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Abstract
Data-driven fault diagnosis of technical systems use training data from nominal and faulty operation
to train machine learning models to detect and classify faults. However, data-driven fault diagnosis
is complicated by the fact that training data from faults is scarce. The fault diagnosis task is often
treated as a standard classification problem. There is a need for methods to design fault detectors
using only nominal data. In model-based diagnosis, the ability construct fault detectors depends on
analytical redundancy properties. While analytical redundancy is a model property, it describes the
diagnosability properties of the system. In this work, the connection between analytical redundancy
and the distribution of observations from the system on low-dimensional manifolds in the observation
space is studied. It is shown that the intrinsic dimension can be used to identify signal combinations
that can be used for constructing residual generators. A data-driven design methodology is proposed
where data-driven residual generators candidates are identified using the intrinsic dimension. The
method is evaluated using two case studies: a simulated model of a two-tank system and data
collected from a fuel injection system. The results demonstrate the ability to diagnose abnormal
system behavior and reason about its cause based on selected signal combinations.
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1 Introduction

The main objective of fault diagnosis of technical systems is detecting abnormal behavior
and identifying its cause. Different scientific communities have approached this problem,
e.g. model-based diagnosis and data-driven diagnosis. The general principle is to compare
observations with model predictions to detect inconsistencies due to faults. When the
abnormal behavior is significant compared to prediction inaccuracies, a fault is detected.
After a fault has been detected, fault isolation is performed to compute diagnoses that are
consistent with the observations. Model-based diagnosis relies on mathematical models
derived from physical insights about the system to compute residuals. Data-driven diagnosis
uses training data from relevant fault scenarios to learn the relationship between observations
and diagnoses, e.g. using a classifier.

Having access to informative measurements from the system, e.g. sensor and actuator
signals, is necessary to draw conclusions about the system’s health. Model inaccuracies
result in prediction errors or misclassifications which complicate fault detection and isolation.
Methods are needed to systematically construct fault detectors based on the measurements.
In model-based diagnosis, the concept of redundancy is central for design and analysis of
diagnosis systems, see e.g. [17]. Analytical redundancy is necessary to construct residual
generators, i.e., to formulate a mathematical model describing the relationship between a set
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of known signals. Fault detectability and isolability properties of the model depends on what
type of residual generators can be constructed [27]. If faults are not detectable or isolable,
more sensors can be added to the system to improve the redundancy properties [18].

In data-driven diagnosis, the fault diagnosis problem is often treated as a general classi-
fication problem and the objective is to extract a set of features from the observations and
train a model that can distinguish between different fault classes [24]. However, redundancy
properties are, in general, not considered in the data-driven diagnosis system design process.
If training data is representative of all fault classes, and the set of features is sufficiently rich,
a data-driven classifier is expected to find a good separation between the different classes.
However, if training data is not representative of the relevant fault scenarios, there is a
significant risk that out-of-distribution samples, i.e. samples that deviate from operating
conditions covered in training data, will result in false alarms and misclassifications [31].

Data-driven diagnosis have been used in various applications and different survey papers
try to summarize the current state-of-the-art, see e.g. [1, 30, 29]. The survey paper [26]
focused on machine learning for predictive maintenance. The importance of access to training
data for data-driven fault diagnosis and how this affects the selection of data-driven methods
is discussed in [7]. In [22], different open set recognition methods for fault diagnosis are
discussed.

A common design principle in machine learning is trial and error, i.e. the engineer
experimentally try to identify a good combination of features and data-driven models such
that satisfactory performance is achieved. There is a need for data-driven methods using the
ideas from model-based diagnosis to automate the design process. In e.g. [16], it is shown
that redundancy is related to the manifold assumption, i.e. that observations from nominal
system behavior are distributed on a low-dimensional manifold in observation space. The
strong correlation between observations means that it is possible to predict one signal from
the others which is needed to construct residual generators.

Measurement signals are often corrupted by some degree of noise which means that
a consistency relation is almost satisfied in the nominal case or that observations are
approximately distributed on a manifold. This means that some method is needed to evaluate
if observations are likely to be distributed on a manifold. Several methods use Intrinsic
Dimension (ID) [5] to estimate how many dimensions are sufficient to model the distribution
of data, see e.g. [4]. In this work, intrinsic dimension is proposed to analyze redundancy
properties from data and for data-driven design of diagnosis systems.

The outline of this paper is as follows. First, the problem formulation is presented in
Section 2. The relationship between analytical redundancy and manifolds is discussed in
Section 3. In Section 4, a data-driven diagnosis system design principle using intrinsic
dimension is described. The proposed methods are evaluated in Section 5 using both a
two-tank simulation model and data from a fuel injection system. The use of faulty data to
design residuals that are insensitive to faults is illustrated in Section 6. Section 7 presents
the conclusions from this work and proposed future works.

2 Problem formulation

The objective of this work is to investigate how redundancy can be evaluated directly
from observations and how this information can be used in a data-driven diagnosis system
design process. Specifically, the focus is on the relationship between redundancy and the
intrinsic dimension of data, i.e., when the distribution of data can be approximated by
a low-dimensional manifold in observation space. Then, a data-driven diagnosis system
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design process, based on the principles of residual-based model-based design, is discussed
and evaluated. Two case studies are considered: simulated data from a two-tank water tank
system and real data from a fuel injection system in a heavy-duty diesel engine.

3 Estimating redundancy using intrinsic dimension

To formulate a redundancy property for data-driven diagnosis, the connection between
analytical redundancy and manifolds is discussed. Then, it is described how the Intrinsic
Dimension (ID) can be used to analyze the distribution of data including a brief summary of
some methods used to estimate ID.

3.1 Analytical redundancy and manifolds
In residual-based diagnosis, residual generators are used to model the nominal relationship
between known signals, e.g. actuators u and sensor signals y. This is done by first deriving
consistency relations 0 = g(z), where z = (u, y) from a model of the system. A consistency
relation is, ideally, zero in the nominal case and deviates from zero when a fault occurs in the
part of the system that is modeled by the relation [15]. The consistency relation is then used
to construct a residual generator r = g(z) to detect faults. A fault fi is detectable if it is
possible to construct a residual generator that is sensitive to the fault. A fault fi is isolable
from another fault fj if it is possible to construct a residual generator that is sensitive to fi

but insensitive to fj [15].
Different methods are used to derive consistency relations from a model, see e.g. [17].

For complex non-linear models, structural methods have been shown useful to analyze
redundancy and find consistency relations. When constructing residual generators, several
methods have focused on those using a minimal subset of observations, e.g. Minimally
Structurally Over-determined (MSO) sets [17]. If one measurement is removed from the set,
the remaining observations are no longer distributed on a low-dimensional manifold in the
remaining observation subspace. Residuals constructed from MSO sets are good for fault
isolation since they use a minimal set of observations. This might come at the cost of higher
model inaccuracies [8].

The set of observations z that fulfill a set of consistency-relations is also called a solution
manifold [23]. Thus, the set of possible observations z that can be explained by a fault-free
system are modeled by the consistency relations. If the set of observations z is insensitive to
a fault fj then z will still belong to the solution manifold when the fault is present which is
no longer true if the residual is sensitive to the fault [21].

A higher degree of redundancy means that more consistency relations can be constructed
from the model. Assume that g(z) is differentiable γ times. If g(z) : Rn → Rm, and ∂g

∂z

has full rank m, then the set of z that fulfill 0 = g(z) are distributed on a p-dimensional
Cγ-manifold [23] where p = n − m > 1. Note that if derivatives of signals are needed to
construct the consistency relations, then the derivatives are included as separate signals when
defining z, see e.g. [16].

▶ Example 1. Consider a small system consisting of three sensors, y1, y2, and y3, measuring
the state x. The degree of redundancy is equal to 2 and an example of two consistency
relations spanning all linear residual generators is y1 − y2 and y1 − y3. The solution manifold
in the n = 3-dimensional observation space is given by y1 = y2 = y3 which is a line, i.e. a
1-dimensional manifold. The number of known signals n = 3, consistency relations m = 2,
and the dimension of the manifold p = 1 which is consistent with p = n − m.

DX 2024
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For illustration, consider a linear model. The degree of redundancy of a linear model
corresponds to how many linearly independent consistency relations that can be constructed,
see e.g. [11]. Let

ẋ = Ax + Bu (1)

where x is a state vector and A has full rank. Let A, and B be matrices of appropriate
dimensions. For each value of u there exists values of x such that the equations are satisfied.
Thus, the solution set z = u is distributed in the whole observation space, which is spanned
by u, i.e. the degree of redundancy is zero. Assume that sensors are added to the model as

y = x. (2)

By adding sensors to the system, the dimension of the observation space n increases by one
for each new signal. Also, the degree of redundancy increases by one for each new sensor,
i.e. one more independent consistency relation can be constructed. The dimension of the
solution manifold decreases by one with respect to n for each new consistency relation.

If a mathematical model of the system is not available, it is not possible to evaluate
analytical redundancy. Instead, the idea here is to analyze when data is distributed on a
lower-dimensional manifold to draw conclusions about the redundancy properties of the
system. From a set of observations z, it is possible to select a subset of ñ signals z̃ ⊆ z

to formulate an observation space of dimension ñ. If the observations are distributed on a
p-dimensional manifold then the degree of redundancy m can be computed as m = ñ − p.
However, since signals are corrupted by noise, data dimension analysis methods are needed
to estimate the dimension of the manifold. Here, the intrinsic dimension of observations will
be used to approximate the dimension of the solution manifold.

3.2 Data dimension analysis
The ID essentially refers to the minimum number of variables needed to represent the
underlying structure of a dataset without significant loss of information. Estimating the
ID is crucial in various applications such as dimensionality reduction, data visualization,
and understanding the complexity of datasets. Below is an outline of the ID estimation
methods that are used in this work. The methods are implemented in the scikit-dimension
python package, and were selected because of their favorable characteristics in the paper [4].
Moreover, After some initial testing, they were found to be the three most computationally
efficient methods in this application, while still resulting in a good ID estimate.

Principal component analysis. Principal component analysis (PCA) is a commonly used
linear projection method, that is searching for the best subspace projection that minimize
the projection error. The main idea is to compute all eigenvalues of the data covariance
matrix and based on the dominating eigenvalues, decide the ID. There exist multiple ID
estimation methods that are based on PCA, e.g. methods that only return eigenvalues larger
than a constant times the largest eigenvalue [12]. The authors of [6] have shown that many
PCA estimation methods often result in poor estimations, especially for nonlinear and noisy
data. However, there are more involved PCA based ID estimation methods that aims to
improve the estimation for more complex data, such as [9].

Maximum likelihood estimation. The maximum likelihood estimation (MLE) is a statistical
method used to estimate the ID of a dataset by maximizing the likelihood of the observed
data under a given model. This approach focuses on the distribution of distances between
neighboring points in the data to determine the ID.
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One MLE-based algorithm for ID estimation was developed by Levina and Bickel [19].
This method starts by considering the k-nearest neighbors of each point in the dataset and for
a given point, the distances to its nearest neighbors are used to estimate the local dimension
around that point. The idea is that, in a space with a certain ID d, the distances to the
nearest neighbors should follow a certain distribution related to d. An extension of this
algorithm, proposed by Haro et al. [13], enhances the robustness of the original method,
particularly in noisy environments.

Method of moments. Method of moments (MoM) is an estimation technique that derives
the ID by using sample moments, such as mean and variance, with their theoretical counter-
parts. In the context of ID estimation, MoM involves using moments of distance distribution
between data points. By matching the empirical moments calculated from the data with the
expected moments under the assumption of a particular ID, it is possible to estimate the ID
[3].

4 Design of data-driven residuals using intrinsic dimension

This section outlines a method for designing residuals based on the ID-based search of signal
combinations. The process consists of four key steps: data preprocessing, searching for
low-dimensional signal combinations, selection of signal combinations, and design of residuals
using the selected signal combinations.

4.1 Data preprocessing
The first step is to determine which observations will be used for fault diagnosis and how it
will be preprocessed. This preprocessing typically involves filtering to reduce noise, removing
outliers, normalizing data, and potentially discarding corrupt or impractical data.

To model dynamic systems, derivatives are needed to form consistency relations. In many
applications, the derivatives are not directly measured and must be numerically approximated.
If the data is noisy or if higher order derivatives are needed, numerical approximations often
results in poor-quality derivatives, which may complicate the evaluation of the ID. In this
work, up to second-order derivatives of the observations have been estimated using a Savitzky-
Golay filter [25]. The Savitzky-Golay filter is a non-causal smoothing filter that approximates
the noise-free signal using low-degree polynomials. The set of observations z is constructed
by combining actuator and sensor signals, and their higher-order derivatives.

4.2 Searching for low-dimensional signal combinations
Let z̃ ⊆ z denote a subset of signals such that z̃ ∈ Rn̄ where ñ ≤ n. Based on the set
of observations computed in the previous section, the next step involves identifying signal
combinations z̃ where the ID is lower than the number of signals ñ since that means that z̃

is approximately distributed on a low-dimensional manifold.
Since methods for evaluating ID are estimations, they do not provide a binary answer

regarding whether the data distribution from a sensor combination is low-dimensional. The
ID estimation methods described in Section 3.2 are local methods, i.e. the ID is evaluated
by calculating the local ID for each sample using N nearest neighbors and then aggregating
the information. The local ID distribution can also be used to calculate a global ID estimate,
e.g. by taking the average of local ID distribution. However, taking the average value can be
sensitive to outliers. Therefore, the distribution of the estimated local IDs is used to evaluate

DX 2024
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the probability that the IDz̃, which denote the estimated ID for sensor combination z̃, is
lower than ñ minus an offset parameter α. If this probability exceeds a certain confidence
threshold

P(IDz̃ < ñ − α) ≥ θ, (3)

the combination is considered low-dimensional, where θ is the required confidence level.
Moreover, the number of nearest neighbors N must be determined. Together, these three
parameters, α, θ, and N , affect the search results. The probability in (3) is estimated using
a kernel density approximation (KDE) to approximate the distribution [14].

The objective is then to find all signal combinations z̃ such that IDz̃ < ñ − 1, i.e. if (3) is
satisfied. Note that if nominal data of ñ is distributed on a low-dimensional manifold then
all supersets of z̄ are also distributed on low-dimensional manifolds. Thus, it is sufficient to
find minimal signal combinations such that (3) is satisfied, i.e. when IDz̃ = ñ − 1, instead
of evaluating all signal combinations. Finding the minimal combinations is a combinatorial
problem and the search space grows exponentially with n. Another important factor is the
curse of dimensionality, i.e., when analyzing data in higher dimensions, the number of samples
needed in training data to estimate the data distribution grows exponentially with ñ, see e.g.
[28]. Therefore, the combinations z̃ ⊆ z are evaluated using a breadth-fist search principle,
starting with the smallest combinations. This ensures that the minimal combinations are
found first, and the search is terminated when no more minimal signal combinations can be
identified.

4.3 Selection of signal combinations
After all minimal observation combinations have been found, the next step is to select a
subset of these combinations for residual design. The sensor combination z̃ can be evaluated
using different criteria. Here, each z̃ is used to fit a regression model using one of the signal
as a target signal and evaluate the prediction error. For each z̃, all signals are evaluated as
target signals predicted using a regression model based on the other signals in the set and the
best prediction accuracy, quantified using the normalized root mean squared error (NRMSE),
is selected as a metric. Here, linear regression models are used to reduce computation time
when evaluating many combinations. The combinations which has a low NRMSE value and
ñ − IDz̃ ≈ 1 are then selected for residual generation.

4.4 Residual design
When a number of minimal sensor combinations has been identified, the last step is to
design residual generators based on the selected combinations. The primary idea is to
use a data-driven approach to predict one the signals using the other within each selected
combination, and by doing this, constructing a residual based on the prediction error. This
can be achieved through various methods, such as linear regression models, neural networks,
or other techniques, depending on the system’s complexity.

The objective of this work is illustrating the potential of using ID. Therefore, standard
linear regression modeling techniques will be used in the case studies, see e.g. [20].

5 Evaluation of method for data-driven residual design

This section will present the result of using the residual design method described in Section 4.
The proposed design method for data-driven residuals is evaluated first using a simulation
model of a non-linear two-tank system to compare the results with a structural analysis
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of the simulation model. Then, data from a fuel injection system in a heavy-duty truck is
used to validate the method. The maximum likelihood estimation method was used when
evaluating the ID for both systems.

5.1 Water tank system
The water tank system consists of two connected tanks, as illustrated in Figure 1 where the
upper tank is filled by a controlled pump, and the water flows from the upper to the lower
tank. The model for this system, derived from first principles, is described by the set of
equations:

y1 = h1 + e1,

ḣ1 = d1u − d2
√

h1 + fa, y2 = h2 + e2,

ḣ2 = (1 − fl)d3
√

h1 − (1 − fc)d4
√

h2, y3 = d5
√

h1 + e3,

y4 = (1 − fc)d6
√

h2 + e4

(4)

where h1, h2 are the water levels in the upper and lower tanks, respectively, u is the
control signal to the pump, yi are the measurement signals, di are model parameters, ei are
measurement noise, here modeled as Gaussian distributed, fa is a fault in the pump actuator,
fl is a leakage between the upper tank and sensor y3, and fc is a clogging in the output of
the lower tank.

u

h1

h2

Figure 1 An illustration of the two tank system.

A structural model is derived based on the model equations (4) and implemented in Fault
Diagnosis Toolbox [10]. The set of MSO candidates based on the model are identified for
comparison with the identified observation combinations identified from data using ID.

5.1.1 Data description
Seven datasets are generated from the simulation model of the water tank system, including
fault-free and faulty scenarios. All dataset include the following set of signals:

z = {y1, y2, y3, y4, ẏ1, ẏ2, ẏ3, ẏ4, ÿ1 ÿ2}.

For simplicity, the set of signals were selected based on the model structure. Since the model
had two dynamic equations, the first and second derivatives of the signals were included.
Note that higher derivatives of the signals could be included, but the number of signals was
intentionally kept low to reduce the number of combinations. Since only the values yi are
directly obtained, the first- and second-order time derivatives are numerically approximated.
In this case, they are approximated using a Savitzky–Golay filter [25].

DX 2024
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Figure 2 Example of measurements from the simulated water tank system.

The first four datasets represent nominal operation data: two are used for evaluating the
ID and selecting combinations for residual design. The third and fourth datasets are used for
testing the residuals, with one dataset for training the model and the other for evaluation.
The remaining three datasets correspond to three different fault scenarios: a fault in the
actuator (fa), leakage between the upper tank and sensor 3 (fl), and clogging in output of
lower tank (fc). These datasets are used to evaluate how the designed residuals react to the
different faults. Figure 2 shows the signals from one of the nominal datasets, excluding the
derivatives.

5.1.2 Intrinsic dimension evaluation
In addition to evaluating the ID for all signal combinations, the Normalized Root Mean
Squared Error (NRMSE) of the prediction error is calculated after fitting a linear regression
model to the data. Since the water tank system is non-linear, the linear regression model
was extended to include the squares and square roots of all signals based on knowledge of
the system behavior.

Figure 3 shows the relationship between evaluated ID and NRMSE for all 4083 signal
combinations. The NRMSE was normalized by the standard deviation of the target signal
to allow for a fair comparison between the different regression models predicting different
target signals. The x-axis shows the difference between the number of signals in the set
(the color of each point) and the estimated ID from the data. Observation sets where
the dimensional difference is large result in regression models utilizing many signals for
prediction which gives a better overall prediction accuracy. For dimensional difference one
and higher, there are sensor combinations that achieve close to perfect prediction accuracy.
For a dimensional difference smaller than one, the best NRMSE increases which indicates
that there is insufficient information in the regression models to predict the target signals.
This observation agrees with the expected behavior when observations are not distributed on
a low-dimensional manifold.

The MSO sets derived from the water tank model (4), represent the minimal equation
sets to construct consistency relations. Based on the MSO sets it is also possible to derive
the minimal sets of observations needed to construct consistency relations based on the
model. The sensor combinations that correspond to the MSO sets derived from the model
are highlighted as stars in Figure 3. Ideally, the dimensional difference of the MSO sets
should be close to one, and the NRMSE should be small. As shown in the figure, while not
perfect, the MSO sets generally follow this expectation.



D. Jung and D. Axelsson 4:9

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

10

11

12
ñ

Figure 3 Normalized root mean squared error versus dimensional difference for all signal com-
binations for the water tank system. The stars represent the sensor combinations corresponding
to MSO sets derived from the model (4). Marker color represent combination dimension, i.e. the
number of signals in the set.

After evaluating all minimal signal combinations, as described in Section 4.2, 209 combin-
ations were identified as minimal. The top six ranked combinations, those with the highest
probability and a NRMSE of less than 0.2, were selected as candidates for residual design.

The parameters used for evaluating all combinations and finding minimal combinations
were selected as N = 70, α = 0.5, and θ = 0.70. These values were identified experimentally
based on their impact on the resulting minimal combinations. Both parameters α and θ

influence the strictness of the search process similarly: increasing their values makes the
search criteria more strict, reducing the likelihood of identifying weaker signal combinations.
There is a trade-off between the risk of overlooking important combinations with higher
parameter values and the risk of detecting false positives with lower values. As mentioned
in [13] increasing the number of neighbors reduces the ID estimation bias when using the
MLE method. However, there is a compromise, since increasing N might affect underlying
assumptions of constant density in the neighborhood, which might affect the results negatively.
This means that tuning of N is required that depends on the properties of the data.

The process for designing residuals using these combinations will be described next.

5.1.3 Residual design and evaluation

The residual generators are constructed based on the six selected sensor combinations using
the same linear regression models as to compute the NRMSE.

Figures 4-6 show the performance of the residuals when subjected to the three modeled
faults: actuator fault (fa), clogging (fc), and leakage (fl), respectively. In these figures,
the blue line is the residual under nominal conditions, while the orange line is the residual
affected by the fault. Any overlap between the two lines is indicated by a green color. All
three faults are introduced in the system using similar fault scenarios. Each fault signal
behaves as a ramp starting at t = 10 second that increases to an amplitude of 0.4 over 2
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Figure 4 Comparison of residuals between fault-free data and data under an actuator fault, which
occurs at t = 10 s.
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Figure 5 Comparison of residuals between fault-free data and data under a clogging fault, which
occurs at t = 10 s.

seconds. The results demonstrate that the residuals maintain a low value under nominal
conditions, while different residuals reacts to the different faults, indicating their potential
for fault isolation.

It is also possible to analyze which part of the system that is modeled in each residual
generator based on the selected the sensor combinations. For example the residual generator
based on the signals y1, y2, and ẏ2 is modeling the relationship between signals related to
the dynamics of tank two based on the water level of tank one, see (4). This is also visible
in the residual plots since the residual reacts to a clogging in tank one in Figure 5, which
affects how much water is flowing into tank two, and a leakage in tank two in Figure 6, which
affects the behavior the tank. However, the actuator fault in Figure 4 is only affecting how
much water that flows into tank one but not the relationship between y1, y2, and ẏ2. This
shows that it is possible reason about the cause of triggered data-driven residuals based on
physical insights about the system.
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Figure 6 Comparison of residuals between fault-free data and data under a leak fault, which
occurs at t = 10 s.
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Figure 7 A schematic of the fuel injection system. The figure is used with permission from [2].

5.2 Fuel injection in heavy-duty diesel engine

The second case study is a fuel injection system in a heavy-duty diesel engine. The same
case study has previously been analyzed in [2]. The system consists of two pumps used to
provide fuel that is injected into the cylinders in a diesel engine. A schematic of the system
is shown in Figure 7 where fuel from the tank is pumped through a set of filters and finally
to the common rail where it is injected to the cylinders.

The amount of fuel injected into the cylinders is not measured but is controlled by
adjusting how long a set of solenoid valves are open. Thus, the system acts to maintain a
fixed pressure in the common rail to inject the correct amount of fuel. The available signals
from the fuel injection system are:

Pump speeds ynp and yne,
LP and the HP circuit pressures yp2 and yp5,
HP pump solenoids duty cycle u,
Estimated injected fuel to the cylinders yq,fi.
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5.3 Data description
Based on the results in [2], it was observed that the dynamics could be approximated by
a second order system. Therefore, the extracted set of observations includes the following
signals:

z = {ynp, yne, yp2, yp5, yq,fi, u, ẏne, ẏp5, ẏq,fi, u̇, ÿp5, ÿq,fi},

where the derivatives of the signals are numerically approximated, similar as for the water
tank system.

The fuel injection system data consists of four datasets, all collected during real-world
operation of a heavy-duty truck:

Fault-free data from 40-tonne load (30 min)
Fault-free data from no load (20 min)
Clogging in the main filter (28 min)
Degradation of the HP pump (4 min)

The first two datasets represent nominal operation: one with the truck under a 40-ton load
and the other with no load. The dataset recorded under load conditions is used for performing
the ID evaluation and designing the residuals, while the no-load dataset is used to evaluate
these residuals. The remaining two datasets were recorded under faulty conditions: one with
a clogged main filter in the fuel injection system, and the other with a pump-related failure.
These datasets are used to assess how the faults impact the designed residuals. Figure 8
shows the data from the 40-tonne load nominal dataset.
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Figure 8 Example of measurements from the fuel injection system in a heavy-duty truck.

The evaluation procedure follows the same methodology used for the water tank system
described in Section 5.1. However, there is no comparison of the solution to any MSO sets.

5.3.1 Intrinsic dimension evaluation
The 12 selected signals in z result in 4083 sensor combinations in total. Out of all of these
combinations, 462 were classified as low-dimensional with the parameters: α = 0.5, θ = 0.65,
and N = 160. These parameters were based on those used in the water tank system, but
were adjusted to account for the larger and noisier dataset. Specifically, the number of
neighbors was increased to improve the results, and the search strictness was slightly reduced
by lowering θ to avoid overlooking potentially relevant combinations.
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Here, data is used to fit a linear regression model to compute the prediction error. Based
on the results in [2], it was concluded that a linear model was sufficient to model the system
behavior. Figure 9 shows the relationship between NRMSE and dimensional difference for all
combinations. The results show the same characteristic behavior as for the water tank system
where a higher dimensional difference result in a lower prediction error. Still, the objective
is to design residual generators using minimal sensor sets. Analogously to Section 5.1, six
candidates were selected to be used for residual design. Because of the higher RMSE in this
case, the candidates were chosen to be below a NRMSE of 0.4 instead of 0.2.
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Figure 9 Normalized root mean squared error versus dimensional difference for all signal combin-
ations for the fuel injection system. Marker color represent the dimension of the observation space,
i.e. the number of signals ñ.

5.3.2 Residual design and evaluation
Figures 10 and 11 show how the residuals react to the two different faults, both time series
data and the distributions of the residual during nominal (blue) and faulty conditions (orange).
Even tough the residuals are affected by noise, the faults are detectable. Since each fault
is resulting in a bias in the residual output, the noise can be suppressed using a low-pass
filter without significantly reducing detection performance. The results from the analysis of
the fuel injection system show that the proposed design method can be used for designing
data-driven residual generators for fault diagnosis in industrial applications.

6 Identifying sensor combinations for fault isolation using augmented
training data

The residual design process for the two case studies in the previous section identified sensor
combinations based on the prediction error. This means that there is no information about
the fault sensitivity of the constructed residual generators. In [21], it is shown that data
from decoupled faults are distributed along the same manifold as fault-free data. Thus,
augmenting the training data used in the ID evaluation with data from faults that should be
decoupled could be used to find signal combinations that are insensitive to the fault.
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Figure 10 Residual comparison between no fault and clogging in the main filter. Each residual
have two separate plots, the upper plot showing the time-series data of the residuals, and the lower
plot showing the residual distribution.

The design process in the previous section for the water tank system using training data
augmented with data from the clogging fault. A new set of sensor combinations is identified
and used to construct residual generators. Figure 12 shows the new selected residuals based
on the six top ranked signal combinations, when performing exactly the same procedure as
previously. All residuals are insensitive to the clogging fault, demonstrating the potential of
finding signal combinations that can be used to form residuals unaffected by a chosen fault.
This is promising, since have residuals that are affected by different faults is essential for
consistency-based fault isolation.

Experiments also showed that for the ID algorithm to identify sensor combinations that
were insensitive to the fault in the augmented training data required sufficient excitation of
the fault. For example, a constant fault that is only introducing a shift in the measurements
will not affect the estimated ID since the local ID around those measurements will be
the same.
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Figure 11 Residual comparison between no fault and a pump related fault.

7 Conclusions and future works

Even though data-driven diagnosis is often treated as a standard classification problem, it is
shown that theory from model-based diagnosis, e.g. redundancy, can be used in a data-driven
context. When representative training data is limited, there is a risk of misclassifications due
to generalization problems. Thus, theory and methods for data-driven fault diagnosis are
needed. The connection between analytical redundancy and ID is evaluated using data from
a simulated two-tank system. The results show the connection between model-based methods
to find consistency relations and the distribution of data. The results when evaluating the
prediction performance of different sensor combinations validate the fact that prediction
accuracy is improved by utilizing more observations from the system. However, from a
fault isolation perspective it is more relevant to identify minimal subsets of observations for
residual generation, similar to MSO sets in model-based diagnosis. A data-driven diagnosis
system design process is also proposed using the ID to find candidate observation sets for
residual generation. The proposed method is validated using both the simulation model of
the two tank system and data from a fuel injection system.
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Figure 12 Comparison of residuals between normal data and data under a clogging fault, which
occurs at t = 10 s.

As future work, more investigations are needed to efficiently estimate the ID using noisy
data. Here, derivative causality was considered, i.e. signals and their derivatives, which has
limitations for complex dynamic systems. Thus, it should be investigated how to apply ID
for integral causality, e.g. how to directly analyze time-series data instead of estimating the
derivatives.
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