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Abstract
Cyber-physical systems (CPS) are critical to modern infrastructure, but are vulnerable to faults and
anomalies that threaten their operational safety. In this work, we evaluate the use of open-source
Large Language Models (LLMs), such as Mistral 7B, Llama3.1:8b-instruct-fp16, and others to detect
anomalies in two distinct datasets: battery management and powertrain systems. Our methodology
utilises retrieval-augmented generation (RAG) techniques, incorporating a novel two-step process
where LLMs first infer operational rules from normal behavior before applying these rules for fault
detection. During the experiments, we found that the original prompt design yielded strong results
for the battery dataset but required modification for the powertrain dataset to improve performance.
The adjusted prompt, which emphasises rule inference, significantly improved anomaly detection for
the powertrain dataset. Experimental results show that models like Mistral 7B achieved F1-scores up
to 0.99, while Llama3.1:8b-instruct-fp16 and Gemma 2 reached perfect F1-scores of 1.0 in complex
scenarios. These findings demonstrate the impact of effective prompt design and rule inference in
improving LLM-based fault detection for CPS, contributing to increased operational resilience.
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1 Introduction

Cyber-physical systems (CPS) integrate hardware and software with their physical envir-
onment, forming the backbone of critical infrastructures such as transportation and energy.
Faults in CPS can lead to significant operational and safety risks, making robust fault
detection and diagnosis systems essential. Advances in deep learning techniques, such as
transformers [21] applied to time-series data [22], have significantly improved the ability to
monitor these systems. Fault detection can be applied during system development [13] or
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real-time operation, where diagnosing faults promptly is crucial for safety and reliability [15].
In our previous work [14], we evaluated the effectiveness of open-source large language models
(LLMs) for fault detection in cyber-physical systems, with a focus on battery management
systems. The current work builds on these findings by extending the evaluation to additional
system components, such as powertrain systems, and introducing novel prompt designs
tailored to different types of anomalies. This allows for more comprehensive fault detection
and localization across a wider range of systems.

We explore whether LLMs can be effectively applied for fault detection and diagnosis in
CPS. Traditional fault detection approaches have primarily relied on machine learning models
and deep learning techniques such as autoencoders [2]. While LLMs like BERT [8] and
GPT-3 [5] have shown success in tasks such as rule learning [24] and anomaly detection [17],
their use in real-time CPS fault diagnosis remains underexplored.

A key consideration in this study is the exclusive use of open-source LLMs. In contrast to
commercial models, open-source LLMs ensure transparency, accessibility, and reproducibility
– fundamental requirements in scientific research. Open-source models like Mistral 7B,
Llama3.1:8b-instruct-fp16, and Gemma 2 offer the advantage of being freely available and
adaptable for diverse applications, making them ideal for research purposes. This choice
allows researchers to replicate, validate, and extend the findings, which is crucial for building
reliable fault detection systems in CPS.

We focus on using retrieval-augmented generation (RAG) [12] to enhance fault detection
by integrating external knowledge through search strategies such as maximal marginal
relevance (MMR) and cosine similarity. A central component of our approach is the inference
of operational rules: LLMs first infer rules from normal CPS behavior before applying them
for fault detection. This two-step approach ensures that the models can identify deviations
from normal operations and accurately diagnose faults.

Our main contributions are summarised as follows:
We assess the performance of six open-source models, including Mistral 7B, Gemma 2,
Llama3.1:8b-instruct-fp16, and others for fault detection in CPS datasets.
We propose a two-step process in which LLMs first infer operational rules from normal
CPS behavior and then apply these rules to diagnose faults, highlighting the critical role
of rule inference in improving detection accuracy.
We evaluate different search strategies, including maximal marginal relevance (MMR)
and cosine similarity, to retrieve relevant information during the fault detection process
in the RAG framework.
We provide a detailed analysis of the models’ ability to generalise from inferred rules and
accurately diagnose faults in CPS, offering insights into their performance across different
datasets.

The remainder of this paper is structured as follows: Section 2 reviews related work.
Section 3 outlines the methodology and datasets used. Section 4 presents and discusses
the experimental results. Finally, Section 5 concludes the paper and suggests directions for
future research.

2 Related Work

Our work is at the intersection of research on a) security in cyber-physical systems and b)
machine learning in fault detection, specifically the application of large language models in
anomaly detection.
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CPS play a critical role in various essential infrastructure sectors, such as manufacturing
and smart grids [7]. Ensuring the security of CPS involves fault detection mechanisms
to maintain operational integrity. Previous studies have investigated fault detection in
CPS using traditional machine learning techniques, highlighting both achievements and
constraints [18]. However, there is a research gap on the use of LLMs for anomaly detection
in CPS, particularly in fault detection scenarios [11].

Recent discussions have surfaced about the use of open-source LLMs in cybersecurity,
offering theoretical insights and initial findings on their potential applications [11]. Fur-
thermore, research has examined textual encoding and its impact on the performance of
machine learning models, especially in contexts relevant to CPS security [11]. Recognising
this research gap, this work aims to explore the application of open-source LLMs to fault
detection in CPS, presenting avenues for future investigations [11].

In the domain of fault detection and isolation, researchers have proposed robust methods
for fault diagnosis in CPS, focusing on fault detection, isolation, identification, and risk
assessment processes [4]. Furthermore, studies have explored anomaly detection in CPS using
Bayesian networks to establish cause-and-effect relationships between cyber components and
physical systems [11]. These integrated approaches are crucial to effectively detect anomalies
and distinguish between cyber attacks and physical faults in CPS [11].

Previous studies, including our own work [14], have explored the application of LLMs to
fault detection in CPS, with a specific focus on battery management systems. In that work,
we demonstrated the efficacy of open-source LLMs such as Mistral for fault detection using
retrieval-augmented generation (RAG) techniques. However, that study primarily dealt with
fault detection in isolated systems (i.e., the battery management system), whereas this work
expands the focus to more complex, multi-component systems like powertrains. Additionally,
this paper introduces new prompt designs optimized for fault localization in systems with
interdependent components.

The research discussed in this section highlights the importance of fault detection to
ensure the security and reliability of CPS. The application of machine learning, specifically
LLMs, provides opportunities to further enhance the field of CPS security and fault detection.

3 Methodology

Building on our previous evaluation of LLMs for fault detection in battery management
systems [14], we adapted the methodology to handle the more complex fault localization
requirements of powertrain systems. While the initial study focused on detecting anomalies
in a single system component, this work extends the approach by designing new prompts that
capture interactions between multiple components (battery, H-Bridge, and motor) to improve
the accuracy and explanatory power of fault detection. In this study, we implement a fault
detection system for powertrain components using a combination of LLMs, embeddings, and
vector search. Figure 1 visualizes FLEX, our proposed approach to using LLMs for fault
detection. In this section, we further describe the dataset used in our experiments. We go
into more detail about the data collection procedure, the data preprocessing steps, the model
selection, and the experimental setup. Finally, we highlight some limitations of our work.

3.1 Datasets
We use two datasets that represent normal and faulty behavior of two different CPS. The
first CPS is a battery management system from an electrified vehicle, which we refer to as the
“battery” dataset. The second dataset, called “powertrain,” contains simulated time-series
data of various powertrain components, such as battery current, voltage, motor speed, and
H-Bridge mode.

DX 2024
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Figure 1 The FLEX approach for fault detection. Nominal (normal) input samples are text
encoded and embedded into a vector database. Test samples undergo the same encoding and
embedding process. A Retrieval-Augmented Generation (RAG) mechanism is used to query the
vector database for similar normal behavior samples. The LLM extracts rules from these normal
samples and applies them to detect anomalies in the test samples.

Battery Dataset. The battery dataset is a multivariate time-series obtained from a simulated
industrial battery management system. It contains 90 minutes (5,400.5 seconds) of
continuous readings across 13 different signals, including temperature sensors, power
usage, velocity, and airflow from cooling systems, amounting to 10,801 samples.
We use the training dataset, which contains no anomalies, to represent the normal
behavior of the system in a semi-supervised setting. This training data is stored in a
vector database for Retrieval-Augmented Generation (RAG) purposes, allowing context
retrieval during LLM prompting. A separate test dataset containing anomalies, also with
10,801 samples, is used for model evaluation. The experimental setup is further detailed
in Section 3.4.

Powertrain Dataset. The powertrain dataset is derived from a simplified simulation model
of an electrified powertrain system. [23] This system consists of a battery, an H-bridge,
an electric motor, and a load. The powertrain model is used to generate both correct and
faulty behavior data for different loads and faults in the system.
The training dataset includes normal behavior under various load conditions, while the
test dataset introduces specific faults in the battery, H-bridge, and motor components.
Faults are introduced at various time points in the simulation. For example, faults such
as an empty battery or malfunctioning H-bridge switches are simulated. The dataset
includes battery voltage, current, motor rotational speed, and H-bridge mode over time
for both correct and faulty behaviors, allowing for precise fault diagnosis.

3.2 Data Pre-processing
The pre-processing of our dataset is a crucial step toward leveraging the capabilities of
pre-trained LLMs for anomaly detection within CPS. This process involves transforming raw
data into a format that is more suitable for analysis by these models. Our pre-processing
pipeline consists of several stages outlined below and in Figure 2:
1. Rounding: Each numerical value in the dataset is rounded to two decimal places. This

simplification helps in standardising the data format and reduces noise in the data that
is insignificant to the model’s performance.
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2. Text Encoding: We convert the dataset from numerical to textual representation to
align with the input format expected by LLMs. This encoding process involves:
a. Prefixing each value with its corresponding column name, for example, converting a

temperature reading column to “temperature_5_deg”.
b. Appending the text “ is ” followed by the rounded value of the reading, resulting in

entries such as “temperature_5_deg is -9.99”.
c. Convert every number into a word representation resulting in entries such as “temper-

ature_five_deg is minus nine point nine nine”.

This textual transformation helps in aligning the dataset with the linguistic input format
preferred by LLMs, thereby facilitating more effective anomaly detection by enabling the
models to process and analyze the data within a contextually richer format.

3.3 Model Selection and Implementation Strategy
In this study, we deliberately opted for open-source LLMs instead of proprietary options like
ChatGPT. Our goal was to ensure reproducibility and openness, making the models we used
accessible and easy to replicate for future research. The specific LLMs selected for this study
include Llama3 [9], Llama3.1:8b-instruct-fp16 [9], Gemma 2 [20], Phi3:14b [1], Mistral [10],
and Mistral NeMo [3]. These models were specifically chosen for their capabilities in anomaly
detection within CPS. By selecting a diverse range of open-source models, we were able to
explore the strengths and limitations of each in the context of fault detection in CPS. This
approach allowed us to evaluate how well these models can handle the complexities of CPS
data and their effectiveness in identifying potential faults.

To enhance model performance, we integrated these LLMs into a Retrieval Augmented
Generation (RAG) framework. This framework enabled the models to access relevant,
anomaly-free operational data from a vector store, improving their ability to detect deviations
from normal behavior. The underlying hypothesis was that by providing LLMs with precise
representations of normal system operations, they would be better equipped to identify faults.

3.4 Experimental Setup
Our experimental setup1, as illustrated in Figure 1, uses data represented as multivariate
time series in CSV files. Each row contains multiple sensor readings and represents one
training sample. We implemented a Retrieval Augmented Generation (RAG) [12] application
that uses training samples to provide a relevant context for LLMs. The training data are
transformed into an embedding and stored in a vector database. Before prompting the LLM,
we query the vector database to find values similar to the test data. Retrieval-augmented
generation (RAG) models enhance the capabilities of generative models by incorporating
relevant information extracted from an external knowledge base during the generation process.
A critical step in this approach is the selection of relevant documents or text snippets from
the knowledge base, which is achieved using similarity measures. We used a retriever to fetch
relevant documents from the vector store using similarity measures, such as cosine similarity
and Maximal Marginal Relevance (MMR) [6]. The retrieved documents were used as context
for the LLM, which then processed each measurement from the test dataset, applying the
previously inferred rules. The LLM was executed in a pipeline, taking the test data and
context as input and producing a fault diagnosis for each time series point.

1 Our code is available open-source on Zenodo: https://doi.org/10.5281/zenodo.13879936
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Figure 2 Schematic representation of the anomaly detection workflow using the LLM Mistral for
the “battery” dataset. The process begins by ingesting time series data (1), which is transformed into
descriptive natural language through text-encoding feature names and their corresponding values
(2). These textual representations are embedded using the SentenceTransformer library and stored
in a vector database (3). The LLM retrieves contextually relevant data by querying this database
with test data (4). The retrieved context is then used to prompt the LLM for anomaly detection (5),
where the LLM assesses each row by comparing sensor readings with normal operational ranges. The
model identifies anomalies, assigns an anomaly rating, and provides explanations for any deviations
(6). The example shows a detailed response from Mistral 7B analysing time step 4002, highlighting
the model’s ability to detect and explain faults in the “battery” dataset.

3.4.1 Application in Retrieval-Augmented Generation

In the context of RAG, similarity measures, such as cosine similarity and MMR, are used to
identify documents or text snippets within the knowledge base that are most relevant to the
given query. Specifically, the query and each candidate document are represented as vectors
in a high-dimensional space, where each dimension corresponds to a feature represented
as an embedding. The similarity between the query vector and each document vector is
calculated, and the documents are ranked based on their similarity scores. The highest-
scoring documents are considered the most relevant and are subsequently used to augment
the generative process, generating more informed and contextually relevant text. Cosine
similarity and MMR represent different similarity measures, leading to different rankings.

3.4.2 Fault Detection Prompt Design

Initially, we designed a simple prompt for the battery system, focusing on voltage stability
as the main indicator of faults. However, when we applied this prompt to the powertrain
system, it did not produce satisfactory results. The powertrain system is more complex,
involving multiple interdependent components like the battery, H-Bridge, and motor, each
with distinct fault patterns. Using the same battery prompt for powertrain would not enable
the LLM to effectively capture and differentiate these complex fault scenarios.
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Listing 1 Prompt Template for “battery” dataset. The prompt contains a {context} with samples
that do not contain anomalies retrieved from the vector database. We search for the ten most similar
entries in the vector database compared to the test data {measurement}.

1 Use the following context to answer the question at the end. If you cannot determine, just say no, don
↪→ ’t try to make up an answer. Use short, technical answers like (zero anomalies, yes, no).
↪→ Write a response that appropriately completes the request.

3 Context: Normal operating range:
4 {context}

6 Question: Do the following measurements contain anomalies? Yes or no?

8 Test Measurement:
9 {measurement}

11 Provide an anomaly rating between 0−100 based on the following criteria:

13 1) Values are in a reasonable range of the provided context.
14 2) Values do not contain anomalies.
15 3) Values are consistent with the given context.

17 Check ∗very carefully∗ with the given ranges before giving your rating.

19 Answer:
20 − Anomaly: e.g. yes, no
21 − Anomaly−Rating:
22 − Explanation:

We also chose not to use the more complex powertrain prompt for the battery system,
as it emphasises interactions between components, which are not necessary for detecting
battery faults. The battery system relies primarily on voltage and current for fault detection,
making a simpler approach more efficient. Applying the more detailed powertrain prompt to
the battery system would add unnecessary complexity and reduce efficiency, but could be
explored in future work.

Given these differences, we constructed a two-part prompt specifically for the powertrain
system. In the first part, the LLM infers operational rules from normal behavior, identifying
expected ranges for key variables like battery current, voltage, motor speed, and H-Bridge
mode. These rules are strictly based on time-series data and do not assume any values
outside the provided context. In the second part, the LLM uses the inferred rules to detect
faults by comparing test data against the established normal behavior. Faults are only
reported when there is a clear deviation from normal operations, ensuring a high level of
precision in the fault detection process. This strict two-step approach helped improve fault
detection accuracy in the powertrain system. We used the prompt template from Listing 1
for the “battery” dataset and the prompt templates from Listings 2 and 3 for the “powertrain”
dataset. These prompts were implemented using the Langchain2 Python framework and
LLMs were accessed locally through Ollama3.

2 H. Chase. “Langchain.” python.langchain.com. https://python.langchain.com/docs/get_started/
introduction (accessed Sep. 05, 2024).

3 Ollama. “Ollama v0.3.9.” https://ollama.com (accessed Sep. 05, 2024).
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Listing 2 System Prompt template for “powertrain” dataset. The system prompt provides strict
instructions for rule inference and fault detection, to prevent hallucination of faults.

1 Your goal is to evaluate the overall status of the battery based on the provided data. The battery
↪→ status should only be ‘‘OK’’ or ‘‘Empty.’’ Do not mention individual sensor values such as
↪→ voltage or current in the final report. The output should be in a concise, structured format
↪→ and only focused on the battery as a whole component.

3 ### Battery Fault Models:
4 − OK: The battery is functioning as expected.
5 − Empty: The battery provides no voltage (Battery Voltage = 0).

7 ### For inferred rules:
8 − You must infer rules based on the provided time series data.
9 − Rules should represent the overall battery behavior as either ‘‘OK’’ or ‘‘Empty.’’

11 Example format for inferred rules:
12 − Battery: OK (the battery voltage remains stable)

14 ### For fault detection:
15 − You MUST NOT infer faults that are not represented by the data. Report faults only if the data

↪→ clearly shows that the battery provides no voltage (Battery Empty).

17 Output format must strictly be:
18 component,fault,reason
19 battery,OK/Empty,Explanation

Listing 3 User Prompt template for “powertrain” dataset. The user prompt guides the process
of rule inference and fault detection based on time series data.

1 # Part 1: Infer Rules from Normal Battery Behavior

3 Use the following time series data to infer the overall behavior of the battery as either ‘‘OK’’ or ‘‘
↪→ Empty.’’

5 # Input Data:
6 {context}

8 −−−

10 # Part 2: Battery Fault Detection Based on Inferred Rules

12 Now, apply the inferred rules strictly to the following test data to detect if the battery is ‘‘OK’’ or ‘‘
↪→ Empty.’’

14 # Battery Fault Models:
15 − OK: The battery is functioning as expected.
16 − Empty: The battery provides no voltage (Battery Voltage = 0).

18 # Input Data:
19 {measurement}

21 # Task:
22 1. Based ONLY on the inferred rules, determine whether the battery is ‘‘OK’’ or ‘‘Empty.’’
23 2. Report the results in the following format:
24 component,fault,reason
25 battery,OK/Empty,Explanation
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3.5 Evaluation Metrics
In this work, we assess the performance of open-source LLMs in diagnosing faults in CPS using
two datasets: “battery” and “powertrain.” Our evaluation is based on two key experiments:
the first evaluates models Mistral and Llama3 on 100 samples from the “battery” dataset,
while the second evaluates the models Mistral, Mistral NeMo, Llama3.1:8b-instruct-fp16,
Gemma 2, and Phi3:14b on 10 samples from the “powertrain” dataset.

Seliya et al. [19] proposed several metrics for classifier evaluation. For our study, we
selected precision, recall, and F1-score to compare the performance of the models in fault
detection tasks. These metrics are defined as follows:

Precision measures the proportion of correctly identified faults (true positives) out of
all instances flagged as faulty, i.e.: Precision = T P

T P +F P . High precision is crucial in fault
detection, as it minimises false positives, preventing unnecessary maintenance or downtime.

Recall, or sensitivity, measures the proportion of actual faults that were correctly
identified, i.e.: Recall = T P

T P +F N . High recall ensures that most faults are detected, even if
some false positives are generated.

The F1-score is the harmonic mean of precision and recall, balancing the two, i.e.:
F1 = 2 × Precision×Recall

Precision+Recall . A high F1-score indicates that the model achieves a good balance
between precision and recall, which is essential for accurate fault detection, managing both
false positives and false negatives effectively.

4 Results

As demonstrated in our previous work [14], open-source LLMs such as Mistral perform
exceptionally well in detecting anomalies in battery management systems. However, our
results indicate that applying the same prompt structure to powertrain systems does not yield
similarly performance. Therefore, this paper introduces a new two-part prompt designed
specifically for powertrain systems, leading to improved fault detection performance. This
section presents the performance of several LLMs on anomaly detection in CPS, considering
the role of prompt design in shaping model performance. The experiments were conducted
using two datasets: “battery” and “powertrain,” with different prompt structures for each.
The models were evaluated based on F1-score, Precision, and Recall, as shown in Tables 1
and 2.

4.1 Effect of Prompts on Model Performance
The prompts used for each dataset had a significant impact on the performance of the models.
In the “battery” dataset, the prompt (Listing 1) was straightforward, asking the LLMs to
identify anomalies by comparing test measurements with normal system behavior retrieved
from the vector database. In contrast, the “powertrain” dataset utilized more complex
prompts (Listings 2 and 3) that required the LLMs to first infer rules from normal system
behavior before applying them to detect faults. This two-step process introduced additional
cognitive complexity, which likely influenced the models’ performance differently across the
datasets.

4.2 Battery Dataset Results
The “battery” dataset prompt provided a clear context of normal behavior and asked the
LLMs to determine whether test measurements contained anomalies based on this context. As
shown in Table 1, Mistral consistently outperformed Llama3 across different configurations

DX 2024
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Table 1 Performance of Large Language Models (LLMs) on anomaly detection tested using 100
samples from the “battery” dataset. The table evaluates two models, Mistral and Llama3, across
two retrieval strategies: Maximal Marginal Relevance (MMR) and cosine similarity. The models
were assessed with varying numbers of retrieved results (ranging from 1 to 1000), with performance
measured using F1-score, precision, and recall. Notably, Mistral consistently achieved near-perfect
scores (F1=0.99, Precision=1.00, Recall=0.98) across multiple configurations, while Llama3 showed
lower precision when fewer results were retrieved, despite maintaining perfect recall.

Model Strategy # Results F1 Precision Recall

llama3 mmr 1 0.68 0.52 1.00
llama3 similarity 1 0.68 0.52 1.00
mistral similarity 1000 0.81 0.69 1.00
mistral similarity 500 0.86 0.77 0.98
mistral similarity 10 0.96 0.94 0.98
llama3 mmr 5 0.98 1.00 0.96
mistral mmr 1000 0.98 0.98 0.98
mistral mmr 500 0.98 0.98 0.98
llama3 mmr 10 0.99 1.00 0.98
mistral mmr 1 0.99 1.00 0.98
mistral similarity 1 0.99 1.00 0.98
mistral mmr 10 0.99 1.00 0.98
mistral mmr 5 0.99 1.00 0.98
mistral similarity 5 0.99 1.00 0.98

and retrieval strategies (MMR and similarity). Mistral achieved an F1-score of 0.99 when
retrieving 1, 5, or 10 documents, with near-perfect precision (1.00) and recall (0.98). This high
performance can be attributed to the direct nature of the prompt, which simply asked the
models to compare test data with retrieved normal data without needing to infer additional
rules.

In contrast, Llama3 showed more variability in performance, especially when fewer
documents were retrieved. The best F1-score (0.99) for Llama3 was observed when 10
documents were retrieved with the MMR strategy, yielding a precision of 1.00 and recall of
0.98. However, when only 1 document was retrieved, the F1-score dropped to 0.68, with
a precision of 0.52. This variability suggests that Llama3 relies more heavily on sufficient
contextual information to perform optimally. The straightforward nature of the battery
prompt worked in favor of Mistral, while Llama3 struggled with limited context, leading to
more false positives.

4.3 Powertrain Dataset Results
The “powertrain” dataset employed a more sophisticated two-step prompt, where the LLMs
first had to infer rules from the context of normal behavior and then apply these rules to
detect faults in the test data. This rule inference process significantly impacted the models’
performance, as it required a deeper understanding of normal behavior and strict adherence
to the inferred rules before making fault predictions.

As detailed in Table 2, Mistral-NeMo struggled with this complexity, achieving an F1-score
of only 0.33, with perfect precision (1.00) but very low recall (0.20). The need to infer rules
and then apply them to the test data may have caused Mistral-NeMo to miss many true
anomalies, leading to poor recall. This highlights the model’s difficulty in managing tasks
that require both rule inference and anomaly detection.
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Table 2 Comparative performance of various Large Language Models (LLMs) on anomaly
detection, tested with 10 samples from the “powertrain” dataset. The table evaluates models such as
Mistral-Nemo, Phi3:14b, Gemma2, Llama3.1:8b-instruct, and Mistral across two retrieval strategies:
Maximal Marginal Relevance (MMR) and cosine similarity. The performance is measured using
F1-score, precision, and recall. Notably, models like Gemma2, Llama3.1:8b-instruct, and Mistral
achieved perfect performance (F1=1.00, Precision=1.00, Recall=1.00), while Mistral-Nemo struggled
with lower recall (0.20) despite perfect precision, indicating difficulties in detecting all anomalies in
the test samples.

Model Strategy # Results F1 Precision Recall

mistral-nemo mmr 10 0.33 1.00 0.20
mistral-nemo similarity 10 0.33 1.00 0.20
phi3:14b mmr 10 0.89 1.00 0.80
phi3:14b similarity 10 0.89 1.00 0.80
gemma2 mmr 10 1.00 1.00 1.00
gemma2 similarity 10 1.00 1.00 1.00
llama3.1:8b-instruct-fp16 mmr 10 1.00 1.00 1.00
llama3.1:8b-instruct-fp16 similarity 10 1.00 1.00 1.00
mistral mmr 10 1.00 1.00 1.00
mistral similarity 10 1.00 1.00 1.00

In contrast, Phi3:14b performed much better, achieving an F1-score of 0.89 with both
MMR and similarity strategies, balancing perfect precision (1.00) with a strong recall of 0.80.
This model was more adept at handling the rule inference step, allowing it to maintain a
good balance between detecting true anomalies and avoiding false positives.

Both Gemma 2 and Llama3.1:8b-instruct-fp16 performed flawlessly in the “powertrain”
dataset, achieving perfect F1-scores (1.00) across all retrieval strategies. These models
successfully inferred rules and applied them to detect anomalies with no errors, suggesting
that they are particularly well-suited for tasks that involve complex, multi-step prompts like
the one used in the “powertrain” dataset.

4.4 Implications of Rule Inference on Model Behavior

The rule inference step in the “powertrain” dataset introduced an additional layer of complex-
ity that had clear implications for model performance. Models that were able to handle this
step effectively, such as Gemma 2, Llama3.1:8b-instruct-fp16, and Phi3:14b, performed well
in both precision and recall, demonstrating their ability to generalize from inferred rules and
apply them accurately to detect faults. This process required models to not only understand
normal behavior but also apply that understanding in a precise manner to detect deviations.

On the other hand, models like Mistral-NeMo struggled with this process, leading to a
significant drop in recall. This suggests that models less capable of managing multi-step
tasks or those that struggle with rule inference may fail to detect all anomalies, particularly
in complex scenarios. This limitation highlights the importance of choosing models that can
effectively handle not only anomaly detection but also rule-based reasoning tasks in more
sophisticated use cases.

DX 2024
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4.5 Cross-Dataset Comparison
Across both datasets, Mistral proved to be the most consistent performer, achieving strong
results in the simpler “battery” prompt and perfect results in the more complex “powertrain”
prompt. Llama3 displayed high sensitivity to the number of retrieved documents in the
“battery” dataset, performing well when given sufficient context but struggling when that
context was limited. However, the Llama3.1:8b-instruct-fp16 variant performed perfectly in
the “powertrain” dataset, suggesting that specific configurations of Llama3 are better suited
to complex, multi-step tasks.

The performance of Mistral-NeMo in the “powertrain” dataset illustrates how rule
inference can overwhelm models that are not well-equipped for this type of reasoning. In
contrast, models like Gemma 2 and Phi3:14b thrived in this context, handling both the rule
inference and fault detection steps effectively.

4.6 Key Insights
Prompt Complexity Influences Results: The simpler prompt in the “battery”
dataset led to more consistent performance, while the complex rule inference prompt
in the “powertrain” dataset revealed varying levels of model proficiency. Models that
managed rule inference well performed better in the “powertrain” dataset.
Mistral’s Robustness: Mistral maintained high performance across both datasets,
demonstrating its ability to manage both straightforward and more complex tasks.
Rule Inference Sensitivity in Llama3: While Llama3 performed well with sufficient
context in the “battery” dataset, its Llama3.1:8b-instruct-fp16 variant excelled in the
more complex “powertrain” task, suggesting its suitability for tasks that require rule-based
reasoning.
Mistral-NeMo’s Struggle with Complexity: Mistral-NeMo struggled in the “power-
train” dataset due to the complexity of rule inference, indicating the need for more tuning
or alternative approaches when handling multi-step tasks.

4.7 Insights from Model Responses
Analysis of the models’ generated responses offers insights into their decision-making processes.
For example, Mistral’s responses provide a structured output comprising a Boolean flag
for anomaly detection, an anomaly rating quantifying detection certainty, and a textual
explanation justifying the decision. Interestingly, an examination of Mistral’s reasoning
reveals occasional inaccuracies in its assessments. The LLM detected an anomaly and
provided an explanation arguing that a value of −1.42 is not part of the range of −10 to 0.8.
This argument is clearly wrong. Interestingly, if we provide the same answer to the same
LLM in a second round, it notices that the answer is not correct and the value is within
the given range. This discrepancy underscores the importance of iterative validation and
refinement in improving the interpretability and reliability of the model in anomaly detection
tasks.

The decision-making process in battery fault detection also showcases the nuances in
model behavior. Let us illustrate how Llama3.1:8b-instruct-fp16 generates detailed, multi-step
diagnostics based on time series and test data, inferring the state of the battery as either “OK”
or “Empty” considering two queries. In the first query, the model analyzes a scenario where
the battery’s voltage remains stable at 14, with no signs of discharge or abnormal behavior.
By applying these inferred rules to the test data, Llama3.1:8b-instruct-fp16 concludes that
the battery is functioning normally, providing stable voltage, and classifies it as “OK.” This
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demonstrates the model’s ability to detect stable battery behavior based on consistent voltage
readings and an absence of current flow. In another query, Llama3.1:8b-instruct-fp16 identifies
a battery fault. The model, after inferring the same rules from normal battery behavior,
detects that the voltage has dropped to zero in the test data. Based on this observation, the
model correctly concludes that the battery is “Empty,” citing the zero voltage as the primary
reason for the fault. These example illustrates the model’s application of learned rules to
identify faults when deviations from normal behavior occur.

5 Conclusion & Future Work

This paper explored the use of open-source LLMs for fault detection in CPS, focusing on
battery management and powertrain datasets. Models like Mistral 7B and Llama3.1:8b-
instruct-fp16 performed well, with Gemma 2 and Phi3:14b achieving perfect F1-scores
in complex scenarios. The results highlight the importance of prompt design and rule
inference for accurate fault detection. Challenges remain, as some models, like Mistral-NeMo,
struggled with more complex tasks, underscoring the need for model selection tailored to task
complexity. Future work should explore more sophisticated fault diagnosis tasks and adaptive
retrieval methods that further enhance LLM performance in dynamic CPS environments.
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