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Abstract
This work considers the problem of selecting residuals for consistency-based diagnosis of multimode
systems. The system operation mode is assumed to be given by a set of known discrete variables.
The number of operation modes grows exponentially with the number of binary variables, thus
methods enumerating the modes are not feasible. Here a method is proposed to select a small subset
of residuals for diagnosing multimode systems. The selection is based on the fault signature of the
residuals for the different modes of operation. To avoid the exponential growth of the number of
modes, the multimode fault signature matrix is used to compute the diagnosability of the residuals.
The approach is inspired and exemplified by a dynamically configurable battery pack. The result is
a small set of residuals with the maximum diagnosability in all operation modes.
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1 Introduction

Residual selection is crucial in diagnosis system design using pre-compiled tests for detecting
and isolating faults. The selection of residuals is a combinatorial problem, and the number
of possible combinations grows exponentially with the number of residuals. Furthermore,
the number of residuals grows exponentially in the redundancy of the model. The problem
is even more challenging in multimode systems where the system can operate in different
operational modes. Thus, there is a need to develop computationally efficient algorithms
to select a small set of residuals that can detect and isolate faults in all operation modes.
Set minimal and minimum cardinality solutions could be desirable but due to the highly
combinatorial nature of the problem, it is not always possible to find optimal solutions. Here
we propose a greedy algorithm to select a small set of residuals for diagnosing multimode
systems with maximum diagnosability in all operation modes. The selection is based on a
fault signature matrix that describes the fault influence on the residuals for the different
operation modes.

Structured residuals and fault signature matrices are discussed in [8], where two isolation
patterns are introduced: weakly and strongly isolating structures. Weakly isolating structures
can isolate faults when the column-matching approach is applicable, whereas strongly isolating
structures can isolate faults using the consistency-based approach. In the presence of non-
ideal residuals, such as those caused by model errors and uncertainties, only strongly isolating
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28:2 Test Selection for Diagnosing Multimode Systems

structures are applicable, which is the approach adopted in this work. Furthermore,[17]
establishes a connection between the fault signature matrix used in the Fault Detection and
Isolation (FDI) community and consistency-based diagnosis performed in the DX community.
The foundation of the present work aligns with these principles. A recent comprehensive
review of control system structural analysis diagnosability is provided in [9].

The problem of test selection for diagnosing single-mode systems has been studied in the
literature. For instance, [3] formulates the test selection problem as an integer programming
problem. Additionally, research has explored the combination of sensor placement and
residual selection, as discussed in [16]. This problem has been formulated and solved as
a mixed-integer optimization problem in [14]. Residual selection has also been studied in
the context of distributed systems. For example, [13] addresses this problem using binary
integer linear programming. Additionally, multimode systems have been considered in the
literature [1, 12]. In [1], a solution to the double challenge of system decomposition and
diagnostic test selection, aiming to minimize subsystem interconnections while maximizing
diagnosability is presented. In [12], an online method is proposed to detect mode changes and
select residuals dynamically based on the current mode hypothesis. In contrast to the latter
work, the approach adopted in this work is offline, where residuals are selected before system
operation. In [15], a reconfigurable battery system similar to the one employed in this paper
is presented, but it utilizes a different heuristic approach to manage the complexity of mode
switches. Test selection methods for single-mode systems have been developed to evaluate
residual fault sensitivity using training data, enabling robust residual selection. Examples of
such approaches can be found in [5] and [11]. However, these works do not consider systems
with multimode operation.

The contributions of this work is an algorithm to compute the diagnosability of residuals
in multimode systems and for selecting a small set of residuals for diagnosing multimode
systems with maximum diagnosability in all operation modes. A Python package is developed
and is available at https://github.com/MattiasKrysander/Multimode-Test-Selection.
It is based on dd library [4] for efficiently handling Boolean functions and logic inference. The
methods are based on the fault signatures of the residuals for the various modes of operation,
without accounting for the quantitative impact of faults. The approach is not limited to any
specific residual generation method, both model-based and data-driven residuals can be used
if the fault signature of the residual for the different operation modes is known. The fault
influence and decoupling are important since the diagnosability is derived from a consistency-
based diagnosis framework. Since the selection method relies only on the qualitative fault
signatures of the residuals, structural methods can also be applied to compute potential
residuals along with their expected fault influence. This enables residual selection based on
the potential residuals, followed by the development of only the necessary residual generators
as determined by the selection process. The approach is inspired by and demonstrated
through a modular, dynamically configurable battery pack. This kind of battery pack has all
the challenges that make the problem interesting, such as multiple operation modes, many
sensors making the model redundancy large, and many components that need supervision.
The selection of residuals is non-trivial because the number of residuals to choose from is
large and the number of operation modes is exponential in the number of binary operation
mode variables. The result is a small set of residuals with the maximum diagnosability in all
operation modes.

The residual selection problem is formally defined in Section 2. A motivating case study of
a modular dynamically reconfigurable battery pack is presented in Section 3 where multimode
residuals are exemplified. Section 4 introduces the concept of fault signature of residuals in
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multimode systems. Then the diagnosability of residuals in multimode systems is discussed
in Section 5. The residual selection algorithm is presented in Section 6. The algorithm’s
results applied to the battery pack case study are presented in Section 7 and the algorithm’s
computational complexity is discussed in Section 8. Finally, the paper is concluded in
Section 9.

2 Problem Formulation

The work considers a system with a set of faults F . The system can operate in different modes
and the set of all valid operation modes is M, not to be confused with fault modes. This
work assumes that the operation mode is measured or controlled. The system is monitored
by sensors that produce residuals by applying them to a set of residual generators, R. The
residuals are used to detect and isolate faults. The applicability of the residuals and their
fault influence depends on the system’s operation mode. The fault influence of the residuals is
represented by the fault signature matrix, SR, where each entry (rj , fi) is a Boolean function
over the set of valid operation modes M. This function evaluates to T (true) if residual rj is
sensitive to the fault fi in mode m, and to F (false) otherwise.

Maximum fault diagnosability is achieved by utilizing all residuals R. However, all
residuals are typically not needed for maximum diagnosability, here detectability and single-
fault isolability will be considered. The challenge lies in selecting an appropriate subset,
given the many possibilities, which grow exponentially with the number of residuals. This
challenge becomes even more difficult in multimode systems, where the complexity of the
problem increases significantly. The main problem addressed in this paper is how to identify
a small subset of residuals, Rs ⊆ R, with the same diagnosability as all residuals across all
operation modes.

3 Case Study: A Multimode Modular Battery Pack

A motivating case study that will be used to illustrate concepts and results of the paper is a
multimode modular dynamically reconfigurable battery pack. It includes n modules in series,
numbered from 1 to n, as illustrated in Fig. 1. Module k in Fig. 1(a) includes a battery
cell, modeled as an equivalent circuit model, along with a full-bridge converter consisting
of four MOSFET switches, i.e., S1-S4, and two sensors, i.e., a voltage and a current sensor,
measuring vcell,k and icell,k, respectively. Two pack sensors measure the output voltage vpack
and the output current ipack, respectively, as shown in Fig. 1(b). Faults for each battery cell
and each sensor will be considered.

The term multimode describes the system’s ability to operate in different modes, determ-
ined by different switch positions. Each module has three valid modes depending on how its
cell is connected to the battery pack. In forward mode, the cell adds to the pack voltage, in
backward mode it subtracts, and in bypass mode, the cell is disconnected from the circuit.
The module is said to be turned on if it is in forward or backward mode.

A model of the battery system has been implemented in the Fault Diagnosis Toolbox
(FDT) [6, 7]. The model of module j is

1 v_p_der_j == i_cell_j / Cp_j - v_p_j / (Rp_j * Cp_j) ,...
2 v_ocv_j == OCV_fun ( SOC_j ) ,...
3 SOC_der_j == -1/(3600* Q_j)*i_cell_j ,...
4 DiffConstraint (" SOC_der_j "," SOC_j ") ,...
5 v_cell_j == v_p_j + R0_j * i_cell_j + v_ocv_j + f_cellj ,...
6 DiffConstraint (" v_p_der_j "," v_p_j ") ,...

DX 2024
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Figure 1 A modular dynamically reconfigurable battery system. (a) A battery pack with n

modules. (b) A battery module.

7 v_sm_j == v_sm_fun ( forward_j , backward_j , v_cell_j ) ,...
8 i_cell_j == i_cell_fun ( forward_j , backward_j , i_pack ) ,...
9 y_i_j == i_cell_j + f_ij ,...

10 y_v_j == v_cell_j + f_vj

The battery is modeled in rows 1-6 where i_cell_j is the cell current, v_cell_j the cell
voltage, and SOC_j its state-of-charge. The open circuit voltage of the cell is interpolated
from its state-of-charge in function OCV_fun. The full-bridge converter is modeled in rows
7-8 where v_sm_j is the output voltage of the module and i_pack is the battery pack
current. The Boolean variables forward_j and backward_j determine the operation mode
of the module. For example, the cell current and pack current are related by the function
i_cell_fun given by

1 function i_cell = i_cell_fun ( forward , backward , i_pack )
2 if forward
3 i_cell = i_pack ;
4 elseif backward
5 i_cell = -i_pack ;
6 else
7 i_cell = 0;
8 end

The voltage of the module v_sm_j is governed by a similar function v_sm_fun. In addition
to the modules, the battery pack has sensors measuring the total output voltage and current
of the pack

1 v_pack == v_sm_1 + v_sm_2 + ... + v_sm_n
2 y_v_pack == v_pack + f_vpack
3 y_i_pack == i_pack + f_ipack
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Figure 2 Graph representation of the residual generation function ResGen_1. In particular it
shows the influence of the faults f_i and f_ipack on residual r1.

For each module j, faults for the cell f_cellj, current sensor f_ij, and voltage sensor f_vj
are considered as well as for the pack voltage and current sensors f_vpack and f_ipack
respectively. In the FDT, faults are represented as general fault signals, although they can
equivalently be interpreted as assumptions on the components. For instance, y_i_pack ==
i_pack + f_ipack could also be interpreted as

OK(Pack current sensor) → y_i_pack == i_pack. (1)

4 Fault Signature of Residuals

The input to the residual selection algorithm proposed in this work is a multimode extension
of the fault signature matrix. The underlying concept will be introduced and examined in
detail in this section.

Consider a one-module battery pack with a pack current sensor to illustrate the concept
of residuals and fault signature. In this example, no sensor for measuring pack voltage is
included. Using the FDT, three multimode residuals are generated for the battery pack. One
residual r1 is comparing the current measurements as follows

1 function [r1] = ResGen_1 (y_i ,y_i_pack ,forward , backward )
2 i_pack = y_i_pack ;
3 i_cell = y_i;
4 r = i_cell - i_cell_fun (forward , backward , i_pack );

A computational graph is shown in Figure 2, where known inputs are in blue and faults are
in red. The fault f_i will influence the residual independent of the mode. The fault f_ipack
will only influence the residual if the module is turned on.

Next, the fault signature of a residual in a multimode system is formally defined.

▶ Definition 1 (Multimode fault signature of a residual). In a multimode system, the signatures
of fault f of residual r is a Boolean function Sf

r : M → B of operation modes such that it is
T if fault f influences residual r in mode m ∈ M and F, otherwise. The multimode fault
signature of residual r is the collection of the fault signatures of all faults F in the system,
i.e., Sr = {Sf

r |f ∈ F}.

For residual r1 in Figure 2, the multimode fault signature is given by Sf_ipack
r1 = forward∨

backward and Sf_i
r1 = T. The fault signature of a residual does not depend on whether a

module is connected in the forward or backward mode. It is only dependent on if the module
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Table 1 The multimode fault signature matrix of the residuals for the dynamically configurable
battery pack with one module and a pack current sensor.

residual f_ipack f_i f_cell f_v
1 on T F F
2 F T T T
3 on F T T

is turned on. Since the battery example will be used throughout the paper, we will simplify
the notation by introducing a Boolean variable on = forward ∨ backward such that the fault
signature can be written as Sf_ipack

r = on.
▶ Remark. Note that the fault signature of a residual is not dependent on the gain from
the fault to the residual, it is only a Boolean function indicating if the fault influences the
residual. For example, the sign of the fault sensitivity of f_ipack is different in forward and
backward directions but the fault signature is the same.

As mentioned before, in a single mode case the fault signature of a set of residuals R is
often collected in a so-called fault signature matrix with rows and columns corresponding to
residuals and faults respectively. An entry (ri, fj) is either T if fault fj influences residual ri

or F otherwise. The signature can depend on the system operation mode in the multimode
case and is extended to multimode systems in the following definition.

▶ Definition 2 (Multimode fault signature matrix). Given a system of valid operation modes
M, a set of faults F , and a set of residuals R; the multimode fault signature matrix is defined
as a matrix SR where each row corresponds to a residual r ∈ R and each column corresponds
to a fault f ∈ F and the element in position (r, f) is Sf

r .

The multimode fault signature will also be evaluated for subsets of residuals Rs ⊆ R and
then the notation SRs will be used.

The fault signature matrix of the three residuals derived for the one-module battery-pack
is given in Table 1. The first residual is the one illustrated in Figure 2.

Residual selection will be based on fault signature matrices similar to the one in Table 1.
The fault signature matrix will be used to evaluate the diagnosability of different subsets of
residuals which will be the topic of the next section.

5 Fault Diagnosability of Residuals

This section explains how to compute the multimode diagnosability of a residual set given
their fault signature matrix. The diagnosability will be defined as the ability to detect and
isolate faults using the residuals which depends on how the residuals are integrated into
diagnosis computations. This work is based on a consistency-based framework, thus adopting
the following definition of diagnosis from [2].

▶ Definition 3 (Consistency-based diagnosis). Given a diagnostic model M and observations
O, a diagnosis is an assignment D of a behavioral mode to each considered fault such that
M ∪ O ∪ D is consistent. A diagnosis is minimal if it is minimal considering the set of faults.

Here the diagnostic model is the set of residuals R with the corresponding fault signature
matrix SR. Observations are the residuals that trigger alarms Ra ⊆ R and the present mode
of operation m ∈ M. A behavioral mode is represented as subsets of present faults Fb ⊆ F .
For this particular case, the diagnosis is given by the following proposition.
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▶ Proposition 4 (Diagnosis of multimode residuals). Given a fault signature matrix SR and
the observations (Ra, m) a behavioral mode Fb ⊆ F is a diagnosis if it is a minimal hitting
set of the sets {f |Sf

r (m) = T} for all r ∈ Ra. A diagnosis is minimal if no proper subset is
a diagnosis.

In the diagnosability analysis, the best possible residual response is considered. Then the
diagnosability result will be an overestimate of the true diagnosability.

▶ Definition 5 (Ideal fault response). A residual r has an ideal fault response for all modes
m ∈ M if it triggers an alarm for the set of faults {f |Sf

r (m) = T} it is influenced by according
to the fault signature matrix.

A consequence of ideal fault response and the definition of diagnosis is that Fb is a
diagnosis if Fb is the present fault mode. Even if it is possible to take multiple faults into
account, we will in the continuation consider the single fault case for ease of notation. This
is a common assumption using pre-compiled tests. The no-fault mode will be denoted by NF
and a single fault fi with a slight abuse of notation.

▶ Definition 6 (Structural detectability and isolability of multimode residuals). A single fault f

is structurally detectable in operation mode m with a set of residuals R if f is a minimal
diagnosis given that all residuals have an ideal fault response. A fault fi is structurally isolable
from a fault fj(i ̸= j), in mode m with a set of residuals R if fi is a minimal diagnosis but
not fj given that all residuals have ideal fault response.

To illustrate the implication of this definition on residual selection, consider a single-mode
system with fault signature matrix

f1 f2 f3
r1 T F T
r2 F T T
r3 T T F

(2)

The column-matching approach matches the residual response with the columns in the
signature matrix to find the diagnoses. Then it would be sufficient to use the first two
residuals to isolate all faults since all faults will have a unique signature. This isn’t enough
in the consistency-based approach as will be shown next. Assume that fault f1 is present.
Then residual r1 will be triggered and the single faults f1 and f3 will be diagnosed. Hence,
f1 is not structurally isolable from f3 with the first two residuals. Full single-fault isolability
is obtained using all residuals.

Detectability and isolability will be unified in the following definition of diagnosability
which is the main concept of this work.

▶ Definition 7 (Structural diagnosability of multimode residuals). Let the structural diagnos-
ability be a Boolean function DR(fi, fj) : M → B, such that

DR(f, NF)(m) =


T if fi is structurally detectable in mode m

with ideal fault respons of R

F otherwise
(3)

DR(fi, fj)(m) =


T if fi is structurally isolable from fj(i ̸= j) in mode m

with ideal fault response of R

F otherwise
(4)

DX 2024
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The following theorem shows how the fault signature matrix can be used to compute the
diagnosability of a set of residuals.

▶ Theorem 8. Given a fault signature SR for a set of multimode residuals R, the structural
detectability of the residuals in R is given by

DR(fi, NF) =
∨

r∈R

Sfi
r (5)

and the structural isolability by

DR(fi, fj) =
∨

r∈R

(
Sfi

r ∧ ¬Sfj
r

)
. (6)

Proof. It is sufficient to consider an arbitrary fault pair (fi, fj). We will start to prove (6).
Select an arbitrary m ∈ M such that DR(fi, fj)(m) = T. Then there exists a residual

r ∈ R such that Sfi
r (m) = T and S

fj
r (m) = F. This implies that

∨
r∈R

(
Sfi

r ∧ ¬S
fj
r

)
(m) = T,

thus DR(fi, fj) |=
∨

r∈R

(
Sfi

r ∧ ¬S
fj
r

)
.

Now, select an arbitrary m ∈ M such that
∨

r∈R

(
Sfi

r ∧ ¬S
fj
r

)
(m) = T. Then there exists

a residual r ∈ R such that Sfi
r (m) = T and S

fj
r (m) = F. This implies that DR(fi, fj)(m) = T,

thus
∨

r∈R

(
Sfi

r ∧ ¬S
fj
r

)
|= DR(fi, fj) and (6) is proved.

The proof of (5) follows from (6) by noting that no residual will trigger an alarm in NF,
i.e., S∅

r ≡ F for all r ∈ R. Formula (5) follows by letting fj = ∅ in (6) and the proof is
complete. ◀

To exemplify diagnosibility matrices, consider the fault signature matrix in Table 1. The
diagnosability of the residual 1 is according to Theorem 8 given by

NF f_ipack f_i f_cell f_v
f_ipack on F F on on

f_i T ¬on F T T
f_cell F F F F F

f_v F F F F F

(7)

and the diagnosability of all 3 residuals is given by

NF f_ipack f_i f_cell f_v
f_ipack on F on on on

f_i T T F T T
f_cell T T T F F

f_v T T T F F

(8)

The detectability is given by the column NF in blue and the remaining part specifies the
isolability. Full single fault diagnosability is given by a matrix with T in all entries except
for the diagonal entries (fi, fi) which are F.

The diagnosability matrix (8) shows that the 3 residuals have full single fault diagnosability
except for the following two exceptions. The entries on in the first row show that fault
f_ipack is not detectable nor isolable from any other fault in mode on = F. If on = T the
fault is detectable and uniquely isolable. The two by two block in pink with entries F shows
that f_cell and f_v are not isolable from each other in any mode.
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6 Test Selection for Multimode Systems

This section describes the propsed algorithm to select a small subset of residuals with the
same diagnosability as all residuals. The algorithm is based on the diagnosability of the set
of residuals. The basic idea is to start with the empty set of residuals and then iteratively
add the residual that improves the diagnosability the most.

Prior to presenting the algorithm, some convenient notation is introduced. Let the
diagnosability matrix for a residual set R be denoted DR. Furthermore, let ¬DR denote the
elementwise negation of DR. This means that ¬DR represents the diagnosability properties
not provided by the residuals in R. Let g be a function from the set of diagnosability
matrices to a scalar-valued goodness measure. A residual with the highest goodness measure
will be selected. Different choices of improvement functions g will be discussed after the
algorithm. The algorithm is described in Algorithm 1. The dd library [4] is used for efficient
implementation of the fault signature and diagnosability matrices. Enumeration of all possible
modes is avoided by encoding operation modes by Boolean functions.

Algorithm 1 Test Selection Algorithm.

1: Input: Fault signature matrix SR for residuals R.
2: Output: Selected residuals Rs ⊆ R.
3: Initialize: Let the selected residuals be Rs = ∅ and the remaining residuals Rr = R.
4: while Rr ̸= ∅ do
5: for each remaining residual r ∈ Rr do
6: Compute diagnosability improvement of adding r to Rs: ∆Dr

Rs
= D{r} ∧ ¬DRs

.
7: end for
8: if no improvement is possible, i.e., maxr∈Rr

g(∆Dr
Rs

) = 0 then
9: break

10: else
11: Select a residual r∗ with the largest improvement, i.e., r∗ = arg maxr∈Rr

g(∆Dr
Rs

).
12: Update the residual sets: Rs = Rs ∪ {r∗}, Rr = Rr \ {r∗}.
13: end if
14: end while

6.1 Improvement Functions
Two different improvement functions are proposed. The first counts the number of improved
entries in the diagnosability matrix achieved by adding a residual. The diagnosability
improvment of adding residual r to the set Rs is ∆Dr

Rs
. The improvement function g is in

this case defined as

g(∆Dr
Rs

) = |{(fi, fj) ∈ (F ∪ NF) × F |∆Dr
Rs

(fi, fj) ̸≡ F}|. (9)

Algorithm 1 with improvement function (9) will be called TestSelection.
To give an example of how the improvement function is used in the residual selection

consider the one-module battery pack and assume that no residuals have been selected, i.e.,
Rs = ∅. Consider the improvement function g for the first residual in Table 1. All entries of
the diagnosability matrix of the empty set of residuals are D∅(fi, fj) ≡ F. The diagnosability
improvemnet ∆Dr1

∅ = D{r1} which is given in (7). The improvement of adding residual 1 is
given by the number of entries in the diagnosability matrix different from F which is 7. The
improvement of adding residual 2 is 6 and adding residual 3 is 8. Hence the third residual is
selected first.

DX 2024
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The second improvement function will contrary to the function defined in (9) take into
account the number of operation modes for which diagnosability is improved. Then the
improvement function is defined as the number of assignments as

g(∆Dr
Rs

) =
∑

(fi,fj)∈(F ∪NF)×F

|{m|∆Dr
Rs

(fi, fj)(m) = T}|. (10)

Algorithm 1 with improvement function (10) will be called TestSelectionAssignment.
Consider again the improvement function for adding residual 1 to the empty set of

residuals. The diagnosability improvement is given in (7). With the introduced notation,
there are 2 operation modes of the system, it is either turned on, i.e., on = T or turned off,
i.e., on = F. The evaluation of (10) is, to sum up the contributions from each entry. Entries
that are T count as 2, entries that are F count as 0, and the rest count as 1. Thus, the
improvement adding residual 1 is 10. The improvement adding residual 2 is 12 and residual
3 is 8, thus the second residual is selected. The computational complexity will be discussed
in Section 8.

6.2 Diagnosability in any Operation Mode
For systems that frequently cycle through all operation modes or systems where the operation
mode can be selected partially based on diagnosis requirements, it is possible to relax the
diagnosability goal to possibly reduce the number of residuals. It could be sufficient to aim
for maximum diagnosability first after cycling through all operation mode. The problem is
formally stated as follows. The goal is to select a small set of residuals Rs ⊆ R such that for
each diagnosability property (fi, fj) satisfying DR(fi, fj) ̸≡ F there exists a mode m ∈ M
such that

DRs(fi, fj)(m) = T (11)

This problem is solved by Algorithm 1 with the improvement function TestSelection
defined in (9) by using a modified fault influnce matrix S̃R defined as

S̃R(fi, fj) ≡

{
F if SR(fi, fj) ≡ F
T otherwise.

(12)

Algorithm 1 with improvement function (9) where the modified fault influnce matrix S̃R is
used will be called TestSelectionAnyMode.

7 Method Demonstration

The proposed method is demonstrated on a modular battery pack. Consider the modular
battery pack described in Section 3 with 2 modules and sensors measuring pack current and
voltage. Multimode residuals have been generated and the fault signature matrix of those are
given in Table 2. Two operation mode variables on1 and on2 indicate if the corresponding
module is on. The residuals are generated using the Fault Diagnosis Toolbox [6, 7] and the
enumeration of residuals corresponds to the underlying minimal structurally overdetermined
sets. The fault signature matrix is generated using the method described in Section 5.
The residuals are partitioned into sets relating to the same set of modules. The first three
residuals, residual 1-3, only involve module 2, residuals 4, 11, and 12 only module 1, and the
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Table 2 The multimode fault signature matrix for the residuals is derived from the dynamically
configurable battery pack with 2 modules and sensors measuring pack current and voltage.

Residual f_cell1 f_i1 f_v1 f_cell2 f_i2 f_v2 f_vpack f_ipack
1 F F F F T F F on2
2 F F F T T T F F
3 F F F T F T F on2

4 F T F F F F F on1
11 T T T F F F F F
12 T F T F F F F on1

7 F F on1 F F on2 T F
8 F F on1 on2 on2 F T F
9 F F on1 on2 F F T on2
15 on1 on1 F F F on2 T F
18 on1 F F F F on2 T on1
16 on1 on1 F on2 on2 F T F
17 on1 on1 F on2 F F T on2
20 on1 F F on2 on2 F T on1
21 on1 F F on2 F F T on1∨on2

Table 3 Test selection applied to the two-module battery pack.

Algorithm Selected residuals Improvement
TestSelection 16, 3, 12, 1, 4, 7 32, 20, 20, 10, 10, 8
TestSelectionAnyMode 16, 3, 12, 1, 4, 7 32, 15, 11, 2, 2, 2
TestSelectionAssignment 2, 11, 21, 7, 1, 4, 3, 12 72, 72, 50, 15, 13, 10, 4, 4

rest include both modules. The order of the rows in the fault signature matrix can change
the result of the residual selection because if there are residuals with equal improvement, the
first one will be selected.

Table 3 shows the result of applying the different versions of test selection. The residuals
are listed in the selection order together with the value of the improvement function for each
selection. For this example the smallest solution found contains 6 residuals and the same
solution is found both for the TestSelection and TestSelectionAnyMode algorithms. The
TestSelectionAssignment algorithm selects 8 residuals, where residuals 2 and 11 are chosen
first prioritizing residuals that improve the diagnosability in the most operation modes.

The diagnosability matrix for both the set of all residuals and the selected ones in Table 3
is given in Table 4. The diagnosability matrix shows that full single fault diagnosability with
the exceptions that f_ipack is detectable and uniquely isolable if any module is turned on,
and the cell fault f_celli and corresponding voltage sensor fault f_vi is isolable from each
other if the corresponding module is turned on.

Diagnosability analysis can be applied to the model defined in Section 3 with the method
proposed in [10]. The diagnosability of the model and the selected residuals are equal. This
means that maximum diagnosability for all modes is achieved with the 6 residuals. The fault
signature matrix of these residuals is given in Table 5. Two local residuals for each module
and two residuals including both modules are selected to achieve maximum diagnosability. All
the residuals are defined in all operation modes. Thus it is possible to run them continuously.
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Table 4 The multimode fault diagnosability matrix for the residuals of the dynamically configur-
able battery pack. The variable on := on1 ∨ on2.

NF f_cell1 f_i1 f_v1 f_cell2 f_i2 f_v2 f_vpack f_ipack
f_cell1 T F T on1 T T T T T
f_i1 T T F T T T T T T
f_v1 T on1 T F T T T T T
f_cell2 T T T T F T on2 T T
f_i2 T T T T T F T T T
f_v2 T T T T on2 T F T T
f_vpack T T T T T T T F T
f_ipack on on on on on on on on F

Table 5 Fault signature matrix for the selected residuals for the dynamically configurable battery
pack.

Residual f_cell1 f_i1 f_v1 f_cell2 f_i2 f_v2 f_vpack f_ipack
16 on1 on1 F on2 on2 F T F
7 F F on1 F F on2 T F
4 F T F F F F F on1
12 T F T F F F F on1

1 F F F F T F F on2
3 F F F T F T F on2

This is particularly important for the residual generators with dynamic states. If these were
shut off reinitialization of the states would be a problem to be solved. In the example, the
residuals influenced by f_cellj have dynamics, i.e., residuals 3, 12, and 16.

8 Computational Complexity

The algorithm is linear in the number of residuals, quadratic in the number of faults, and
worst case exponential in the number of operation modes variables. To empirically evaluate
the algorithm’s performance, the TestSelection-algorithm is applied to modular battery
packs with 2, 4, and 6 modules. The results are given in Table 6. For the example, the
computation time agrees well with the theoretical complexity, except that the computation
time increases linearly with the number of mode variables.

It is also interesting to note that there are solutions with fewer residuals achieving
maximum diagnosability for the 4 and 6-module cases. There is a solution with 10 residuals
for the 4-module case and 14 for the 6-module case. In these cases, the smaller solutions are
subsets of the selected ones. It is not surprising the algorithms do not find optimal solutions
since they are greedy.

Table 6 The TestSelection-algorithm applied to modular battery packs with 2, 4, and 6 modules.

Modules/mode variables Faults Residuals Selected Residuals Time
2 8 15 6 44 ms
4 14 93 14 1.6 s
6 20 747 20 37 s
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9 Conclusions

Residual selection for multimode systems has been described. An algorithm is proposed
for selecting a small set of residuals with the same diagnosability as all residuals. It takes
a multimode version of a fault signature matrix as input. This means that any residual
generation technique, model-based or data-driven, is applicable as long as a correct fault
signature matrix can be defined. The user can define or use one of the proposed improvement
functions to map a certain diagnosability to a performance score. Properties that could
be considered in the improvement function are e.g. the locality of tests searching for
a distributed solution, and the computational complexity or robustness of the residual
generators. A Python package has been developed and is available at https://github.
com/MattiasKrysander/Multimode-Test-Selection. The algorithm is demonstrated with
good results on a modular and dynamically reconfigurable battery pack. Packs of different
sizes are analyzed and the results show that the algorithm is efficient and can be applied to
systems with many potential residuals and operation modes.

References
1 Elodie Chanthery, Anna Sztyber, Louise Travé-Massuyès, and Carlos Gustavo Pérez-Zuñiga.

Process decomposition and test selection for distributed fault diagnosis. In 33th In-
ternational Conference on Industrial, Engineering & Other Applications of Applied In-
telligent Systems (IEA/AIE 2020), volume 12144, Kitakyushu, Japan, September 2020.
doi:10.1007/978-3-030-55789-8_78.

2 Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing diagnoses and
systems. Artificial Intelligence, 56(2):197–222, 1992. doi:10.1016/0004-3702(92)90027-U.

3 Amir Fijany and Farrokh Vatan. A novel method for derivation of minimal set of analytical
redundancy relations for system diagnosis. In 2010 IEEE Aerospace Conference, pages 1–14,
2010. doi:10.1109/AERO.2010.5446823.

4 Ioannis Filippidis, Sofie Haesaert, Scott Livingston, and Mario Wenzel. TuLiP/dd. https:
//github.com/tulip-control/dd, 2022. Accessed: November 15th, 2023.

5 Erik Frisk and Mattias Krysander. Residual selection for consistency based diagnosis using
machine learning models. IFAC-PapersOnLine, 51(24):139–146, 2018. 10th IFAC Symposium
on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2018.
doi:10.1016/j.ifacol.2018.09.547.

6 Erik Frisk, Mattias Krysander, and Daniel Jung. A toolbox for analysis and design of model
based diagnosis systems for large scale models. IFAC-PapersOnLine, 50(1):3287–3293, 2017.
20th IFAC World Congress. doi:10.1016/j.ifacol.2017.08.504.

7 Erik Frisk, Mattias Krysander, and Daniel Jung. Fault diagnosis toolbox for matlab and
python, 2024. Accessed: 2024-08-26. URL: https://faultdiagnosistoolbox.github.io.

8 J. Gertler. Structured residuals for fault isolation, disturbance decoupling and modelling error
robustness. IFAC Proceedings Volumes, 25(4):15–23, 1992. IFAC Symposium on On-line Fault
Detection and Supervision in the Chemical Process Industries, Newark, Delaware, 22-24 April.
doi:10.1016/S1474-6670(17)50210-4.

9 Xuping Gu and Xianjun Shi. A review of research on diagnosability of control systems based
on structural analysis. Applied Sciences, 13(22), 2023. doi:10.3390/app132212241.

10 Fatemeh Hashemniya, Benoît Caillaud, Erik Frisk, Mattias Krysander, and Mathias Malandain.
Fault diagnosability analysis of multi-mode systems. IFAC-PapersOnLine, 58(4):210–215, 2024.
12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes
SAFEPROCESS 2024. doi:10.1016/j.ifacol.2024.07.219.

11 Daniel Jung and Christofer Sundström. A combined data-driven and model-based residual
selection algorithm for fault detection and isolation. IEEE Transactions on Control Systems
Technology, 27(2):616–630, 2019. doi:10.1109/TCST.2017.2773514.

DX 2024

https://github.com/MattiasKrysander/Multimode-Test-Selection
https://github.com/MattiasKrysander/Multimode-Test-Selection
https://doi.org/10.1007/978-3-030-55789-8_78
https://doi.org/10.1016/0004-3702(92)90027-U
https://doi.org/10.1109/AERO.2010.5446823
https://github.com/tulip-control/dd
https://github.com/tulip-control/dd
https://doi.org/10.1016/j.ifacol.2018.09.547
https://doi.org/10.1016/j.ifacol.2017.08.504
https://faultdiagnosistoolbox.github.io
https://doi.org/10.1016/S1474-6670(17)50210-4
https://doi.org/10.3390/app132212241
https://doi.org/10.1016/j.ifacol.2024.07.219
https://doi.org/10.1109/TCST.2017.2773514


28:14 Test Selection for Diagnosing Multimode Systems

12 Hamed Khorasgani and Gautam Biswas. Structural fault detection and isolation in hybrid
systems. IEEE Transactions on Automation Science and Engineering, 15(4):1585–1599, 2018.
doi:10.1109/TASE.2017.2749447.

13 Hamed Khorasgani, Gautam Biswas, and Daniel Jung. Structural methodologies for distributed
fault detection and isolation. Applied Sciences, 9(7), 2019. doi:10.3390/app9071286.

14 Ramon Sarrate, Vicenc Puig, Teresa Escobet, and Albert Rosich. Optimal sensor placement
for model-based fault detection and isolation. In 2007 46th IEEE Conference on Decision and
Control, pages 2584–2589, 2007. doi:10.1109/CDC.2007.4434452.

15 Michael Schmid, Emanuel Gebauer, and Christian Endisch. Structural analysis in reconfigurable
battery systems for active fault diagnosis. IEEE Transactions on Power Electronics, 36(8):8672–
8684, 2021. doi:10.1109/TPEL.2021.3049573.

16 L. Trave-Massuyes, T. Escobet, and X. Olive. Diagnosability analysis based on component-
supported analytical redundancy relations. IEEE Transactions on Systems, Man, and Cybernet-
ics - Part A: Systems and Humans, 36(6):1146–1160, 2006. doi:10.1109/TSMCA.2006.878984.

17 L. Travé-Massuyès. Bridging control and artificial intelligence theories for diagnosis: A survey.
Engineering Applications of Artificial Intelligence, 27:1–16, 2014. doi:10.1016/j.engappai.
2013.09.018.

https://doi.org/10.1109/TASE.2017.2749447
https://doi.org/10.3390/app9071286
https://doi.org/10.1109/CDC.2007.4434452
https://doi.org/10.1109/TPEL.2021.3049573
https://doi.org/10.1109/TSMCA.2006.878984
https://doi.org/10.1016/j.engappai.2013.09.018
https://doi.org/10.1016/j.engappai.2013.09.018

	1 Introduction
	2 Problem Formulation
	3 Case Study: A Multimode Modular Battery Pack
	4 Fault Signature of Residuals
	5 Fault Diagnosability of Residuals
	6 Test Selection for Multimode Systems
	6.1 Improvement Functions
	6.2 Diagnosability in any Operation Mode

	7 Method Demonstration
	8 Computational Complexity
	9 Conclusions

