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Abstract
In an industrial maintenance context, degradation diagnosis is the problem of determining the
current level of degradation of operating machines based on measurements. With the emergence of
Machine Learning techniques, such a problem can now be solved by training a degradation model
offline and by using it online. While such models are more and more accurate and performant,
they are often black-box and their decisions are therefore not interpretable for human maintenance
operators. On the contrary, interpretable ML models are able to provide explanations for the model’s
decisions and consequently improves the confidence of the human operator about the maintenance
decision based on these models. This paper proposes a new method to quantitatively measure the
interpretability of such models that is agnostic (no assumption about the class of models) and that
is applied on degradation models. The proposed method requires that the decision maker sets up
some high level parameters in order to measure the interpretability of the models and then can
decide whether the obtained models are satisfactory or not. The method is formally defined and
is fully illustrated on a decision tree degradation model and a model trained with a recent neural
network architecture called Multiclass Neural Additive Model.
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1 Introduction

Condition monitoring plays an inevitable role in the safety of any industrial system, especially
when it comes to the sensitive parts of machines, like the bearings in rotating machinery, which
are prone to faults. Fault diagnosis of rotating machinery is a technique of fault detection,
isolation and identification, which can be used as an assistance for system maintenance.
Essentially, fault diagnosis can be regarded here as a pattern recognition problem that
aims at determining the current degradation state of the rotating machinery based on the
available set of measurements and its possible future trend (prognostics). As a powerful
pattern recognition tool, Artificial Intelligence (AI) and especially Machine Learning (ML)
has attracted great attention from many researchers and shows promise in rotating machinery
fault recognition applications [7, 2]. While the main reason for using ML techniques is usually
the models’ performance (accuracy score, computational speed), the question about the
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27:2 On a Method to Measure Model’s Interpretability

ability of humans to understand them is of great importance. The interpretability of models
is essential as soon as these models are effectively used in practice to solve problems and
provide decisions for humans and/or for their businesses [23]. In our industrial context, such
models are used to solve maintenance decision problems. Maintenance consists in optimally
deciding when to replace a component in a system (like a machine tool) so that the system is
always operating properly and manufacturing waste is prevented. To get such a maintenance
strategy, the objective is to add relevant sensors in the system, to acquire time series at
operating time and use a degradation model to check the current health of every component
based on these time series. Amongst these ML methods, Neural Network approaches are
more and more used as they can handle large and complex computations to produce efficient
models. However, even if already proposed ML methods greatly improve the degradation
diagnosis of such equipments, degradation models obtained by deep learning techniques are
known to be black-boxes, meaning that they cannot be open to understand their decisions as
interpretable. Some previous works have reached a certain level of explainability like [17] but
these results do not give the full insight about how interpretable the effective model’s choices
are. However, it is important for a human operator to understand how an algorithmic model
determines a maintenance decision with respect to human-interpretable physical laws and
quantities: how and why such a model plans the decision. In fact, by providing the physical
reason why the model decides about a degradation level, model’s interpretability not only
provides a diagnosis of the equipment but also improves the confidence needed by a human
operator towards trained models [18].

In this paper, we address the problem of how to effectively and quantitatively measure
the interpretability of a pretrained model that results from a Multiclass Supervised Learning
problem and apply it to pretrained degradation models. The purpose of this multi-factor
interpretability score is to let business skateholders, like maintenance operators, decide
whether the obtained model is sufficiently interpretable for their own use. The proposed
method is agnostic in the sense that it does not rely on a specific ML technique. We actually
aim at applying it to different ML techniques that are currently used to solve the maintenance
problem (i.e. Decision Tree (DTs), Multi-Layer Perceptrons (MLPs), Neural Additive Model
for multi-class supervised learning (MNAMs) [9]). We also propose that the interpretability
measure is parameterized, and the initialization of these parameters is the responsability of
the human decision maker.

The paper is organized as follows. Section 2 first discusses the notion of interpretability
with respect to the notion of local/global explainability in models and details related work
about how to score interpretability. Section 3 describes a first degradation model as a simple
decision tree model that will be used throughout this paper as an illustration of the concepts
that we introduce to measure interpretability. Section 4 formally defines the way to score
interpretability. Finally, Section 5 discusses the way to apply the interpretability scoring
framework to a second degradation model that has been trained with our own recent neural
network architecture: Multiclass Neural Additive Models (MNAMs) [9].

2 About interpretable models

2.1 Concepts and definitions
Lately, the Explainable Artificial Intelligence (XAI) community has been using various terms
referring to the comprehension of machine learning models: interpretability, explainability,
intelligibility or even comprehensibility [20]. As the vision behind these concepts seems to be
fuzzy and does not refer to a monolithic concept so far [14], we have decided in this paper to
propose the following definitions for explainability and interpretability.
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Explainability of a machine learning model is based on the ability to obtain rules that
highlight the relations between attributes and predictions. These rules are conditional
functions like: “IF A > 1 and B < 4 THEN PREDICTION P” with two features A and
B in this example. Based on these rules, two types of explainability can be defined: local
explainability and global explainability.

Local explainability means the ability of identifying, for a given prediction, the rule
that shows the relation between the feature and that specific prediction. The rule explains
why a particular prediction was made based on the features of the instance in question.
Local explainability is inherent in Decision Trees (DT) because the rule corresponding to
a specific prediction can be extracted from the leaf node where the prediction concludes.
For other methods such as MLP, it can be difficult to extract such a rule because of the
complex interactions between features and the non-linearity of the model. To address this
challenge, various post-prediction processing methods have been developed. For instance,
these include extracting rules from the weights and activations of a MLP [8]. Additionally,
widely-used methods, such as Local Interpretable Model-agnostic Explanations (LIME) [22]
and SHapley Additive exPlanation (SHAP) [17], can be used to approximate the rules linking
features to predictions. However, all these methods only provide approximations of the rules
and, therefore, do not always accurately reflect the model’s decision-making process. Other
methods have focused on the extraction of symbolic rules [12], [25], with the most efficient
recent framework being Deep Red [28] which extract approximate IF-THEN-ELSE rules
from neural networks.

Global explainability is a stronger concept than local explainability, achieved by extracting
the entire set of rules used by a model. This allows for a general understanding of how
the model operates and how it will make decisions for different instances. Whatever the
predictions the model will perform in the future, they can be explained by these feature-based
rules. Global explainability ensures the algorithmic transparency of the models because of
this set of rules; it becomes possible to determine the classification of any instance without
explicitly running it through the model. DT are inherently globally explainable. A DT rule
is defined by a branch of the tree and the thresholds defined at each node along the branch.
All rules can be displayed, allowing a human to manually predict outcomes by following
these rules. In contrast, Multi-Layer Perceptrons (MLP) do not provide precise model rules
because a fully connected network is highly complex. Therefore, MLPs are not globally
explainable.

Interpretability is the model’s ability to be understood by humans. This is achieved by
keeping the explanation as minimalist as possible and is therefore a more quantitative property
as opposed to global explainability. The fewer the number of rules and the fewer the number
of features used within to make a prediction, the higher the interpretability will be. According
to our definitions, interpretability implies global explainability. Interpretability is bringing
up together concepts as simulatability, decomposability from [14] and comprehensibility
from [20] which are about maximizing the human comprehension using the minimum set of
rules. Any type of model may lack of interpretability. For instance, a DT may have a high
number of rules or be excessively deep. As stated above, globally explainable models rely on
the fact that it is possible to associate their decision to a set of rules. However, rule extraction
methods often prioritize the fidelity of the extracted rules over their quality [3, 27] which
leads to a lack of interpretability. In [28], for instance, the quality of the rules is evaluated in
terms of their accuracy and fidelity to the original model, while their comprehensibility is
secondary and measured only by their length and simplicity.
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This paper addresses the problem of scoring interpretability of a globally explainable
model whatever methods have been used to extract the model’s rules. We aim at measuring
how interpretable the model’s decisions are.1

2.2 Metrics for interpretability: related work
A survey in [6] offers a comprehensive review of causal interpretable models, discussing
methods, and evaluation metrics for interpretability. [26] proposes to measure a model’s
interpretability using a decision tree-based model, but the selection criteria for learning are
based on human perception and lack formal precision. Other works deal with optimised
rule extraction under various constraints in order to obtain an interpretable result [5, 15].
The interpretability of decision trees was enhanced in [24] by reducing the number of
distinct attributes required to explain classifications. The SER-DT algorithm, minimizes
the explanation size (i.e., the number of attributes used) while maintaining high accuracy
and interpretability. A trade-off between tree depth and explanation size is introduced,
demonstrating that both can be optimized simultaneously. The concept of explanation size
is presented as a new metric for assessing interpretability. In [4] both length and coverage
are metrics for assessing rule interpretability. Length refers to the number of conditions in a
rule; shorter rules are more interpretable due to their simplicity. Coverage measures how
many data points a rule applies to; broader coverage indicates greater generality, making the
rule easier to understand and reducing the need for many low-coverage rules. A quantifiable
interpretability score is also proposed in [19] to evaluate and compare rule-based and tree-
based algorithms. This score is obtained from a weighted sum of three metrics: predictivity,
stability and simplicity. Predictivity measures the accuracy of the model’s predictions,
ensuring trust in its decision-making capabilities. Stability evaluates how robust the model’s
rules are to changes in the input data, ensuring that small perturbations do not drastically
alter the generated rules. Simplicity is defined by the length and number of rules. The
shorter and fewer the rules, the more interpretable the model is considered to be.

In this paper, we propose a parameterized method to score the interpretability of any
globally explainable model and to filter out non interpretable rules. This method combines
into a unique score two metrics: namely the accuracy and the coverage of the rules.

3 Running Example

The way to score model’s interpretability will be illustrated all along this paper with the
following example that is a multi-class supervised learning problem. This example has been
selected as it is based on real data, and it is simple.

3.1 Experimental setup
In Bosch-Rodez, we set up an experimental platform (full details in [10]) that records time
series on a set of spindles (critical parts of machine tools under maintenance). Figure 1
illustrates this experimental platform. To initiate the experiment and get the training
measured data, an available set of five spindles has been installed on the test-bed in a closed
chamber that simulates the real operating conditions. Each spindle is connected with cooling
oil inlet and outlet for cooling down the spindle (lubrication of the bearings). Then a VSA

1 Note that this paper does not discuss the problem of model accuracy. A model can make wrong decisions
that are perfectly interpretable.
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005 sensor (the accelerometer) has been screwed on the front part of the spindle as it would
be inside a machine tool using this type of spindle at operating time. This vibration sensor is
thus located between the pair of bearings of the spindle. It measures the vertical acceleration
just on the top of these bearings. The cable of the VSA sensor is connected to an IFM VSE
100 module that contains the software allowing to record the vibratory signals, a module that
is used at operating time. The objective is to acquire data at 9K RPM so that frequency
measurements are within the range of the available VSA sensor.

Figure 1 Experimental test-bed.

These time series consist of vibration data. The degradation state of each spindle that
is measured is known by expertise and leads to five classes C = {1, . . . , 5} that represents
the degradation of a spindle: from Class 1 that characterises new spindles to Class 5 that
characterises worn-out and failing spindles. In this context, the objective of degradation
diagnosis is to be able to determine at operating time what is the effective class of the
measured spindle. Especially if the operating spindle is in Class 4, its replacement would be
necessary as it is about to fail.

3.2 Degradation model
Our objective is then to learn from the time series a degradation model M that is able to
predict the degradation class c ∈ C of a spindle. To do so, available raw time series have
been converted to spectrograms (short fast Fourier transforms) so that each time series is
represented by a set of 409 frequency amplitudes (from 0Hz to 9985Hz with a resolution of
24.414Hz). We denote by X the available dataset, each individual x ∈ X is then composed of
409 features. In the following, fa(x, f) will denote the frequency amplitude at the frequence f

in the individual x. Experts were able to label any individual x with an ageing class denoted
ℓ(x) ∈ C.

Figure 2 presents the degradation model M that has been trained on these labeled data.
It is a DT that can be used to assist the maintenance decision. For instance, if at operating
time, a new individual x is available and if fa(x, 3800) ≤ 186.224 and fa(x, 175) > 277.893,
the model M predicts the spindle is currently in class 2 and no replacement is required yet.
Each node is also associated with the following information: Ni is the number of individuals
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fa(x, 3800) ≤ 186.224
N0 = 4720

r0 : [793, 791, 798, 778, 1560]
class: 5

fa(x, 175) ≤ 277.893
N1 = 2357

r1 : [0, 791, 770, 778, 18]
class: 2

fa(x, 9800) ≤ 363.553
N3 = 1566

r3 : [0, 0, 770, 778, 18]
class: 4

fa(x, 7175) ≤ 133.045
N7 = 796

r7 : [0, 0, 0, 778, 18]
class: 4

⊤
N11 = 778

r11 : [0, 0, 0, 778, 0]
class: 4

T

⊤
N12 = 18

r12 : [0, 0, 0, 0, 18]
class: 5

F

T

⊤
N8 = 770

r8 : [0, 0, 770, 0, 0]
class: 3

F

T

⊤
N4 = 791

r4 : [0, 791, 0, 0, 0]
class: 2

F

T

fa(x, 5850) ≤ 213.832
N2 = 2363

r2 : [793, 0, 28, 0, 1542]
class: 5

⊤
N5 = 1542

r5 : [0, 0, 0, 0, 1542]
class: 5

T

fa(x, 6350) ≤ 7711.399
N6 = 821

r6 : [793, 0, 28, 0, 0]
class: 1

⊤
N9 = 28

r9 : [0, 0, 28, 0, 0]
class: 3

T

⊤
N10 = 793

r10 : [793, 0, 0, 0, 0]
class: 1

F

F

F

Figure 2 Degradation model of a spindle based on vibration frequencies.

from X that are covered by the node, and a vector of numbers that shows the distribution
of these individuals with respect to their label. For instance the root node covers 4720
individuals (that is the size of X), 793 individuals are labeled 1, 791 are labeled 2, etc.

While this DT has been trained on real data, it must be however noticed that this model
is not satisfactory yet in terms of performance and accuracy as the available dataset X is
still limited and more recordings are required to enrich the dataset X. This model is however
satisfactory for the sake of illustration of the way to measure its interpretability.2

4 Rule-based interpretability score

This section formally introduces a method to score the interpretability of a model that is
globally explainable. For the sake of illustration, this method is applied to the DT that
is detailed in Section 3. As detailed in Section 2, a model M is globally explainable if
there exists a set of feature-based rules that can be used to provide an explanation for any
prediction.

In the following, A denotes the set of available attributes of the problem. An individual
is generally denoted x = (x1, . . . , x|A|) where xi is the value of x associated with the ith

attribute of A. The space of every possible individuals is denoted X and the available dataset
for training the model is denoted X, obviously X ⊆ X . Let B denote a subset of A, XB

denotes the projection of X on the attributes in B.

▶ Definition 1 (Rule). Let B be a subset of features A, a rule r over B on a class c ∈ C is a
Boolean function

r : XB → {T, F}
xB 7→ r(xB). (1)

2 Interpretability does imply accurracy and reciprocally.
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The purpose of a rule r is to assert whether the prediction of an individual x ∈ X is c or not
according to the rule. Such a rule can be used as an explanation of why the prediction of
individual x given by the underlying model M is class c:

M predicts class c for individual x because r(x) is true.

As opposed to a model, a rule r is usually defined over a subset of features B. This subset
is called the support of rule r. In the following, r(x) denotes the effective prediction r(xB)
where B is the support of r.

In Figure 2, each node of the DT is associated with a rule. For instance, consider the node
associated with rule r3. This node is associated with class 4 as it is the class of the largest
set of individuals from the training dataset X covered by this node (i.e. 778 individuals
over 1566). Rule r3 associated with this node informally states that any individual whose
frequency amplitude at 3800Hz is smaller than 186.22 and frequency amplitude at 175Hz is
smaller than 277.893 should be of class 4. The support of r3 only consists of two attributes
(frequency amplitude at 3800Hz and frequency amplitude at 175Hz) over 409 attributes.
Rule r3 on class 4 is formally defined as follows:

r3(x) iff fa(x, 3800) ≤ 186.224 ∧ fa(x, 175) ≤ 277.893

Another example is rule r5 on class 5 that is associated with a leaf node of the DT. The
support of rule r5 is the frequency amplitudes at 3800Hz and 5850Hz, formally:

r5(x) iff fa(x, 3800) > 186.224 ∧ fa(x, 5850) ≤ 213.832

Note that the root node of the tree is also associated with a rule r0 on class 5. The
support of r0 is empty and ∀x ∈ X , r0(x).

▶ Definition 2 (Rule coverage). Let r be a rule on a class c, the coverage of the rule r over
a dataset X is:

cvr(r) = {x ∈ X, r(x)}. (2)

The correct coverage of the rule r over a dataset X is:

ccvr(r) = cvr(r) ∩ {x ∈ X, ℓ(x) = c}. (3)

Two rules r1 and r2 are disjoint if:

cvr(r1) ∩ cvr(r2) = ∅. (4)

Back to Figure 2, the dataset X is composed of N0 = 4720 individuals and rule r0 covers
all of them (|cvr(r0)| = N0). Generally speaking, for every rule ri in Figure 2, |cvr(ri)| = Ni.
Any node of the tree displays the size of the associated set ccvr(r) in bold: for example,
|ccvr(r1)| = 791 (among 2357 individuals covered by r1, only 791 are labeled with class 2).
Disjoint rules in a DT are rules that do not belong to the same branch. For instance, rules
r12 and r5 on class 5 are disjoint, while r2 and r5 are not (rule r2 subsumes r5).

▶ Definition 3 ((τ, ε)-rule). Let τ ∈ [0, 1], ε ∈ [0, 1], a (τ, ε)-rule on a class c over a dataset
X is rule r such that:

|ccvr(r)|
|{x ∈ X, ℓ(x) = c}|

≥ τ,
|cvr(r) \ ccvr(r)|

|cvr(r)| ≤ ε (5)

DX 2024
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Parameter τ is a minimal coverage rate that is selected by the decision maker before the
extraction of a set of interpretable rules. A rule r with an effective coverage rate lower than
τ is considered by the decision maker not enough significant as it covers too few individuals
from the dataset. Rules with low coverage rate might in fact be due to overfitting and could
not be considered as interpretable. Parameter ε is the maximal error rate. This error rate is
also selected by the decision maker before the extraction of a set of interpretable rules. If a
rule on a class c has a low error rate ε, it means that the explanation provided by the rule
for class c is given with a high level of confidence 1 − ε. Individuals misclassified by the rule
and included in the error rate can be considered anomalies or noise if this rate is low. This
is valid within the context of the dataset used to train the model, as it reflects the model’s
perspective based on the data it has seen.

Here are a few examples based on Figure 2. Rule r2 is on class 5, |ccvr(r2)| is 1542.
The number of individuals in X labelled with class 5 is 1560 (see details in node r0). So
the coverage rate of r2 is (1542/1560) = 98.89%. Looking now at the error rate of r2, it is
given by (2363 − 1542)/2363 = 34.74%. Therefore, by Definition 3, rule r2 is a (τ, ε)-rule
for any couple (τ, ε) such that τ ∈ [0, 0.9889] and ε ∈ [0, 0.3474]. While r2 is covering most
individuals of class 5 in X, explaining that an individual x ∈ X is of class 5 by rule r2 (i.e.
r2(x) is true) is 34.74% erroneous. As a second example, now let us have a look at rule r8 on
class 3. Its coverage is 770/798 = 96.49% and the error rate is 0%. Any individual x ∈ X

such that r8(x) is of class 3, r8(x) explains the prediction of x without error. Moreover,
96.49% of the individuals of class 3 in X can be explained by r8. All the results are presented
in Table 1.

Table 1 Couples (τmax, εmin) for every rule in the decision tree of Figure 2.

Rules r0 r1 r2 r3 r4 r5 r6

Class 5 2 5 4 2 5 1
τmax (%) 100 100 98.89 96.49 100 98.89 100
εmin (%) 66.94 66.44 34.74 50.31 0 0 3.41

Rules r7 r8 r9 r10 r11 r12

Class 4 3 3 1 4 5
τmax (%) 100 96.49 3.51 100 100 1.1
εmin (%) 2.26 0 0 0 0 0

We propose to score the interpretability of a model M based on the following definition.

▶ Definition 4 ((T, P, τ, ε)-interpretability). A model M is (T, P, τ, ε)-interpretable for a class
c ∈ C if there exists a set of rules I = {r1, . . . , rk} on class c from M such that:

Rule ri is a (τ, ε)-rule, for any i ∈ {1, . . . , k}
k ≤ P

Any pair of distinct rules in I is disjoint

T ≤
|
⋃k

i=1 ccvr(ri)|
|{x ∈ X, ℓ(x) = c}

| (6)

A model M is (T, P, τ, ε)-interpretable if it is (T, P, τ, ε)-interpretable for every class c ∈ C.
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To score the interpretability of a model M , the decision maker must set up four parameters
and extracts the rules according to these parameter settings:
1. Parameter T is the global covering rate. This parameter ensures that the set of extracted

rules covers a minimal amount of individuals in X labeled with the same class c. The
higher T is, the more chance is that an new individual x ∈ X such that M(x) = c can be
explained by one of these extracted rules, hence a better interpretability.

2. Parameter P is the maximal number of rules to extract. The lower P is, the more
interpretable the model is (for a given set of parameters T, τ, ε) as the set of extracted
rules are then more concise.

3. Parameter τ , as explained above, is a minimal coverage rate for a rule to be part of the
selection. If parameter τ is too low, the decision maker accepts to select rules that cover
very few individuals with regards to the dataset X. A rule with a τ that is low may be
trustful due for instance to overfitting problems.

4. Parameter ε is the maximal error rate. The higher ε is, the more error-prone, the selected
rules will be.

As a first example, let us consider that P = 1, T = 98%, τ = 80% and ε = 0%. With
these settings, the decision maker is expecting that the model is highy interpretable by
looking for one rule that covers most of the individuals without any error. In Figure 2, there
exists such a rule, it is rule r4 on class 2. Therefore, the DT is highly interpretable for
class 2. For any individual x ∈ X such that the model predicts class 2, it can also provide
the following explanation:

r4(x) iff fa(x, 3800) ≤ 186.224 ∧ fa(x, 175) > 277.893 (7)

In the context of maintenance, it simply means that the operator does not require any
maintenance on the spindle as it is still in class 2 and the explanation provided by the
model for this degradation class is that the current frequency amplitude at 3800Hz is lower
than 186.224 (the spindle is not new) and the current frequency amplitude at 175Hz is
greater than 277.893 (the spindle has not yet reached class ≥ 3). The model is as highly
interpretable for class 3. The rule that covers most of the individuals of class 3 is rule r8 but
its covering rate is below T = 98%, there is no rule that can be selected for class 3 based
on the previous settings. The model is (96%, 1, 80%, 0)-interpretable for class 3, it is also
(100%, 2, 3%, 0%)-interpretable: by selecting rules r8 and r9, there is a full coverage, and it
is not error-prone, however, the selection of r9 requires a low minimal covering rate which
might be considered as a suspicious explanation.

Looking now at the interpretability of the model from a global viewpoint, by setting
P = 1, T = 96%, τ = 80% and ε = 0%, it can be noticed one rule can be extracted from
the tree for each class c ∈ C, namely: 1 → r10, 2 → r4, 3 → r8, 4 → r11, 5 → r5. Therefore,
the model is (96%, 1, 80%, 0)-interpretable. However, if the decision maker looks for rules
with the maximal coverage 100%, then it minimally enforces P = 2 and τ = 2%, the same
model is therefore (100%, 2, 1%, 0)-interpretable (the extracted rules are then all the rules
associated with the leaf nodes of the tree).

As this DT has been trained on a small experimental dataset, it has excellent performance
due very likely to overfitting. Most of the time, rules are error-prone, hence the high
interpretability of this model. Suppose now for the sake of illustration that nodes associated to
rules r7, r8, r11, r12 are not present in this tree. Then the model would be (100%, 1, 100%, 51%)-
interpretable on class 4. The only rule that could be used as an explanation for class 4 would
likely fail to do so by providing an explanation for individuals that are actually not in class
4, hence a low interpretability of the model for class 4.
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27:10 On a Method to Measure Model’s Interpretability

Figure 3 MNAM architecture.

5 How to score the interpretability of a MNAM?

5.1 Multi-class Neural Additive Models
There are plenty of supervised learning methods available at different scales that aim at
learning interpretable models such as Linear Models, Decision Trees or Generalized Additive
Models (GAMs) [16]. However, more complex and performant methods such as Multi Layer
Perceptron (MLP) are usually required to learn accurate degradation models for maintenance.
However, MLP are still considered as black box models so far, as the interactions between
the hidden layers of the model cannot be interpreted. Recently, to overcome this issue in
such models, Neural Additive Networks (NAMs) [1] have been introduced. This supervised
method proposes to use the concepts of GAMs applied to neural network structures. To date,
NAMs have been able to solve supervised task like regression problems or binary classification
problems [21]. We have recently proposed the Multi-class Neural Additive Model (MNAM)
as an extended version of the NAM algorithm for multi-class classification and applied it to
solve a predictive maintenance problem [9]. The objective of this extension is to improve the
interpretability of the models while keeping the benefit of a Neural Network architecture
(performance, accuracy, ...). The MNAM architecture is presented in Figure 3 and briefly
described here below (for more details see [9]).

A MNAM architecture is made of |A| feature networks. Each feature network Snni
is

composed of its input xi, a structure Hi made up of successive hidden layers defined during
the model design phase, and its output fi(xi). The Hi structure can be composed of several
hidden layers, generally made up of regular units, using a ReLU activation function. One
of the problems with Snn that have only one input feature is that they often struggle to
approximate 1D sharp jump functions with the regular unit and a ReLU activation function
on the first layer of Hi. To solve this issue, a new hidden unit, called EXp-centered-Unit
(ExU), has been introduced [1] and is preferably placed in the first layer of the Hi structure.
It can learn and adjust the weight parameters in logarithmic space. Each new hidden unit
using an activation function σ compute h(x) as follows:

h(x) = σ(ew(x − b)). (8)
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In case that x may have negative values, these first layer units can also be replaced by
ExpDive hidden units as proposed in [13]. A ExpDive hidden unit is defined by:

h(x) = σ((ew − e−w) × (x − b)). (9)

The structure of each Snni
is composed of one output fi,c(xi) for each class c involved in

the classification problem. The layer s of the MNAM architecture then gathers the outputs
of the feature networks for each class c as a sum of these outputs:

si(x) =
|A|∑
i=1

fi,1(xi) + βi (10)

where βi is a bias. Finally, since the network now has C outputs, a softmax function is
applied to transform the layer s into a probability distribution that produces the MNAM
output ŷ :

ŷ = σsoftmax([si(x)]i∈{1,...,C}) =
[

esi(x)∑C
j=1 esj(x)

]
i∈{1,...,C}

(11)

5.2 MNAM interpretability
MNAMs are glass-box models defined in [9] which use a methodology belonging to the family
of Generalized Additive Models [11] known for their ability to capture linear and non-linear
relations between features and predictions while remaining globally explainable. The global
explainability of MNAM mainly rely on the existence of so-called shape functions that can
be computed once the model has been trained. They represent the exact description of
the model decision process for all features [1]. The shape function of a feature ai for the
class j ∈ {1, . . . , C} is given by the plot of all predictions from dataset X, that is, for any
individual x = (x1, . . . , xC) ∈ X, the plot of (xi, fi,j(xi)).

Figure 4 Example of two shape functions extracted from a Multi-class Neural Additive Model
showing how the model classifies individuals with respect to the given features (namely Peak_BPFI,
Kurtosis_BSF) [9].

Figure 4 illustrates a selection of two shape functions from a MNAM model that has
been trained on a similar problem [9] as the one detailed in Section 3 (degradation diagnosis
of bearings amongst the class healthy, stage 1, stage 2 ). The main difference here is that
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instead of spectrograms of frequency amplitudes as inputs, the selected features are statistics
over a set of predefined frequency values that have a physical meaning (BSF: Ball Spin
Frequency, BPFI: Ball Pass Frequency Inner, ...). This figure shows how the trained model
actually classifies any individual of the dataset X with respect to its Kurtosis_BSF feature
(kbsf ) and its Peak_BPFI feature (pbpfi). The shape functions for Kurtosis_BSF feature
clearly defines a rule between the kurtosis and the degradation of the spindle bearings: for a
Kurtosis_BSF within the range [0, 25], it predicts a healthy stage, for a range in [25,32] the
stage 1 and for [32,72] only stage 2. In this example, this rule is simple enough for a human
to understand the model’s decision and is therefore interpretable. Similarly, as the shape
functions associated with Peak_BPFI feature are all of them flat, it is pretty intuitive that
the interpretation of the bearing’s degradation does not rely on this feature.

In the aim of measuring the interpretability of such a model with the framework that is
defined in Section 4, rules as defined in Definition 1 must be extracted from the shape functions.
Consider for the sake of simplicity, that the diagnosis machine learning problem defined here
above is only based on both features A = {pbpfi, kbsf }. For any individual x ∈ X, according to
the MNAM model, a possible way to design a rule r on class c ∈ C = {healthy, stage1 , stage2}
is as follows:

r(x) = {pbpfic(xpbpfi) + kbsf c(xkbsf ) = max
c′∈C

(pbpfic′(xpbpfi) + kbsf c′(xkbsf )}. (12)

Intuitively speaking, such a rule r asserts that an individual x is in class c iff the sum
of the shape functions for x for every feature in A is greater than any sum of the shape
functions for x for another class c′ (it is always the maximum by definition of the MNAM
architecture, see Eq (11)).

It must be noticed that the support of such a rule is the entire set A. But the design of
rules from the shape functions might be more complex to obtain finer rules with a partial
feature support. For instance here, as soon as xkbsf > 3.0, xpbpfi is insignificant, so the design
of a rule r only based on feature kbsf is possible.

6 Conclusions and perspectives

In this paper, we have discussed the notion of interpretability of degradation models obtained
by machine learning techniques. Our claim is that the level of interpretability of ML models
for diagnosis should be a performance indicator as well as any other indicator like accuracy,
confusion matrices.... Interpretable models, by the means of the extracted rules, provide
a causal-like relationship between the degradation class predicted by the model and the
features involved in the rules (the degradation model interprets the rule as a symptom of
the degradation). The second reason why interpretability is important is obviously the
confidence improvement of the human operator in charge of maintaining operating machine
tools. Interpretable degradation models not only predict the current degradation class but
also explains it with simple feature-based rules. While global explainability as defined by
the XAI community is an absolute measure (either the model is globally explainable or not),
the interpretability of each model is inherently more subjective, relying on the final decision
maker, posing challenges in scoring and comparing models across different methodologies. We
introduced a novel approach to quantify the level of interpretability using a framework based
on four parameters defined by the decision-maker, referred to as (T, P, τ, ε)-interpretability.
Our results demonstrate that this rule extraction methodology can be extended to other ML
techniques, such as MNAM, due to its additive structure so that the level of interpretability
can be exploited to select more interpretable ML models for diagnostics.
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We are currently developing degradation models using different ML techniques for a
future deployment on machine-tools at Bosch-Rodez. We aim at selecting the best tradeoff
between accuracy performance and level of interpretability for the deployed model. Our
immediate focus will be on enhancing the algorithm to incorporate the entire rule set from a
model to accurately determine its (T, P, τ, ε)-interpretability score. Subsequently, we aim to
generalize rule extraction across the diverse machine learning methods we use to enable a
universally applicable interpretability scoring system, independent of the underlying method.
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