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—— Abstract

Recent decades have seen the increasing use of Digital Twins (D'Ts) — that is, digital models used over
the lifetime of a physical product or system for tasks such as predictive maintenance or optimization —
in a number of domains such as buildings, manufacturing, or design. DTs face a challenge known
as the DT synchronization problem; a DT, often based on machine-learned, or complex simulation
models, needs to adequately mirror the physical product or system at all times, as any deviations
might affect the quality of predictions or control actions. In this paper, we present a model-based
approach that aims to add a level of awareness to DT models by supervising if they are in sync with
the physical counterpart. The approach is agnostic to the type of models used in the DT, as long as
they are compositional, and based on monitoring critical properties (behavioral or functional aspects)
of the system at run-time. In the case violations are detected, it reasons on the DT’s structure to
localize and identify parts of the model that cause deviations and need to be adapted. We give a
formal description and an implementation of this approach, and illustrate it with an example from
building climatisation.
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1 Introduction

In recent decades, steady progress in areas like the Internet of Things, Cyber-physical
systems, Model-based engineering and Artificial Intelligence, and Cloud computing has
enabled the digitalization of different assets such as products, systems, and processes in
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different industrial sectors. Specifically, Digital Twins (DT) have become a popular concept
in various application fields such as urban construction, manufacturing, automotive systems,
or individualized healthcare [28, 29, 37, 26]. A DT is a set of adaptive models that emulate
the behaviour of a physical asset (termed Physical Twin, or PT) in a virtual system, getting
real time data to update itself along its life cycle. The DT replicates its physical counterpart
to enable and analytically improve tasks like what-if analysis, monitoring and predictive
maintenance, or optimisation and parameter tuning based on the communicated data. The
practical relevance is underlined by the existence of various (commercial) DT tools and
frameworks such as Microsoft Azure’s Digital Twins and its corresponding Digital Twins
Description Language (DTDL) [22], Plattform Industrie 4.0’s Asset Administration Shell
(AAS) [1], and INTO-CPS Digital Twin as a Service [4]. Despite this, DTs have notoriously
evaded a more standardized or formally strict definition beyond the basic understanding
that there exists a digital representation that is kept synchronized at a specified frequency
and fidelity with its physical counterpart through communication channels (for instance, see
the set of different definitions resulting from a recent Dagstuhl seminar on the topic [10]).
This may be attributed to the multi-disciplinary nature of the concept and to the quite
broad understanding of digital representations (models), which might range from light-weight
visualizations to logical and ontological representations, to machine-learned models and
complex numerical simulation models.

Shared by all instances of DT technology, however, is the key challenge that the DT’s
model needs to adequately mirror the physical product or system, as any deviation might
deteriorate the quality of the obtained predictions, alerts, or actions. This problem is often
referred to as DT synchronization problem ([33, 11]). We use the same term here, but want
to note that while the literature emphasizes the role of the communication link between
the DT and the PT, we view synchronization more broadly as the problem that the DT
needs to faithfully represent the behavior of the PT. As the DT is meant to match the PT
along different stages of its entire life cycle, synchronization is a continuous effort and there
are potentially several reasons which might cause the DT to be out of sync. They could be
roughly classified into failures (component breakdowns) in the PT, parameter drifts e.g. due
to wear in the PT, or communication faults between the DT and the PT.

Although various solutions have to date been proposed to the DT synchronization problem,
they are typically limited to specific contexts. For instance, Kamburjan et al. [16] propose a
solution that exploits ontology models (OWL) and domain-specific constraints to dynamically
reconfigure simulators in a DT. Tan and Matta [33] give an overview of different types of DT
syncronization problems occuring in the context of simulation and a solution when to best
update simulation models based on a cost model.

Of course, the fields of Model-based Diagnosis (MBD) and Fault Detection, Identification
and Reconfiguration (FDIR) offer a rich and long-standing body of research about how to
derive and maintain model representations that truthfully represent a physical artifact’s
state, referred to as mode estimation or state estimation, respectively (see e.g. [12, 24, 34]).

However, these approaches are based on specific classes of models (structural or logical
models, discrete-event automata, residual equations, etc.), as not all forms of models (e.g.,
machine-learned or simulation models) are directly amenable to diagnostic reasoning, which
requires tracing the system backwards from observed symptoms to inner component states.
Actually, in meaningful DT applications the models can be quite large (e.g., city-scale)
and heterogeneous (e.g., composed of different simulation units requiring precise timing
and orchestration), making first-principles diagnostic and causal reasoning difficult. There
also exist methods aiming to transform some types of simulation models (such as Modelica
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models) into diagnostic models [23, 27, 18], which could work to address some forms of DT
synchronization issues. Also more recently, MBD methods have been used to update/repair
specific forms of learned models in the face of additional data [2].

In this paper, we present a different model-based approach to the problem of DT
synchronization and fidelity during runtime. Our approach is agnostic to the specific type
of DT models, using only structural information (assuming a compositional DT) to be as
general as possible. To capture behavioral and functional aspects of the DT that are critical
to synchronization, we instead rely on a set of specifications expressed formally in some
temporal logic. Our approach then consists of monitoring these properties during run-time
using techniques from Runtime Verification (RV). Once violations of properties are detected,
MBD on the structural model is used to identify root causes of violations. An approach
for coupling RV and MBD has already been presented in previous work by Bauer, Leucker
and Schallhart [6]. It is based on structural models and focuses on fault detection and
localization in distributed systems as part of a runtime reflection framework. We build on
this approach, and adapt it to the context of DTs. Also, we identify several theoretical and
practical challenges that arise when coupling RV and MBD in DTs. Using RV for discovering
divergences between DTs and their real-world counterpart has also recently been suggested
in [13]. However, this work focuses more on conceptual variants and challenges for RV, such
as proper specification languages to describe meaningful divergences. In contrast, we present
an actual implementation of coupling RV and MBD for DT, and illustrate it with a concrete
example.

The remainder of the paper is structured as follows. In the next section, we review
relevant background on DTs and RV using monitors. We then present our approach of
coupling RV and MBD to identify and localize discrepancies between a DT and its PT, in
order to keep the DT in sync. Our prototypic implementation is based on DTDL+, an
extension of Azure’s DTDL as an executable DT specification, and the temporal stream-based
specification language TeSSLa [15] for RV and monitoring. We present experimental results
for a small example of a DT for building climatization.

2 Background
2.1 Digital Twins

Digital Twins (DTs) are virtual models that represent real-world entities and systems. They
are commonly used for predictive purposes, allowing the simulation of various potential
outcomes of the physical counterpart. For a DT to be effective, it must accurately reflect
the behavior of the real-world system it represents. Any significant or persistent divergence
between the DT and its physical counterpart can result in flawed predictions, incorrect
diagnoses, and a distorted understanding of the system’s operation. Therefore, discrepancies
between the DT and the real-world entity must be continuously monitored and promptly
addressed in real time.

Figure 1 illustrates the structure of a DT. The physical entity, referred to as the PT,
receives inputs (I), which may be either controllable (user-defined) or uncontrollable (en-
vironmental) factors. The PT responds to these inputs by producing outputs (O,), which
could either be actions performed by the PT or measurements of its state or environment.
Simultaneously, the inputs are also provided to the DT, which simulates the behavior of the
PT and generates its own outputs (O4). As shown by the dotted lines in Fig. 1, certain
outputs from the DT (O4) may be used to control the PT, while some outputs from the PT
(Op) are fed back to the DT as observational data.

2:3
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Although sometimes (e.g. Kritzinger et al. [17]) different types of DTs — namely, digital
models, digital shadows, and DTs — are further distinguished based on the direction of
communication between the PT and DT (one-way or two-way), for our purposes we do not
distinguish between these variations.

virtual space
Outputs Oy
Digital Twin (DT) >
( .....
physical space
Inputs I <
»| Physical Twin (PT) >
Outputs O,

Figure 1 Schematics of a Digital Twin.

In [19], we identified three different artifacts as the key ingredients of a DT’s formal
representation. These artifacts are
environmental models, such as building models, that provide background knowledge about
the structure (e.g. floor plan) and semantics (e.g. accessible doors and stairs in a building)
of the DT’s context, to represent e.g. locations of people and plan e.g. feasible routes;
communication and discrete optimisation, such as updating the people’s positions and
finding the shortest path in a building and travelling salesman to search all rooms;
physical process models, that allow to simulate e.g. how long the air supply of a firefighter
will last along a route, or the thermal dynamics of heat dispersion in a building.

Like in other fields of model-based engineering, digital twinning incorporates the idea
that a DT should be compositional, i.e. composed of (reusable) blocks corresponding e.g.
to simulation units or FMUs. For example, in DTDL [22], any DT instance consists of the
classes Interface, Component, Command, Property, Relationship, and Telemetry. We use the
compositionality of DTs in our approach by exploiting the structure of DTs to reason about
possible causes of discrepancies.

2.2 Runtime Verification and Monitoring

RV [20, 5] is a formal method from the area of software engineering. In RV, objects
called monitors are used to observe the behavior of programs. The data stream of interest
is transmitted to the monitor, producing a sequence of events called traces. A monitor
compares this event trace against a formal specification ¢ that holds in a correct execution.
The monitor can report violation or validation of the desired specification. Its verdict is
reported on-the-fly, during the execution of the monitored program. Other than testing, RV
is a passive procedure that does not actively generate inputs to drive the system. Compared
to model checking, which is concerned with mathematically proving properties that must
hold in all execution of the system, RV is more lightweight and only concerned with concrete
traces of the running system.

Research in RV has produced a variety of monitors that can be automatically generated
from specifications ¢ formulated in variants of linear time temporal logic (LTL), and cor-
responding higher-level specification languages such as LOLA [3] or TeSSLa [15]. However,
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as a monitor can have only a finite view (trace) of the system’s behavior, whereas LTL is
defined over infinite traces, a semantics has to be defined for RV on finite traces. In [7], a
three-valued semantics is proposed for this case, where the monitors can either report true,
false, or 7, the latter meaning an inconclusive verdict, indicating that the trace observed so
far does not allow to decide whether ¢ holds or whether it will be violated in the future.

2.3 Property-based Monitoring of Discrepancies

To discover possible divergences between the DT and its physical counterpart, we have to
compare their behavior. One way, as also suggested in [13], is to use conditions @1, ..., ¢,
which must hold for all executions of the DT. These properties, acting as a form of guarantee,
might either be given as a formal specification, deductively extracted from a white-box
twin beforehand, or generated by observing multiple executions of the (black-box) twin and
learning a specification of its behavior. In any case, we suppose the existence of a set of
such conditions, (1, ..., @,, beforehand. The properties can be converted into monitors that
then observe the operation of the real-world entity in real time. Any observed sequence that
violates one of the properties ; is a sequence that cannot be produced by the DT for the
same inputs, and thus indicates a divergence between the DT and its real-world counterpart.

2.4 Diagnostic Reasoning from Property Violations

MBD and FDIR deal with the problem of detecting if a system is not functioning correctly,
and determining which part of the system is failing (and which kind of fault is present). It
is based on reasoning from observations, which provide information on the actual system’s
behaviour, and in particular discrepancies between values predicted by a model and these
actual observations. These discrepancies (called symptoms) are the starting point for diagnosis
and the goal is to explain them by hypothesizing (a minimal number of) faults in the system
that cause the deviation between predicted and actual behavior.

If properties of the system are monitored, as outlined in the sections above, their fulfillment
can be used in lieu of the observations. They can be viewed as adding an additional layer of
abstraction: instead of considering discrepancies of values in the system, the starting point
for diagnosis are violations of properties by the system. The “classic” notion of symptoms,
i.e. discrepancies between predicted and observed values, can be re-gained in this case as a
special case of (violated) properties that demand equality of two variables (predicted versus
actual). In this sense, monitoring of properties is a powerful concept that allows to capture
complex symptoms, involving (temporal) behavior of variables.

However, for diagnosis, this creates the challenge how such generalized “symptoms” —
violation of one or more properties on the system’s trace — could be attributed to parts
of the system failing, and the type of fault(s) occuring. It is not obvious how faults of
system components (whose behavior is modelled as propositional logic sentences, finite state
machines, etc.) could be related to violation of (arbitrary) temporal logic properties.

To date, a number of approaches have been suggested for coupling run-time property
monitoring and MBD. [6] use an approach where the compositional models abstract away from
the component’s behavior. More precisely, the component models state that if all the inputs
of a non-abnormal component are correct, then its output must also be correct, allowing
one to infer that it cannot be responsible for violating a property monitored downstream
at its output. Though a coarse abstraction, such “behavior-free” models can be used to
compute conflicts and diagnoses, and they can be easily derived from the graph structure of
the model. Diagnostic models based on propagating deviations [32, 31], where symptoms
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correspond to values being either too low, too high or ok, can also be viewed as a form
of diagnostic reasoning with property violations, although the properties themselves are
not stated explicitly. In [25], the authors present an approach for diagnosis of multi-agent
systems where the agents and a system goal are observed across multiple executions (runs),
and a spectrum-based fault fault localization (SFL) method is used to explain failed runs by
diagnosing which agents are faulty. As it defines the success and failure of an execution based
on a property of the system rather than states of the components, this can also been seen as a
form of property-based monitoring approach that we aim to formalize in this paper. However,
while [25] assumes the evaluation of runs at the very last time step after all executions are
finished, our approach uses RV as a fault detection mechanism that can also work on-line.

In the field of RV, assumption-based RV has been proposed in [9] as a framework that
leverages assumptions on the behaviors of the system under scrutiny for reasoning on its
non-observable (internal) or future behaviors. The idea is that the monitor outputs (property
satisfied or not satisfied) are conditioned on the assumption that the involved parts of
the system are behaving correctly, allowing one to reason about these assumptions in a
model-checking framework.

3 Building Climatization Example

In an on-going project’, novel approaches for designing, deploying, and monitoring DTs are
developed in the context of buildings and emergency scenarios. Specifically, to enhance the
DT model’s accuracy and longevity, the aim is to add awareness regarding some features
and to supervise the DT’s performance through monitoring and fault localization. Loosely
derived from this project, we present a simplified example to motivate and illustrate our
approach?. The example system consists of two parts, the PT and the DT:

Physical Twin. Consider a makeshift building (tent) separated into three heating zones.
Each zone has a heater (Hy, Ho, and Hs), controlled with an on-off power value h; € {0,1}.
The temperature within the zones is measured by four sensors, T4 to T, strategically placed
at the periphery and between the heating zones. Each sensor provides a measurement t; in
°C. Figure 2 provides a schematic overview.

Digital Twin. The primary task of the DT is to maintain the temperature in each zone
above 20 °C to ensure occupant comfort, while optimising for energy efficiency by not heating
unnecessarily. Each zone has its own heating controller (C; to C3), each of which sends
a control signal. To do this, the temperature propagation in the PT is simulated within
the controller to inform the decisions. In the problem classification mentioned in 2.1, this
represents a physical simulation and is approximated by an ordinary differential equation
that is solved iteratively. The rest of the DT system is based on digital processes.

The second purpose of the DT is to increase reliability. To this end, the monitors M4 to
M p monitor the output values of the temperature sensors Ty to Tp and identify zones where
the temperature targets are not being met (significantly below 20 °C) or are not progressing
satisfactorily (e.g, the temperature ¢ has not increased by 5% from the initial value ¢g
within 428). Whenever a monitor is triggered, we want to identify components that may be
responsible for the fault. In addition, the heater controllers monitor their internal simulation
by keeping track of whether they are providing results that match the measurements from
the PT. Whenever a loss of simulation alignment is detected, an automatic synchronisation
of the simulation model to better fit reality should be initiated.

! https://obg-n-iot.de
2 The source code of the example is available in the repository https://github.com/vosteen/FDIR
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Figure 2 Schematic overview of the running example.

4 General Approach

In this section, we combine the principles laid out in Section 2 to propose an approach for
detecting discrepancies between a DT and its PT, i.e. checking the synchronicity of DT, and
localizing possible root causes (diagnosis) at runtime.

4.1 A Model for Property-based Diagnostic Reasoning

We consider a system (DT) composed of a finite set of components, denoted COM P.

Diagnosis aims to determine whether a subset of the components is faulty (leading to
discrepancies between DT and PT). A special predicate, AB, is used to denote that a
component is abnormal, i.e. behaving different from its intended or specified behavior.

As usual in MBD, the system is then represented as a tuple S = (SD, COM P), where
COMP are the components and SD is the system description, comprised e.g. of a set of
first-order sentences (the exact type of model is not relevant in the following). We assume
the components are directed, i.e. they have inputs and outputs (for simplicity, we assume a
single output).

The main difference of our approach to “classical” MBD is in the definition and use of
observations, typically denoted OBS. We assume a set of properties ¢1, ..., ¢,, denoted
PROP, which must hold for all executions of the DT. We use the properties — more specifically,
the verdicts (outputs) of corresponding monitors constructed from these properties — in lieu
of direct observations of the system. This leads to a further abstraction of the system model:
instead of observations of actual system values, we only use the information whether the
values conform to the specified properties. Since the properties we are after are in general
defined on streams of values instead of single values, we refer to “channels” instead of values
in our model. Following the same ideas as in [6], we use a predicate ok to denote whether a
channel behaves according to the specified properties, and devise a model that only captures
the causal dependencies between the channels.

2:7
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The system description is then reduced to a set of first-order sentences describing the
correctness of input-output behavior of the components and channels. That is, for every
component C; € COMPS with inputs 41, ...,%, and output o we get a formula

ok(i1) N ok(iz) A--- A ok(im) N —AB(Cj) = ok(0)

where ok denotes that a value or channel does not violate any specified property, and -AB
denotes that the component is not abnormal. As described in Section 2.2, the monitors check
whether a sequence of events satisfies a certain property ¢, € PROP. The monitors can
then report either true, false, or inconclusive (denoted 7). For diagnosis we are interested in
finding the causes of violations of properties, and we can thus identify ¢true and ? [6]. Thus,
as observations OBS of the system, we get the information whether certain values (channels)
in the system are ok (if the monitor reports ¢rue or ?) or —ok (if the monitor reports false).
More formally, let vj, denote the values (channels) monitored by the properties . Then the
observations are

OBS = {ok(vg) | o = trueV ?} U {—ok(vi) | v = false}

In sum, this gives us the familiar notion of consistency-diagnosis, but with the specific
interpretation of SD and OBS outlined above.

4.2 Extending the Model to Temporal Property-based Diagnostic
Reasoning

The model described in the section above, taken from [6], abstracts away from the components
internal behavior, in particular also their temporal behavior. It assumes that the ok-predicates
for the outputs are generated instantaneously from the ok-predicates of the inputs of the
components.

Considering the different artifacts of a DT as outlined in Section 2.1, this assumption
appears reasonable for the “digital”, i.e. the communication and discrete optimisation
components of a DT. In fact, if we apply the modeling approach described in Section 4.1
and [6] to the DT scenario from Section 3, including the physical process models, a problem
appears: as the example contains a physical process (heat dissipation) together with sensing,
control and actuating components, a causal loop will be created in the model reasoning
about the ok-predicates. The consequence (for the example, but also in general) is that the
diagnostic model would in this case yield all components as possible diagnoses, not allowing
any further discrimination.

Looking more closely, the underlying problem is that the model from Section 4.1 is a too
coarse abstraction of the DT; we must at least distinguish the communication and discrete
optimisation models from the physical process models. In this example, switching on a heater
component has an influence on the zone’s temperature, but due to thermal inertia, the effect
will be delayed and manifest only in a later time step. The interaction between the heater
components and the temperature sensors is thus via the thermodynamics of the respective
zone, which could be governed by differential equations and in any case happens at a different
time scale compared e.g. to the interaction channel between the sensors or controllers and
the controllers and the heaters. Only if we model these interactions with underlying physical
processes in a more fine-grained way, we can relate the observations from the monitors in the
control loop in a way that is meaningful for diagnosis.

In the following, we present a simple extension to the model from Section 4.1 and [6]
to adequately deal also with physical process models that are present in a DT. For this, we
augment the values (channels) v; in the model with (discrete) time steps ¢ = tg, 1, ... such
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. at different time steps can be distinguished. We are not concerned

here with how such time-discrete models are obtained, but note that there are methods to

generate them from underlying differential equation models by abstraction, as e.g. in [21].
Using the extension of values to time steps v}, we can extend the causal-structural model

to it
that values v.°, v;*

i Uiy

from Section 4.1 to include also components that relate variables (in particular, the ok-
predicates of variables) at different time steps (for simplicity, we limit ourselves to consecutive
time steps):

ok(iY) A ok(ib) A+ Nok(it)) N=AB(C;j) = ok(o't!)

For the example, the interaction between the heaters and the temperature sensors (via a
physical process) can be captured with such time-augmented formulas, whereas the other
components in the example can be modeled as in Section 4.1. Together, we get a diagnostic
model of both the DT’s physical process models and communication and discrete optimisation
components that describes the causal input-output propagation behavior. In Section 5, we
describe how this model and the observations from the monitors can be used to compute
diagnoses.

4.3 A Formal Digital Twin Description Language

Our diagnostic approach requires two pieces of formal knowledge for a DT: The system
description SD with components COM PSS and their connecting channels, and the specific-
ation of properties PROP = ¢1,...,p, which are then turned into monitors to yield the
observations OB.S. To represent this information about the DT, we developed an extension of
the existing DTDL, which we call DTDL+ [30]. While DTDL describes only abstract classes
(interfaces) of DT components and their relationships, DTDL+ enriches it with an Instance
class. This allows to describe concrete instances of DTs or DT components (for instance,
several instances of the same component type), as required to specify system descriptions
SD. The Instance class includes also complete deployment information, including package
installation, file transfer, service creation, and the type of data transfer to be used in the DT.
DTDL+ descriptions can be automatically translated into various specialised forms such as
Ansible playbooks, which enable deployment and reconfiguration. The current description
focuses primarily on the DT components that drive the use case.

In addition, there are already concrete ideas for the automated integration of further
essential elements such as:

the reality or its simulation,

the visualisation component,

the monitors, and

the identifiers, which can then automatically utilise the DTDL+ description.
The integration of these aspects is currently in progress.

5 Implementation and Application to the Example

We have implemented the approach using DTDL+ for the DT model specification, TeSSLa
for generating runtime monitors from specifications, a numerical simulation framework, and
a SAT solver to compute diagnoses as described in Section 4. The resulting setup for the
example is shown in Fig. 3. It consists of a set of components designed to simulate, control
and monitor the thermal environment of a building structure. The source code can be found
in our repository?.

3 https://github.com/vosteen/FDIR
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Figure 3 Experimental setup of the implementation used for the example.
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Figure 4 Diagnostic model of the DT unrolled for a horizon of two time points.The red box
presents the subgraph that is used for fault identification.

At the core of the system is the Mock PT, acting as a thermal simulator that processes
heating control signals and provides temperature projections for the next time step. This
simulation is based on the ISO 52016-1 standard [14], adapted from [35]. The heater controller
determines whether to activate a heater based on the digital twin’s internal simulation. If the
simulated temperature for the controlled zone is predicted to drop below 20 °C, the heater is
switched on or remains on for the next cycle. The Mock PT is used to evaluate the fault
diagnosis system. The digital twin can be automatically deployed using DTDL+ descriptions.
The controller regulates the tent’s temperature by switching the heaters. Heater statuses
and sensor data are displayed graphically via plot scripts, while DTDL+ descriptions are
processed to generate a fault identification graph. Faults detected by the monitoring systems
are identified using a SAT-based model. For fault detection, we use a monitor to listen to
temperature sensor data streams (see Fig. 2 for an overview). These streams report to the
fault identification process.

Towards identifying faults in components, the monitoring component continuously evalu-
ates the temperature data according to the following rule. In TLTL [8] this condition can be
formalised as G425+ (temp < 19.5°C) A (temp(t) > 1,05 x temp (¢ — 42s)), and is used to
generate the respective four monitors M, to Mp. This TLTL condition specifies two possible
scenarios: First, that the temperature in the last 42s ago was greater than 19.5°C. Second,
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Figure 5 The plot for the temperature sensor on the top shows the faulty Ts stuck at 25°C. The
heater controllers of Zone 1 and 2 average the temperature signals from T and T4 /Tc and see their
objective (20 °C) reached. As seen in the plot of the corresponding simulated zone temperatures on
the bottom, it is actually not reached.

that the current temperature has increased by at least 5% compared to the temperature
from 42 seconds ago. The condition is satisfied if either one of these scenarios is true. When
this monitor detects a violation, it triggers the fault identifier, which then uses a diagnosis to
analyse the data and determine the possible causes of these anomalies. We use the SAT-based
approach proposed by Bauer et al. [6], transforming monitor verdicts and the diagnostic
model into a SAT instance. Since our example involves temporally extended component
models, we handle temporally indexed variables by considering each component as a separate
entity at each time step. To limit the diagnosis problem to a finite instance, we unroll the
model over a fixed time horizon. Fig. 4 shows an example unrolled for two time points,
which is sufficient for accurate diagnosis in our case. The time horizon can be optimized
for faster diagnosis or completeness. The diagnosis provides sets of components that, if
abnormal, would explain the monitor’s observations. To get an up-to-date component graph,
the diagnosis triggers the dtd12graph script to extract one from the DTDL+ description.
This is sufficient to create the system description part of the SAT problem from [6].
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Figure 6 Example of parameter drift and periodic resychronisation: whenever the difference
between the PT and the internal simulation of the controller grows too large (as indicated by the
black line crossing the limit shown with the dotted line), the simulation is adapted to better predict
reality.

To create a diagnostic scenario, a fault can be injected for one or multiple components in
the simulation. We take Temperature Sensor B as an example and configure it to provide
the constant and (mostly) false temperature signal 25°C. Figure 5 shows a temperature
plot of this simulation run. The error leads to a violation of the monitors M, and M, that
is, these temperature values are observed as —ok. The subset-minimal diagnoses are then
determined as follows:

Tg is abnormal,

Tc,Ta are both abnormal,

Hs, Ty are both abnormal,

The diagnoses could be used as a basis for recovery actions to bring the DT back in sync.
As a scenario for a loss of simulation synchronicity, let’s assume the controllers keep
the internal simulation results upon which they based their last decisions in memory and
compare it to the (simulated) measurements from the PT. If the difference grows too large,
the controller-intern monitors detect a fault and trigger a recalibration of the simulation
to the measurements. Fig. 6 shows the results of this approach on our example. We then
employ a simple gradient descent to find a new set of simulation constants to determine
updated (locally) optimal simulation parameters to re-establish synchronicity with the PT.

6 Conclusion

DTs are nowadays a well-established engineering concept for model-based design, development,
operations and maintenance for Cyber-physical systems. Thus, besides the development phase,
they must also support the evolution of the system and track their physical counterparts
(PTs) throughout the whole lifecycle, creating the necessity to update the DT when the
physical entity changes.

We presented an approach that uses RV to detect if the DT is out of sync with its
physical counterpart, and uses MBD to localize the reasons for discrepancies of a DT with
its PT in an abstracted model representing the causal structure of the DT. For this, we
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extended an approach from [6] to be able to deal also with physical process models that
exhibit dynamic behavior. Our approach also includes the development of DTDL+ as a
description language that extends Azure’s DTDL to executable formal specifications, and the
temporal stream-based specification language TeSSLa for RV and monitoring. An example
from a building DT and its prototypical implementation illustrates the effectiveness of the
approach. We currently work to expand the approach to more complex examples in the area
of DT for emergency mission support [19].

The approach is a step in the ongoing development of resilient DTs, that incorporate a
level of self-awareness by automatically monitoring their own performance and fidelity and
identifying root causes in the case of critical violations.
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