SFDD allows it to detect
more faults than the standard Simple approach, as it now takes into account the extra features.
However, this comes at the cost of a higher FPR, indicating that while the Combined-SFDD
is more sensitive to faults, it is also more prone to false positives due to the broader feature
set being examined.

The Knowledge-Based-SFDD emerges as the most effective algorithm across all config-
urations. It consistently delivers the highest TPR and the lowest FPR, making it the best
choice for reliable fault detection. The model’s ability to learn and model complex sensor
behaviors, combined with the increased confidence provided by larger window sizes, ensures
that it excels in both detecting true faults and avoiding false alarms.

7 Conclusions and Future Work

Drones, or unmanned aerial vehicles (UAVs), play an increasingly important role across various
industries, making their reliability and safety-critical. A major challenge in maintaining
drone operations is the detection and diagnosis of sensor faults, which can significantly impact
performance. In this study, we focused on detecting these sensor-related faults to enhance
the safety and efficiency of drones. Through a crucial collaboration with Maris, a pioneer in
AI edge video and analytics technologies, we gathered a comprehensive dataset from real
drones. Utilizing Maris’s advanced Mercury Nano system, we recorded the communication
between an Aero-Sentinel Military UAV Sentinel G2 quadcopter drone and its control unit,
capturing detailed sensor data during operation. This partnership was instrumental in
providing the high-quality data that formed the foundation of our research. We developed
and tested correlation-based algorithms, including two new methods – Combined-SFDD and
Knowledge-Based-SFDD specifically designed to address the complexities of drone sensor
data. Our experiments demonstrated the clear superiority of these algorithms, particularly
the Knowledge-Based-SFDD, which achieved a 98% True Positive Rate (TPR) and a low
False Positive Rate (FPR) of 0.03%. These results highlight the effectiveness of our approach
in accurately detecting faults while minimizing false alarms.

Looking forward, several avenues for enhancing and expanding this research can be
explored. One promising direction is the integration of audio data into the fault detection
process. By incorporating sound analysis, we can potentially identify and diagnose faults
that may not be detectable through sensor data alone, further improving the accuracy and
reliability of the detection system. Another key area for future work is the exploration and
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comparison of deep learning algorithms for detecting structural faults in drones. While our
current study focused on sensor-related faults, structural faults – such as those affecting
the drone’s frame or mechanical components – pose significant risks to drone operations.
Leveraging deep learning techniques could provide more advanced and effective methods for
identifying these types of faults, thereby enhancing the overall safety and performance of
drone systems.
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