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Abstract
This article introduces a novel method for constructing a “zonotopic contractor” based on hyperplane
properties. While zonotopes, a special class of polytopes, offer computational advantages due to
their symmetric matrix representation, they are not closed under intersection, often necessitating
over-approximations that lead to conservatism in practical applications. The proposed contractor
addresses this issue by providing a more efficient solution for approximating zonotope intersections,
reducing conservatism. This method generates a new zonotope that closely covers the intersection
of two zonotopes. The reliability and effectiveness of the proposed approach are demonstrated
through simulations on a bicycle model, showing potential benefits in safety-critical applications
like autonomous driving, where precise uncertainty management is crucial for decision-making and
control.
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1 Introduction

With the increasing complexity of modern automated systems, precise state estimation has
become essential for effective monitoring and control. Accurate state knowledge is crucial
for ensuring the smooth operation of systems, such as robotics, autonomous vehicles, and
aerospace platforms, where real-time decision-making is required. This precision is achieved
by processing sensor data, which is often noisy or incomplete, through advanced mathematical
tools known as filters.

Filters are designed to estimate key system variables like position and velocity, even in
the presence of uncertainty. Depending on the nature of the data and assumptions about
uncertainty, different types of filters are employed. For instance, probabilistic filters, such as
the Kalman filter [6], use probability distributions to model uncertainty and are particularly
effective in linear systems subjected to Gaussian noise. However, in many cases, statistical
assumptions do not hold or are unavailable, necessitating alternative methods. In such
scenarios, set-membership methods are often preferred, representing uncertainty through
compact sets without relying on probabilistic models. These sets can be represented by
various geometric shapes in the state space, each with distinct strengths and limitations:

Ellipsoids [13] [3], which provide a compact and well-suited representation of sets but are
not closed under Minkowski sum, limiting their use in some applications.
Polytopes [14], which offer flexibility and accurate representations of uncertainty, though
they are computationally intensive due to their complex vertex and facet representation.
Intervals [12] [10], which simplify calculations by bounding each variable independently,
but are highly conservative and may not capture the true uncertainty effectively.
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Zonotopes [7] [8] [1] [9], a special class of polytopes, strike a balance between simplicity
and computational efficiency. They can be represented compactly using matrices, making
operations faster and less conservative than intervals.

Despite their advantages, zonotopes face a significant limitation: they are not closed un-
der intersection. This means that the intersection of two zonotopes does not necessarily
yield another zonotope, complicating the representation of uncertainty in systems requiring
intersection operations. As a result, overapproximation is often used, which introduces
conservatism and reduces the precision of state estimation.

To overcome this challenge, we propose a novel “zonotopic contractor” that leverages
hyperplane properties to approximate the intersection of two zonotopes while minimizing
conservatism. The proposed contractor generates a new zonotope that closely covers the
intersection, significantly improving the accuracy of set-based methods in systems where
zonotope intersections are required. This method is designed to maintain the computational
simplicity of zonotopes while addressing their limitations, offering a more efficient solution
for state estimation in complex systems. We validate the performance of this zonotopic
contractor through simulations using a bicycle model, demonstrating its effectiveness in
reducing conservatism and enhancing reliability.

2 Preliminaries

▶ Definition 1 (Zonotopes). A zonotope is a type of geometric shape that is convex and
symmetric. To create it, we start with a center point c ∈ Rn and then extend one or
more vectors outward from this center in different directions. These vectors, which we call
generating vectors and denote as gi ∈ Rn : i ∈ 1, ..., d, where n is the dimention and d

represents the number of vectors, determine the shape of the zonotope. The zonotope’s order
ρ = d/n, represents a dimensionless measure of the representation size. i.e., This provides a
relative measure of the complexity or dimension of the space covered by the zonotope. The
higher this order, the larger and more complex the zonotope becomes.

For each generator vector, we also include another vector pointing in the opposite direction.
This pairing creates segments, i.e., forming a set of points lying within the interval I defined
by:

Ii = ci + [−1, 1]gi = {ci + αgi : α ∈ [−1, 1]}, for i = 1, . . . , d. (1)

After obtaining the intervals, we compute their Minkowski sum. Which is defined by :

I1 + I2 := {x+ y : x ∈ I1, y ∈ I2} (2)

So indeed, the zonotope is the Minkowski sum of d segments in Rn.
Now that we have defined zonotopes, let’s imagine a hypercube formed by the intervals Ii

where i ranges from 1 to d. According to the definition we provided for a zonotope, we can
construct a zonotope from these intervals by applying the Minkowski sum as :

Z =
d∑

i=1
Ii =

d∑
i=1

ci + [−1, 1]gi =
d∑

i=1
ci +

d∑
i=1

[−1, 1]gi = c+G ∗ [−1, 1]d (3)

Z = {x ∈ Rn : x = c+G ∗ αd : α ∈ [−1, 1]} (4)

Therefore, the zonotope Z is defined by the new center c, which is the sum of the centers
ci of the intervals Ii and the generatrice matrix G such that G = [g1, ..., gd].

Hence, another definition of a zonotope is that it is an affine transformation of the interval
box of dimension d ≥ n.
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Figure 1 Illustration of the steps involved in constructing a zonotope from three vectors.

We have a matrix G composed of the following vectors: g1 =
[
1
0

]
, g2 =

[
1
1

]
, g3 =

[
0
1

]
Each of these vectors represents a direction in the plane.

The zonotope we are constructing is centered at the origin, meaning that c =
[
0
0

]
. To

construct this zonotope, we sequentially add each vector to the set of points already drawn.
Let’s first imagine drawing a segment using vector g1. Then, we take this segment and, from
each of its points, we add vector g2 to create a new shape. Finally, we repeat this process
with vector g3. At each step, we progressively expand the shape by adding new segments,
always starting from the center. The result is a zonotope, which represents the convex hull
of the points generated by this addition process. The illustration in the figure 1 visually
demonstrates how this construction evolves as we add generators to the zonotope. Each
new vector contributes to extending the shape’s boundaries in different directions, resulting
in a more complex geometric figure. The final zonotope is a centrally symmetric, convex
polytope whose sides are parallel to the generating vectors. The number of faces and the
overall complexity of the zonotope increase with each added generator, thus demonstrating
the flexibility and utility of zonotopes in representing multidimensional spaces in a compact
and structured manner.

Zonotopes have favorable properties as they can be represented compactly, and they are
closed under the Minkowski sum and linear mapping, For clarity, we will denote the real
interval [−1, 1] as I.
Composition of Zonotopes.

Let Z1 and Z2 be two zonotopes defined by their centers c1 and c2, as well as their
generator matrices G1 = {g1,1, g1,2, . . . , g1,d1} and G2 = {g2,1, g2,2, . . . , g2,d2}, respectively.
Then, the Minkowski sum of these two zonotopes is itself a zonotope and can be expressed as:

c1 +G1 Id1 + c2 +G2 Id2 = c+ [G1 G2] Id, (5)

where c = c1 + c2, d = d1 + d2 and [G1 G2] represents the concatenation of the generators
matrix of the two zonotopes. This illustrates that a zonotope is closed under the Minkowski
sum.
Linear Multiplication of Zonotopes.

Let L ∈ Rn×m be a matrix and G = {g1, g2, . . . , gd} ⊆ Rm. Then, the linear multiplication
of L by G Id is also a zonotope and is expressed as:

L ∗G Id = (L ∗G) Id, (6)

DX 2024
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Symmetry of Generator Vectors.
Let Z be a zonotope defined by its generators {g1, g2, . . . , gd}. The zonotope remains the

same if a generator vector gi is replaced by −gi, that is:

Z = c+
m∑

i=1
Igi is equivalent to Z = c+

m∑
i=1

(−I)gi.

The central symmetry of a zonotope means that if a generator gi is replaced by −gi, the
zonotope remains the same because every point of the zonotope can still be expressed as a
linear combination of the modified generators.

Invariance under Permutation of Generator Vectors.
Let Z be a zonotope defined by its generators {g1, g2, . . . , gd}. Permuting the columns of

the generator matrix does not change the zonotope, that is:

Z = [g1 g2 . . . gd] Id is equivalent to Z = [g2 g1 . . . gd] Id.

Zonotopes are defined by the set of their generators and are independent of the order in
which these generators are listed. Permuting the columns of the generator matrix does not
affect the zonotope because it does not change the set of possible linear combinations of the
generators.

▶ Definition 2 (Hyperplanes). A hyperplane H is the set of points x = (x1, x2, . . . , xn) that
satisfy the equation:

H = {x : aT · x = b} (7)

where:
a = (a1, a2, . . . , an) is the normal vector, perpendicular to the hyperplane, and aT is its
transpose.
b is a scalar that determines the position of the hyperplane relative to the origin.

In an n-dimensional space, a hyperplane is a subspace of dimension n− 1. It generalizes
the concepts of points, lines, and planes in higher dimensions.

▶ Theorem 3 (Intersection of Convex Sets). Let A and B be convex sets in a vector space.
Then, their intersection A ∩B is also a convex set.

▶ Theorem 4 (Hahn-Banach Separation Theorem). Let C be a convex set in a finite-
dimensional vector space. For any point x such that x /∈ C, there exists a hyperplane
that strictly separates x from C.

3 Hyperplanes based zonotopic Contractor

The main advantage of contractors [5], [2], [11] is their ability to reduce the size of a box by
narrowing the interval to retain only the desired set of data. The key idea is to refine the
box while satisfying two important conditions:
1. The reduced box [z]0 is always a subset of the original box [z], meaning that no unnecessary

data is included.
2. The intersection of the reduced box with the solution set S remains unchanged, ensuring

that no potential solutions are lost.
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In this work, we adopt a different approach aimed at reducing conservatism while
preserving the accuracy of all potential solutions. Specifically, we leverage the use of
zonotopes, which offer a more computationally efficient and less conservative alternative to
intervals. By utilizing zonotopes, we are able to achieve a more precise representation of
uncertainty, balancing computational manageability with improved solution integrity.

By definition, a zonotope is a convex set, and according to the theorem on the intersection
of convex sets (Theorem 3) the intersection of two convex sets is also convex. However, this
intersection does not necessarily result in a zonotope, which presents a challenge for efficient
computation. Thus, a crucial step in our method is to approximate this convex intersection
with a zonotope, simplifying subsequent calculations and manipulations.
To achieve this, hyperplanes are employed to enclose the intersection and construct a zonotopic
approximation. The justification for using hyperplanes stems from the Hahn-Banach theorem
(Theorem 4), which guarantees that two convex sets can always be separated by a hyperplane.
This allows us to enclose any convex intersection with hyperplanes, creating a zonotopic
envelope around the intersection. The process is carried out in three key steps:
1. Selection of Non-Collinear Hyperplanes: In this first step, the objective is to select

two non-collinear hyperplanes, denoted as H1 and H2, which means that they are neither
parallel nor aligned. Mathematically, this can be expressed by ensuring that the normal
vectors a1 and a2 of H1 and H2 respectively are linearly independent, i.e., the rank of
the matrix formed by a1 and a2 is equal to n:

rank([a1, a2]) = n (8)

where [a1, a2] is the concatenation of the normal vectors a1 and a2, and n is the dimension
of the space in which the intersection of the zonotopes is defined.
These hyperplanes are specifically chosen to pass through facets of the intersection of two
zonotopes, Z1 ∩ Z2. Let Fi denote a facet of the convex hull of the intersection, which
is a (n− 1)-dimensional face. Each hyperplane Hi (for i = 1, 2) is defined such that it
satisfies:

Hi : aT
i x = bi ∀x ∈ Fi (9)

2. Construction of Parallel Hyperplanes: Once the non-collinear hyperplanes Hi

are defined, the next step involves constructing parallel hyperplanes to these. Each
hyperplane is adjusted in space to be at a sufficient distance to encompass the entire
convex intersection. This distance is determined by identifying the farthest vertex v ∈ V

from the hyperplane Hi, where V is the set of vertices of the convex hull of the intersection.
The distance from a vertex v to the hyperplane Hi is given by the formula:

d(v, Hi) = |aT
i v − bi|
∥ai∥

(10)

The vertex vmax corresponding to the maximum distance is selected:

vmax = arg max
v∈V

d(v, Hi) (11)

Once vmax is identified, a parallel hyperplane Hparallel
i is constructed to pass through this

vertex. The equation of the parallel hyperplane is defined as:

Hparallel
i : aT

i x = bparallel
i (12)

where bparallel
i = aT

i vmax

DX 2024
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By selecting hyperplanes Hi that pass through all points x on the facet Fi, we minimize
conservatism in the zonotope approximation of the intersection. Additionally, by taking
the farthest vertex for the parallel hyperplane, we guarantee that the complete intersection
is enclosed without loss.

Figure 2 Illustration of the Zonotopic Contraction Method Using Hyperplanes.

This figure illustrates the key steps of the proposed zonotopic contraction method. The
initial zonotopes are represented by the red and blue shapes, each generated by different
sets of vectors. The intersection of these two zonotopes forms a complex convex region (in
gray). To approximate this intersection while reducing conservatism, we use hyperplanes
(depicted in green and orange) that enclose the intersection and define a new zonotopic
boundary. The resulting zonotope, shown in orange, effectively captures the intersection
of the original zonotopes, ensuring that the approximation remains both accurate and
computationally manageable. This process is iteratively refined to minimize the volume
of the final zonotope while preserving the integrity of all potential solutions within the
intersection.

3. Volume Comparison: Once the hyperplanes are defined and placed, we proceed with
an iterative volume comparison. The goal is to adjust the positions of the hyperplanes by
making them pass through other edges of the intersection, if any remain, and to check
all possibilities in order to find the optimal combination. This approach allows us to
minimize the volume of the final zonotope while ensuring that the intersection is properly
enclosed.

4 Model and simulation results

To test the proposed contractor, the commonly known “Linear Bicycle Model” [10] is used.
The considered continuous time model and the linearization assumptions are presented

as follows:
1. State Variables:

β(t): the sideslip angle, representing the difference between the direction of the vehicle’s
movement and its orientation.
ψ(t): the yaw angle, corresponding to the vehicle’s rotation around its vertical axis.
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2. Forces:
Ftyf (t): lateral forces on the front tires.
Ftyr(t): lateral forces on the rear tires.
Ftxf (t): longitudinal forces on the front tires.
∆Ftxr(t): differential braking force on the rear tires, calculated from the braking
torques Tbr.

3. Linearization Assumptions:
The sideslip angles |β| are small, less than 7 degrees.
The longitudinal slip ratio is small, less than 0.1.
The steering angles δ are small, allowing the approximation cos(δ) ≈ 1.

Figure 3 Representation of the bicycle model illustrating the car’s lateral behavior [10].

The linearized model yields the following equations for lateral tire forces:

Ftyf (t) = Cfβf (t) (13)

Ftyr(t) = Crβr(t) (14)

where βf (t) and βr(t) are the front and rear sideslip angles, given by:

βf (t) = δ(t) − β(t) − lf ψ̇(t)
v

, (15)

βr(t) = β(t) + lrψ̇(t)
v

. (16)

This leads to the following state-space representation:[
β̇(t)
ψ̇(t)

]
=

[
− Cf +Cr

mv 1 + µ− lrCr+lf Cf

mv2

− lrCr+lf Cf

Iz
− l2

f Cf +l2
rCr

Izv

] [
β(t)
ψ(t)

]

+
[

Cf

m 0 0 0
lf Cf

Iz

1
Iz

SrRtr

2Iz
− SrRtr

2Iz

] 
δ

Mdz

Tbrl

Tbrr


(17)

DX 2024



26:8 Hyperplanes Based Zonotopic Contractor

The parameters used in the previous formulas are defined as follows:
m: Vehicle mass, which is 1535 kg.
Iz: Vehicle yaw inertia, equal to 2149 kg·m2.
Cf : Lateral stiffness of the front tires, given as 20000 N/degree.
Cr: Lateral stiffness of the rear tires, also 20000 N/degree.
Sr: Longitudinal stiffness of the rear tires, valued at 12720 N.
lf : Distance from the center of gravity (COG) to the front axle, which is 1.4 meters.
lr: Distance from the center of gravity to the rear axle, set at 1 meter.
tr: Length of the rear axle, specified as 1.4 meters.
R: Tire radius, with a value of 0.3 meters.
µ: Tire-to-road friction coefficient, ranging from 0.4 to 1.
v: Vehicle speed, ranging from 50 to 130 km/h.
δ: Steering angle.
Mdz: Yaw moment disturbance.
Tbrj : Braking torques at the left and right rear tires (where j = {l, r}).

These parameters are crucial for modeling the vehicle’s lateral dynamics. These values
were obtained through an identification process on the Renault Mégane Coupé (see [4]).

Note that the bicycle model has been discretized to be used for the simulation. The filter
undergoes the following steps:
1. Simulation Step :

The equations for the actual system state and measured output are given by:{
xreal(k) = Axreal(k − 1) +Bu(k)
[ymeasured]z = Cxreal(k) + [v]z

(18)

where:
xreal(k) is the time derivative of the actual state vector at time step k.
A and B are system matrices.
u(k) represents the input vector at time step k.
C is the output matrix (identity matrix).
[v]z denotes the bounded noise affecting the measurements.

Note the that the real state and the measurement are transformed into zonotopes to cope
with the filter requirements.

2. Propagation Step:
The equations for predicting and propagationg the next state and output are:{

[x̂(k)]z = A[x̂(k − 1)]z +Bu(k) + [w]z
[ŷ(k)]z = C[x̂(k)]z + [v]z

(19)

where:
[x̂(k)]z is the predicted zonotope state at time step k.
[ŷ(k)]z is the predicted zonotope measure at time k.
[w]z denotes the bounded noise affecting the system’s dynamics.

3. Correction Step : The correction of the estimated state x̂(k) based on the measured
output is performed using:{

intersect = [ŷ(k)]z ∩ [ymeasured]z
x̂r(k) = [intersect]z

(20)

where [intersect]z is an approximate zonotope representation that is close to the true
intersection but simplifies the computation.



R. Bengamra, S. Fergani, and C. Jauberthie 26:9

Here, ŷ(k) is directly equivalent to x̂(k) due to the identity matrix C. Thus, the correction
step adjusts the estimated state x̂r(k) to better match the measured output ymeasured,
considering any discrepancies or noise in the measurements.

The system is represented by the following state-space matrices:

A =
[

− Cf +Cr

mv 1 − lrCr+lf Cf

mv2

− lrCr+lf Cf

Iz
− l2

f Cf +l2
rCr

Izv

]

B =
[

Cf

mv 0 0 0
lf Cf

Iz

1000
Iz

Rtr

2Iz

−Rtr

2Iz

]

C =
[
1 0
0 1

]
D =

[
0 0 0 0
0 0 0 0

]
The initial conditions are set as follows:
The initial state vector x0 is [0, 0].
The initial zonotope [x0]z is initialized with a center of [0, 0] and generators [0, 0.5; 0.5, 0].

Input values uk, which include steering angles, yaw moment disturbances, and braking
torques, are loaded for simulation.

Figure 4 Example execution of the zonotope contractor method with k = 30 and an error rate of
0.1131.

DX 2024
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The error rate is defined as the relative difference between the volume of the intersection
of the predicted and actual zonotopes and the volume of the new zonotope. It is calculated
as follows:

error_rate = 1 − volume(intersect)
volume(new_zonotope) (21)

Figure 5 Example execution of the zonotope contractor method with k = 600 and an error rate
of 0.03035.

Figure 6 Contractor Zonotope over Iterations. This plot shows the evolution of the contractor
zonotope as it becomes tighter with each iteration, illustrating how the method increasingly refines
the estimated state.
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Figure 7 Comparison of the contractor zonotope estimates (in red) with the measured zonotopes
(in blue) over N = 864 iterations. The contractor zonotope progressively tightens around the true
state, demonstrating improved accuracy in state estimation as iterations advance.

The results demonstrate that the hyperplane based zonotopic contractor provides in-
creasingly tighter estimates of the intersection as the iteration progresses from k = 1 to
k = N = 864. This tightening is reflected in the improved accuracy of the state estimation, as
the contractor becomes more refined with each iteration, effectively narrowing the uncertainty
in the intersection with the measured zonotope.

Moreover, the error rate remains relatively low throughout the iterations. This low error
rate indicates that the proposed contractor effectively approximates the true intersection,
capturing the system’s behavior with high fidelity. The tight bounding of the intersection
suggests that it is a reliable method for state estimation in the presence of uncertainties and
noise, making it a robust tool for systems modeled using zonotopes

5 Conclusion and future works

This work presents a novel method for zonotopic contraction using hyperplanes, with the
goal of reducing conservatism while preserving the zonotope’s structural integrity. The
key advantage of this approach is its ability to maintain a zonotopic structure that closely
approximates the convex intersection of the original zonotopes. By leveraging the properties
of hyperplanes, we accurately approximated this intersection, ensuring that the resulting
zonotope remains a manageable convex set. Through the use of non-collinear and parallel
hyperplanes, we systematically refined the zonotope boundaries, minimizing volume while
retaining the critical characteristics of the intersection. Although we cannot prove the
optimality of this approach in all scenarios, we provide strong guarantees that it reduces
conservatism and captures all potential solutions within the intersection. This method’s

DX 2024
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increased precision is especially relevant in safety-critical systems such as autonomous driving
and robotics. For example, in autonomous vehicle navigation, the accurate capture of the
intersection of state spaces represented by zonotopes leads to better trajectory planning and
improved obstacle avoidance, thereby reducing collision risks and ensuring safer navigation in
uncertain environments. Furthermore, in control and fault detection systems, this approach
enhances state estimation accuracy and fault diagnosis. In fields like industrial robotics
and aerospace, precise zonotopic contraction improves uncertainty management, optimizing
system performance and reducing failure risks.

Another point concerns the computational complexity, particularly in Step 3 (Volume
Comparison). Currently, the recursive volume comparison remains manageable with the use
of two hyperplanes. However, as we extend the method to incorporate more hyperplanes
in higher-dimensional spaces, we anticipate an increase in computational complexity. This
potential increase has been taken into account, and future works will focus on optimizing the
algorithm to mitigate this impact. Our current approach is designed to retain the inherent
simplicity of zonotopes while exploring more efficient strategies for volume minimization.
At this stage, the computational overhead remains low with the two-hyperplane scenario.
Nevertheless, as we expand to higher dimensions and incorporate additional hyperplanes,
we are actively pursuing optimization strategies for the recursive process. Our goal is to
strike a balance between computational efficiency and accuracy, enabling the method to scale
effectively with increasing dimensionality.
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