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Abstract
From hardware to software to human patients, diagnosis has been one of the first areas of interest
in artificial intelligence, and has remained a relevant topic since. Recent research in model-based
diagnosis has shown that answer set programming not only allows for an easy expression of diagnosis
problems, but also efficient solving. In this paper, we improve on previous results by making use of
various modern answer set programming techniques. Our experiments compare multi-shot solving,
heuristics and preferences, with results indicating that heuristics provide the fastest solutions on
most instances we studied.
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1 Introduction

With the advent of new and potentially dangerous technologies such as self-driving vehicles,
the time it takes to diagnose a fault is becoming increasingly relevant for systems aimed at
maintaining safety and security. For example, an autonomous vehicle that drives on a highway
needs to compensate failures until a safe state can be reached. For such compensating actions,
diagnosis capabilities are required that are fast enough for providing relevant information,
e.g., the severity of a failure and its origin. In model-based diagnosis, where we rely on
knowledge representation and reasoning, we need both faster solvers and faster diagnosis
algorithms to keep up with these challenges.

Previous investigations on diagnosis via SAT solvers showed that direct encodings of the
diagnosis problem can outperform diagnosis algorithms [16]. Similarly, diagnosis via answer
set programming is able keep up with or even outperform hitting-set based algorithms [24].
Most recently, Bayerkuhnlein and Wolter [1] introduced other codings and improvements of
diagnosis utilizing answer set programming.

It is also worth noting that diagnosis has been a benchmark for solver optimization.
Techniques such as heuristics [10] and preferences [2] have been studied with diagnosis as a
potential application.

In this paper, we take a combined approach and look at both algorithms and solver-based
approaches for efficient diagnosis. Our contributions are two-fold:
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24:2 Faster Diagnosis with Answer Set Programming

we improve the performance of the IDIAG [17, 24] algorithm by providing an incremental
implementation that makes use of multi-shot solving [9], and
we compare IDIAG to solver optimizations [10, 2], thereby bridging a gap in research
which has previously focused on solvers or algorithms, but not both at the same time.

The rest of this paper is structured as follows. In Section 2, we introduce the basic
concepts of model-based diagnosis and answer set programming, as well as providing a
short overview of alternative approaches towards model-based diagnosis through answer
set programming. In Section 3, we provide an improved formulation of the prover in [24]
that makes use of Clingo’s multi-shot solving. In Section 4, we report the results of our
comparison. Finally, we conclude the paper in Section 5.

2 Background

In this section, we lay out the basics for understanding the rest of the paper. We start with
a description of model-based reasoning and the IDIAG algorithm. Then we describe answer
set programming, followed by declarative approaches for obtaining optimal answer sets.

2.1 Model-based reasoning
The underlying idea of model-based reasoning [7, 21] is to solve problems by directly applying
available knowledge. One starts with a description of a system from first principles, using
some available (typically logical) formalism to formulate this description.

▶ Definition 1 (Diagnosis system). A tuple (D, C) is a diagnosis system, where D is the
(logic) description of a system, and C is a set of components.

Here, D describes the nominal behaviour of the system, assuming that all components
function as expected. To make these assumptions explicit, predicates ab(c) and ¬ab(c) with
a given component c ∈ C are used to indicate that c is behaving “abnormally” (i.e. in a
faulty manner) or “not abnormally” (i.e. nominally or healthy).

With this description, we start observing the system under diagnosis. We assume that
several observations can be gathered from said system at a time, without impacting its normal
behavior.1 As soon as we find a discrepancy between the expected and actual behaviour of a
system, we find ourselves with a diagnosis problem.

▶ Definition 2 (Diagnosis problem). Let (D, C) be a diagnosis system and O a set of
observations. The tuple (D, C, O) is a diagnosis problem.

Note, that this definition does not assume that our observations are inconsistent in
combination with the system description. Indeed, using boolean satisfiability or answer set
programming to model D, we would have to solve an NP-hard subproblem to decide, whether
our observations are consistent with reasonable expectations.

Given a diagnosis problem, we want to find out which components of the system – if any
– are faulty. This leads us to the actual diagnoses of model-based diagnosis.

▶ Definition 3 (Diagnoses). Let (D, C, O) be a diagnosis problem. A subset ∆ ⊆ C is a
diagnosis if and only if D ∪O ∪ {ab(c)|c ∈ ∆} ∪ {¬ab(c)|c /∈ ∆} is consistent. A diagnosis
is (subset-)minimal, or parsimonious, if and only if there exists no ∆′ ⊂ ∆ that is itself a
diagnosis. A diagnosis is superfluous if it is not parsimonious.2

1 This assumption may be invalid under quantum mechanics, but is assumed to be true for boolean
circuits or human patients.

2 In some literature, superfluous diagnoses may not be considered diagnoses at all.
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Several algorithms exist to solve diagnosis problems [21, 12, 23, 19], but prior research
suggests that direct computation of diagnoses is often just as viable. [16, 17, 24] In this
paper, we focus on model-based diagnosis via answer set programming [24], which uses the
procedure IDIAG and an ASP-specific prover that we discuss in the next section. Conceptually,
IDIAG and Reiter’s algorithm [21] are quite similar: as the number of iterations increases,
so does the size of yielded diagnoses.3

Procedure IDIAG(D, C, O, n).

Data: a system description D, a set of components C, a set of observations O, the
desired cardinality n

Result: all subset-minimal diagnoses of size up to n

Let ∆ = ∅, P = D ∪O ;
for i = 0 to n do

Let ∆i := prover(C, P, i) ;
if i = 0 ∧∆i = {∅} then

return ∆i ;
end
Set ∆ = ∆ ∪∆i ;
Set P = P ∪ {ab(c1) ∧ · · · ∧ ab(ci)→ ⊥|{c1 . . . ci} ∈ ∆i} ;

end
return ∆ ;

2.2 Answer set programming
Answer set programming [4, 14] is a declarative problem-solving technique based on non-
monotonic reasoning. Formally, we distinguish grounded answer set programs and answer set
programs as they are written in practice, with predicates, variables, and other extensions.

A grounded answer set program consists of rules of the shape

h← b1 ∧ · · · ∧ bn ∧ not c1 ∧ · · · ∧ not cm,

with h, bi, cj for 1 ≤ i ≤ n, 1 ≤ j ≤ m being drawn from some set of atoms A. These rules
look quite similar to Horn clauses – in fact, for m = 0, they are Horn clauses.

▶ Definition 4 (Gelfond-Lifschitz transformation [11]). Let P be a grounded answer set program
and τ a set of atoms. Construct P τ from P as follows:

if a rule contains not x, with x /∈ τ , remove not x from that rule
if a rule contains not x, with x ∈ τ , remove that rule from P τ

By construction, the Gelfond-Lifschitz transformation arrives at a positive logic program,
that is, a logic program consisting only of Horn clauses.

▶ Definition 5 (Stable model). Let P be a grounded answer set program and τ a set of atoms.
Let P τ be the Gelfond-Lifschitz transformation of P using τ . τ is a stable model of P if and
only if τ is the smallest model of P τ under classical (or Horn) satisfiability.

3 In an interesting twist, however, only IDIAG is able to yield these partial results. With an algorithm
based on conflict sets, such as Reiter’s algorithm, future iterations may invalidate prior results, whereas
in a direct computation, minimality can be guaranteed by construction.
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To account for variables, we make use of the identities

∃x.φ⇔ φx=x1 ∨ · · · ∨ φx=xn

and

∀x.φ⇔ φx=x1 ∧ · · · ∧ φx=xn
,

where xi for 1 ≤ i ≤ n denotes all possible values the variable x may take [13].

▶ Definition 6 (Herbrand universes and bases). Let P be a logic program. The Herbrand
universe of P , denoted U(P ) is the set of all terms which can be formed from constants and
function symbols in P .

The Herbrand base B(P ) is the set of all variable-free atoms, which can be constructed
from predicates in P and terms in U(P ).

By definition, the Herbrand universe holds every value that is of potential meaning for
the program P . For a given rule r containing variables, we may assume that the variables in
the head are implicitly qualified using ∀, whereas the variables appearing only in the body
are implicitly qualified using ∃.

▶ Definition 7 (Grounding). A ground instance of a rule r ∈ P is obtained by applying a
substitution of the variables in r with atoms taken from U(P ). Let G(r) be the set of all
possible ground instances of r. Then G(P ) =

⋃
r∈P G(r).

As each variable is expanded separately from each other, we arrive at a program where
r ⇔ G(r). Taking A = U(P ) and τ ⊂ B(P ), the stable models of an answer set program P

thus become the stable Herbrand models of its grounded program G(P ).
This technique is easy enough to understand for illustrative purposes, but in practice

wasteful. Modern solvers make use of more efficient techniques such as domain-restricted
grounding [18] and also allow other syntactic constructs (cf. [6, 8]). Similar to variables, these
extensions are grounded before the program is solved, leading to no change in semantics for
the grounded program, while aiding the programmer in formulating their program.

Before we discuss extensions for optimization, we first quickly show aggregates and
cardinality constraints, which necessarily appear in diagnosis. The ASP-Core-2 standard [6],
which provides a common syntax for solvers, allows for disjunctive heads of the shape

h1 ∨ · · · ∨ hk

in which exactly one hi, 1 ≤ i ≤ k becomes true as a result of applying the rule, or more
generally choice rules of the shape

α1 ≺1 {h1; . . . ; hk} ≺2 α2.

Here, α1 and α2 can impose a cardinality constraint on the number of hi that hold, with
≺1,2 ∈ {=, ̸=, <, >,≥,≤}. Either side can also be omitted to only have a single cardinality
constraint. In the body, such constraints can similarly be imposed by writing

α1 ≺1 #count{l1; . . . ; lk} ≺2 α2.

These numerical comparisons retain their intuitive mathematical meaning as far as the answer
set solver allows. For the practical purposes of this paper, it suffices that operations on
integers in the range [−231, 231 − 1] are supported.
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2.3 Preferred and optimal solutions
Similar to how diagnosis algorithms are tasked to find parsimonious diagnoses, we find
optimization problems in other domains where logic solvers are used. To cope with such
problems, modern solvers implement methods to describe them and obtain optimal solutions.
Within the Potassco solver family – to which Clingo [9], the solver we will use for our
implementation, belongs – two techniques stand out as applicable to diagnosis problems:
domain-specific heuristics [10] and preferences [2].

With domain-specific heuristics, users guide the internal decision making of their solver.
Solvers use conflict-driven clause learning [15], a process that alternates between guessing
the truth value of a particular literal and then propagating the effects of that guess, so that
eventually either a satisfying assignment (or in the context of ASP a stable model) or a
conflict is reached – this conflict is then used to derive a clause which is added to the input
program. The solver then backtracks to an earlier decision and starts anew. Heuristics
can guide this process in two manners: first by choosing which literals to assign, second by
choosing the values to assign.

With preferences, users turn a decision problem “is there an answer set?” to an optim-
ization problem “is there an answer set, preferably a small one?”. These preferences are
themselves written as a program which is evaluated on (reified) answer sets to determine
which of them (if any) is preferred over the other. Several such programs are already im-
plemented in asprin [3, 2], so that one may also use pre-defined preferences, as shown in
Listing 1.

Listing 1 Stating the preference for parsimonious diagnoses.
# preference (p, subset ) { ab(X) }.
# optimize (p).

Some of these preferences could be implemented in Clingo itself as weak constraints (e.g.
cardinality-minimal diagnoses), but notably, parsimonious diagnoses are not one of them.

3 An incremental prover

In this section we describe our incremental implementation, which is based on the multi-shot
solving of Clingo [9]. Similar to modern SAT solvers, which support incremental solving,
multi-shot solving allows incremental grounding and solving of answer set programs. This
opens up a tremendous opportunity for IDIAG, which for the most part only adds constraints
to the underlying program.

In Listing 2, we show the necessary program parts for an incremental prover. As part of
the base program, we assume that comp/1 defines the components of the system and allow
the solver to guess whether a component works as expected (in which case nab(C) holds), or
does not work as expected (in which case ab(C) holds) with a choice rule. As a diagnosis
consists of only the broken components, we show ab/1. Further, we heuristically choose
ab(C) not to hold. This heuristic is in fact not relevant to IDIAG itself, as it needs to be
explicitly enabled, but it is the main piece we will compare IDIAG against.

The incremental part comes with the program idiag_step. This program is grounded
with a single argument n and corresponds to parameterization of $n$ in [24].4 It provides
both an external literal and a constraint that becomes enabled with this external literal,

4 Note that we use _idiag_step_, as it is a valid symbol that is unlikely to be bound to a constant. In
clingo, whole-program constants shadow the constants given in a program parameter.
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disallowing solutions of cardinality higher than the current target cardinality. The inequality
is only formulated in one direction, as there ought to be no stable model in the other direction
(with smaller cardinality) following the updates from IDIAG.

Listing 2 Supporting logic program for IDIAG using multi-shot solving. A choice rule is used to
enforce that ab(c) ∧ ¬ab(c) holds – Clingo implicitly uses ≤ for comparing two values.
# program base.
# defined comp /1.
1 { ab(C) ; nab(C) } 1 :- comp(C).
#show ab /1.
# heuristic ab(C). [1, false]

# program idiag_step ( _idiag_step_ ).
# external max_ab ( _idiag_step_ ).
:- max_ab ( _idiag_step_ ), #count {C : ab(C)} > _idiag_step_ .

With these program parts, we can now discuss the procedure prover. In collaboration
with IDIAG, it maintains a representation of the diagnosis problem and the diagnoses, which
were already found and ought to be ignored. The literal max_ab(n) becomes active for at
most one iteration – at most one, because it might not exist.5

Procedure prover(C, M, n).

Data: a set of components C, a model M , a cardinality n

Invariant : no diagnosis of cardinality n− 1 exists (maintained by IDIAG)
Result: all diagnoses of cardinality n

Let M ′ be the clingo representation of M ;
Ground idiag_step (n) ;
if there exists an external literal max_ab(n) then

Assign ⊤ to max_ab(n) ;
Let Σ be the answer sets of M ′ ;
Let ∆ = {{c1, . . . , cn}|{ab(c1), . . . , ab(cn)} ∈ Σ} ;
/* same as max_ab(n) := ⊥ for the remainder of the program */
Release max_ab(n) ;
return ∆ ;

end
else

return ∅ ;

4 Experimental results

We implemented IDIAG and prover using the Clingo C API, inlining the prover into IDIAG,
so that a situation in which no more diagnoses exist can be detected early (cf. [20] for the
implementation and the scripts used for benchmarking). Our implementation is loosely

5 Indeed, Clingo is wise enough to detect when it has already found all minimal diagnoses – while this is
not obvious from the Python API, it is an error we need to deal with in the C API.
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coupled with Listing 2 – it assumes, that an idiag_step program exists, which defines an
external literal max_ab, and that the shown symbols of a model correspond to the diagnosis
to report.

We compare our implementation with other techniques using the well-studied ISCAS’85
benchmark circuits [5]. In particular, we reuse the test data from [24], but rewrite it to
conform stronger to the structure actually laid out in that paper.6 For our implementation
to work as intended, we need comp(C) to actually be established as a fact (for Listing 2),
and we need ab/1 to be the only shown predicate (as per the limitation mentioned above).

As an example, Listing 3 shows a test input before rewriting, and Listing 4 after rewriting.
During this rewrite we also drop the symbol no_ab(N), used to indicate the cardinality of
a diagnosis. Where needed, we reintroduce this literal rather than using the idiag_step
program, which is only handled by our implementation. Unless otherwise noted, we also
provide a constraint on the maximum cardinality of any diagnosis, via the standard input.
Regardless of how we inform the implementation of the maximum cardinality, we fix it to
the number 3.

Listing 3 Example input before rewriting.
:- lv_1gat_0 , lv_1gat_1 .
:- lv_4gat_0 , lv_4gat_1 .
% ...

nab_118gat :- not ab_118gat .
ab_118gat :- not nab_118gat .
% ...

lv_118gat_0 :- nab_118gat , lv_1gat_1 .
lv_118gat_1 :- nab_118gat , lv_1gat_0 .
lv_1gat_0 :- nab_118gat , lv_118gat_1 .
lv_1gat_1 :- nab_118gat , lv_118gat_0 .
% ...

lv_1gat_1 .
% ...

We run our benchmarks on a Lenovo ThinkPad T450 with an Intel Core i5-5200U
processor, 8 GB of RAM and 2 GB of Swap space. While the system runs Ubuntu, we use
Python 3.10.7, Clingo 5.7.1, and asprin 3.1.1-1.bc5a0cf (corresponding to the newest commit
at the time of writing), as packaged in GNU Guix on commit 6d81f2a... (see Listing 5 for
the complete channel list).

We first compare our implementation to a slightly modified version of the original Python
implementation [24]. To make the comparison between the two tools fair, we use Clingo’s
statistics in both, rather than timing the entire process, which would also take into account
file I/O and grounding times, further penalizing the reference implementation. The results
can be seen in Table 1 and appear to strongly favour our implementation in all but two
benchmarks.

Next, we compare our tool against the approaches laid out in Section 2.3, i.e., heuristics
(built into Clingo) and preferences (via asprin). It should be noted, that both solver
approaches do not guarantee that diagnoses are sorted by their cardinality. Thus, when there

6 The original tool and benchmarks can be found at https://github.com/QAMCAS/ASP-Diagnose-Tool.
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Listing 4 Example input after rewriting.
:- val(V, X), val(V, Y), X < Y.

comp( gat118 ).
% ...

val(gat118 , 0) :- nab( gat118 ), val(gat1 , 1).
val(gat118 , 1) :- nab( gat118 ), val(gat1 , 0).
val(gat1 , 0) :- nab( gat118 ), val(gat118 , 1).
val(gat1 , 1) :- nab( gat118 ), val(gat118 , 0).
% ...

val(gat1 , 1).
% ...

Listing 5 Guix channels used to obtain Clingo, Python, asprin, as well as the dependencies of
our IDIAG implementation.
(list

( channel
(name ’guix)
(url "https :// git. savannah .gnu.org/git/guix.git ")
( branch " master ")
( commit

"6 d81f2a4ade07158fbadd560722cc386007caf68 ")
( introduction

(make -channel - introduction
"9 edb3f66fd807b096b48283debdcddccfea34bad "
(openpgp - fingerprint

"BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA ")))))

are more than the desired number of diagnoses, they may report more diagnoses of a higher
cardinality – or lower quality if cardinality is a concern. We argue, however, that parsimony
along with a stated maximum cardinality are likely enough quality criteria, as diagnoses
need to be verified before they can be acted upon.7

Tables 2 and 3 show the results of our comparison with Clingo and asprin. With the
exception of two outliers, Clingo is faster than both asprin and IDIAG, both on average
and in the worst case. Each of asprin and IDIAG is the fastest tool once, with IDIAG on
average being closer in performance to Clingo, and asprin being the slowest on average. The
effects that make asprin faster than IDIAG appear to be more pronounced when looking at
worst-case performance.

Finally, we look a little more closely at asprin, which also has built-in support for heuristics.
Asprin provides multiple means of turning its preferences into heuristics (cf. [3, 2]). Our
own results are shown in Tables 4 and 5. Interestingly, it appears as though heuristics only
have a weak positive effect (lower runtime; better performance) in some instances, and a

7 Assuming one has the means of obtaining more observations interactively and for each component
individually, diagnoses of higher cardinality may even be beneficial, as they provide multiple components
to investigate in parallel. One may also discover that a particular component is a likely cause of failure
by counting the number of diagnoses it appears in, cf. [22].
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Table 1 Average runtimes (in seconds) of the original IDIAG implementation [24] and our tool
when tasked to compute subset-minimal diagnoses for the ISCAS85 benchmark circuits. The better
result is highlighted using a bold font.

reference1,a,l) ours2)

circuit 1 2 3 1 2 3

c432 0.5292 0.5452 0.5244 0.1161 0.1184 0.1291
c499 0.8898 0.8310 0.6785 0.3136 0.3274 0.2077
c880 1.3896 1.9994 1.9312 0.2262 0.3866 0.3307
c1355 4.4549 4.0057 4.2121 4.8465 14.9191 2.0967
c1908 11.0776 9.4301 21.0627 3.1129 1.3992 5.6861
c2670 10.7953 17.2354 28.2214 0.8324 1.9525 3.5458
c3540 37.1014 38.0905 101.4154 4.9932 6.0543 27.2434
c5315 116.5337 97.6262 266.2112 4.2492 3.091 14.3082
c6288 36.3123 63.5793 115.7475 3.5328 12.5654 11.2871
c7552 528.0185 759.5175 5159.9682 11.0034 30.3936 81.2927

1) python idiag-ref.py --support=idiag-ref.lp --faultsize 3
--answersets 100 “$test”

2) idiag 100 --stats=2 idiag.lp “$test” -
a) Maximum cardinality of diagnosis provided via --faultsize argument.
l) no_ab defined in idiag-ref.lp.

Table 2 Average runtimes of various tools when tasked to compute subset-minimal diagnoses for
the ISCAS85 benchmark circuits. The best result is highlighted with a bold font. An italic font is
used to highlight, that asprin is second in terms of performance rather than third.

asprin1,u,N) clingo2,u) IDIAG3,p)

circuit 1 2 3 1 2 3 1 2 3

c432 3.0025 2.6269 2.4364 0.086 0.0929 0.0964 0.1161 0.1184 0.1291
c499 3.8399 2.9064 1.4139 0.2319 0.4069 0.1866 0.3136 0.3274 0.2077
c880 4.1091 6.2516 5.7019 0.1532 0.1899 0.1544 0.2262 0.3866 0.3307
c1355 9.0238 8.2308 7.4812 1.9398 37.8516 1.2266 4.8465 14.9191 2.0967
c1908 13.7109 15.781 15.7449 0.5426 0.5067 1.0541 3.1129 1.3992 5.6861
c2670 12.6344 17.4196 17.9126 0.5566 0.5437 0.5851 0.8324 1.9525 3.5458
c3540 21.9377 28.6404 34.1104 0.9637 0.9309 5.7958 4.9932 6.0543 27.2434
c5315 30.5597 21.8695 43.8268 1.5116 1.4836 2.0253 4.2492 3.091 14.3082
c6288 35.8091 39.6309 39.4172 1.9525 1.6256 1.5504 3.5328 12.5654 11.2871
c7552 67.5605 74.2026 73 .0008 2.6636 2.4526 3.1381 11.0034 30.3936 81.2927

1) asprin 100 --stats idiag.lp preference.lp “$test” -
2) clingo 100 --stats=2 --enum-mode=domRec --heuristics=domain idiag.lp “$test” -
3) idiag 100 --stats=2 idiag.lp “$test” -
p) Reports diagnoses in a partially-ordered manner (by cardinality).
u) Reports diagnoses in a seemingly unordered manner.
N) May report more than the desired number of diagnosis (due to non-optimal solutions)
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Table 3 Maximal runtimes of various tools when tasked to compute subset-minimal diagnoses
for the ISCAS85 benchmark circuits. The best result is highlighted with a bold font. An italic font
is used to highlight, that asprin is second in terms of performance rather than third.

asprin1,u,N) clingo2,u) IDIAG3,p)

circuit 1 2 3 1 2 3 1 2 3

c432 5.426 3.927 3.746 0.099 0.124 0.113 0.136 0.153 0.195
c499 4.595 4.278 4.129 0.481 1.041 0.284 0.858 0.965 0.302
c880 8.099 7.794 6.751 0.180 0.402 0.168 0.434 1.582 1.111
c1355 15.886 9.646 8.969 15.382 232.803 4.253 18.113 82.934 5.994
c1908 22.879 18.766 19.498 1.272 0.619 3.048 12.844 3.724 16.156
c2670 29.583 22.347 27.956 0.715 0.720 0.785 2.161 5.625 16.682
c3540 33.875 34.000 60 .765 1.756 1.082 45.566 21.039 18.122 107.792
c5315 53.090 39.037 78.912 2.502 3.582 5.012 15.348 5.075 72.425
c6288 40.874 42.954 42.745 2.160 1.920 1.679 7.663 35.284 26.621
c7552 73.987 90 .521 115 .544 3.754 4.630 9.238 36.467 136.745 242.663

1) asprin 100 --stats idiag.lp preference.lp “$test” -
2) clingo 100 --stats=2 --enum-mode=domRec --heuristics=domain idiag.lp “$test” -
3) idiag 100 --stats=2 idiag.lp “$test” -
p) Reports diagnoses in a partially-ordered manner (by cardinality).
u) Reports diagnoses in a seemingly unordered manner.
N) May report more than the desired number of diagnosis (due to non-optimal solutions)

significantly negative effect (much larger runtime; much worse performance) in others. These
findings contrast prior research suggesting that heuristics to have a pronounced positive
effect – we were not able to discover such an effect in our data.

Combining our comparison results, it appears as though structural properties in some test
cases favour one family implementations over others. In particular, the c1355 benchmarks
show good performance in asprin and the reference implementation, both of which use
multiple solver calls, whereas most other benchmarks are faster using Clingo (single-shot) or
our multi-shot IDIAG, which keep intermediate information.

Closer inspection of our test data reveals three test cases
c1355_tc_1_33,
c1355_tc_2_33, and
c1355_tc_2_34,

which do not have a diagnosis of cardinality 3, but do have a diagnosis of higher cardinality.
We imagine that our test results would favour asprin and the reference implementation more
strongly if more inputs shared this behavioural pattern. We leave the investigation as to
why this pattern causes such huge influence on some configurations, but not others, to future
research.

5 Conclusion

We have implemented an incremental prover for the previously described IDIAG algorithm,
based on the Clingo answer set solver. Our experiments indicate, that this incremental prover
is significantly faster than the reference, but also, that Clingo itself is faster than both of
them at determining parsimonious diagnoses.

We have further identified a problematic pattern, in which the performance of Clingo and
our IDIAG implementation is worse than that of state-of-the-art alternatives. Future work
may investigate these patterns more closely and find more efficient ways of handling them.
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Table 4 Average runtimes of asprin with various heuristics. The best result is highlighted with a
bold font.

asprin1) asprins
2,n) asprinl

3,n)

circuit 1 2 3 1 2 3 1 2 3

c432 3.0025 2.6269 2.4364 2.8272 2.7462 2.5235 2.1994 2.5593 2.4048
c499 3.8399 2.9064 1.4139 3.7184 2.9622 1.429 3.7165 2.9736 1.4403
c880 4.1091 6.2516 5.7019 4.050 6.2695 5.7221 3.9736 6.110 5.740
c1355 9.0238 8.2308 7.4812 9.1101 8.3522 8.4739 10.1812 18.2236 9.5113
c1908 13.7109 15.781 15.7449 15.3369 16.5029 16.6365 11.6994 17.0772 22.685
c2670 12.6344 17.4196 17.9126 12.8349 18.9981 18.1386 9.637 16.6658 17.0139
c3540 21.9377 28.6404 34.1104 22.0679 29.2287 37.9311 22.3426 28.5987 50.9506
c5315 30.5597 21.8695 43.8268 31.1048 23.0021 56.2116 25.9356 23.452 36.5648
c6288 35.8091 39.6309 39.4172 36.6559 39.2868 40.0324 34.2615 38.4413 51.6775
c7552 67.5605 74.2026 73.0008 73.4326 94.2245 102.8467 64.2992 61.5337 79.2451

1) asprin 100 --stats idiag.lp preference.lp “$test” -
2) asprin 100 --stats --dom-heur -1 sign idiag.lp preference.lp “$test” -
3) asprin 100 --stats --dom-heur 1 level idiag.lp preference.lp “$test” -
n) Stripped heuristic from idiag.lp to use internal heuristics from asprin.

Table 5 Maximal runtimes of asprin with various heuristics. The best result is highlighted with
a bold font.

asprin1) asprins
2,n) asprinl

3,n)

circuit 1 2 3 1 2 3 1 2 3

c432 5.426 3.927 3.746 5.361 3.925 3.911 3.498 3.368 3.730
c499 4.595 4.278 4.129 4.306 4.602 4.110 4.868 4.247 3.929
c880 8.099 7.794 6.751 7.990 7.522 6.686 7.495 7.265 6.423
c1355 15.886 9.646 8.969 14.226 9.926 8.905 14.717 64.170 11.622
c1908 22.879 18.766 19.498 28.714 18.790 28.001 16.622 29.100 56.778
c2670 29.583 22.347 27.956 28.675 24.659 28.132 19.662 20.250 28.685
c3540 33.875 34.000 60.765 33.066 34.784 73.620 44.448 38.024 268.888
c5315 53.090 39.037 78.912 58.880 43.743 169.542 42.327 56.649 74.325
c6288 40.874 42.954 42.745 44.732 43.429 49.227 42.546 43.081 186.843
c7552 73.987 90.521 115.544 100.091 177.680 181.315 85.318 117.532 326.509

1) asprin 100 --stats idiag.lp preference.lp “$test” -
2) asprin 100 --stats --dom-heur -1 sign idiag.lp preference.lp “$test” -
3) asprin 100 --stats --dom-heur 1 level idiag.lp preference.lp “$test” -
n) Stripped heuristic from idiag.lp to use internal heuristics from asprin.
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