
Simulation-Based Diagnosis for Cyber-Physical
Systems - A General Approach and Case Study on
a Dual Three-Phase E-Machine
David Kaufmann #

CD Laboratory for Quality Assurance Methodologies for Autonomous Cyber-Physical Systems,
Institute of Software Technology, Graz University of Technology, Austria

Matus Kozovsky #

Central European Institute of Technology, Brno University of Technology, Czech Republic

Franz Wotawa #

CD Laboratory for Quality Assurance Methodologies for Autonomous Cyber-Physical Systems,
Institute of Software Technology, Graz University of Technology, Austria

Abstract
This paper presents a simulation-based approach for fault diagnosis in cyber-physical systems.
We utilize simulation models to generate training data for machine learning classifiers to detect
faults and identify the root cause. The presented processing pipeline includes simulation model
validation, training data generation, data preprocessing, and the implementation of a diagnosis
method. A case study with a dual three-phase e-machine highlights the results and challenges of
the simulation-based diagnosis approach. The e-machine simulation model provides a complex and
robust system representation, including the capability to inject inter-turn short-circuit faults. The
introduced validation procedures of the simulation model revealed limitations in signal similarity
and distinguishability compared to real system behavior. Based on the discovered limitations, the
overall best results are achieved by applying an Autoencoder model for anomaly detection, followed
by a Random Forest classifier to identify the specific anomalies. Further, the focus is on identifying
the affected e-machine phase rather than the exact number of faulty winding turns. The paper
shows the challenges when applying a simulation-based diagnosis approach to time-series data
and underlines the required analysis of simulation models. In addition, the flexible adaption in
the diagnosis strategies enhances the efficient utilization of cyber-physical system models in fault
diagnosis and root cause identification.

2012 ACM Subject Classification Computing methodologies → Causal reasoning and diagnostics

Keywords and phrases Cyber-Physical System, Fault diagnosis, Root cause analysis, Simulation-
Based Diagnosis, Machine Learning, Artificial Neural Networks

Digital Object Identifier 10.4230/OASIcs.DX.2024.18

Supplementary Material Software (Method and Source Code): https://doi.org/10.5281/zenodo.
14026570 [7]

Funding David Kaufmann: The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology and Development, and the
Christian Doppler Research Association is gratefully acknowledged.
Matus Kozovsky: The work has been performed in the project A-IQ Ready: Artificial Intelligence using
Quantum measured Information for realtime distributed systems at the edge No 101096658/9A22002.
The work was co-funded by grants of Ministry of Education, Youth and Sports of the Czech Republic
and Chips Joint Undertaking. The work was supported by the infrastructure of RICAIP that has
received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 857306 and from Ministry of Education, Youth and Sports under OP RDE
grant agreement No CZ.02.1.01/0.0/0.0/17_043/0010085.
Franz Wotawa: The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs, the National Foundation for Research, Technology and Development, and the Christian
Doppler Research Association is gratefully acknowledged.

© David Kaufmann, Matus Kozovsky, and Franz Wotawa;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024).
Editors: Ingo Pill, Avraham Natan, and Franz Wotawa; Article No. 18; pp. 18:1–18:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.kaufmann@ist.tugraz.at
https://orcid.org/0009-0003-5172-0470
mailto:matus.kozovsky@ceitec.vutbr.cz
https://orcid.org/0000-0002-1547-1003
mailto:wotawa@ist.tugraz.at
https://orcid.org/0000-0002-0462-2283
https://doi.org/10.4230/OASIcs.DX.2024.18
https://doi.org/10.5281/zenodo.14026570
https://doi.org/10.5281/zenodo.14026570
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


18:2 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

1 Introduction

The automotive industry is experiencing a deliberate and long-planned transformation towards
electrified vehicles, primarily affecting the powertrain and safety assistance systems. When
vehicles are operated on the road, unsteady conditions and challenging environments may
be encountered. For instance, extreme temperatures, changing transportation loads, high-
speed driving, stop-and-go traffic, or even off-road driving. These scenarios can negatively
impact the lifetime of a powertrain system and even cause unexpected failures. To enhance
the reliability and safety of powertrain systems, it is important to address the component
design and the specification of the operational design domain during the early development
phase. In this context, fail-safe and fail-operational powertrain systems are mandatory to
improve reliability, safety, and performance. With a focus on electric machine components
of powertrains, research shows that most faults are related to issues with stator windings,
bearing faults, magnet demagnetization, unbalanced magnetic pull, and eccentricity faults
[3]. To give an example, a promising architecture for achieving a fail-operational design
is the dual three-phase e-machine [13]. This architecture can operate even under stator
fault conditions by appropriately adapting settings of power inverters, motor parameters,
and control algorithms [12]. However, stator winding faults, like inter-turn short circuits
(ITSC), can significantly impact motor performance, causing large currents and demagnetizing
magnets [2] and therefore require a fast identification and mitigation. Thus, it is essential to
identify the root cause of the failure in the system to take appropriate mitigation actions
or schedule maintenance before a critical scenario occurs. To address this challenge, we
propose a procedure using simulation models as virtual laboratories for generating normal
and fault-injected data to train robust machine learning (ML) algorithms for early anomaly
detection and root cause identification on real cyber-physical systems (CPS). For instance, an
abstracted conceptual framework of the procedure is presented in [23], focusing on detecting
bearing faults in wind turbine generators. Applying models for diagnosis in the classical
model-based diagnosis [20] is a powerful approach that enables reasoning about the system
behavior for systematically identifying faults or anomalies within complex systems. The
model-based diagnosis approach avoids the expensive part of simulation [25] by an abstract
representation of the system’s properties and conditions. A successful demonstration of
fault detection and root cause analysis by utilizing a model-based diagnosis on a CPS is
presented by Wotawa et al. [8]. However, formalizing the logical representation of a CPS could
be complex and challenging for dynamic behavior and a wide-ranged system’s operational
domain. A simulation-based approach could avoid the drawbacks since a deep knowledge of
the model and related properties is not required. Nevertheless, potential constraints are also
obvious because the simulated representation of real system behavior has to be as similar
as possible to guarantee a precise fault diagnosis solution. In this paper, we address this
challenge in a case study by training fault detection methods on simulated data to be tested
on real measured data of an electrified machine to assess how ML methods manage deviations
and gaps in the data. We introduce a comprehensive general approach encompassing the
initial model specification, an extended model validation methodology aimed at gathering
comprehensive information regarding potential applications, using the model to generate
simulation data, preprocessing techniques for the collected data, and finally, the training and
evaluation of ML-based fault classifier algorithms. Further, we take advantage of elaborated
insights and present a case study with a complex CPS, a dual three-phase e-motor model
capable of simulating a variation of stator issues in the context of short-circuit faults. With
this case study, we demonstrate the identification of possible limitations of simulation models
and introduce a potential fault detection method operated on real measured data.



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:3

2 General Approach

In this section, we present an overview of utilizing simulation models to produce training data
for ML algorithms aimed at identifying unexpected behavior (faults) within the operational
domain of a CPS. The authors in [23] followed a similar approach to perform condition
monitoring and predict faults in rotating machine bearings based on relatively simple
simulation models validated on experimental data of a real system representation. Besides
statistical feature-based ML classifiers, convolutional neural networks were applied and
evaluated based on their performance in fault prediction. The authors claimed that a
purely simulation-data-driven approach cannot replace the experimental data. Kozovsky et
al. [14] evaluated another approach, utilizing an experimental hardware testbench of a dual
three-phase e-motor capable of injecting inter-turn short-circuit (ITSC) faults. The setup
was used to collect signal data on normal and faulty system behavior as a basis for ML and
Artificial Neural Network (ANN) classifier models for detecting and identifying ITSC faults
during system operation. The validation on different speed and load profiles showed 99.8 %
accuracy in detecting faults for the critical high-speed range above 800 rpm. A constraint of
the methods employed is that specific critical faults cannot be entirely tested on a real test
bench due to possible expensive system degradation or damage, leading to insufficient data
representation for these faults. Utilizing digital models within a simulated environment can
address the absence of data by generating synthetic training data for scenarios that are not
covered, such as fault-injected cases. In this paper, we follow the idea and utilize a simulation
model [13] of an electrical machine as discussed in [14] to train ML and ANN classifiers on
simulated data and evaluate the fault detection rate and time efficiency when applied to
real system measurements of the experimental testbench. The objective is to evaluate the
potential of utilizing generated training data generated with the simulation model to enhance
the fault detection accuracy of ML classifier models.

In [10], we present a basic methodological framework focusing on the processing pipeline
and its application. Figure 1 extends this processing pipeline to support more comprehensive
applications. The process starts with validating a CPS simulation model, using the gathered
information for the data generation, and applying preprocessing methods such as feature
selection and data extraction. Next, the data is used to train ML classifiers to detect system
faults during runtime. The utilized example in [10] was a simple DC motor capable of
injecting battery, torque, and motor faults. Due to the lack of real measurements, only the
concept was evaluated. With this paper, we make use of the framework presented in Figure 1
and assess the approach to a complex CPS with available real experimental measurements
of normal and faulty system conditions. It is important to mention that the algorithms
and methodologies outlined in the paper were specifically designed and tested to handle
time-series data gathered from respective CPSs. Further, we enhance the framework discussed
with the CPS models’ validation procedure to determine the similarity and distinguishability
between the simulation and real measured data. This process supports the identification of
constraints regarding the applicable operational domain of the CPS model.

The following description starts with an introduction to model generation, validation,
execution to generate training data, the preprocessing mechanism, possible state-of-the-art
classifier models, and an application with evaluation. The following definitions apply to the
overall description:

Simulated/Simulation Data - This refers to data generated by a CPS simulation
model within a simulation environment. It represents real-world scenarios but is created
artificially within a controlled virtual framework.

DX 2024



18:4 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

Measured/Measurement Data - This term denotes data acquired from real hardware
systems under laboratory conditions. It involves the direct recording of observations from
physical components and applied software.

Data Classifier Method

Scenario Data GenerationModel Validation CPS Diagnosis

System Diagnosis

System Model

1

Feature Selection

8

Data 
Preprocessing

7

Cyber-Physical 
System

ML/ANN 
Classifier
Training

9

Scenario Data 
Generation

6

Simulation-Based Diagnosis
Process Pipeline

System Model
Validation

4

Operational 
Domain 
Definition

Validation Data 
Generation

2

Data 
Preprocessing

3

5

Data 
Preprocessing

ML/ANN 
Classifier 
Application

Diagnosis 
Report

Figure 1 Simulation-based Diagnosis general pipeline process.

2.1 CPS Model Specification
CPSs combine physical and computational processes. The physical components, like sensors,
actuators, and machinery, interact with computational elements, such as software, algorithms,
and communication networks, to bridge the gap between the physical and digital worlds.
CPSs are very prominent in different domains, including autonomous driving systems. In this
paper, we focus on a main component in the automobile sector, the e-motor (physical) with
speed controller algorithms (digital) and the application of fault detection methods (digital).
To develop and test new algorithms and methods for such systems, it is obvious that a real
physical system is not always applicable in terms of fast, reliable, cost-efficient, and safe
execution. Thus, representative simulation models are introduced, modeling the physical
component to be executed in a simulated environment. Although that approach comes with
limitations, in terms of covered operational domain and realistic behavior representation, it
is a fundamental process because it accelerates the development and improvement of applied
algorithms and software.

2.1.1 CPS Modelling Tools
In [16], the authors provide a broad survey about model-driven techniques and tools for
generating CPSs. However, an important argument is not included, the compatibility with
the Functional Mock-up Interface (FMI) standard [17] enabling generate Functional Mock-up
Unit (FMU) models. The FMI interface is essential for development since it enables the
usage of derived models in various environments and the connection of models generated
with different tools. Almost all of the mentioned modeling tools also provide a simulation
environment to perform the execution and tests. However, this comes with limitations
when developing methods, algorithms, and tools requiring a different basic environment. In
addition, standardized model formats such as FMI are a universal enabler for the execution
of model simulation runs without the use of the initial modeling tools. Instead, standardized
FMI libraries are utilized to simulate in co-simulation mode, which incorporates an integrated
solver and step-by-step execution. In the following description, we set the focus on Python
as the main programming environment since it provides an extensive database of libraries



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:5

[24] for data processing and ML or ANN algorithms. We make use of the FMU simulation
framework [9] controlled via a Python interface based on the library called pyFMI [1]. The
framework has been developed to execute simulations of CPS models in co-simulation mode.
In addition, a user-friendly Python interface enables the loading, configuration, execution,
and interaction with the CPS during simulation runtime.

2.1.2 CPS Model Validation

Validation of developed models is essential since this process provides information about the
quality and usability of the generated data. We assume that at least measured data of normal
system operation for different configurations is available. A prerequisite of the validation
procedure is the execution of simulations for comparison. Therefore, we recommended copying
the behavior and configuration of the measured data and executing simulation scenarios. This
enables the assessment of the accuracy of representation in terms of behavior and dynamics,
validated against real data. In essence, we show examples of potential processing methods
for calculating similarity and distinguishability factors of different system configurations
and conditions, also described as fault classes. It must be noted that our focus is on CPS
with time series data output. Based on the output, we receive important information about
potential model limitations that have a negative impact on the diagnosis algorithm. For
the application of both methods, we suggest splitting time-series data into junks to avoid
long-lasting shifts or drifts with the drawback of missing information about certain sections.
However, the selected junks should display at least interesting behavior or shapes of the data,
such as transition phases when new inputs are set.

Similarity Factor

A requirement for calculating a similarity factor is data preprocessing, including feature
extraction, i.e., applying statistical methods and normalization. Normalization is important
for directly comparing individual features and resulting similarity factors. A detailed
description of the preprocessing is presented in Section 2.3 and in Algorithm 1. Figure 2
shows the application of several methods for a data snipped of time-series waveform type
compared to modified versions. We focus on different methods like dynamic time warping
(DTW) [26] [29], Euclidean distance, Manhattan distance, and Pearson correlation. The
resulting matrix shows different sensitivities to the data and their modifications. Pearson
correlation measures the linear relationship between two vectors of time series. Euclidean
and Manhattan compute the straight-line distance error between two vectors with different
approaches and are commonly used for comparing vectors or time series with regular intervals.
DTW distance calculation is a valid option for performing validation tests to receive a factor
about the similarity of data packages while accounting for tolerance of temporal distortions
like shifts, stretches, and compressions between two sequences. DTW has main advantages
when comparing time series with irregular intervals or different lengths. This aligns with most
assumptions on datasets since measured and simulated data may not consistently synchronize
with absolute accuracy. DTW distance in Figure 2 shows an overall good estimation of
similarity, also for a slight time shift, where other measures like Euclidean distance apply a
too-high weight on it. Pearson correlation could be used as an additional factor to estimate
the linear relation between the signals.

DX 2024



18:6 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

Figure 2 DTW distance computation applied on time-series data with waveform behavior. The
figure shows an offset, phase-shift, and noise configuration and the corresponding DTW distance
computation for each. offset: +0.8, shift: +2, drift rate: +0.02, Noise: std dev 0.4.

Distinguishabliliity Factor

Another important method regarding ML classifier models is the distinguishability (or
isolation) factor of various fault classes. Thus, as mentioned earlier, the DTW method can
be applied to measured or simulated data to analyze how fault classes can be isolated from
each other. Figure 3 shows an example of multiple fault conditions in time-series data and a
computed DTW distance matrix, which estimates the variation between the different fault
conditions. Based on the matrix, we can argue that the classification of Fault 0 and Fault 1
can cause issues due to a relatively low factor compared to other data classes. The example in
Figure 3 only compares one signal of different fault classes, but for CPS, we have to consider
multiple signals of one class. Thus, we can also apply a dependent multi-dimensional DTW
[29], capable of computing a distance between multivariate sequences. A concrete application
is shown in the case study in Section 3.2.

Figure 3 DTW matrix comparison between different fault configurations in the measured data
for Currents_Sub2[3]. A value close to 0 means highly matching, and increasing values mean a
deviation in the signals. The DTW matrix shows the signal for a load of 20 NM, a speed between
3000 and 3650 rpm, normal, and four fault configurations (F1 - F4). The data is standardized on a
Z-score.

2.2 Simulation Data Generation
The data generation process based on the derived simulation models must be specified in
detail before executing because the simulation runs may consume much time and performance.
Thus, key questions are noted to support establishing relevant scenarios with high coverage



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:7

for the intended application of performing system diagnosis.
How is the normal operational domain defined within the context of the system?
What fault scenarios are known and documented?
What fault scenarios within the system can be efficiently replicated using the CPS model?
What fault scenarios are relevant to the CPS’s fault detection process?

Based on these considerations, we define an appropriate fault case catalog tailored to the
specified operational domain and the individual configuration setup. Simulation efforts may
rise significantly with the increasing complexity of dynamic systems models. Therefore,
countermeasures like discretization must be taken to reduce the number of simulation
traces. For example, we assume that an e-motor model with a continuous controllable speed
adjustment will result in an infinite number of traces to be recorded to capture the exact
behavior in the data. Since this approach is not applicable for time and storage reasons, a
discretization of speeds is required, which divides the speed profile into sections of interest,
as shown in Figure 4. The selection of appropriate ML or ANN methods covers, at least to a
certain extent, the missing areas between the selected discretization steps. The discretization
level can be adapted based on the final fault detection accuracy evaluation to improve that.
The next important step is elaborating scenarios and phases that represent a broad coverage
of the model operation. In Figure 4 we illustrate different phases to be considered if qualified
on the model output. We subdivide the parameter configuration into the following sequences:

Initial conditions: To prevent overfitting in the data, the initial process should use
different configurations for each simulation. If the model requires a specific ramp-up
phase, e.g., an e-machine to establish a required speed, it is suggested that these sections
be avoided by adapting the starting time of the observation recording accordingly.
Transition phases: The transition phases are important since they could initiate critical
scenarios or mask faulty behavior due to overproportional changes in the data compared
to the failure’s impact on the observation.
Temporal changes: For the data acquisition, it is important to cover temporal changes
and, depending on the required observation period, to adapt the sequence duration.
Equilibrium phases: The identification of when a system reaches an equilibrium phase
after a transition phase or a temporal change for early stopping or initiating new inputs is
essential. This will prevent overfitting on these sections for later classifier model training.
Sequential occurrence: The sequential injection of new inputs or faults is a good
approach to save simulation time and storage, even so, it should be minded that a failure
sequence should be injected in a normal system for correct representation, besides cases,
where detection of consecutive failures is required to predict the propagation of such.
Fault injection timing and duration: The timing and duration of fault injection
are important to maximize the scenario coverage. Our experience showed that a fault
should be injected into a normal system when it reaches the equilibrium phase of the
actual configuration (if applicable to the model). With this, scenarios of different faults
can be compared based on their impact on signal behavior. The scenarios can further be
improved in terms of coverage by setting different system or component states during the
presence of the fault.

It is clear that not all scenarios, for example, initialization of faults during each timestep
of a long-lasting transition phase, are achievable. However, a structured selection of scenarios
may overcome such limitations in combination with an appropriate classifier model. After
specifying the relevant phases, a parameter configuration is defined for an efficient training
data generation process. Annotated contextual information is required to achieve a labeled
training dataset. Therefore, configuration settings, system states, and conditions are logged

DX 2024



18:8 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

Figure 4 Identification of phases in signals and observations of a CPS.

together with the observed system inputs and outputs when executing simulations. For
execution of simulations, we utilize the tool [9]. It provides an interface to extract a data
package with the collected input and output data and the corresponding label information
in a time-series format.

2.3 Data Preprocessing Methods

Before applying a classifier algorithm, the generated simulation training data requires
preprocessing to extract features to determine different configurations and failure modes in
the data. Based on the received data, corresponding methods are applied as discussed in [4],
where the authors describe a comprehensive review of the overall procedure starting from data
cleaning, reduction, scaling, transformation, and partitioning. When following this structure,
the initial task is the cleaning procedure, which is mainly separated into two topics, value
imputation and outlier elimination. Since we use generated simulated data, this step can be
neglected. The data reduction is applied to the rows by resampling at equal sampling rates or
removing duplicate sections within the same configurations. Alternatively, it can be applied
to columns, which the authors in [4] divide into three domains, the expert knowledge feature
selection, the statistical feature selection, and the feature extraction methods for computing
enhanced data properties. The feature selection based on domain expert knowledge shall
be preferred if applicable. However, with an increasing number of measured signals, the
computed statistical method supports identifying correlated signals and provides information
about the variance in the dataset. Another important task is the application of feature
extraction techniques to generate new features through linear or nonlinear methods. The
analysis of linear data patterns can be achieved by using statistical techniques and Principal
Component Analysis (PCA) [5]. Both approaches simplify complex information by combining
or transforming data in linear ways. Another approach is nonlinear feature extraction,
which has the advantage of minimizing the potential threat of information loss when new
features are extracted based on identified patterns in the dataset. Such a method are, e.g.,
autoencoders (AE) [28]. Regardless of whether PCA or AE is used for complexity reduction,
the statistical method remains an appropriate and simple preprocessing step for feature
extraction and data size reduction. Since we focus on the time-series domain, implementing
a moving time window method is reasonable for computing statistical values like the mean,
Root-Mean-Square (RMS), variance, and others. Since RMS is relevant for the case study



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:9

presented later, its definition is provided as RMS =
√

1
n

∑n
i=1 x2

i , where xi represents the
individual values, and n denotes the total number of values. Data normalization is essential
to generalize each feature equally to receive a homogeneous dataset. In [22], the authors
discussed several normalization methods that imply scaling or transforming data to highlight
the impact on simple ML classifier performances. The results showed that Z-score and Pareto
Scaling performed well for most tested datasets based on the full and selected feature set.
The authors also stated that choosing the proper normalization method depends on the
quality of the dataset. When using distance-based classifier algorithms, noise or outliers can
lead to stronger responses with a negative impact on the performance.

The last step references the labeling of preprocessed data for the later supervised learning
algorithms. Therefore, it is important to define clear labels as integer values representing
different contextual information. This approach should be considered for classifiers with
single- and multi-output predictions.

2.4 Classifier Models

Shakiba et al. [21] provide comprehensive research and evaluation on ML algorithms focusing
on solving fault diagnosis problems in the domain of electrical power systems. The survey
supported our selection process for the most appropriate models regarding applicability and
straightforwardness in implementation, which are the Decision Tree (DT), Random Forest
(RF), k-Nearest Neighbor (k-NN), and Multi-Layer-Perceptron (MLP). In addition, we will
discuss a simple design of an unsupervised Autoencoder (AE) [27] in the later introduced
case study. In general, AEs support dimensionality reduction, feature learning, time series
forecasting, or anomaly detection based on their model design. For anomaly detection, AEs
are trained on normal system data to predict the reconstruction of a given observation.
An anomaly is detected when the reconstruction error between the learned behavior and
observation exceeds a defined threshold. Although this approach does not provide information
about the root cause of a fault, it improves a fault detection method by identifying unknown
and unexpected system behavior. This led to the idea of utilizing an AE for anomaly
detection in combination with an ML classifier to overcome the limitations of both options.
A concrete implementation of the idea is presented in Section 3.5 and Algorithm 2. In this
paper, we focus on 1D vector data of m feature values as input for the models. We do not
consider a time sequence of n samples and m features as input for the ML classifiers or
the AE.

3 Case Study

In this section, we present an application of the general approach based on a case study
comprising a dual three-phase machine. First, we provide a brief introduction to the model
and specifications. Second, we follow the processing pipeline, starting with the CPS model
validation by calculating the similarity between the simulated and measured data and the
distinguishability of several investigated system conditions. Next, we discuss the simulated
data generation and the preprocessing implementation to prepare the data for the diagnosis
part, followed by the concrete application of an AE for anomaly detection and an ML
classifier for fault identification in real measured data. Finally, we discuss the results and
show potential applications, drawbacks, and limitations.

DX 2024



18:10 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

3.1 CPS Model Background and Specifications

According to [18], common faults in electric drives are related to stator winding faults. These
faults account for 36% for low-voltage and up to 66% for high-voltage machines. Stator
winding issues arise due to insulation stress, material degradation, vibrations, temperature,
and high voltage stress. The most typical fault is an inter-turn short-circuit (ITSC), which
usually initiates as a single-turn short-circuit and spreads rapidly to the entire winding,
resulting in a ground fault. This causes a severe emergency and consequently forces an
operational stop. The study focuses on dual three-phase electric motors operating under
different ITSC faults. The primary goal is to evaluate a diagnosis algorithm to detect these
faults in the time-series domain during runtime using synthetic-generated data within a
simulated environment. Specifically, we want to validate if and to what extent simulated
data can be used to detect faults with root cause analysis on real measured data. Thus,
we utilize the dual three-phase e-motor model as introduced by [13]. In addition to the
proposed simulation model, real hardware measurements, including ITSC fault-injected data,
are accessible. Details of the simulation model and the experimental hardware setup are
presented in [15], [13], and [14]. Table 1, and 2 provide an overview of the specifications,
available signals, and selected operational domain for the diagnosis procedure evaluation.
The system’s controller is designed to align the actual rotational speed, ωmech, with the
reference rotational speed, ωref , by adjusting the control signals, which are the voltages in
DQ coordinates. These adjustments directly impact the measured currents in the phases.
Further, the model can simulate various faults focusing on ITSCs with different configurations,
as shown in Table 3. We divide the addressed ITSC faults into two schemas: Fault 1-6,
which provides information on the affected phase and the number of shorted turns in the
winding, and Phase Fault A and B, which categorizes faults based solely on the affected
winding phase. The authors of the model used Matlab Simulink [6] as a modeling tool and
provided an exported FMU model in co-simulation format to fit into our developed FMU
simulation environment [9].

Table 1 Dual three-phase e-motor parameters and configuration.

Configuration Parameter Range Unit
Nominal configuration

DC voltage 200 V
Max. continues motor current 107 A
Winding resistance 6.5 mΩ
Winding inductance 180 µH
Nominal speed 8000 rpm
Maximum speed 10500 rpm
Nominal power 30160 W
Number of pole pairs 10

Test setup
Test speed range 0 to 5000 rpm
Test load torque 0 - 35 Nm

Table 2 Dual three-phase e-motor measurement output signals.

CPS Signal Name Reference Name Unit Symbol
Speed Mechanical Speed_mech rpm ωmech

Speed Reference Speed_Reference rpm ωref

Current Subsystem 1 (A, B, C) Current_Sub1 ([1], [2], [3]) A I1a, I1b, I1c

Current Subsystem 2 (A, B, C) Current_Sub2 ([1], [2], [3]) A I2a, I2b, I2c



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:11

Real Measured Data

As already mentioned, we have two models, the real hardware and the simulation model.
Both provide currents and voltages of each subsystem and phase, resulting in six different
currents. Also, currents and voltages in DQ coordinates are accessible. We decided to focus
on phase currents, I1a, I1b, I1c, I2a, I2b, and I2c, which can be easily measured even in already
existing systems. Another signal considered is the system’s measured rotational mechanical
speed ωmech. The torque load τ is not measured with the hardware setup. Instead, an
average target torque is provided as additional information, which is later used to evaluate
the applied diagnosis methods. All signals are recorded at a sampling rate of 10 kHz. The
setup provides a fault injection interface capable of simulating ITSC faults, as shown in
Table 3. The available measured data has the following configuration:

stepwise increasing ωref changes from 10 rpm up to 4700 rpm,
the stagnant duration for each ωref is 1.0 seconds,
torque load τ from 0 Nm to 35 Nm with a stepsize of 5 Nm,
normal and fault system conditions (see Table 3),
total execution time is 54.0 seconds for each configuration.

We received a total number of 56 measured cases, each lasting 54.0 seconds and including
information about I1a, I1b, I1c, I2a, I2b, I2c, and ωmech. In addition, configuration settings,
like the reference speed ωref , injected fault condition, and actual load factor τ are stored.
The data packages are stored as Matlab .mat format files, each with a size of 25 MB. The
measured data packages are publicly accessible on Zenodo [11].

3.2 CPS model validation
For the presented case study, we have access to an extended set of real measurement data
for the normal and different ITSC fault injection scenarios. To achieve a precise comparison,
we extract the different applied configurations from the measured dataset to reproduce a
similar dataset within the simulated environment. With the presence of the two datasets,
measured and simulated, we initiate a procedure to validate similarity and distinguishability.
Both metrics are separated into a visual and calculated part. For the visual part, a graphical
representation of signals is plotted to display obvious discrepancies like offsets, shifts, delays,
or inaccurate behavior. We use the DTW distance method based on the Python library [29]
for the calculated part. The configuration of the datasets shows a stepwise increasing ωref

(from 100 to 4400 rpm) where each step is held for approximately 1.0 seconds until the next
reference speed ωref is set. For the CPS validation, we use these speed steps as discretization
levels for the different stages of the data to split into subsamples, for example, see Figure
4. With this, a meaningful DTW can be calculated, and an implication on speed effects is
achieved. An essential part is data preprocessing, which extracts features that show relevant

Table 3 Dual three-phase e-motor inter-turn short-circuit fault configurations.

Normal Description Shorted turns -
Fault 0 Normal operation of a system 0/7 Fault 0
Turn Fault Description Shorted turns Phase Fault
Fault 1 ITSC in phase B in sub-system 2 1/7 Fault B
Fault 2 ITSC in phase A in sub-system 2 2/7 Fault A
Fault 3 ITSC in phase B in sub-system 2 3/7 Fault B
Fault 4 ITSC in phase A in sub-system 2 4/7 Fault A
Fault 5 ITSC in phase B in sub-system 2 5/7 Fault B
Fault 6 ITSC in phase B in sub-system 2 6/7 Fault B

DX 2024



18:12 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

information about the different system conditions (faults). Because the different ITSC faults
cause an amplitude change in the corresponding currents, a moving time window with the
statistical RMS computation is applied to reveal the deviations. Since the measured currents’
waveform frequency is linear increasing with ωmech, we might not be able to extract the
relevant information (RMS amplitude) for low ωmech if the time window is selected too small
and does not cover at least one full period. On the other hand, selecting a too-large time
window is problematic for high ωmech, where we might miss important information. Thus,
we introduce the adaptive time window based on the actual ωref to cover a defined number
of periods in the data (see Algorithm 1, with npoles = 10 for the motor specific pole pairs,
nperiods = 3 for three periods and nsampling = 10000 for 10 kHz frequency data recording).
In the upper right corner of Figure 5, the different windows for the selected discretized ωref

values are shown, and Algorithm 1 provides details about the concrete implementation.

Similarity Visualization & Measurement

Figure 5 illustrates a similarity computation between the measured and simulated data. The
first two plots show the signal data for I2a, I2b, and I2c. The left plot shows the original data
and the right plot shows the preprocessed data with the adaptive moving time window and
RMS and Z-score normalization. The adaptive window mechanism is based on the discretized
speed value ωref and the stepsize ∆s is 100 (see Algorithm 1). The plots reveal obvious
correlation issues regarding amplitude peaks during speed changes and the response behavior.
The data shows an acceptable convergence when a static speed phase is reached. The seven
plots below illustrate the DTW distance matrix of each signal based on τ and ωmech factors.
The white boxes indicate the data represented in the corresponding discussed signal graphs.
From the plots, we measure an increasing offset drift together with increasing ωmech between
the measured and simulated data signals of I2b and I2c. But a more stable and accurate
representation is measured for I2a. The overall analysis of the current signals for a normal
operation shows an acceptable representation with a low DTW distance between 0.6 and
3.6 with a trend towards higher ωmech. For the individual fault data comparison, we see
an increasing DTW distance at areas with high τ (30 - 35 Nm) and ωmech (3000 to 44000
rpm). Also, areas with a τ between 0 and 5 Nm and ωmech above 1500 rpm indicate a lower
similarity for some signals. The overall DTW distance for fault conditions is between 0.08
and 6.12. The DTW distance values as numbers do not provide direct information but act
as indicators of lower similarity in areas or segments within overall higher averaged values.

Algorithm 1 Preprocessing algorithm.

Input: Raw data Draw = {(X, y)τ0,f0 . . . (X, y)τk,fl
} with n samples, k different τ and l different classes (0 ≡

normal system, 1-l ≡ faulty system). ∆s as step size for moving time window method (MTW), npoles is the pole
pairs, nperiods is the captured periods, nsampling is the raw data sampling frequency , F list of features, L list of
labels, metric a list of statistical methods.
Output: Datapackage D with labels and RMS normalized features and normalization parameters N

1: function Preprocessing(Draw)
2: X, y ← Draw(τ0→k,f0→l) ▷ extract F and L data from raw data for all k τ and all l system classes f

3: ∆w(ωref ) = ⌊ 120
ωref ∗npoles

∗ nperiods ∗ nsampling⌉ ▷ time window related to ωref to capture nperiods

periods in waveform data (currents)
4: Xstats ←MTW0→n(Xω, ∆w(ωref ), ∆s, F, metric) ∀Xω ∈ X(ωref ) ▷ ωref extracted from data to

compute corresponding ∆w and Xstats with nstats = n
∆s samples and nF = len(F ) ∗ len(metric) features

5: ystats ←MTW0→n(yS , ∆s, L) ▷ L labels with ∆s with nstats = n
∆s samples

6: Xstats,norm, N ← normalization of Xstats ▷ N normalization parameters
7: return D ← Xstats,norm, ystats, N
8: end function



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:13

Figure 5 DTW comparison between simulated and measured data for each feature of Fault 2.
Low values indicate similarity and high values indicate deviation. The DTW matrix shows three
signals, each for τ from 0 to 35 Nm and ωmech from 1000 to 3650 rpm. The signals in the upper
graphs represent τ 20 Nm and ωmech from 1000 to 3650 rpm. The data is normalized with a Z-score.

Distinguishability Visualization & Measurement

The distinguishability factor verifies whether and how strong the system conditions (normal
or faulty) differ in shape and offset within the measured, simulated, or between the data
types. In Figure 6, we present the distinguishability results computed on the reference of
measured data compared with the equivalent conditions in the simulated data. The system
conditions start from normal (Fault 0) to Fault 1-6. We utilize the multi-dimensional DTW
algorithm presented in [29] for the calculation. The results show the computed DTW distance
in correlation with ωmech. Each line represents the DTW distance between the reference
measured fault state and all other simulated fault states. The results reveal a very similar
behavior of features for low ωmech (< 500 rpm). Hence, fault detection might not be possible
for scenarios where ωmech is below 500 rpm. The first plot in Figure 6 compares the measured
normal operating system with all other simulated fault states. The shadows represent the
minimum and maximum values for the different applied loads τ . The results show that
normal measured system behavior can be distinguished from simulated faulty scenarios with
a relatively good estimation, except for Fault 1, which overlaps with high similarity in the
behavior. Fault 1 is the weakest ITSC fault because only one shorted turn in the winding is
simulated. Thus, we can conclude that Fault 1 will lead to classification issues in the later
applied ML models. Further, Fault 2 shows a weak distinguishability from Fault 4. The
same applies to Fault 3, Fault 5, and Fault 6. Important to mention is that the plots reveal
a relatively high distinguishability between faults located at winding phases A and B.

3.3 Simulation Data Generation

This section explains the simulation data generation process based on the CPS model. The
target is to receive labeled datasets with broad scenario coverage, including normal and
faulty system behavior representations. To achieve that, we adhere to the following positions:

DX 2024



18:14 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

Figure 6 DTW distinguishability between measured (reference) and simulated normal and Fault
1-6 data for all features combined. The features are used on τ 0 - 35 Nm (shadowed area indicates
min and max values) and ωmech from 100 up to 4400 rpm. The data is normalized with Z-score.

Definition of operational domain: We focus on the test setup as defined in Table 1
for a speed range from 0 to 5000 rpm and a load from 0 to 35 Nm.
Discretiation of parameters: Since the model offers two main continuous parameters,
the ωref , and applied τ , we discretize them to reduce the number of required simulation
runs, aiming to maintain high scenario coverage despite the reduction in simulation runs.
For ωref , we apply a simple step function to receive a value range between 100 and 5000
rpm with a stepsize of 100. For τ , we apply a step of 5 Nm for a value range of 0 to
35 Nm.
Specification of important phases and scenarios: This process involves a clear
definition and outline of essential phases and scenarios crucial for understanding and
testing a system. During the model validation, we already noticed that the simulation
model contains a delayed response when representing the dynamics of the currents after
a ωref change. Selecting a suitable period for simulating each ωref step is necessary to
account for this effect. This includes the transition phase (ωref is changed), the temporal
change phase, and the equilibrium phase. An illustration of these sections was previously
presented in Figure 4. We simulated 2-second scenarios for each ωref . With the selected
period, we cover the whole transition and temporal change phase and a part of the
equilibrium phase, but to a moderate extent to avoid overfitting.
Simulation configuration and execution: The simulation framework and model
specification setup comprises the specific conditions, initial states, input states, and
simulation parameters definition to represent real-world scenarios and generate meaningful,
accurate outputs. The defined operational domain and the consideration of explored
system phases enable extracting information about the affected parameters and their
value range to cover a large set of scenarios for the data generation process. The collected
outputs are the currents I and ωmech. The labels (classes) are integer values related
to normal operation (0) and the ITSC faults (1-6). Multiple simulations are executed
based on all relevant combinations of the parameter values as initial states, so we do not
consider a fault injecting during runtime. Only the reference ωref is adjusted to iterate
through the discretized range at intervals of 2.0 seconds. Each simulation configuration
generates outputs with a sampling rate of 10 kHz and a total time of 100.0 seconds. The
simulation framework, as presented in [9], is utilized, serving as a robust platform to



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:15

execute simulations and generate the labeled output data. We generated 56 scenarios (τ
0 - 35 Nm and Fault 0 - 6), each with a simulation time of 100 seconds and a file size of
242 MB. Approximately 280 hours were required to simulate the full data package by
utilizing the computer setup1.

3.4 Data Preprocessing Method
The preprocessing method is important since it significantly impacts the performance of
the applied diagnosis methods. As discussed in Section 2.3, we follow the guided structure,
beginning with feature selection, feature extraction, data normalization, labeling, and
partitioning. For the dual three-phase model, we select the currents (I) and rotational speed
(ωmech). We apply the statistical method RMS to extract features from the given data
packages, which already showed reasonable results during the distinguishability validation.
Other methods like mean, variance, or slope do not produce valuable features because the
system behavior for the fault conditions is mainly represented as amplitude changes in the
currents. A specific size of a data window is required to calculate the RMS. Thus, the
discretized speed sections represented as ωref are utilized to calculate the time window to
keep it constant for specific sections (see Algorithm 1). A stepsize ∆s of 100 samples is
used to move the window through the time-series data to minimize duplicates and reduce
the sample size. Because of a manageable number of available features, PCA and AE do
not provide benefits in terms of dimensionality reduction, in fact dimensionally reduction
even results in lower accuracy for the fault classification. For the normalization, the Z-score
method is applied. All preprocessing steps performed on the simulated data are also applied
to the measured data, but with the difference that according to a real system structure, each
timestep update is separately received. To apply the moving time window approach, the
data is collected until the required window size for the given ωmech is acquired. The time
window procedure follows the first in, first out principle. The stepsize ∆s is used as a trigger
to initiate a diagnosis on equally distributed intervals. When a diagnosis is triggered, the
statistical method RMS is computed, and the normalization of the results is performed on
scaler parameters as utilized for the simulation data. This enables a general valid scaling
with equalized weighted features. Details are shown in Algorithm 3 from lines 3-9.

3.5 Classifier Models
In total, three datasets are available for evaluating the ML classifiers. The datasets include
the simulated training data, the measured test data, and the simulated test data, which
is a simulated copy of the measured test data. Table 4 shows different classifier models
utilized on three options, either solely simulated or measured data or the interesting part
simulated training data and measured test data. The ML model accuracy is evaluated
on cross-validation with a test data split of 30 %. The results show that models trained
on measured data are applicable to classify the normal and every single fault with high
accuracy. This highlights the potential of measured data for fault identification and clearly
demonstrates the effectiveness of the preprocessing method, as it enables accurate fault
detection. We see a low prediction accuracy for the identification of the exact shorted turn
fault when using simulation data for training and measured test data. However, detecting a
fault-affected phase (Fault A or B) can be done with a high accuracy of 98% for RF models

1 We use a MacBook Pro (2021), Apple M1 Pro, 16 GB memory, macOS Ventura 13.2.1, and Python 3.9.

DX 2024



18:16 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

Table 4 ML classifiers tested on simulated, measured, and both options. ωmech ranges from 500
to 4400 rpm and τ from 0 to 35 Nm. Faults 0-6 are used. Grid Search (GS) is used with cv=5
and a test data split of 30 %. ML model default parameters [19] with adaptions for GS: DT: max
depth=[50, 100, 200]; RF: n estimators=[100, 150, 200]; k-NN: n neighbors=[1,3,10,50,100]; MLP:
hidden layers= [(30,), (30,10,30), ...], alpha=[0.0001 - 0.01], solver=[adam], activation=[relu, tanh].

Train Test Model F 0,1-6 F 1-6 F 0,A,B F A,B
Z-
score

min-
max

Z-
score

min-
max

Z-
score

min-
max

Z-
score

min-
max

Sim. Sim.

RF 0.874 0.876 0.905 0.905 0.949 0.948 0.985 0.984
k-NN 0.872 0.854 0.936 0.924 0.908 0.903 0.979 0.976
DT 0.834 0.839 0.859 0.860 0.923 0.924 0.968 0.967
MLP 0.975 0.944 0.995 0.999 0.983 0.970 0.999 0.998

Meas. Meas.

RF 0.919 0.919 0.910 0.910 0.998 0.998 0.999 0.999
k-NN 0.920 0.910 0.912 0.900 0.998 0.996 0.999 0.999
DT 0.881 0.881 0.871 0.872 0.991 0.991 0.996 0.996
MLP 0.984 0.973 0.973 0.969 0.996 0.998 0.998 0.998

Sim. Meas.

RF 0.429 0.427 0.478 0.488 0.834 0.832 0.982 0.982
k-NN 0.451 0.446 0.505 0.502 0.809 0.800 0.952 0.945
DT 0.365 0.367 0.422 0.416 0.823 0.826 0.932 0.933
MLP 0.435 0.333 0.455 0.448 0.850 0.854 0.963 0.976

and both normalization methods. Having this in mind, and the fact that the normal data
generated by the CPS model is represented with an acceptable similarity to the real system,
a tradeoff to the initial planned diagnosis approach is made by leveraging an unsupervised
Autoencoder (AE) model for anomaly detection [27] in combination with a Random Forest
(RF) classifier. Algorithm 2 provides details about the implementation of the AE and RF
methods, and Algorithm 3 shows the application on measured data. The AE configuration
consists of an encoder and a decoder. The encoder compresses input data using a single dense
layer with linear activation. The decoder reconstructs the original input from the encoded
representation using another dense layer with linear activation. During training, simulated
data is used as the training dataset, while measured data is used for validation. The model
minimizes the mean squared error between the input and its reconstruction. An anomaly is
detected if the reconstruction error (RE) between the input and the predicted reconstruction
exceeds a threshold. The threshold is derived by utilizing the RE of normal measured data
(lines 7-11). Lines 7-11 show the ωmech dependent threshold function calculation. The RF
model is trained on simulated fault data comprising labels A and B.

3.6 Results
In this section, we show details about the results of the AE implementation for anomaly
detection in combination with an RF classifier (default configuration with estimator n =
200) to detect the faulty phase in the dual three-phase e-machine. The data preprocessing
uses RMS as a feature and Z-score for normalization. Figure 7 shows the prediction accuracy
of the complete application tested on measured data with normal and Fault 1-6 behavior
for τ from 0 to 35 Nm and ωmech from 500 to 4400 rpm. We achieve a 100 % accuracy rate
in identifying normal system behavior. Only minor undetected or misclassified anomalies
exist for Faults 2-6 and τ below 5 Nm. Detecting anomalies for Fault 1 proves challenging,
as noted with the distinguishability factor. However, at speeds ωmech higher than 1200
rpm and loads τ greater than 15 Nm, high prediction accuracy is also achieved for Fault



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:17

Algorithm 2 Diagnosis Methods.

Input: Simulated preprocessed annotated data DS and measured preprocessed annotated data DM . Threshold
factor r to tune the sensitivity of anomaly detection.
Output: Trained AE model A, threshold Θ(ωref ), trained ML model M

1: function Train Diagnosis Methods(DS , DM )
2: XS0 ← DS(τ0→k,f0) ▷ extract normal simulated data for all τ

3: XSf
, ySf

← DS(τ0→k,f1→l) ▷ extract fault injected simulated data for all τ

4: XM0 ← DM(τ0→k,f0) ▷ extract normal measured data for all τ

5: A← trained AE anomaly detection model on XS0 and validated on XM0
6: Compute threshold on measured data: X̂ω = A(Xω) ∀Xω ∈ XM0 (ωref ) ▷ where Xω is a matrix with n

samples and m features, ω represents a feature in XM0
7: Compute RE: εω = RMSE(X̂ω, Xω) ▷ RE is the reconstruction error
8: Compute threshold: Θω = µεω + r · σεω ▷ threshold dependent on ω and factor r
9: with: µεω = MEAN(εω) , σεω = ST D(εω)

10: Compute cubic polynomial coefficients using c = f(Θω, ω, 3)
11: Create polynomial function Θ(ω) = fpoly1D(c) ▷ the function Θ(ω) returns the Θω based on ω
12: M← trained ML classifier model on XSf

, ySf

13: return A, Θ(ω), M
14: end function

Algorithm 3 Diagnosis Application.

Input: Measured test data DM = {XMτ0,f0
. . . XMτk,fl

}, Trained AE model A, threshold Θ(ω), trained MLP
model M, normalization model NS fitted on simulated data
Output: Diagnosis ŷi

1: procedure Diagnose Application(DMraw , metric, ∆w, ∆s, NS)
2: Load A, Θ(ω) and M
3: XM ← DMraw ▷ XM holds all raw feature observations
4: for i← ∆w to length of XM − 1 by 1 do
5: X∆i

← XMi−∆w→i

6: if i mod ∆s = 0 then
7: x⃗stats ← metric(X∆i

) ▷ apply feature extraction by computing metric for each feature in X∆i

8: ω ← mean(X∆i,ωmech
) ▷ extract the window data of feature ωmech and compute the mean

9: x⃗stats,norm ← N(Xstats) ▷ compute normalization with NS parameters
10: D = DIAG(x⃗stats,norm,A, Θ(ω), M) ▷ execute diagnosis approach
11: end if
12: end for
13: end procedure
14: function DIAG(Xstats,norm, ω, A, Θ(ω), M)
15: x⃗stats,norm with shape (1, nF ) ▷ nF = length(features) ∗ length(metric) and 1 sample
16: ω is the actual measured rotational speed
17: x̂ = A(x⃗stats,norm) ▷ predict the feature values for normal data
18: if RE(x̂, x⃗stats,norm) > Θ(ω) then ▷ anomaly detected, fault identification
19: ŷ = M(x⃗stats,norm) ▷ apply RF to predict fault class
20: if ŷ probability > 60% then DIAG = ŷ ▷ ŷ holds the phase fault code ŷ ∈ {A, B}
21: else DIAG = unknown fault
22: end if
23: else DIAG = normal ▷ no anomaly detected
24: end if
25: return DIAG
26: end function

DX 2024



18:18 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

1. The highlighted section in Phase Fault A and B provides a detailed view of the fault
state, ωmech (1500 - 1700 rpm), τ (0 - 15 Nm), and the reconstruction error observed for a
normal system, Fault 1, and Fault 2 injected systems. The red tags indicate where the AE
missed detecting an anomaly (false negatives), while the yellow tags denote cases of false
classification by the RF model. The confusion matrix provides a summary of the overall
classification outcomes. Based on this, we conclude that employing this approach is suitable
for ωmech from 500 to 4500 rpm. While the tests are conducted solely up to rotational speeds
of 4500 rpm, the data indicates that the algorithm can be effectively applied at even higher
speeds when utilizing the actual simulation model. Regarding time performance, we see
disadvantages compared to the system’s relatively high sampling frequency in the diagnosis
process. Due to the adaptive moving time window method, a specific sampling window is
required for different ωmech. Windows for low speeds of around 500 samples represent 0.05
seconds for a sampling frequency of 10 kHz. For higher speeds, the value decreases below
0.01 seconds. This timeframe is only relevant to ensure the window fully covers a fault. The
implementation of the AE is not optimized in terms of speed performance, thus a prediction
takes 0.018 seconds. The RF model is relatively fast, with a prediction time of 0.004 seconds.
Consequently, a diagnosis takes 0.022 seconds plus the active window when executed1.

Figure 7 Diagnosis results with an anomaly detection (AE) and sequentially applied RF classifier
model trained on Fault Phases A and B. Measured data with normal and Fault 1-6 with τ 0 to
35 Nm and ωmech 500 to 4400 rpm is used as test data.

4 Conclusion

In conclusion, our paper presents a comprehensive simulation-based approach to diagnose a
CPS. We utilize simulation models of the CPS to generate training data for ML classifiers
applied for fault detection with root cause analysis. Our general approach comprises various
stages, beginning with model validation, simulation data generation, data preprocessing, and
finally, the implementation of fault detection models. In our case study, which focuses on a
dual three-phase e-machine, we demonstrated the challenges of this approach. Measurements



D. Kaufmann, M. Kozovsky, and F. Wotawa 18:19

of a real system under various conditions, including normal operation and operation with an
active inter-turn short-circuit, are used to evaluate the implemented methods. A detailed
simulation model offers a powerful and complex system representation including the capability
to simulate inter-turn short-circuit faults. The presented preprocessing method enables the
extraction of details from the observed signals by applying an adaptive moving time window
to calculate the root-mean-square. In the CPS model validation procedure, limitations in
terms of signal similarity and distinguishability between the measured and simulated data
are revealed. Thus, the focus is on detecting the affected phase rather than the exact number
of shorted turns in each phase as initially planned. It is worth mentioning that the detection
of the affected phase is also important because selecting a valid mitigation strategy initially
depends on identifying the specific phase. However, the diagnosis information about fault
severity (shorted winding turns) is beneficial for adapting the chosen mitigation parameters
to achieve a more fine-tuned risk reduction. As a result, an AE for anomaly detection is
implemented to ensure the identification of unexpected behavior. A positive detection initiates
a second layer, an ML classifier (RF), to identify the faulty phase. The approach shows
high accuracy in anomaly detection of the phase with the shorted turns, except for single
shorted-turn faults, which indicate a weak distinguishability with normal operation. Thus,
no anomaly can be detected for low torque loads. Besides that, the faulty phase classification
provides almost 100 % accuracy for load torques greater than 5 Nm and rotational speeds
ranging from 500 to 4400 rpm. Although the implementation has drawbacks in diagnosis
time, it is worth considering due to potential implementation improvements. Also, assuming
scenarios where an electric machine operates within a moving vehicle, immediate mitigation
may not be possible, allowing more time for diagnosis. In future work, we plan to include a
severity factor of the detected and classified anomaly to extract additional information to
identify a connection to the number of shorted turns.

References

1 C. Andersson, J. Åkesson, and C Führer. Pyfmi: A python package for simulation of coupled
dynamic models with the functional mock-up interface. technical report in mathematical
sciences. In Technical Report in Mathematical Sciences, volume LUTFNA-5008-2016. Centre
for Mathematical Sciences, Lund University, 2016.

2 Hüseyin Tayyer Canseven and Abdurrahman Ünsal. Performance improvement of fault-tolerant
control for dual three-phase pmsm drives under inter-turn short circuit faults. In IECON
2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, pages 1–5, 2021.
doi:10.1109/IECON48115.2021.9589578.

3 Seungdeog Choi, Moinul Shahidul Haque, Md Tawhid Bin Tarek, Vamsi Mulpuri, Yao Duan,
Sanjoy Das, Vijay Garg, Dan M. Ionel, M. Abul Masrur, Behrooz Mirafzal, and Hamid A.
Toliyat. Fault diagnosis techniques for permanent magnet ac machine and drives—a review of
current state of the art. IEEE Transactions on Transportation Electrification, 4(2):444–463,
2018. doi:10.1109/TTE.2018.2819627.

4 Cheng Fan, Meiling Chen, Xinghua Wang, Jiayuan Wang, and Bufu Huang. A review on
data preprocessing techniques toward efficient and reliable knowledge discovery from building
operational data. Frontiers in Energy Research, 9, 2021. doi:10.3389/fenrg.2021.652801.

5 Felipe L. Gewers, Gustavo R. Ferreira, Henrique F. De Arruda, Filipi N. Silva, Cesar H.
Comin, Diego R. Amancio, and Luciano Da F. Costa. Principal component analysis: A natural
approach to data exploration. ACM Comput. Surv., 54(4), May 2021. doi:10.1145/3447755.

6 The MathWorks Inc. Matlab version: 9.13.0 (r2022b), 2022. URL: https://www.mathworks.
com.

DX 2024

https://doi.org/10.1109/IECON48115.2021.9589578
https://doi.org/10.1109/TTE.2018.2819627
https://doi.org/10.3389/fenrg.2021.652801
https://doi.org/10.1145/3447755
https://www.mathworks.com
https://www.mathworks.com


18:20 Simulation-Based Diagnosis for CPSs - A General Approach and Case Study

7 David Kaufmann. Simulation-Based Diagnosis Method for Dual Three-Phase E-Motor. Soft-
ware, version 1.0. (visited on 2024-11-12). URL: https://doi.org/10.5281/zenodo.14026570.

8 David Kaufmann, Iulia Nica, and Franz Wotawa. Intelligent agents diagnostics - enhanc-
ing cyber-physical systems with self-diagnostic capabilities. Advanced Intelligent Systems,
3(5):2000218, May 2021. doi:10.1002/AISY.202000218.

9 David Kaufmann and Franz Wotawa. A framework for integrating automated diagnosis into
simulation. In Industrial Artificial Intelligence Technologies and Applications, pages 113–127.
River Publishers, June 2022. doi:10.13052/rp-9788770227902.

10 David Kaufmann and Franz Wotawa. Data preprocessing for utilizing simulation models
for ml-based diagnosis. IFAC-PapersOnLine, 58(4):19–24, 2024. 12th IFAC Symposium
on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2024.
doi:10.1016/j.ifacol.2024.07.187.

11 Matus Kozovsky. Measurement of interturn short-circuits emulation on dual three-phase PMS
motor, October 2024. doi:10.5281/zenodo.13889418.

12 Matus Kozovsky, Ludek Buchta, and Petr Blaha. Compensation methods of interturn short-
circuit faults in dual three-phase pmsm. In IECON 2020 The 46th Annual Conference of the
IEEE Industrial Electronics Society, pages 4833–4838, 2020. doi:10.1109/IECON43393.2020.
9254734.

13 Matus Kozovsky, Ludek Buchta, and Petr Blaha. Interturn short circuit modelling in dual three-
phase pmsm. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics
Society, pages 1–6, 2022. doi:10.1109/IECON49645.2022.9968364.

14 Matus Kozovsky, Ludek Buchta, and Petr Blaha. Implementation of ann for pmsm interturn
short-circuit detection in the embedded system. In IECON 2023- 49th Annual Conference
of the IEEE Industrial Electronics Society, pages 1–6, 2023. doi:10.1109/IECON51785.2023.
10312642.

15 Matúš Kozovský. Modeling and Control of AC Electric Drives During Fault Conditions. PhD
thesis, Brno University of Technology, Faculty of Electrical Engineering and Communication,
Department of Control and Instrumentation, 2020.

16 Bo Liu, Yuan-rui Zhang, Xue-lian Cao, Yu Liu, Bin Gu, and Tie-xin Wang. A survey of model-
driven techniques and tools for cyber-physical systems. Frontiers of Information Technology
& Electronic Engineering, 21(11):1567–1590, 2020. doi:10.1631/FITEE.2000311.

17 Modelica Association. Functional mock-up interface, 2021. URL: https://fmi-standard.
org/.

18 Teresa Orlowska-Kowalska, Marcin Wolkiewicz, Przemyslaw Pietrzak, Maciej Skowron, Pawel
Ewert, Grzegorz Tarchala, Mateusz Krzysztofiak, and Czeslaw T. Kowalski. Fault diagnosis
and fault-tolerant control of pmsm drives–state of the art and future challenges. IEEE Access,
10:59979–60024, 2022. doi:10.1109/ACCESS.2022.3180153.

19 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. doi:10.5555/1953048.2078195.

20 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987. doi:10.1016/0004-3702(87)90062-2.

21 Fatemeh Mohammadi Shakiba, S. Mohsen Azizi, Mengchu Zhou, and Abdullah Abusor-
rah. Application of machine learning methods in fault detection and classification of
power transmission lines: a survey. Artificial Intelligence Review, 56(7):5799–5836, 2023.
doi:10.1007/s10462-022-10296-0.

22 Dalwinder Singh and Birmohan Singh. Investigating the impact of data normalization on
classification performance. Applied Soft Computing, 97:105524, 2020. doi:10.1016/j.asoc.
2019.105524.

https://doi.org/10.5281/zenodo.14026570
https://doi.org/10.1002/AISY.202000218
https://doi.org/10.13052/rp-9788770227902
https://doi.org/10.1016/j.ifacol.2024.07.187
https://doi.org/10.5281/zenodo.13889418
https://doi.org/10.1109/IECON43393.2020.9254734
https://doi.org/10.1109/IECON43393.2020.9254734
https://doi.org/10.1109/IECON49645.2022.9968364
https://doi.org/10.1109/IECON51785.2023.10312642
https://doi.org/10.1109/IECON51785.2023.10312642
https://doi.org/10.1631/FITEE.2000311
https://fmi-standard.org/
https://fmi-standard.org/
https://doi.org/10.1109/ACCESS.2022.3180153
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/s10462-022-10296-0
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524


D. Kaufmann, M. Kozovsky, and F. Wotawa 18:21

23 Cameron Sobie, Carina Freitas, and Mike Nicolai. Simulation-driven machine learning:
Bearing fault classification. Mechanical Systems and Signal Processing, 99:403–419, 2018.
doi:10.1016/j.ymssp.2017.06.025.

24 I. Stančin and A. Jović. An overview and comparison of free python libraries for data
mining and big data analysis. In 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages 977–982, 2019.
doi:10.23919/MIPRO.2019.8757088.

25 Peter Struss. Fundamentals of model-based diagnosis of dynamic systems. In Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya,
Japan, August 23-29, 1997, 2 Volumes, pages 480–485. Morgan Kaufmann, 1997.

26 Romain Tavenard. An introduction to dynamic time warping. https://rtavenar.github.
io/blog/dtw.html, 2021.

27 Hasan Torabi, Seyedeh Leili Mirtaheri, and Sergio Greco. Practical autoencoder based
anomaly detection by using vector reconstruction error. Cybersecurity, 6(1):1, 2023. doi:
10.1186/s42400-022-00001-0.

28 Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction.
Neurocomputing, 184:232–242, 2016. RoLoD: Robust Local Descriptors for Computer Vision
2014. doi:10.1016/j.neucom.2015.08.104.

29 Meert Wannes, Hendrickx Kilian, Van Craenendonck Toon, Robberechts Pieter, Blockeel
Hendrik, and Davis Jesse. Dtaidistance, October 2022. doi:10.5281/zenodo.7158824.

DX 2024

https://doi.org/10.1016/j.ymssp.2017.06.025
https://doi.org/10.23919/MIPRO.2019.8757088
https://rtavenar.github.io/blog/dtw.html
https://rtavenar.github.io/blog/dtw.html
https://doi.org/10.1186/s42400-022-00001-0
https://doi.org/10.1186/s42400-022-00001-0
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.5281/zenodo.7158824

	1 Introduction
	2 General Approach
	2.1 CPS Model Specification
	2.1.1 CPS Modelling Tools
	2.1.2 CPS Model Validation

	2.2 Simulation Data Generation
	2.3 Data Preprocessing Methods
	2.4 Classifier Models

	3 Case Study
	3.1 CPS Model Background and Specifications 
	3.2 CPS model validation
	3.3 Simulation Data Generation
	3.4 Data Preprocessing Method
	3.5 Classifier Models
	3.6 Results

	4 Conclusion

