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Abstract
Reinforcement learning (RL) algorithms output policies specifying which action an agent should take
in a given state. However, faults can sometimes arise during policy execution due to internal faults
in the agent. As a result, actions may have unexpected effects. In this work, we aim to diagnose
such faults and infer their root cause. We consider two types of diagnosis problems. In the first,
which we call RLDXw, we assume we only know what a normal execution looks like. In the second,
called RLDXs, we assume we have models for the faulty behavior of a component, which we call
fault modes. The solution to RLDXw is a time step at which a fault occurred for the first time.
The solution to RLDXs is more informative, represented as a fault mode according to which the
RL task was executed. Solving those problems is useful in practice to facilitate efficient repair of
faulty agents, since it can focus the repair efforts on specific actions. We formally define RLDXw
and RLDXs and design two algorithms called WFMa and SFMa for solving them. We evaluate our
algorithms on a benchmark of RL domains and discuss their strengths and limitations. When the
number of the observed states increases, both WFMa and SFMa report a decrease in runtime (up to
significantly 6.5 times faster). Additionally, the runtime of SFMa increases linearly with the increase
in candidate fault modes.
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1 Introduction

As the use of autonomous systems increases, there is a need for approaches to address
challenges in different aspects of the agent’s task execution, such as planning and fault
diagnosis. In this work, we ask what made an agent diverge from its expected course
of action. We focus on a setting where the environment is dynamic and sometimes even
unknown. In that case, the expected actions of an agent are defined by the so-called Policy,
which is the product of Reinforcement Learning based planning approaches.

Reinforcement Learning (RL) is a technique for guiding an agent through a dynamic
environment such that the agent maximizes the rewards it collects. To achieve this, RL
models train on observation data available through simulations or actual interaction with
the environment. The output of the RL model is referred to as policy. The policy guides the
agent on what action to perform in every state until the agent’s goal is reached.
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23:2 Diagnosing Non-Intermittent Anomalies in RL Policy Execution

Sometimes, internal faults within the agent may occur. Such faults may change the
agent’s ability to perform its actions normally. This, in turn, may lead to some actions
having unexpected effects. When this happens, we want to understand what caused the
agent to deviate from its policy, that is a Diagnosis. Inferring the root cause can help repair
the components responsible for executing faulty actions faster. In a scenario where repair
is not possible, this can improve future planning if the faulty components can be assumed
faulty, therefore computing suitable policies.

Diagnosis outlines a range of AI techniques that try to understand the root causes of
failures in systems. Given a system, its expected behavior, and an observation, the diagnosis
problem tries to infer what caused the observation to be different than expected. Previous
work asks this question in a variety of settings such as Software engineering [1], Multi-Agent
Systems [10], and more, and proposes different approaches such as Spectrum-based Fault
Localization [1] and Model-Based Diagnosis (MBD) [15]. One difference between works in
MBD is what can be assumed about the behavior mode of faulty system components. One
approach assumes no knowledge on the faulty behaviour mode and is called Weak Fault
Model (WFM) [3]. The other approach assumes a number of modes in which a faulty system
component can be and is called Strong Fault Model (SFM) [21].

In this work, we solve the problem of diagnosing faulty RL policy executions. We use
MBD concepts to define the problem for WFM (RLDXw), where the only assumption about
the actions is whether they are faulty or healthy, and for SFM (RLDXs), where we assume a
number of candidate fault modes that can explain the faulty execution, and where one of
them is the correct one. In addition, we assume that non-intermittent faults are present in
this work. This means that if an action of some type (for example, left acceleration) is faulty,
then every time this action type is executed, it will execute in a faulty manner. Moreover,
we assume that faulty actions behave in a single faulty manner, i.e., if the left acceleration
results in a right acceleration, then whenever a left acceleration is attempted, the result will
always be a right acceleration. The contributions of this work are as follows:
1. We define formally the problems RLDXw and RLDXs.
2. We propose two algorithms, WFMa and SFMa to solve RLDXw and RLDXs, respectively.
3. We evaluate the algorithms theoretically and empirically and discuss their strengths and

weaknesses.
In particular, we ask the following two questions:
Q1 How does the number of candidate fault modes impact the performance of SFMa?
Q2 How does the number of visible states affect the performance of WFMa and SFMa?

We test WFMa and SFMa on the domains Acrobot, CartPole, MountainCar and Taxi,
all of which can be found in the Gymnasium website1. We found out that the runtime of
SFMa increases linearly with the increase in the number of candidate fault modes, and that
the runtime of both algorithms increases with the decrease in percentage of observed states.

2 Background and Related Work

2.1 Markov Decision Problem
A Markov Decision Problem (MDP) is a sequential decision-making problem in which
the cost and transition functions depend only on the current state of the system and
the current action [14]. Formally, an MDP is a tuple ⟨S,A, Pa(S, S′), Ra(S, S′)⟩ where S
is a set of environment and agent states, A is the set of actions an agent can perform,

1 https://gymnasium.farama.org/

https://gymnasium.farama.org/
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Pa(S, S′) = Pr(St+1 = S′|St = S, at = a) is the probability of reaching state S′ given that
the current state at time t is S and the agent executes action a. This is also known as
the transition function and Ra(S, S′) is the immediate reward gained by executing action a

from S.
A solution to an MDP is a policy that guides the agent to choose actions that maximize

its cumulative reward. In this work, we consider deterministic policies. This means a policy
π can be defined as a function π : S → A.

2.2 Reinforcement Learning
Reinforcement Learning (RL) is a well-studied branch of Machine Learning designed for
solving MDPs and other sequential decision-making problems [22]. Some RL algorithms,
such as Deep Q-Networks (DQN), learn a function that estimates the value of performing
actions in states [9]. The policy is computed implicitly by choosing in every state the action
that maximizes this value function. Other RL algorithms, such as Asynchronous Advantage
Actor-Critic [8] and Proximal Policy Optimization (PPO) [20], learn a policy directly.

The agent applies its actions, based on the learned policy or value function, on an
environment that defines what the outcomes of those actions are. The environment defines
the set of states an agent can be in and the transition function between the states. When an
agent in state S executes action a, its next state is determined by the environment, which is
specified by the probability Pa(S, S′) that is defined for the environment.

2.3 Automated Diagnosis
Automated diagnosis (DX) delves into the question of finding the root cause of a system failure.
There are many approaches to formalize a diagnosis problem, and they are all essentially
similar in the way they generally define a problem – when a system is not behaving the way it
is supposed to behave, we say there is a diagnosis problem [15]. Diagnosis methods take two
distinct approaches when modeling the system in question. The first approach is called Weak
fault model (WFM). In WFM, there is no assumption about what is the behaviour of faulty
parts in the system [3]. The parts are either assumed normal or not normal. Although simple,
this approach provides diagnoses that are not very informative, As it can not provide further
information about the behaviour of faulty parts. To complement this approach, Strong fault
model (SFM) assumes known information about the faulty operation modes of the system
parts [21].

In this work, we address faulty executions of actions in RL environments. Related work
focused on diagnosing plan steps that were executed abnormally [18, 7, 10] while others try
to diagnose faulty plan executions that happen due to disagreements between the agents’
beliefs [17, 2, 5]. Some works use a single observation [4], while others use many [23]. More
recent work uses approaches from software diagnosis to diagnose multi-agent systems [11, 12].
Recent surveys survey other advancements in diagnosis [6, 16].

3 Problem Definition

In this section, we define our problem. Let Π be an MDP and π a policy created for it, e.g.,
using some RL algorithm. For simplicity, we assume that the transition function in Π is
deterministic. This allows us to define a simulator for Π as a function χ : S ×A → S such
that χ(S, a) is the state the agent is expected to reach when executing a in state S. We
extend the definition of χ to address the normal execution of π for i steps starting from S,

DX 2024



23:4 Diagnosing Non-Intermittent Anomalies in RL Policy Execution

denoted as χ(S, π, i). This extension is defined as a function χ : S ×A× N→ T that given
a state, an action, and a number of steps returns a trajectory T , where the trajectory is an
alternating sequence of actions and states, simulated by the normal execution of the policy π

starting from state S.
In this work, we assume executing an action may fail, and there are several fault modes

that specify different ways in which an action behaves when faulty.

▶ Definition 1 (Fault Mode). A fault mode is a function f : A → A′ that takes an action
a ∈ A and returns an action a′ from a potentially different set of actions A′. If ∀a ∈ A it
holds that f(a) = a, we say that f is the healthy fault mode, and we denote it as h.

In this work, we make the common single-fault assumption [19, 13], i.e., we assume that only
one fault mode is present at any given time. However, a fault mode may affect multiple
actions.

We extend the definition of χ to include simulating a policy together with a fault
mode. That means that for a fault mode f , the simulator χ(S0, π, i, f) outputs a trajectory
T = (S0, â1, Ŝ1, ..., âi, Ŝi) that corresponds to executing the policy from the state S0 for i

steps, where the faulty actions according to f fail. To support the normal definition defined
previously as χ(S0, π, i), we define it now as χ(S0, π, i, h), where h : A → A is the model of
the normal behavior, and is defined as h(a) = a.

▶ Example 2. Consider the MountainCar environment, a standard RL domain [24]. Figure 1
provides a visual representation. In this environment, a car is located between two hills. The
car can only accelerate to the left, perform no action, and accelerate to the right. We denote
these actions as L, N and R. The task of the car is to climb the right hill by strategically
accelerating while using gravity to build its speed. Let us assume that in a normal execution,

Figure 1 The MountainCar environment.

the car would reach its goal and the corresponding trajectory is (a1 = R, S1, a2 = R, S2, a3 =
R, S3, a4 = N, S4, a5 = N, S5, a6 = L, S6, a7 = L, S7, a8 = L, S8, a9 = R, S9, a10 = R, S10) .
In addition there are 3 candidate fault modes f1, f2, f3 defined as:

f1(L) = N, f1(N) = N, f1(R) = R

f2(L) = L, f2(N) = N, f2(R) = N
f3(L) = R, f3(N) = N, f3(R) = R

Assume the car is faulty and behaves according to fault mode f1. As a result, actions a6, a7,
and a8 failed, and the car did not reach its goal. Also, suppose the car observed the states
O = (S0, S5, S7, S10). Because of the failed actions, the states Ŝ7 and Ŝ10 from the trajectory,
returned by simulating χ(S0, π, i, h), do not match the observed states S7 and S10.
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In this work we aim to find the cause of the inconsistency between the expected healthy
execution and the observed faulty execution of a policy π. We define this problem for WFM
and for SFM separately. We begin by formally defining the problem for WFM, which we call
RLDXw:

▶ Definition 3 (RLDXw problem). An RLDXw problem is defined as a tuple ⟨O, χ, π⟩ where
π is a policy, χ is a simulator and O = (S0, S1, . . . , Sn) is an observed series of states. An
RLDXw problem arises when there exists an observed state Si s.t. Si ≠ Ŝi where Ŝi is the
state at step i of the trajectory generated by χ(S0, π, i, h).

A solution to an RLDXw problem is a diagnosis, which in the WFM setting is a time-step
i, where the first fault occurred. Formally:

▶ Definition 4 (RLDXw Diagnosis). Given an RLDXw problem ⟨O, χ, π⟩, a diagnosis is a time-
step i such that χ(S0, π, i, h) ̸= Si and ∀i′ < i it holds that Si′ ∈ O ⇒ χ(S0, π, i′, h) = Si′ .

Since RLDXw assumes WFM, it only knows how the effects of actions that were executed
normally. Because of that, when two states Si, Si′ are observed, such that Si is expected, but
Si′ is not, we can not reconstruct the actual execution. Alternatively, we define the problem
for SFW, where we assume several candidate fault modes, out of which one is correct. We
call this problem RLDXs. Formally:

▶ Definition 5 (RLDXs problem). An RLDXs problem is defined as a tuple ⟨O, χ, π,F⟩ where
π is a policy, χ is a simulator, O = (S0, S1, . . . , Sn) is an observed series of states, and F is
a set of fault modes. An RLDXs problem arises when there exists an observed state Si s.t.
Si ̸= Ŝi where Ŝi is the state at step i of the trajectory generated by χ(S0, π, i, h).

A solution to an RLDXs problem is a diagnosis, which in the SFM setting is a fault
mode f for which there exists a trajectory generated by the execution of χ(S0, π, i, f) that is
consistent with the observations. Formally:

▶ Definition 6 (RLDXs Diagnosis). Given an RLDXs problem ⟨O, χ, π,F⟩, a diagnosis
is a fault mode fj such that executing χ(S0, π, n, fj) can result in a trajectory T =
(S0, â1, Ŝ1, ..., ân, Ŝn) where for each observed state Si ∈ O it holds that Si = Ŝi.

4 Method Description

Next, we present the algorithms for solving the RLDXw and RLDXs.

4.1 Solving RLDXw
We present the algorithm called WFMa which stands for “Weak”, since it assumes WFM. It
shown in Algorithm 1. WFMa keeps track of the last index where a simulated state matched
an observed state as i (lines 1,8), and when it first encounters mismatching states at step i′,
it returns a set of diagnoses D = {i, i + 1, ..., i′} indicating the possible time steps at which
an action could have failed for the first time.

▶ Example 7. Refer to Example 2. WFMa starts by keeping track of index 0, the index of
the first state, as the variable i. It keeps looping throughout the states, updating i every
time an observation is available. When WFMa compares the observed state S7 with the
simulated state Ŝ7, the states are not the same. At this stage, i has the value 5, which is
the value of the last matching state. The algorithm will return the diagnoses D = {5, 6, 7},
which are all possible diagnoses. This is because WFMa can not determine which of the 3
time steps is the time step of the fault’s first occurence.
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Algorithm 1 WFMa.

Input: π - The policy.
Input: χ - The simulator.
Input: O = (S0, ..., Sn) - The observed states.
Result: D = {d1, d2, ...} - The set of diagnoses.

1 i← 0
2 Ŝ0 ← S0
3 for i′ = 1 to n do
4 âi′ ← π(Ŝi′−1)
5 Ŝi′ ← χ(Ŝi′−1, âi′)
6 if Si′ ∈ O then
7 if Si′ = Ŝi′ then
8 i← i′

9 else
10 return D = {i, i + 1, ..., i′}

4.2 Solving RLDXs

To address this setting, we present the algorithm we call SFMa, which is detailed in Algorithm
2. The input to SFMa is the policy π, the simulator χ, the observation O, and also a set of
candidate fault modes F . It returns a set of diagnoses D = {d1, d2, ...} where each diagnosis
is a fault mode that is consistent with the observed states.

SFMa starts by creating an empty trajectory that includes S0 for each of the k candidate
fault modes (Lines 1-4). Then, it goes over the n steps in O until the candidate set of fault
modes becomes size 1 (Lines 5,14). In each step and for each fault mode, SFMa simulates the
next state Ŝi,j based on the previous state Ŝi−1,j and the influence of the fault mode on the
predicted action âi,j while adding âi,j and Ŝi,j to the fault mode’s trajectory (Lines 6-11).
Next, SFMa checks if Ŝi,j and Si are equal, and if they are not, SFMa removes ⟨fj , Tfj ⟩ from
the candidate fault modes (Lines 12-13). Finally, in every step 1 < i ≤ n, SFMa checks the
size of G, and halts if the size becomes 1, finding the correct fault mode. In case SFMa did
not halt, it means there is more than 1 candidate fault mode that is consistent with the
observation.

▶ Example 8. Refer to Example 2. After the initialization, SFMa simulates the next states
for every fault model. Since f2 changes R actions, the trajectory Tf2 deviates from the normal
execution as early as state Ŝ2, meaning that by the time SFMa reaches time step i = 5, the
state Ŝ5 returned by simulation does not match the observed state S5. Consequently, the
tuple ⟨f2, Tf2⟩ will be removed from G. SFMa will then continue running until reaching time
step 7, at which point SFMa will find that the state Ŝ7,3 that is part of Tf3 is not equal
to S7. This is because f3 changes R actions differently than f1. At this point, SFMa will
remove ⟨f3, Tf3⟩ from G, and will return the last and only fault mode, f1.

5 Theoretic Analysis

In the following two sections we provide theoretic evaluation, that includes runtime analysis
and some correctness proofs.
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Algorithm 2 SFMa.

Input: π - The policy.
Input: χ - The simulator.
Input: O = (S0, ..., Sn) - The observed states.
Input: F = {f1, f2, ...fk} - Candidate fault modes.
Result: D = {d1, d2, ...} - The set of diagnoses.

1 G ← ∅
2 for j = 1 to k do
3 Tfj

← (S0)
4 G ← G ∪ ⟨fj , Tfj

⟩
5 for i = 1 to n do
6 for j = 1 to |G| do
7 âi ← π(Ŝi−1,j)
8 âi,j ← fj(âi)
9 Ŝi,j ← χ(Ŝi−1,j , âi,j)

10 insert âi,j to Tfj

11 insert Ŝi,j to Tfj

12 if Si ∈ O ∧ Si ̸= Ŝi,j then
13 G = G \ ⟨fj , Tfj

⟩
14 if |G| = 1 then
15 D ← {fj s.t. ⟨fj , Tfj

⟩ ∈ G}
16 return D
17 D ← {fj s.t. ⟨fj , Tfj

⟩ ∈ G}
18 return D

5.1 Runtime analysis
The components that influence the run-time are the length between the first and last observed
states n, the number of candidate fault modes k (in the case of SFMa) and three domain-
dependent components: action prediction, action simulation, and state comparison. We refer
to those domain dependent components using the constant R(domain). In the analysis we
will focus on the runtime as a function of n and k.

WFMa (Algorithm 1) is straightforward - it goes over the number of states n, and
compares each state until it finds two states that are not matching. This gives a total runtime
of O(n ·R(domain)).

SFMa (Algorithm 2) goes over the states where for each state it executes the policy, and
then goes over the fault modes, where it does a finite number of simulation and prediction
actions. This gives a runtime of O(n · k ·R(domain)).

5.2 Correctness Proofs
▶ Theorem 9. The index ie of the first failure in the observed execution holds i < ie ≤ i′

where i, i′ are the first and last diagnoses returned by WFMa.

Proof. Assume, by contradiction, that the index of the first failure in the observed execution
ie does not hold i < ie ≤ i′. This means that ie ≤ i ∨ i′ < ie.

Case 1 (ie ≤ i). In this case the algorithm still keeps the index l < ie of the last matching
state. The algorithm will reach a step i′

e that holds ie ≤ i′
e ≤ i, for which an observation

exists. The observation Si′
e

will not match the simulated state Ŝi′
e
, and the algorithm will

halt, returning l, .., i′
e in contradiction to the returned diagnoses i, .., i′.
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Case 2 (i′ < ie). In that case, all of the observable states until step ie are matching the
simulation. That includes state Si′ . Consequently, when the algorithm checks Si′ = Ŝi′ in
line 7, it will set the beginning index to be some b > i. As a result, the returned index in
the first diagnosis will be b that holds b ≥ i′ > i, in contradiction to the returned indices
i, i + 1, ..., i′. ◀

▶ Theorem 10. SFMa is sound.

Proof. To prove this, we show that for every fault mode fj returned by SFMa as diagnosis,
it follows that ∀Si ∈ O, Si = Ŝi, where Ŝi is the i-th state in the trajectory simulated by
χ(S0, π, n, fj).

Let fj be a fault mode returned by SFMa. Assume by contradiction that ∃Si ∈ O such
that Si ̸= Ŝi. Because of that, SFMa will remove the tuple ⟨fj , Tfj

⟩ from G at the i-th
iteration in line 13. Following that, fj will not be returned as a diagnosis, in contradiction
to our initial assumption. ◀

▶ Theorem 11. SFMa is complete.

Proof. To prove that we show that every fault mode fj for which it holds that ∀Si ∈ O, Si =
Ŝi, where Ŝi is the i-th state in the trajectory simulated by χ(S0, π, n, fj), will be returned
by SFMa.

Let fj be a fault mode as such, and assume by contradiction that it was not returned by
SFMa. This means that for some time-step i SFMa removed the tuple ⟨fj , Tfj

⟩ from G. This
means that in line 12 SFMa determined that Si ̸= Ŝi, by contradiction to fj being defined
as above. ◀

6 Evaluation

In the next two sections we outline the experimental setup and show empirical results.

6.1 Domains
We experimented with the domains Acrobot, CartPole, MountainCar and Taxi, all of which
can be found in the Gymnasium website2. Table 1 shows general statistics about each
domain. The “State Vars” row in Table 1 displays the type of variables describing the state
– continuous or discrete. The “Env. Type” row displays whether the environment in each
domain is dynamic or static, where “dynamic” here means the state may change even if the
agent does not do any action, e.g., due to external forces that operate over the agent. The
“Avg. Traj.” row displays the average length of the trajectories in this domain.

Table 1 General statistics of our benchmark domains.

Domain Acrobot CartPole MountainCar Taxi
# actions 3 2 3 6
State Vars Continuous Continuous Continuous Discrete
Env. Type Dynamic Dynamic Dynamic Static
Avg. Traj. 148 54 183 63

2 https://gymnasium.farama.org/

https://gymnasium.farama.org/
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6.2 Experimental Setup
Before generating the problems, we obtained a policy for each domain, either by training or
by using pre-trained policies available online. The generation of the problems consisted of
the following steps:
1. Initialize a set F of k fault modes.
2. Choose a fault mode fe ∈ F to be used during policy execution.
3. Execute the policy with the chosen fault mode for up to 200 steps, 10 times. We deemed

200 steps a sufficient trajectory length for the purpose of our experiments, during which
at least one fault will occur.

4. Set the percent of visible states v. In an execution with n states, the states that must be
observable are states S0 and Sn. However, execution lengths can vary since we do not
control them. Because of that we experiment with the percent of observable states rather
than the number. We set v = 0% for an execution where only S0 and Sn are observable,
and v = 100% for an execution where every state is observable. We then experiment with
different values of v.

6.3 Parameters
For our experiments, we considered fault modes that change some of the actions to behave
like other actions. We use this type of fault modes for convenience. For each domain except
CartPole, we tested 10 different fault modes fe. For CartPole, we could only test 3 fault
modes due to the number of different actions being only two (moving to the left and moving
to the right) and the fact that for the experiments we defined fault modes to be Many-to-one
or Onto functions f : A → A.

We ask the following questions:
Q1 How does the number of fault modes impact the performance of SFMa?
Q2 How does the number of visible states affect the performance of WFMa and SFMa?

To answer Q1 we experimented with k ∈ {2, 4, 6, 8, 10} for SFMa in domains Acrobot,
MountainCar and Taxi and with k ∈ {2, 3} for SFMa in the CartPole domain. To answer
Q2 we experimented with v ∈ {0, 5, 10, 15, 20, 30, 40, 60, 80, 100} for both WFMa and SFMa.
Lastly, we set fixed parameter of k = 0 for WFMa since WFM assumes no fault modes.

6.4 Results
In this section, we present the results that answer our research questions. The Y-axis shows
the runtime, and the X-axis shows the different parameter values we experiment with. The
X-axis parameters differ from figure to figure. In addition, we crop the values to show whole
numbers only, since the runtime is shown in milliseconds.

Figure 2 shows the runtime of SFMa with the increase in the number of candidate fault
modes k. We can observe a linear increase in the runtime with the increase in fault modes
number. This is expected since an increase in fault modes number has a linear effect on
Algorithm 2.

Figure 3 shows the runtime of WFMa with the increase of the percent of visible states v.
We observe that the runtime increases significantly from 5% to 0% visibility. We explain
this result as follows. At 5% visibility the visible states include states that are not the
initial or the last. Because of that, WFMa has more chances to determine whether the agent
experienced a fault earlier in the diagnosis process when it encounters a state that does not
match its counterpart’s simulated state. The one domain that stands out is CartPole, where
there is no significant increase in runtime for any value of v and where the runtime is very
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Figure 2 Runtime in milliseconds of SFMa with increase of k.

Figure 3 Runtime in milliseconds of WFMa with increase of v.

low. To explain this, we remind that the number of actions in this domain is 2. This means
that only up to 3 fault modes could be tested (as explained in Section 6.3) and shown in
Figure 2. For such a few actions and candidate fault modes, the runtime stays low and is
not influenced by the different percentages of visible states.

Figure 4 shows the runtime of SFMa with the increase of the percent of visible states
v. Here we also observe a significant increase between 5% and 0% visible states. The only
exception is the CartPole domain, where the runtime increases steadily across all values of v.
This increase, however, is not significant. We explain this case the same way we explained it
in the previous paragraph for Figure 3.
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Figure 4 Runtime in milliseconds of SFMa with increase of v.

7 Discussion

In this section we discuss the strengths and weaknesses of the proposed algorithms, as well
as some limitations.

The first thing to notice is the significant difference between weak and strong fault model
assumptions. While WFMa is faster in terms of runtime, it outputs a less informative
diagnosis than SFMa.

Another limiting assumption is the deterministic nature of the policy we use. This
allows the reconstruction of a trajectory. For WFMa, it means that given a state S it can
reconstruct the healthy execution. For SFMa, it means that given a state S and a fault
mode f it can reconstruct an execution where the faulty actions fail according to f . This
assumption is important for our algorithms. However, it limits them to cases where the
policy is deterministic.

Last but not least, we assume non-intermittent faults. This significantly effects the
runtime of SFMa since it means there is only one fauty trajectory, in which every action that
should fail according to the fault mode, fails. Although the assumption of non-intermittent
faults is a limiting assumption, cases where such faults occur can be thought of. For example,
a flying device where one of its engines short-circuited will always have that engine not
working, when the commands for that engine are sent.

8 Conclusions and Future Work

In this work, we addressed the problem of diagnosing faulty executions of policies generated
by reinforcement learning algorithms. In particular, we focused on non-intermittent faults.
We presented two algorithms that address this problem. The first, called WFMa, addresses
the problem while assuming weak fault model. In this setting a diagnosis is a time-step where
a faulty action failed for the first time. The second algorithm, called SFMa, addresses the
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problem while assuming strong fault model. In this setting, a diagnosis is a fault mode that
can explain the observation. We tested the algorithms on four well known Reinforcement
Learning domains from the Gym benchmarks.

We found out that the runtime of both algorithms increases with the decrease in percentage
of observed states. In particular for both algorithms and for every domain except CartPole,
the runtime increase is the highest between 5% and 0% observability. Apart from that,
we found that the runtime of SFMa increases linearly with the increase of the number of
candidate fault modes.

As future work, we plan to address intermittent faults setting, and particularly for strong
fault model. In this setting, the complexity of the problem grows by a factor of O(2n).
That is because, in the worst case, for a fault mode that affects every one of the n actions,
and where only S0 and Sn are observed, there is a need to address in every time step the
possibility of a faulty and a healthy execution of the faulty actions. Apart from that, we
plan to experiment with the algorithms on other domains from the Gymnasium benchmark
domains and, possibly, test our algorithms on real-world problems. Lastly, we plan to extend
this research direction by introducing problems involving multiple agents.
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