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Abstract

We present a general framework for tackling over-constrained job shop scheduling problems (JSSP)
where the volume of jobs (orders) exceeds the production capacity for a given planning horizon.
The goal is to process as many or as utile jobs as possible within the available time. The suggested
framework approaches this optimization problem by solving multiple randomly modified relaxed
problem instances, thereby taking a sample in a solution space that covers all optimal solutions. By
continuously storing the best solution found so far, the result is a complete anytime algorithm that
incrementally approximates an optimal solution. The proposed framework allows for highly parallel
computations, and all of its modules are treated as black-boxes, allowing them to be instantiated
with the most performant algorithms for the respective sub-problems. Using IBM’s cutting-edge
CP Optimizer suite, experiments on well-known JSSP benchmark problems demonstrate that the
proposed framework consistently schedules more jobs in less computation time compared to a
standalone constraint solver approach. Due to the generality of the proposed approach and its
applicability to computing minimum-cardinality or most preferred minimal diagnoses, this work has
the potential to positively impact the field of model-based diagnosis.
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Summary

Introduction and Motivation. Job scheduling is a crucial task in production industries. One
important and frequently addressed problem is the Job Shop Scheduling Problem (JSSP) [2],
which is NP-hard in the general case. Given a set of machines and a set of jobs, where each
job consists of an ordered sequence of operations, with each operation having a specified
duration and needing to be executed on a particular machine, the JSSP involves finding a
schedule that assigns a start time for each operation on its respective machine such that
(i) each operation of a job can only begin after the preceding operation of the same job
is completed, (ii) on each machine, the next operation may only start once the current
operation is finished, and (iii) the completion time (i.e., the time required to process all jobs)
is minimized. The (NP-complete [4]) decision version of a JSSP involves a deadline as an
additional input, and asks whether there is a schedule satisfying criteria (i) and (ii) with a
completion time before the deadline.

Different methods have been applied to approach JSSPs. Among those, constraint
programming (CP) has a long and successful history, and present-day CP solving systems
are able to handle large-scale problem instances. However, today’s often highly dynamic
production regimes, supporting, e.g., make-to-order or lean production, lead to optimization
problems on top of the underlying JSSPs which may significantly increase computation times.

One typical problem of that type arises when the set of orders (jobs) exceeds the current
production capacities with respect to a given planning horizon (e.g., a week). In such a
situation the producer is confronted with an over-constrained JSSP, i.e., it is not possible to
work off all the orders in time and it must be decided which of the jobs to postpone. We call
the task of finding a job set of maximal utility (e.g., revenue) that can be finished within a
given planning horizon the Job Set Optimization Problem (JOP), which is NP-hard [1].

When using constraint programming, a straightforward approach to solving JOPs is to
adapt the CP encoding of the over-constrained JSSP by adding an optimization statement,
which effectuates that the utility of jobs scheduled and finished prior to a given deadline is
maximized. We call this the direct CP approach to JOP. Since however the JOP represents a
hard problem on top of the JSSP, also the most powerful state-of-the-art CP solvers may
struggle with the increased problem complexity.

Approach. As a remedy to this, we propose a framework to tackle the JOP based on the
observation that the problem of computing a subset-minimal job set to be postponed (i) is a
relaxation of the JOP, (ii) can be solved using a linear number of CP solver calls, each for
one JSSP decision problem, and (iii) is not directly supported by current CP solvers. The
idea is to compute multiple such subset-minimal job sets in a random way, thus intuitively
taking a random sample in a solution space that covers all JOP solutions. By always storing
the best found solution, the framework allows to successively approach a JOP solution.

Compared to the direct CP approach, which can be seen as tackling two problems at once,
i.e., the (implicit) subset-minimality as well as the optimal utility of the JOP solution, our
framework achieves a disentanglement of these two problems by extracting the (efficient and
well understood) MSMP [5] (M inimal Subset subject to a Monotone Predicate) reasoning
from the solver and leaving to the solver the role of deciding a polynomial number of JSSP
instances (for which state-of-the-art solvers are optimized).

Our framework consists of three modules: a CP solver for decision versions of JSSP, a
sufficiently general [7] MSMP algorithm for finding subset-minimal job sets, and a random
number generator for creating multiple random subset-minimal job sets to enable optimization.
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Remarks: (Anytime Property) Our approach is an anytime algorithm, i.e., the solution
quality increases monotonically throughout the solving process. (Completeness) Given
sufficient time and a suitable full-cycle random number generator (cf. [13]), the algorithm will
always produce a JOP solution. (Adaptability) Each module in the framework is viewed as a
black-box, allowing integration of different algorithms and benefiting from the latest research
in JSSP and MSMP. (Parallelization) No information exchange is required between iterations,
enabling efficient multi-threaded implementations of our approach. (Automation) No manual
adaptation of the CP encoding of a given JSSP instance to a JOP encoding is needed.
(Generality) The approach is applicable to computing minimum-cardinality or most preferred
diagnoses for any model-based diagnosis problem as per Reiter’s definition [6] (see below).

Evaluation. To compare the proposed framework with a direct CP approach, we conducted
evaluations on 100 JOP instances extracted from Taillard’s well-known JSSP benchmark
suite [15] (where uniform job utility is assumed). We implemented the direct CP approach
by IBM’s CP Optimizer, a currently leading CP solver [3]; in our framework, we instantiated
the CP solver also by CP Optimizer for a fair comparison, the MSMP algorithm by the
random input permutation approach for Inv-QX [14] proposed by [9], and the random number
generator by the respective Java function. Our results show that the use of the proposed
framework always leads to schedules involving more in-time finished jobs than the direct CP
approach. Specifically, our approach schedules an avg. of 8 % and up to 15 % more jobs for
instances with 50 jobs and 15 machines, and 5 % (avg.) and 13 % (max.) more for instances
with 100 jobs and 20 machines. This means a reduction in the number of postponed jobs (cf.
diagnosis cardinality in model-based diagnosis) by 27 % (avg.) and 63 % (max.). Additionally,
our approach is always significantly faster as it constantly yields better results (up to 12 %
more scheduled jobs) within 1 hour than the direct CP approach achieves in 2 hours.

Relation to Model-Based Diagnosis. The proposed framework to approach the JOP is
generally applicable to compute most preferred (or minimum-cardinality) diagnoses for any
diagnosis problem P := (sd, comps, obs) as per Reiter’s theory [6]. This can be recognized
by observing that (1) the computation of a minimal diagnosis given P is an MSMP problem
(cf. [7]), just as the computation of a subset-minimal job set that needs to be postponed
to satisfy a scheduling deadline is an MSMP problem, and (2) the problem of computing a
minimal diagnosis is a relaxation of the problem of computing a most preferred (or minimum-
cardinality) diagnosis2, just as finding a subset-minimal job set to be postponed is a relaxation
of the JOP. Hence, put in diagnostic terms, our approach involves the computation of a
random set of minimal diagnoses for a given diagnosis problem P while always storing
the best found diagnosis so far, aiming to ultimately find one or more most preferred (or
minimum-cardinality) diagnoses. According to the classification scheme suggested in [10]
(see the definitions there), the diagnosis algorithm based on our approach is sound, complete,
not best-first, multiple-solution, not conflict dependent, generally applicable, logics-agnostic,
and space-efficient, and it uses black-box reasoning.

In fact, as discussed in [11], the JOP can be interpreted as the task of computing a most
preferred diagnosis ∆ for the diagnosis problem PJOP := (sdκ, comps, obs) where

the system description sdκ corresponds to the JSSP instance with deadline κ,
the set of system components comps constitutes the original job set J of the JSSP,
the abnormality assumption for a component means removing the respective job from J ,

2 Under the common assumption that the preference function p (e.g., probability) of a diagnosis is strictly
antimonotone, i.e., p(X) > p(Y ) holds whenever X ⊂ Y (cf. [8, Sec. 2.1.3]).
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the set of observations obs is empty,
the consistency check whether sdκ ∪ obs ∪ ∆ is non-contradictory assuming ∆ ⊆ comps
to be abnormal and comps \ ∆ to be normal amounts to solving a JSSP decision problem,
the component costs are the given (positive) job utilities uj for j ∈ J , and where

the preference function p(∆) for a diagnosis ∆ is defined as the sum of the utilities of jobs in
J \ ∆. Note, for uniform job utilities, minimum-cardinality diagnoses are most preferred.

This essentially means that any generally applicable best-first diagnosis computation
algorithm can be applied to tackle the JOP (cf. [10] for a definition and examples of such
algorithms). Based on our insights from the scheduling domain, we expect our proposed
“optimization by relaxation and randomization” strategy to be particularly useful if the
deterministic computation of preferred (or minimum-cardinality) diagnoses turns out to be
computationally hard or impractical, and/or if highly parallel implementations are possible.
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