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Abstract
Prognostics is the scientific study of component and system degradation with use, and the prediction
of when failure may occur. In this work, we propose a new data-driven method for predicting a
system’s remaining useful life (RUL) without needing an accurate system model or expert knowledge.
Instead, we use system operational data to estimate how the system’s performance metrics change
with time. Although this is a purely data-driven approach, the method’s design is inspired by model-
based techniques. First, we frame a novel Multitask Machine Learning architecture to simultaneously
learn the general pattern of performance degradation and the individual trajectories from run-to-
failure performance trajectory data. We apply this method to the set of performance metrics that
determine the system’s end-of-life (EOL), building a performance trajectory library of the system
operation under different operational conditions. We leverage the performance metric library as
prior belief and develop a Bayesian deep learning approach to update the performance measures
over time and predict the system EOL. We evaluate our method on two datasets of the N-CMAPSS
benchmark, achieving satisfactory results in terms of overall performance and uncertainty estimation
accuracy. Overall, our approach illustrates a generalized deep learning architecture that can more
effectively predict the system RUL for a collection of identical systems.
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1 Introduction

Industrial systems and their components experience degradation over time with a risk of
experiencing failure. To perform condition-based maintenance (CBM), operators must use
prognostics approaches to estimate the remaining useful life (RUL) of these systems and their
components. Accurate estimation of the RUL allows operators to make informed decisions
about system health and maintenance decisions thus increasing the resilience of real-world
system operations [15]. Techniques for estimating RUL can be divided into three major
categories: model-based, data-driven, and hybrid [8].
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21:2 Data-Driven RUL Prediction Using Performance Metrics

Model-based techniques leverage system physics to develop mathematical models for
prognostics, achieving notable success. For instance, [5] presents a method estimating state
and damage progression parameters, then predicting the end of life (EOL) by propagating
these estimates. Applied to a centrifugal pump model, they found the unscented Kalman
filter optimal for state-parameter estimation, though other filters might suit different ap-
plications [6]. Recent advancements include extending classical physics-based prognostics
with mechanistic approaches for accurate RUL estimation in lithium-ion batteries, albeit
with higher computational costs [7]. These techniques are powerful when data is limited but
require expert knowledge, which may be impractical for complex systems [4].

To overcome modeling challenges, data-driven techniques have been developed, learning
mappings from measured variables to RUL without detailed expert input. Deep learning
methods, particularly recurrent neural networks (RNNs), are popular in aircraft engine
prognostics [19]. For instance, [9] employs a bidirectional long short-term memory network
on the C-MAPSS dataset. However, RNNs struggle with long sequences due to the vanishing
gradient problem [14], and even advanced RNNs lack parallelization [18]. Transformers, like
the temporal flow transformer for bearing RUL estimation [3] and methods predicting proton
exchange membrane fuel cell degradation [11], have shown superior performance. Other
popular approaches include convolutional neural networks fused with LSTMs [12], Gaussian
processes [2], and multi-layer perceptrons [17].

Data-driven methods, despite their popularity, have limitations such as lack of explain-
ability [8] and the need for large, representative datasets [4]. Addressing these, [21] and [13]
incorporate uncertainty quantification in RUL estimation. Hybrid approaches combining
data-driven and model-based methods have been proposed, such as fusing data-driven features
with degradation models [20] or using physics-derived features in deep learning models [4].

This paper introduces a novel approach inspired by model-based prognostics [10] but
adopts an entirely data-driven approach. We reformulate model-based components using
data-driven models, offering explainability without requiring expert knowledge. Our method
frames performance degradation modeling as a multitask machine-learning problem, creating
a data-driven performance trajectory library. This library is used to predict EOL by solving
the uncertainty propagation problem for each performance metric and updating prior beliefs
with new data. Evaluated on two N-CMAPSS sub-datasets for aircraft engine prognostics
[1], our contributions are:

An end-to-end data-driven prognostics approach estimating RUL and associated uncer-
tainty based on performance metrics, independent of system physics.
Demonstration of the framework’s potential on N-CMAPSS datasets, achieving satisfactory
predictive results and outlining future research directions.

The rest of the paper is structured as follows. Section 2 provides an explanation and
the theoretical foundations of the proposed method. Subsection 2.2 focuses on the training
process, while the second step, responsible for predicting the system’s RUL, is addressed
in Subsection 2.3. Section 3 presents an analysis of the experimental results and Section 4
concludes with a summary of the main findings and outlines future work.

2 Proposed Approach

Our proposed approach consists of two main steps. As a first step, we learn a library
of run-to-failure trajectory distributions for each performance metric using training data.
We create a new Multitask Machine Learning model for each performance metric. Each
training trajectory corresponding to a performance metric constitutes a learning task, and
all trajectories share the general performance pattern as common information. Learning this
library constitutes the offline training phase of our method as shown in Figure 1a.
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Our second step uses the learned trajectory distribution libraries as prior beliefs for
predicting the end of life (EOL) corresponding to each performance metric. This is illustrated
in Figure 1b. The procedure to generate the predictions associated with each performance
metric is shown in Figure 1c and can be summarized as follows:
1. First Prediction: At time step n = 0, before receiving observations, we make an initial

prediction for each performance metric by sampling the performance trajectories in our
library uniformly npaths times, where npaths is a hyperparameter of the method indicating
the number of predictions we make at each time step. Then, we compute the EOL and
uncertainty boundaries of the system RUL from these initial predictions.

2. For each time step n ≥ 1 repeat:
a. Performance Prediction.

For each Performance metric i = 1, 2, . . . , κ, repeat:
i. Correction Step (see Section 2.3.4): Select the best predictions from the

previous time step in the light of the new observation.
ii. Build Trajectory Belief (Section 2.3.4): Select a set of beliefs, or a guess,

around the best performance predictions obtained in the previous step.
iii. Uncertainty Propagation (Section 2.3.3): For each belief, predict the perfor-

mance by finding the best linear combination of the learned trajectory library that
maximizes the posterior probability under the given prior belief. The set of optimal
linear combinations for each belief gives the set of npaths predicted performance
trajectory at time n.

b. Compute System RUL(Section 2.3.5): After computing the npaths performance
predictions for each performance metric, we compute the EOL and uncertainty bounds
for the system at the current time.

2.1 Training data
Denote by κ the number of performance metrics that determine the EOL of the system. For
simplicity, we assume that we record the value of every performance metric throughout its
life. Then, if we have the run-to-failure trajectories of N units, our training data consists
of the set of N (multivariate) time series of performance metric trajectories {ui}N

i=1, where
ui = {(tj , pj)}Li

j=1, pj = (p(1)
j , p

(2)
j , . . . , p

(κ)
j ) is the vector of performance metric values

collected at time tj , and Li denotes the number of time steps until the EOL of the ith

training unit. Notice that we are omitting the unit indexation to simplify the notation. Our
approach also needs a maximum life value tmax that determines the maximum life we are
considering. Then t1 < t2 < · · · < tLi

∈ [0, tmax] for every training unit and the EOL of the
ith unit is EOLi = tLi for i = 1, 2, . . . , N .

We also assume that the thresholds determining the EOL for each performance metric
are constant values independent of time. Therefore, by scaling, we can assume without loss
of generality that the performance metrics are decreasing functions from [0, tLi

] ⊂ [0, tmax]
to [0, 1], where a value of 1 indicates a completely healthy performance indicator and a value
of 0 means that the performance metric has reached its EOL.

2.2 Learning the Performance Trajectory Library
During the training process, we learn all the run-to-failure trajectories of the same performance
metric in parallel (as individual Gaussian stochastic processes) by using a multitask machine
learning architecture that learns the performance metric pattern in a block shared along the
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21:4 Data-Driven RUL Prediction Using Performance Metrics

(a) Training step. (b) RUL prediction step.

(c) Performance prediction procedure.

Figure 1 Overview of the proposed method for the case of three performance metrics κ = 3.

individual trajectory models. Specifically, for each performance metric with N run-to-failure
trajectories, we learn a collection of time series hi(t) = (µi(t), σi(t)) for i = 1, 2, . . . , N ,
where µi(t) and σi(t) represent the mean and standard deviation of the ith run-to-failure
trajectory at time t. We call this collection of time series h a trajectory library. We model
the individual trajectories by using linear transformations of inputs gin = (gin

1 , gin
2 , . . . , gin

N )
and outputs gout = (gout

1 , gout
2 , . . . , gout

N ) of the common block, from now on referred to as
latent function f in charge of learning the performance pattern. By composing both, we
build an individual model for the performance trajectory distribution of each training unit:
hi(x) = (gout

i ◦ f ◦ gin
i )(x), i = 1, 2, . . . , N . The functions gout

i , gin
i , and f are learnable.

Note that the latent function f and its learnable parameters are common to all the trajectory
models hi. Thus, by learning from all the trajectories, we ensure that the individual trajectory
information passes through the latent function f . This enforces f to learn only the common
information across trajectories while simultaneously transferring information from long to
short trajectories.

We modeled our latent function f as a multilayer perceptron (MLP) neural network
with residual connections. The functions gin

i : R → R and gout
i : R2 → R × R+ are linear

layers gin
i (x) = aix + bi and gout

i (x1, x2) = (µ(xi), σ(x2)) = (cmean
i x1 + dmean

i , cstd
i x2 + dstd

i ),
with learnable parameters ai, bi, cmean

i , cstd
i , dmean

i , dstd
i for i = 1, 2, . . . , N . Since the standard

deviation is a positive value, we also need to apply a positive function to the second output
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of gout
i . In our implementation, we chose the Softplus function (Softplus(x) = log(1 + ex)).

To introduce monotonicity in the performance metric, we restrict the sign of the slope
coefficients of the linear transformation layers. All slopes are positive except for the slope
of the output layer associated with the mean, whose sign depends on the monotonicity of
our performance metric. Assuming our performance is monotonically decreasing, we restrict
the slope coefficients as ai, cstd

i > 0 and cmean
i < 0 for i = 1, 2, . . . , N . We also introduce

monotonicity in our latent function f by adding a term in the loss function of our model
that strongly penalizes a negative derivative of f . The monotonicity of the entire model
(mean and standard deviation outputs) comes then from the monotonicity of the composition
of monotonic functions. Notice that we are also imposing the standard deviation to be
non-decreasing, assuming that the degradation of the model does not reduce the variability
of our data.

The loss function to learn the trajectory performance library consists of three terms. The
main term is in charge of learning the trajectory distributions of all training units, and the
second and third terms enforce the monotonicity and smoothness of the latent function:

N∑
i=1

NLL(hi(t1, t2, . . . , tLi
)|p1, p2, . . . , pLi

) + γ1

M

M∑
i=1

max(f ′(si), 0)2 + γ2

M

M∑
i=1

(f ′′′(si))2,

where NLL denotes the negative log-likelihood of the normal distribution and s1 < s2 <

· · · < sM is a uniform partition of the minimal interval containing all the outputs of the
training points through the input linear transformations gin

i .
We also assume that the performance metric values are independent over time. Although

performance values that are close in time should be correlated, we make this assumption for
simplicity and to reduce the computational cost. An alternative is to model the covariance
between different points in time with a kernel function like the radial basis function kernel
used in Gaussian Processes. We plan to address this in future work.

2.3 RUL Prediction method
Our RUL prediction method is inspired by the model-based RUL prediction technique, where
we first estimate the current state of the system, and then, using a transition model, we
perform a Monte Carlo Simulation to predict the EOL of the system [10]. In our case, instead
of a transition model for the system, we use training data of the performance metrics of
the system. At a high level, our model estimates the current state for every performance
metric by using the history of observations until the current time. It then predicts the EOL
of each performance metric by combining this information with the library of performance
distributions to predict their future evolution. This is done by performing an uncertainty
propagation procedure to predict the set of possible ways the performance observation could
evolve in time based on the observations and our library of trajectories learned from data.
In this way, our method computes the possible EOL of each performance metric and the
RUL of the system with uncertainty bounds.

2.3.1 Linear Space for Trajectory Searching
Our method is based on combining the present information that comes from the set of
observations of the performance metric obtained until the current time step n with the
future information that comes from the library of trajectory distributions learned from data
{h1, h2, . . . , hN }. We combine both by finding the linear combination of our trajectory library
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21:6 Data-Driven RUL Prediction Using Performance Metrics

distributions that “best” fits our observations. Then, we consider the space of all possible
trajectory distributions as the linear space generated by the set of distributions in our library

L(h) =
{

N∑
i=1

αihi : α = (α1, α2, . . . , αN ) ∈ RN

}
.

Note that this space contains many distributions that have no practical meaning. For
example, if we restrict ourselves to the mean of the distributions, the constant function g ≡ 0
is always part of the space, independent of the library we have. Also, the linear combinations
where all scalars are negative are defined in L(h), but this inverts the monotonicity of the
resulting performance metric. We could use a more restrictive space that ensures more
reasonable performance distributions like the space of convex combinations, also known as
convex hull, of the (function) vectors h = (h1, h2, . . . , hN ), but this space is too restrictive
for our purposes. We decided to keep our searchable trajectories as the linear space L(h)
and avoid unrealistic trajectories through an intelligent search.

Notice that this is a linear space of Gaussian distributions. Since we trained our trajectory
library to find the best Gaussian distribution fitting our training data, we know that
hi = (µi, σi) distributes N (µi(t), σ2

i (t)|t) and, under the common assumption of training
trajectories independence, we obtain that the linear linear combination h̃ =

∑N
i=1 αihi ∈ L(h)

is also Gaussian with distribution

N

(
N∑

i=1
αiµi(t),

N∑
i=1

α2
i σ2

i (t)

∣∣∣∣∣ t

)
.

2.3.2 Finding the best Linear Combination
We formulate this problem by finding the best vector of scalars α that maximizes the α-
parameterized likelihood of the observations. As we mentioned when we learned the trajectory
library, we also assume here independence over time for the same reasons.

Once we know the joint distribution of the linear combination of our library distributions
(as a function of the scalars α), we find the scalar values α of the linear combination that best
fit the observations until the current time by maximizing the likelihood of the observation,
or, equivalently, minimizing its negative log-likelihood.

In our problem, the parameters we are optimizing are the scalars of the linear combination
α. If we assume a Gaussian probability prior with mean ᾱ and covariance matrix 1

γ I, where
γ quantifies how much we believe that the right linear combination α is close to ᾱ,

NLLᾱ,γ(α|pn) = NLL(α|pn) + γ(α − ᾱ)T (α − ᾱ) = NLL(α|pn) + γ∥α − ᾱ∥2, (1)

where ∥ ·∥ denotes the euclidean norm in RN . Notice also that we have omitted the quantities
independent of α as they do not affect the optimization.

2.3.3 Uncertainty Propagation
In model-based approaches, Monte Carlo simulations help to compute stochastically the
possible ways in which the system may evolve under the influence of inputs and environmental
conditions. Since we do not have a transition model, we cannot compute the next state
given new inputs. Instead, we compute the most probable ways in which each performance
metric may evolve, given the history of observations and a belief about its future evolution,
by sampling the trajectories available in the library. Our proposed Uncertainty Propagation
method is performed at each time step by solving the optimization problem with an objective
function (1) for N (ᾱ, 1

γ I) in a set of beliefs Ãn that change dynamically over time.
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This belief set Ãn is composed of two belief sets, a present belief set Ap
n in charge of

tracking the best prediction at the present time, and a future belief set Af
n, that keeps the

library of trajectories as part of our belief space because sampling from them may help us
propagate our predictions into the future. Therefore, our projections can accommodate and
continue to be guided by future observations as they become available.

We first notice (see (1)) that the contribution of the observations until the present time,
which we will call past information, and the present and future information generated by our
belief sets should include the effect of the degradation and the environmental conditions at
each time step n. At the beginning of the life of the system, when the degradation effects are
small, the observations follow a mostly nominal behavior. Therefore, the prediction of the end
of life derived from the performance metrics has large uncertainty bounds. Moreover, since
we have a few observations of system performance and the time to system end-of-life is in the
distant future, we have to rely more on the trajectories available in our library to predict the
future performance evolution (therefore, γ is larger). As the system approaches the end of life,
we can give much larger weight to the set of observations on system behavior that we have
accumulated because they contain much more information about degradation effects and the
condition under which the system has operated. These are likely much better predictors of
the system end of life than our prior beliefs of the system performance trajectories (implying
γ should be smaller). Assuming that the performance metric is decreasing and scaled in the
interval [0, 1], we can use the value of the current performance observation pn to weigh the
past-future importance and balance these contributions in computing the EOL and RUL
predictions. To reflect this, we modify (1) as follows

objectivepn
(α|ᾱ, γ) = (1 − pn)NLL(α|pn) + pnγ∥α − α̃∥2.

Note that, at the beginning of life, the observations reflect healthy performance values, so
they are close to 1 and our optimization function mostly relies on our (present and future)
beliefs. As the system degrades, the current performance observations, pn, is used to give
more weight to observations when performing the optimizations to compute the EOL.

In addition, we modify NLL(α|pn) to give more importance to fit recent performance
observations than observations in time by doing a (linear) weighted sum

NLL(α|pn) =
n∑

j=1
wj,n

[
[pn − Uα]2j

[V α2]j
+ ln([V α2]j)

]

where wi,n = Softmax(wmax(1 − pi)) for i = 1, 2, . . . , n, wmax is a hyperparameter of the
method indicating how much we care about future observation over past observations or
the rate at which we forget past observations. At every time step n, given a set of beliefs
Ãn = Ap

n ∪ Af
n and history of observations until current time p = (p1, p2, . . . , pn), we obtain

the set of predictions of our uncertainty propagation method as

Ã∗
n =

{
arg minα∈RN {objectivepn

(α|ᾱ, γ)} : N
(

ᾱ,
1
γ

I

)
∈ Ãn

}
.

If we obtain predictions that violate the monotonicity of the performance metric in the
time interval [tn, tmax], these predictions are pruned and we repeat the simulation for the
number of pruned trajectories. This may happen because of the admission of negative values
of the linear combination, so this prune, together with our belief (as we will explain later),
enforces our search to be close to the convex hull of h.
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21:8 Data-Driven RUL Prediction Using Performance Metrics

2.3.4 Dynamic Beliefs
We already have discussed how to make performance predictions given observations and
a belief set Ã, but how do we modify these sets over time? At each time step, the only
information we need is the predictions we made in the previous step Apred

n−1. Our method
starts before we receive any observations (n = 0). At this initial state, we are already able
to make predictions solely based on our trajectory library, as our Uncertainty Propagation
method does when we have observations for n ≥ 1. We make our first npaths predictions by
doing npaths uniform sampling of the performance trajectories hi, for i = 1, 2, . . . , N . Then,
at time step n, and given our previous predictions Apred

n−1, we build our current predictions
Apred

n inductively as follows:

Correction Step. Once we receive the predictions at the previous time step Apred
n−1 we correct

them in light of the new observation. This will give us the centers around which we will
build our belief sets:

αpresent = argmin
α∈Apred

n−1

{NLL(α|pn)}, αfuture
i = argmin

λ∈R
{NLL(λei|pn)}ei, i = 1, 2, . . . , N.

Notice that the center of our present belief is the prediction in Apred
n−1 that has the smallest

NLL of the observations(including the new observation pn), while the N centers of the future
beliefs are the best scaling of the training trajectories fitting the observations. In order
to assign a probability for each center to be selected, we also collect the minimum values
of the future centers qi = minλ∈R{NLL(λei|pn)}, and convert them into “probabilities” by
applying the Softmax function to obtain the vector of probabilities pfuture = Softmax(q),
where q = (q1, q2, . . . , qN )T .

Build the Belief sets. Each belief in our belief sets is a Gaussian distribution N (µ, σ2I).
The means µ for both belief sets, Ap

n and Af
n, are constructed by a Gaussian sampling around

their centers. The sampling here simulates our selection of different beliefs around a center
and has no probabilistic implications in our model other than an automatic and “reasonable”
way to select different beliefs. On the other hand, the variance σ2 only depends on the
centers. All the beliefs sampled around the same center share the same variance, σ2. We
refer to the inverse of the variance of a center as the trust in the center, denoted by γ. Since
we have one present center and N future centers, we denote their respective trusts by γp for
the present center and γf

i for the i-th future center.
Since our beliefs are on trajectories and we only have access to the scalars that generate

these trajectories, adding a Gaussian noise directly in the scalars creates a bias towards the
origin of coordinates. But there is no reason to have a stronger belief about the constant
zero trajectory, so we make a change of base from h to the mean-centered base {hi − h̄}N

i=1,
where h̄ = 1

n

∑N
i=1 hi, before applying the Gaussian noise on the scalars. This way we move

the origin of coordinates to the mean trajectory h̄.
At this point, we only need to determine the vector of variances of the samples V present

,V future
i,n , for i = 1, 2, . . . , N , the center trusts γp and γf

i , and how the npaths samples, at time
n, are distributed across the past and the future belief sets. We compute the variance of the
sample belief as how far (at each coordinate) the center is to be the mean of our predictions
Apresent

n−1 or equivalently, “how big” was the correction we had to make in the previous
step. We quantify this by computing the variance of the predictions around each center
V present

n = V (Apred
n−1 , αpresent) and V future

i,n = V (Apred
n−1 , αfuture

i ), for i =, 1, 2, . . . , N , where the
variance of a set {xn}m

i=1 centered at a vector x is almost the same as the variance of the set
{xn}m

i=1 with x in place of the mean in the formula for the empirical variance. This means
V ({xn}m

i=1, x) = 1
m−1

∑m
i=1(xi − x)2.
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Figure 3 RUL prediction (on the left) and Performance prediction on the right on Unit 7 of
N-CMAPSS-DS01 dataset. The green and yellow predicted distributions correspond to resulting
distributions after the uncertainty propagation process with prior belief in Ap

n and Af
n respectively.

Tee blue distribution is the mean predicted distribution, the one we use for the RUL prediction.

We consider our trust in the respective beliefs as the inverse of the mean along components
of the vector variance. This avoids the non-intuitive idea of dividing the belief by components
of the linear combination. Remember our belief is on trajectories, and during the conversion
from scalars to trajectories, many unrealistic trajectories may appear by just changing the
sign of scalars. We also checked in practice that this gives us more stable predictions as
variations in all dimensions are equal. Then, we define the center trusts as

γpresent
n = 1

1
N

∑N
j=1[V present

n ]j
, γfuture

i,n = 1
1
N

∑N
j=1[V future

i,n ]j
, i = 1, 2, . . . , N.

Finally, we chose the (present-future) sample rate as

rn = γpresent
n

γpresent
n + 1

N

∑N
i=1 γfuture

i,n

∈ [0, 1].

to give more beliefs to the centers we trust more. So, at time step n, the belief distribution
is |Ap

n| = ⌊rnnpaths⌋ and |Af
n| = ⌈(1 − rn)npaths⌉ where ⌊x⌋ denotes the floor function, ⌈x⌉

denotes the ceiling function, and |A| denotes the cardinality of the set A.

Uncertainty Propagation. Once we have built our belief set, we perform our Uncertainty
Propagation step explained in the previous section, for the entire belief set. The α∗ values
obtained are the predictions at time step n. This means Apred

n = Ã∗
n = (Ap

n)∗ ∪ (Af
n)∗. Figure

3 on the right, shows the performance prediction obtained from the scalars in the prediction
set Apred

n , at a specific time step, differentiating the future and present belief predictions by
color.

2.3.5 RUL and Uncertainty Computation
At each time tn (starting by t0 = 0) and for each of the κ performance metrics, we compute
the prediction sets Apred

j,n , for j = 1, 2, . . . , κ, following the steps explained in Section 2.3.4
and we use these scalar sets to compute the set of npaths prediction distributions

Predj(tn) =
{npaths∑

i=1
αihi : α ∈ Apred

j,n

}
, for j = 1, 2, . . . , κ.
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21:10 Data-Driven RUL Prediction Using Performance Metrics

We obtain the predicted j-th performance metric at time step n, fj,n, by taking the
average in both the mean and standard deviation of the predicted distributions Predj(tn).
This means fj,n ∼ N

(
µj,n(t), σ2

j,n(t)|t
)
, where

(µj,n(t), σj,n(t)) = 1
npaths

∑
N (µ,σ)∈Predj(tn)

(µ(t), σ(t)).

Notice that we are taking the Gaussian distribution whose mean and standard deviation
are the average of the mean and standard deviation of the predicted distributions, which is
different from the average distributions, which would reduce the standard deviation by a
factor of 1√

npaths
. Assuming that the performance is decreasing, we compute the predicted

EOL of the performance j at time tn and its uncertainty boundaries as

EOLj(tn) = min{t ∈ [tn, tmax] : µj,n(t) − 1.96σj,n(t) ≤ 0},

EOLlow
j (tn) = min{t ∈ [tn, tmax] : µ(t) − 1.96σ(t) ≤ 0, N (µ, σ2) ∈ Predj(tn)},

EOLup
j (tn) = max{t ∈ [tn, tmax] : µ(t) + 1.96σ(t) ≥ 0, N (µ, σ2) ∈ Predj(tn)}.

Note that we are being conservative at choosing the lower bound of the 95% confidence
interval [µj,n(t) − 1.96σ(t), µj,n(t) + 1.96σ(t)]. Finally, we predict the EOL and RUL of the
system with its respective confident bounds at time tn as follows

EOL(tn) = min
j=1,2,...,κ

{EOLj(tn)}, RUL(tn) = EOL(tn) − tn,

EOLlow(tn) = min
j=1,2,...,κ

{EOLlow
j (tn)}, RULlow(tn) = EOLlow(tn) − tn,

EOLup(tn) = min
j=1,2,...,κ

{EOLup
j (tn)}, RULup(tn) = EOLup(tn) − tn.

3 Results

3.1 Dataset
We conducted experiments to validate our method on the N-CMAPSS dataset introduced
in [1]. We used datasets 1 (N-CMAPSS-DS01) and 5 (N-CMAPSS-DS05). We selected
N-CMAPSS-DS01 because it only had one failure mode and N-CMAPSS-DS05 as a more
complex dataset with two failure modes. The N-CMAPSS dataset does not provide the
performance metrics used to evaluate the health of the system, but following the instructions
given in the paper, we can compute them by normalizing the health parameters with respect
to the threshold using the formula p(t) = 1− µ(t)−µnew

thr , where µ denotes the health parameter,
µnew is the nominal value of the degradation parameter (with no degradation) and thr is
the threshold. We approximate these two operating margins by taking the maximum and
minimum along all the health parameter values of all the training units. In the case of
N-CMAPSS-DS01, only the efficiency of the high-pressure turbine (HPT eff) is affecting the
degradation of the system, while in dataset N-CMAPSS-DS05 we have the flow and efficiency
high-pressure compressor (HPC flow and HPC eff). We selected one sample per cycle as a
sample rate for training and testing.

3.2 MTL on N-CMAPSS dataset
We start by training our MTL model explained in Section 2.2 to learn the trajectory libraries
(one for each performance metric). Each model was trained 10 times for each performance
metric, changing weight initialization to account for model uncertainty. This is important



A. Diaz-Gonzalez, A. Coursey, M. Quinones-Grueiro, C. S. Kulkarni, and G. Biswas 21:11

because, although all models should agree during the training period, the model uncertainty
should increase as we learn beyond the training time. So, training several models and building
an ensemble of them gives us a good estimation of the model uncertainty in the prolongation.

3.3 RUL prediction on the N-CMAPSS dataset
We evaluated our method on the four testing units in both datasets. To evaluate and compare
our results, we used four evaluation metrics. Two for evaluating the prediction and the other
two for the uncertainty bounds. To evaluate the prognostics’ results, two commonly used
metrics in prognostics analysis are the root-mean-square error (RMSE) and NASA’s scoring
function [16].

The latter metric penalizes over-predicting as this may cause serious damage to the system
unlike an under-prediction error, which may only cause unnecessary extra maintenance of
the system. To quantify the uncertainty on the RUL predictions, two widely used metrics are
the Prediction Interval Coverage Probability (PICP) which quantifies the probability that
the true RUL falls inside the corresponding prediction interval, and the prediction interval
normalized width (PINAW), which represents the width of the prediction interval normalized
on the range of actual RUL values.

We applied our method by taking the hyperparameters: npaths = 60 and forgetting
coefficient wmax = 1, which implies almost no forgetting. Tables 1 summarize the results of
our model (LibRUL) on both dataset N-CMAPSS-DS01 and N-CMAPSS-DS05, compared
with some state-of-the-art uncertainty prediction models. The other model results have been
taken from Tables 4 and 6 in [21]. The worst and best RUL prediction results on units of
this dataset are shown in Figures 4a and 4b.

Table 1 Results for RUL prediction with uncertainty quantification in N-CMAPSS-DS01 and
N-CMAPSS-DS05. Ours is LibRUL. Baseline results taken from [21].

N-CMAPSS-DS01 N-CMAPSS-DS05
Model RMSE Score PICP PINAW RMSE Score PICP PINAW
LibRUL 6.551 250.392 81.82% 23.01% 6.077 184.166 91.74% 29.08%
BGT 4.285 131.697 96.77% 27.16% 6.218 192.52 87.77% 27.14%
BLSTM 4.849 137.029 N/A N/A 6.915 278.689 N/A N/A
LSTM 5.396 195.57 N/A N/A 7.522 263.393 N/A N/A
DAT 4.57 74 N/A N/A 5.18 99 N/A N/A
DGP 7.03 14213.9 N/A N/A 8 15499.2 N/A N/A
GT 4.823 149.3 N/A N/A 6.413 251.25 N/A N/A

The results on the N-CMAPSS-DS01 dataset are slightly behind the state-of-the-art
solutions. This is because two of the testing units, specifically units 7 and, especially, unit
9, fall outside the linear space L(h) generated by the library. These units exhibit a more
accelerated degradation than any trajectory in the training dataset. To accurately capture
this behavior, we would need to blend the training curves, modifying their curvature (through
second-order transformations) to match these shapes. However, this level of curvature cannot
be achieved through linear combinations of the library. The primary limitation of our
approach is its inability to represent such curvature using linear combinations, which is a
priority for future work and will be our immediate next step.

On the other hand, for N-CMAPSS-DS05, our model outperforms almost all state-of-the-
art models (except for DAT) in both RMSE and Score, as shown in Table 1. This is expected,
as DAT is a domain adaptation approach that uses significantly more data. Additionally,
uncertainty quantification is not a focus of the DAT method. DAT employs Bayesian deep
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learning techniques, specifically dropout layers, which provide only limited quantification of
prediction uncertainty. Meanwhile, the BGT model is approximately 2% better than our
method in terms of the uncertainty bound width of the predictions, but this comes at the
cost of a 4% reduction in prediction interval coverage.

These results highlight the strengths of our model when the testing performance trajec-
tories are “similar” to the training trajectories, especially when considering the increased
explainability of our approach. Both BGT and DAT, while admitting uncertainty estima-
tion, largely operate as “black-box” models. Although they effectively capture degradation
patterns, they do not provide clear explanations for why specific predictions are made.

It is also important to note that our predictions are based solely on performance metrics,
without leveraging feature information that could provide additional degradation insights.
We also used a sampling rate of one cycle, which is equal to or greater than that of all
competing approaches.

The worst and best RUL prediction results for units in this dataset are shown in Figures 4c
and 4d. Note also that our predictions become very precise, with significantly less uncertainty
toward the end of the lifecycle compared to state-of-the-art results. This is because our
method balances present and future uncertainty as more observations are collected, and in
the final stages, future uncertainty is significantly reduced. This is paramount in prognostics
to avoid system failure. The only exception is in Figure 4c, where a precision delay occurs
because one of the two performance metrics that drive the RUL estimation process remains
very healthy, far from showing a clear degradation pattern and resulting in a larger uncertainty
while the other performance metric suddenly decreases in performance.

An additional feature of our model is that it also predicts the cause of failure at each
time step given by the performance that is predicted to cross the threshold earlier. Figures
4c and 4d show this in the color of the RUL predictions. Notice that in the case of 4c, the
cause of failure is predicted correctly from a very early time step (around cycle 30).

4 Conclusions

This paper presents a novel data-driven methodology for prognostics, inspired by the model-
based RUL estimation approach. Our proposed approach bridges the gap between these two
paradigms by developing a data-driven method that mimics the reasoning processes of model-
based approaches. It leverages performance metrics and their associated thresholds to predict
RUL in real-time, without requiring RUL labels, which are expensive and labor-intensive to
acquire. Additionally, our model quantifies uncertainty in its predictions, offering valuable
insights into which specific performance metric thresholds have been violated. This feature
enhances the explainability of the RUL prediction process, making it more transparent and
actionable for decision-makers.

We empirically validated our approach using two datasets from the widely used N-
CMAPSS benchmark. The results demonstrate the effectiveness of our methodology in
predicting RUL while also providing confidence bounds for the predictions. For one of the
datasets, the results are very close to the best state-of-the-art performance. However, in the
other dataset, our results fall behind the current state of the art, highlighting a limitation of
our approach when testing trajectories are not linearly representable by the training data.
Our model struggles with datasets where the test data distribution significantly diverges from
the training data. Nevertheless, the combination of explainability, uncertainty quantification,
and online prediction makes our approach a promising alternative to both purely data-driven
and traditional model-based methods, particularly in the context of complex systems. Future
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(a) RUL predictions on the C-MAPSS-DS01.
Unit 9.

(b) RUL predictions on the C-MAPSS-DS01
Unit 10.

(c) RUL predictions on the C-MAPSS-DS05.
Unit 8.

(d) RUL predictions on the C-MAPSS-DS05.
Unit 7.

Figure 4 RUL predictions examples. Worst example on the left, best example on the right for
each dataset. The color in the predictions indicates the performance that, at current time, the model
predicts is going to cross the threshold first. The line in the middle represents the predicted value.

work will explore addressing the out-of-distribution issue by augmenting the model’s ability
to generalize beyond simple linear combinations of training data. Specifically, we are working
on approaches to augment the performance model’s predictions accounting for past data
without constraining the model’s inference space to a linear combination of past trajectories.
This is especially important when predicting for degrading conditions which have not been
experienced in the past, i.e. there is not representative data available for these operating
conditions.
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