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Abstract
Traditional onboard vehicle diagnostics are rapidly evolving concomitant to the rise of electrified
powertrains, digital transformation, and intelligent technologies for advanced system management.
The big data now available in modern vehicles offers unprecedented opportunities for condition
monitoring and prognosis, but also presents challenges in scaling and integrating multimodal sensor
data across components with varying timescale dynamics. Machine learning techniques have proven
particularly effective in implementing diagnostic functions within electrified vehicle powertrains.
This study systematically reviews intelligent, data-driven techniques for health monitoring and
prognosis of electrified powertrains. We categorize existing research based on diagnostic functions
and machine learning methods, with a focus on approaches that do not require prior knowledge
of faulty operational states. Our findings indicate that deep learning methods are state-of-the-art
across several diagnostic functions, fault modes, system levels, and multimodal sensor integration.
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1 Introduction

The digital transformation within the transport system is rapidly changing the landscape of
automotive engineering processes for developing, operating, and managing the end-of-life
of vehicles. One of the primary motivations for the electrification of powertrains is to
reduce their ecological footprint by increasing energy transformation efficiency and moving
towards zero CO2 emissions [22]. At the same time, this transformation aims to improve
transportation safety. Active safety systems (ASSs) engage transiently in the event of
detection of internal or external hazards, they react timely providing warnings, adjusting the
parameters or control of the vehicle, yet without assuming the responsibility and role of the
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human driver [44]. On the other hand, Advanced Driver Assistance Systems (ADASs) are
expected to engage continuously as they increase the level of driving automation defined in
the SAE J3016 standard [43]. At level 5, vehicle decision-making is fully automated, requiring
of more comprehensive health awareness capabilities. Vehicle powertrain electrification brings
unprecedented possibilities regarding vehicle control, eco-driving, real-time health monitoring,
and predictive maintenance. Data transmission and storage are scaling rapidly in speed and
bandwidth to accommodate the volume of information generated by the many digital sensors
available in the intra-vehicle networks connecting the different components of an electrified
powertrain (EP). The traditional component-based onboard diagnostics, prescribed in the
On-Board Diagnostics (OBD-II) and the ISO 14229-1 Unified Diagnostic Services (UDS)
standards, are expected to transition to hierarchical intelligent health management systems.

Diagnostic solutions can be developed using different conceptual frameworks. In the case
of motors, but equally appropriate for other components of the EP, Chen et al. [5] classifies
the approaches into model-based, signal-based, and data-driven. Within model-based methods,
the classification can be refined into analytical mathematical models, magnetic equivalent
circuits (MECs), and digital simulation models 2. The choice of the kind of model is driven
by accuracy, computational complexity, and in many cases the type of faults to consider.
As for signal-based diagnosis techniques, they are mainly concerned with characterizing the
different fault signatures. They rely on feature extraction techniques that operate in the
time, spectral, or time-frequency domains. Because of its sound theoretical foundations,
these techniques are often incorporated in data-driven approaches. Data-driven diagnosis is
primarily enabled by machine learning (ML) and artificial intelligence (AI) models.

In this paper, we review the current research landscape of data-driven Intelligent Dia-
gnostic Systems (IDSs) for EPs and present the first installment of a comprehensive literature
survey currently in the making. Section 2 details the methodology of our research, including
research questions (Section 2.1), search criteria (Section 2.2), inclusion criteria (Section 2.3),
and our data processing approach (Section 2.4). Bibliometric facts are presented in Section 3.
In Section 4, we discuss the present answers to the research questions. Section 5 interprets
and discusses our findings. Finally, Section 6 offers some concluding remarks.

2 Methodology

The methodology of this study is summarized in Figure 1. We start by formulating our
research questions. Then we define a search string to query pertinent scientific databases.
Various inclusion criteria were defined to narrow down the relevant articles, resulting in a
subset of articles that undergo a pre-screening process. This curation step ensures that the
selected articles align with the predefined scope and objectives. Finally, we conduct a manual
review of the articles to collect our insights and findings regarding various DFs, components
and machine learning methods.

We center our study on the Motor Systems (MSs) of EPs. Attending to the fact that
healthy behavior data is easier to obtain than faulty behavior data, we also focus on
unsupervised machine-learning methods, suitable to work without knowledge nor data from
faulty behavior of the system. We aim to shed light on how these methods can deliver effective
and reliable EP IDSs. In the following, we provide details about the research questions,
search schema, acceptance criteria, and data processing pipeline.

2 A detailed account of the different approaches and classifications found in the literature can be found in
Usman et al. [53]. Usman’s taxonomy refers to these classes as electrical equivalent circuit, magnetic
equivalent circuit, and numerical methods.
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Figure 1 Survey methodology overview.

2.1 Research Questions
1. What are the DFs covered in the research?
2. What components of the EP are considered?
3. What anomalies or faults were included in the study?
4. What are the AI techniques applied to implement the DFs?
5. To what extent is it feasible to develop DFs implemented with unsupervised ML techniques

that rely exclusively on unlabeled data corresponding with the healthy behavior of the
system?

2.2 Search Criteria
2.2.1 Scientific Portals
Searches performed in: (1) SAE Mobilus, (2) Scopus, (3) IEEE Xplore, (4) TU Graz Library
Search, (5) Wiley Online Library, (6) ProQuest, (7) ScienceDirect, and (8) Web of Science.

2.2.2 Search Query
Logic based: “electric vehicle” AND “motor” AND (“machine learning” OR “artificial
intelligence”) AND (“fault detection” OR “anomaly detection” OR “diagnosis” OR “condition
monitoring” OR “predictive maintenance”).

2.3 Inclusion and Exclusion Criteria
Papers written in languages other than English, articles to which our institution has no
access, empty, incomplete, or untraceable records, retracted articles, papers older than 2018,
only abstracts, and all non-peer-review publications were excluded from the survey. All
battery-subsystem-only, software-only, and cybersecurity-related papers were considered out
of scope for this review. The curation step is explained in Section 2.3.1.

2.3.1 Prescreening Criteria
1. At least one of the following: fault detection, anomaly detection, diagnosis, condition

monitoring, or predictive maintenance.
2. At least one of the following: DC link, motor, inverter, and reducer.
3. At least one intelligent data-driven approach.
4. At least one research question is addressed.
5. literature review with at least one work satisfying one or more of the previous criteria.
Selected works either satisfy criteria 1, 2, 3, and 4 simultaneously or they satisfy 5.

DX 2024
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Science Portal Hits Included (✓) Excluded (✗)
Research Review Access No access

SAE Mobilus 42 1 1 39 1
Scopus 38 16 4 16 2
IEEE Xplore 17 13 0 4 0
TU Graz Library Search 31 15 5 11 0
Wiley Online Library 46 4 2 40 0
ScienceDirect 110 8 1 101 0
ProQuest 506 47 12 447 0
Web of Science 12 8 2 1 1

Total 804 112 27 659 4
Unique 754 86 23 642 3

(a) Summary of results of the prescreening process.
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(b) Yearly published articles (RC).

Figure 2 Bibliometric results.

2.3.2 Collections

After the prescreening procedure, the selected works are identified as the Reference Collection
(RC). In addition, by inspecting each work within the RC we identify additional papers
that fulfill our acceptance criteria. These works are referred to as Extended Collection (EC).
Finally, references preceding 2018 that are relevant constitute the Baseline Collection (BC).

2.4 Data Processing

A total of 804 references (754 unique) were prescreened independently using the criteria
described in Section 2.3.1. We classified the papers as original research papers or as literature
reviews. Being a partial installment, this paper coverage is restricted to 15 IEEE Xplore
papers and all publications within the RC between 2018, and 2020, and parts of 2021.

3 Bibliometric Facts

All bibliometric facts are based on the RC exclusively. Table 2a summarizes the classification
obtained after the screening procedure. ProQuest portal contributed the highest volume of
accepted papers: 42 research papers and 12 review papers (59 in total, or 54% of the final
collection), SAE Mobilus the lowest by volume, 1 research paper and 1 review paper (2 in
total, or 1.83% of the final collection). On the other hand, the precision of the search engines
differs significantly. IEEE Xplore provided only a moderate number of hits (17), yet the
prescreening process resulted in an acceptance rate of 76.4%. In contrast, the accuracy of
ProQuest was only 11.66%. Figure 2b illustrates the yearly distribution of selected published
articles, revealing a growing acceptance of data-driven techniques.

4 Results

What are the DFs covered in the research?

Table 1 summarizes the classification of research papers according to different diagnostic
functions. It can be seen that most research items focus on the FD and Diag categories. We
classify a work as Diag if at least two different types of faults are included.
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Table 1 Publications according to diagnostic function.

Code Diagnostic function RC EC BC
ADiag active diagnosis [27] [38]
CM condition monitoring [30]
Diag diagnosis [1] [34] [35] [38]

[49] [50] [52] [55]
[61] [63] [64] [65]

[16] [19] [28] [36]
[37] [51] [56]

[6] [8] [23] [32]
[47] [62]

DTBHM digital-twin-based health
monitoring

[54]

DTBP digital-twin-based pro-
gnostics

[54]

FD fault detection [2] [4] [13] [17]
[29] [31] [33] [40]
[48] [57] [58] [59]
[60]

[18] [51] [6] [10] [11] [20]
[21] [24] [32] [39]
[41] [42] [45] [46]
[47] [62] [66]

FE fault excitation [27]
FI fault isolation [27]
FL fault localization [2] [18] [20] [39] [41] [42]

[46]
RA risk assessment [25]
SA severity assessment [4] [13] [17] [48]

[63]
[9] [16] [28] [56] [6] [10] [11] [20]

[39] [42] [45] [46]
[66]

UAD (unidentified) anomaly
detection

[15]

Table 2 Publications according to EP component.

Code Component RC EC BC
Agnos agnostic [15] [25] [31]
Inv inverter [2] [4] [40] [48]
HVDCL high voltage DC line [57] [58] [59]
GB gearbox [65] [37]
Mot motor [1] [7] [12] [13]

[14] [17] [30] [33]
[34] [35] [49] [50]
[52] [54] [55] [60]
[61] [63] [64]

[9] [16] [18] [19]
[28] [36] [37] [51]
[56]

[6] [8] [10] [11]
[20] [21] [24] [32]
[39] [41] [42] [45]
[46] [47] [66]

MotS motor system [38]
Sen sensor [3] [48] [64] [62]
PEC power electronic circuit [23]

What components of the EP are considered?

Table 2 shows the coverage of papers per powertrain component. The bias towards motor
components is likely a consequence of our search query (see Section 2.2.2).

What anomalies or faults were included in the study?

Table 3 summarizes our findings regarding the types of faults for EPs. There is good coverage
of mechanical and electrical faults.

What are the AI techniques applied to implement the DFs?

Table 4 identifies the AI techniques performing intelligent diagnostic functions. It is a
common practice to perform multi-technique benchmarks. It can be seen from the frequency
of entries alone that among the classic ML techniques, those related to the decision tree

DX 2024
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Table 3 Publications according to fault types.

Code Fault type RC EC BC
AWBF abrasive wear (BF) [28]
BallF ball fault (BF) [7] [34] [35] [63] [65] [19] [37] [51] [56] [47]
BCD bearing cage defect [24]
BiasSF bias sensor fault [64] [62]
BF bearing fault [7] [12] [52] [55] [51] [6] [21] [47]
BRBF broken rotor bar fault [7] [13] [50] [16] [51] [32]
BRF bowed rotor bar [14] [51]
ChpTooth chipped tooth [37]
CompF component level fault [25]
CrkToothR crack in tooth root [37]
CycSF cyclic sensor fault [62]
DCSAF DC serial arc fault [57] [58] [59]
ErrSF erratic sensor fault [62]
MisTooth missing tooth [37]
WrnTooth worn tooth [37]
FRSC faulty ring of squirrel-cage [16]
GFOS gain fault on sensor [48]
IDF irreversive demagnetization fault [52] [9] [28]
ITSF inter-turn short-circuit fault [17] [33] [49] [18] [36] [8] [10] [20] [39] [41]

[42] [45] [46] [66]
IRF inner raceway fault (BF) [7] [34] [35] [63] [65] [28] [37] [51] [56] [6]
IOSF intermittent open-switch (OSF) [4]
MIF model inductance fault (MPF) [27]
MotF motor failure [38] [61]
MPF model parameter fault [31]
MRF model resistance fault (MPF) [1] [27] [49]
PGSF phase to ground short-circuit fault [50] [36] [8]
PPSF phase to phase short-circuit fault [1] [49] [50] [8]
OCF open circuit fault [2] [29] [23]
OCPF open circuit of phase fault [1] [36]
OSF open switch fault [40]
ORF outer raceway fault (BF) [7] [34] [35] [60] [63]

[65]
[19] [37] [51] [56] [6] [47]

REF rotor eccentricity fault [12] [14]
RMA rotor misalignment [7] [51]
RU rotor unbalance [34] [51]
SCF short circuit fault [29] [23]
SEF static eccentricity fault [11] [20]
SM shaft misalignment [34]
SOF sensor omission fault [3]
StckSF stuck sensor fault [62]
ApkSF spike sensor fault [62]
UA unidentified anomaly [15]

family are often preferred, in particular, if strengthened by ensemble methods. SVM, remains
a reference model, the community praises the good performance and low computational cost
provided the volume of data is limited; yet another reason for its application. Deep learning
techniques have also recently populated the field. The tried-and-true CNN family is the
natural choice, whether in their 1-D or 2-D variants. Its application is further facilitated by
the availability of public pre-trained models over which transfer learning techniques can be
applied. The autoencoder family and deep stacking models are also present. Despite our
partial coverage, the diversity of models and methodologies is already apparent.
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Table 4 Publications according to AI technique included in the study.

Code AI technique RC EC BC
ABOD angle-based outlier detector [15]
ADCNN adaptive deep CNN [56] [24]
AE deep autoencoder [15]
AEOD autoencoder for outlier detection [15]
CNN convolutional neural network [7] [30] [34] [38] [52]

[63] [65]
[28] [56] [19]

DBN deep belief network [25] [6]
DBNHDN DBN-based hierarchical diagnosis network [56]
DCAE deep coupling autoencoder [37]
DCTLN deep convolutional transfer learning network [19]
DFC decision forest classifier [1] [12] [13] [14] [61]
DJC decision jungle classifier [12] [13] [14]
DTC decision tree classifier [1] [3] [12] [17] [38] [50]
DTR decision tree regressor [48]
EBTC ensemble bagged trees classifier [17]
ESC ensemble subspace classifier [17]
FuzzyL fuzzy logic [54] [21] [46]
FSVM fuzzy support vector machine [23]
GBRBM Gaussian Bernoulli restricted Boltzmann machine [37]
GMODBN Gaussian mixture output dynamic Bayesian net-

work
[60]

GB Gradient boosting [1]
IN inception network [34]
IDDAN inferable deep distilled attention network [63]
KMC K-means clustering [40]
KNNC K-nearest neighbor classifier [1] [3] [17] [50] [16] [10] [20]
KNNOD K-nearest neighbor outlier detector [15]
KPCA kernel PCA [6]
LLE locally linear embedding [6]
LR logistic regression [13] [14] [48] [57] [58] [19] [37]
MLP multilayer perceptron [1] [2] [13] [14] [25] [30]

[40] [48] [49] [54] [65]
[16] [11] [24] [39] [62] [66]

NPE neighborhood preserving embedding [6]
TLNN time-lagged neural network [42]
OCSVM one-class SVM [32]
PDSRC part dictionary sparse representation classification [47]
PCA principal component analysis [3] [4] [12] [17] [50] [18]
PN prototypical network [55]
PSO particle swarm optimization [21] [42] [47]
QDA quadratic discriminant analysis [52]
RBFN radial basis function network [24]
RBM restricted Boltzmann machine [37] [6]
RNN recurrent neural network [41] [45]
ResNN residual neural network [34]
SAE sparse deep autoencoder [28] [51] [6]
SF sparse filtering [56]
SOM self-organizing map [40] [8]
Sperc simple perceptron [25]
SVM support vector machine [1] [3] [17] [33] [35] [40]

[50] [52] [55] [57] [58]
[59] [63] [64]

[51] [56] [21] [23] [32] [47]

SVR support vector regression [30] [9]
WCBC word-code-based classification [16]
WDCNN deep CNN with wide first-layer kernel [55]
WPNF wavelet-prototypical network based on fusion of

time and frequency domain
[55]

DX 2024
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To what extent is it feasible to develop DFs implemented with unsupervised ML
techniques that rely exclusively on unlabeled data corresponding with the healthy
behavior of the system?

We found evidence of systems able to detect anomalies based on machine learning techniques
that were trained purely on the healthy behavior of the system. In [15], Geglio et al. apply
reconstruction-based anomaly detection. A reconstruction-based anomaly detector can be
implemented on any signal corresponding to the healthy behavior of the system. They include
several variants in their study, a fully convolutional autoencoder (AE CNN), a fully connected
autoencoder for outlier detection (AEOD), an angle-based outlier detector (ABOD), and a
K-nearest neighbor outlier detector (KNNOD). They also showed that these techniques can
integrate the signals of 58 different sensors, that were available in the vehicle’s powertrain
network. In [37], Ma et al. applied a deep coupling autoencoder (DCAE) to integrate
signals from different sensor modalities. The architecture stacked (1) Gaussian Bernoulli
restricted Boltzmann machines (GBRBMs); (2) restricted Boltzmann machines (RBMs); (3)
a coupling autoencoder (CAE) to integrate vibration and acoustic information; and a (4)
multinomial logistic regression classifier taking as input the sparse representation computed
by the DCAE architecture. This architecture effectively diagnosed several gearboxes (GB)
defects, and BFs outperforming decision pathways based on DAEs operating with the single
modalities and both modalities trained independently. By removing the multilayer regressor,
reconstruction-based anomaly detection for multimodal signals is possible.

Some solutions are capable of multi-sensor fusion. Chen and Li in [6] apply sparse autoen-
coders (SAEs) to fuse simultaneously acquired vibration signals from three accelerometers
monitoring a motor system. Their proposed method first computes a set of 15 time-based
features and 3 frequency-based indicators per sensor. These are fed into a bank of 18 SAEs,
each processing the individual features computed from the three vibration sensors. The
stacked SAE layers first compute a sparse overcomplete representation, and then a single
channel fusion. The 18 fused feature signals are then connected to a deep belief network
(DBN) that diagnoses IRFs and ORFs of different magnitudes (slight, moderate, severe).
Chen and Li benchmarked SAE-DBN architecture against PCA, KPCA, NPE, LLE, single
SAE3, and AE4. SAE-DBN outperformed all other ML models in the benchmark. In addition,
it showed better generalization ability and robustness, requiring fewer training samples to
achieve high accuracy across various operating points. The SAE stage in the model is an
instance of a suitable candidate to be used in unsupervised learning scenarios.

Another example is given by [30], where Kaviya et al. implement condition monitoring
(CM) for motors. Taking as inputs the DQ voltages and currents, coolant temperature,
stator tooth temperature, temperature of the permanent magnet, motor speed, ambient
temperature, and motor torque, they train an SVR to learn to predict a healthy motor’s
torque. Luo et al. [36] use the three-phase currents and rotor position as inputs to a LSTM
network. The network is trained in unsupervised mode to predict the behavior of the healthy
system. They show a qualitative confirmation of meaningful residuals that could be used for
fault detection of OCPFs, PGSFs, and ITSFs under several operational conditions. There are
instances of hybrid architectures that optimize the decisions, for example, in [41], Nyanteh et
al. combine a recurrent neural network (RNN) with particle swarm optimization (PSO) to
perform fault detection and fault localization. The RNN takes as inputs the three consecutive

3 Referred to as SAE0 in the paper, is a single SAE, whose input was formed by concatenating the
multi-sensor (3 × 18) features into a single vector.

4 AE has the same architecture as SAE, but for the sparsity regularization term that is set to zero.
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samples of the current phase A of the PMSM (1 input and 2 delays) and computes the
current envelopes for each phase; the network being trained by a PSO algorithm having as
its objective function an index that measures the ability of the RNN to compute an envelope
to the input current along an operational cycle. A fault is detected when the differential
current exceeds about three standard deviations from its mean value.

5 Discussion

Many works we have surveyed are instances of diagnosis as classification, where a ML model
is trained in supervised mode with labeled faults. Often, ML model architectures are hybrids
of several paradigms and/or architectures. For instance, the work of Zhang et al. [63] presents
the inferable deep distilled attention network (IDDAN). It includes an attention mechanism
implemented with a transformer encoder connected to a linear classifier. The authors use data
augmentation, knowledge distillation, and transfer learning. A CNN (VGG-16) is trained as
the teacher network and IDDAN as the student in the methodology of knowledge distillation.
Transfer learning is applied by fine-tuning a multi-layer perception (MLP) fed by the distilled
network transformer encoder.

We identify challenging circumstances regarding the setup of experimental platforms to
gather data from physical plants that can simulate realistic driving cycles of EVs and excite
the system sufficiently across its entire nominal envelope. In many cases, the community
relies on public datasets and or synthetic data obtained from systematic simulations. As
for simulation frameworks, a notable mention is the work of Meckel et al. [38]. In their
study they developed a fault injection generic simulation framework for HEVs implemented
in MATLAB/Simulink. Their framework incorporates several fault injection mechanisms
allowing faults to manifest transiently, intermittently, or permanently.

Regarding distributed architectures, Jeong et al. [25] engineered an integrated self-
diagnosis system (ISS) for autonomous vehicles. Their contribution is a distributed diagnostic
solution that trains and optimizes diagnosis models in the cloud using the vehicle’s operational
data and deploys them at the edge (onboard the vehicle). It consists of three modules: the
deep learning module (ODLM), the in-vehicle gateway module, and the edge computing-based
self-diagnosis service. The first module performs diagnostics and risk assessment. The second
optimizes the data transfer across the networks, collecting data from the vehicle sensors and
top-down control signals and routing data to the OBD and actuators. The third informs
diagnostic results to the cloud, infrastructure, and other vehicles.

Given the communication infrastructure of modern electrified vehicles, it seems essential
to decompose diagnostic tasks into fine-grained computational graphs rather than relying on
monolithic solutions. These graphs self-coordinate and coordinate with others, maintaining
functionality even under severely degraded conditions. We refer again to the work of Meckel
et al. [38] to illustrate two main aspects or requirements for IDS in our domain: (1) active
diagnosis , and (2) explicit models of diagnostic procedures. They hypothesized the possibility
of transforming a decision tree classifier (DTC) into a diagnosis model in the form of a
diagnostic directed acyclic graph (DDAG). DDAGs can represent the orchestration of active
and distributed processing and feature extraction tasks required in fault diagnosis. In [26],
Jo et al. illustrate the use of DDAG for an abstract diagnosis model of the powertrain of an
HEV, they showed how as nodes of the graph are executed they gather evidence to support a
diagnosis decision. The outcome of some nodes (diagnostic tasks) can represent intermediate
conclusions. Generally, several factors need to be considered to reach a diagnostic conclusion.
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6 Concluding remarks

The landscape of data-driven intelligent diagnosis methods and architectures for EPs is
diverse and blooming. In our first installment, of a comprehensive literature review still
in the making, we have presented different views and classifications in the hope that they
help the community to navigate the arena. The community could benefit from more open
data repositories. The digital twin paradigm embraces the integration of multiple techniques,
in particular model-based and data-driven approaches. Signal-based methods are already
part of many feature-processing pipelines, often combined with deep learning models. Active
diagnosis appears to be an essential function of IDSs.
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