
Bridging Hardware and Software Diagnosis:
Leveraging Fault Signature Matrix and
Spectrum-Based Fault Localization Similarities
Louise Travé-Massuyès # Ñ

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Franz Wotawa #Ñ

Christian-Doppler Laboratory for Quality Assurance Methodologies for Autonomous Cyber-Physical
Systems, Institute of Software Technology, Graz University of Technology, Austria

Abstract
This paper examines two prominent Fault Detection and Isolation methodologies: the Signature
Matrix approach, traditionally used in hardware systems, and the Spectrum-based approach, applied
in software fault localization. Despite their distinct operational domains, both methods share the
objective of precisely identifying and isolating faults. This study aims to compare these approaches
and to highlight their similarities in principle. Through a comparative analysis, we assess how
the structured pattern recognition of the Signature Matrix method and the statistical analysis
capabilities of the Spectrum-based approach can be synergized to enhance diagnostic processes
of cyber-physical systems that are composed of both hardware and software components. The
investigation is motivated by the prospect of developing a hybrid Fault Detection and Isolation
strategy that incorporates the robust detection mechanisms of hardware diagnostics with the
techniques used in software fault localization. The findings are intended to advance the theoretical
framework of Fault Detection and Isolation systems and suggest practical implementations across
varied technological platforms, thereby improving the reliability and efficiency of fault detection and
isolation in both hardware and software contexts.

2012 ACM Subject Classification Computing methodologies → Causal reasoning and diagnostics;
Software and its engineering → Software defect analysis; Hardware → Error detection and error
correction

Keywords and phrases Diagnosis, Fault detection and identification, Software debugging

Digital Object Identifier 10.4230/OASIcs.DX.2024.5

Funding Louise Travé-Massuyès: This work is partially supported by 3IA Artificial and Natural
Intelligence Toulouse Institute (ANITI), French ”Investing for the Future - PIA3” program under
the Grant agreement ANR-19-PI3A-0004”.
Franz Wotawa: The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs, the National Foundation for Research, Technology and Development, and the Christian
Doppler Research Association is gratefully acknowledged.

1 Introduction

In the field of Fault Detection and Isolation (FDI), innovative methodologies have significantly
advanced the diagnosis and management of faults in both hardware and software systems.
Among these, the Signature Matrix approach and the Spectrum-based approach, particularly
as applied in software fault localization, stand out as critical tools in the arsenal of diagnostic
techniques. The Signature Matrix method relies on a well-defined structure where fault
signatures are cataloged in a matrix format, facilitating the pinpointing of system faults and
anomaly detection. On the other hand, the Spectrum-based approach, widely utilized in
software fault localization, leverages the statistical analysis of pass/fail data across various
execution points to identify potential faults.

© Louise Travé-Massuyès and Franz Wotawa;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024).
Editors: Ingo Pill, Avraham Natan, and Franz Wotawa; Article No. 5; pp. 5:1–5:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:louise@laas.fr
https://www.laas.fr/en/
https://orcid.org/0000-0002-5322-8418
mailto:wotawa@ist.tugraz.at
https://www.tugraz.at/institute/ist/home/
https://doi.org/10.4230/OASIcs.DX.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Bridging Hardware and Software Diagnosis

Despite their application to different domains – hardware and software respectively –
both approaches share a foundational goal: to systematically identify and isolate faults
with high accuracy. This common objective underscores the importance of comparing
these methodologies to explore their potential synergies and complementary capabilities.
The Signature Matrix approach, with its robust framework for hardware systems, and the
Spectrum-based approach, with its nuanced analysis of software execution, both strive to
enhance fault diagnostic processes. They do so along paths that appear different at first
glance but have much in common.

The motivation for this comparative study arises from the potential to cross-pollinate
between these domains, leveraging insights from one to enrich the other. Such a comparison
not only elucidates the strengths and weaknesses inherent in each method but also sets the
stage for hybrid diagnostic strategies that could incorporate the precision of signature matrices
and the statistical analysis capabilities of spectrum-based methods. This paper aims to bridge
the methodological divide between hardware fault detection and software fault localization,
proposing avenues for integrated approaches that enhance the reliability and efficiency of
FDI systems across different technological realms. Through a detailed comparative analysis,
we seek to contribute to both the theoretical advancement and practical application of FDI
methodologies in complex engineering and software systems.

For this purpose, we briefly introduce the basic foundations of both approaches utilizing
simple examples for illustration purposes. Furthermore, we discuss the similarities and
differences between signature matrix approach and spectrum-based fault localization, and
suggest a combined approach focusing on the integration of methods. The latter may lead to
a methodology that can be handle diagnosis of hardware and software altogether.

2 The Fault Signature Matrix approach

The FDI control community focuses predominantly on physical systems. These systems,
which include mechanical, electrical, and hydraulic components, among others, are integral
to industries ranging from manufacturing to aerospace. The models used to represent these
systems are typically derived from physical laws and principles, ensuring that the simulations
and diagnostics closely mirror real-world dynamics. Such models are crucial for accurately
predicting system behaviors and effectively diagnosing issues, providing a reliable basis for
further analysis and application in practical settings. The emphasis on physical systems and
their corresponding models underscores the importance of precise and applicable solutions in
the domain of system engineering.

Diagnosis techniques are based on behavioral models that define the relationships between
system quantities. The typical model may be formulated in the temporal domain, then
known as a state-space model :

Σ(z, x) :

dx(t)/dt = h(x(t), u(t), θ),
y(t) = g(x(t), u(t), θ),
x(t0) = x0,

(1)

where the functions h and g are linear or nonlinear functions. x(t) ∈ Rn denotes the state
variable vector, whose components are the internal variables to the system that cannot be
directly measured. These variables form the set of unknown variables X. y(t) ∈ Rm and
and u(t) ∈ Rl denote the output and input variable vectors, respectively. Output and input
variables are measured. They respectively stand for the measurements delivered by sensors
and for the controls applied by actuators to the system. They are gathered in the vector z(t)

L. Travé-Massuyès and F. Wotawa 5:3

and they form the set of known variables Z, also called observations. u(t) may be equal to 0
in case of an uncontrolled system. The variables z(t) and x(t) are time-dependent functions.
It is assumed that all sensor and control values are acquired/applied synchronously according
to a given sampling rate. Therefore the explicit mention to time may be omitted and we
may write z and x instead of z(t) and x(t), respectively.

In a more abstract form, a system model can be defined as follows.

▶ Definition 1 (System model). A system model Σ(z, x) is composed of a set of algebraic
and/or differential equations ek(zk, xk), k = 1, . . . , ne, where zk is a subvector of the vector
of known variables z, and xk is a subvector of the vector of unknown variables x.

At the heart of FDI control methods lies the concept of residual, and a key challenge is
the generation of residuals. Residual generators define diagnosis tests. The evaluation of
residuals indeed brings the information of consistency or non consistency of a model with
observations.

▶ Definition 2 (Consistency of observations with a model). An observed trajectory z is deemed
consistent with a model Σ(z, x) if there is a trajectory for x that satisfies the equations of
Σ(z, x).

▶ Definition 3 (Diagnosis test for Σ(z, x)). A diagnosis test T , also called a residual generator,
for the model Σ(z, x) is a system that inputs a subset of known variables Z̃ ⊆ Z and their
derivatives and outputs a scalar r, named the residual such that, for all z consistent with
Σ(z, x), limt→∞ r(t) = 0.

When the model aligns with observations, the residuals tend to zero as time t tends to infinity.
Conversely, discrepancies in residuals may occur if the model does not align. Practically,
residuals are never precisely zero due to the impracticality of the noise-free assumption
inherent to system (1). The evaluation of residuals involves statistical testing that considers
the noise characteristics, as discussed in sources like [1]. Furthermore, optimization of
residuals aims to enhance robustness against disturbances [7] and to incorporate uncertainties
[4, 8]. In this paper, we assume an ideal system without noise.

Diagnosis tests are derived from the model (1) by using different subsets of equations,
each forming a minimal structurally overdetermined (MSO) set [6], i.e. a subset of equations
just overdetermined. A diagnosis test T may take the form of an Analytical Redundancy
Relation (ARR) in which case T expresses as a relation of the form r = arr(z̄′), where r is
the residual and z̄′ is a subvector of z̄, and z̄ stands for z and its time derivatives up to some
(unspecified) order.

Assumption 1 – Let us assume, without loss of generality, that every equation of Σ(z, x)
represents the behavior of one and only one component C ∈ COMPS, where COMPS is
the set of components composing the system Σ(z, x).

▶ Definition 4 (Equation/component support of a diagnosis test). The equation/component
support Σ′ ⊆ Σ of a diagnosis test T is defined as the set of equations of the MSO set
underlying T , i.e., the subset of equations of model (1) that are used to derive T . Given
Assumption 1, the component support of a diagnosis test is isomorphic to its equation support.

In general, two categories of faults are recognized: additive faults and multiplicative
faults. Additive faults typically introduce a bias into the system, altering measurements or
actuators by a consistent amount. This can occur due to issues like incorrect settings on an
analog-to-digital converter or erroneous application of control voltages. On the other hand,
multiplicative faults, also referred to as parameter faults, impact the system’s dynamics and
can compromise the stability of the system and restrict the functionality of components.

DX 2024

5:4 Bridging Hardware and Software Diagnosis

▶ Definition 5 (Additive Fault). An additive fault is characterized by the alteration of
a measured quantity zi ∈ R through the addition of an offset fi ∈ R, resulting in the
sensor/actuator reading z′

i = zi + fi, rather than the original zi.

▶ Definition 6 (Multiplicative Fault). A multiplicative fault involves the alteration by a factor
fi ∈ R of a parameter θi ∈ R defining one of the functions h or g of model 1, which modifies
the dynamics of the system.

Faults occur in system components, including sensors, actuators, or internal parts. A
fault in a component C, whose normal behavior is represented by the equation e, disrupts
this equation. Consequently, this disruption may affect the diagnostic tests that include e in
their equation support, or equivalently that include C in their component support.

▶ Definition 7 (Fault signature matrix). Given a model Σ(z, x) and a set of diagnosis tests
DT , a fault signature matrix (FSM) is a matrix where each column represents a component
C ∈ COMP and each row a diagnosis test T ∈ DT . A cell for a component C ∈ COMP

and a diagnosis test T ∈ DT is set to 1 if and only if C belongs to the component support of
T , and 0 otherwise.

The columns of the FSM provide the fault signatures of the faulty components while the
lines provide the component supports of the diagnosis tests [3].

During the operation of the system, diagnosis tests are evaluated with the measurements.
Their evaluation provides a value to the residuals and this value is binarized: 0 if the value
is zero and 1 otherwise. If the residual of a test is 0, the diagnosis test passes while if it
is different from zero, it fails. The evaluated residual binary vector is called the observed
signature.

Diagnoses can be obtained in two ways [3]:
By columns (the FDI way), i.e. by comparing the observation signature to the fault
signatures,
By rows (the DX way), i.e. by considering that at least one of the components in the
component support of the failing tests must be incriminated (these provide conflicts in
the sense of Reiter [11]).

To illustrate the above concepts and diagnosis process, consider the following two-tank
system, illustrated in Fig. 1 [2, 10] whose objective is to provide water flow Qo to a consumer
area. The system comprises two tanks, Tank1 and Tank2, connected by a pipe. Tank1 is
filled by a pump Pump to reach a nominal water level of h1 = 0.5m. The water level in
Tank1 is regulated by a PI level controller Cont that adjusts the inlet flow Qp provided by
the pump. The water flow Q12 between tanks is managed by valve Vb using an “ON/OFF”
controller to maintain the water level h2 within the range of 0.09m ≤ h2 ≤ 0.11m in Tank2.
The outflow Qo to a consumer area depends on the position of valve Vo, which is open in
the nominal regime. The connecting pipe between the tanks is positioned at the bottom,
equipped with valve Vb. The dynamic model of the non faulty behavior of the two-tank
system is given by the two following equations:

Tank1 : ḣ1 =
Qp − Cvb · sgn(h1 − h2)

√
|h1 − h2| · Ub

A1
(eq.1)

Tank2 : ḣ2 =
Cvb · sgn(h1 − h2)

√
|h1 − h2| · Ub − Cvo ·

√
h2 · Uo

A2
(eq.2)

L. Travé-Massuyès and F. Wotawa 5:5

Figure 1 Two-tank system (from [2]).

We assume that Qp is given by the output Up of the PI controller, hence we have the
following PI controller and pump equations:

Cont : Up = Kp(h1c − h1(t)) + Ki

∫
(h1c − h1(t)) dt (eq.3)

Pump : Qp = Up. (eq.4)

Uo and Ub represent the position of valve Vo and Vb respectively. These valves can only
be open or closed, hence Uo and Ub ∈ {0, 1}. Cvb and Cvo are constant hydraulic flow
coefficients, A1 and A2 are constant parameters of the tanks, h1c is the target level for tank
Tank1, and Kp and Ki are constant parameters of the PI controller Cont.

Sensor equations are the following:

Sensor Sh1 of h1 : mh1 = h1 (eq.5)
Sensor Sh2 of h2 : mh2 = h2 (eq.6)
Sensor SQp

of Qp: mQp = Qp (eq.7)
Sensor SUb

of Ub : mUb = Ub (eq.8)
Sensor SUp of Up : mUp = Up (eq.9)
Sensor SUoof Uo : mUo = Uo. (eq.10)

Given the available measurements, ARRs are easily obtained by substituting unknown
variables in the behavior equations. We hence obtain the following four diagnosis tests:

T1 : r1 = −Cvb sgn(mh1 − mh2)
√

|mh1 − mh2| mUb + mQp − A1

(
dmh1

dt

)
T2 : r2 = Cvb sgn(mh1 − mh2)

√
|mh1 − mh2| mUb − Cvo ·

√
(mh2) · mUo−A2

(
dmh2

dt

)
T3 : r3 = mUp − Kp(h1c − mh1(t)) − Ki

∫
(h1c − mh1(t)) dt

T4 : r4 = mQp − mUp.

The components and the corresponding equations representing their behavior are given
in Table 1. The equation and component supports of the four diagnosis tests T1 to T4 are
given in Table 2.

Let us consider a set of possible faulty components, without need to precisely identify
the faults nor their type:

DX 2024

5:6 Bridging Hardware and Software Diagnosis

Table 1 Components and their corresponding equations in the two-tank system.

Tank1 Tank2 Cont Pump Sh1 Sh2 SQp
SUb

SUp
SUo

(eq.1) (eq.2) (eq.3) (eq.4) (eq.5) (eq.6) (eq.7) (eq.8) (eq.9) (eq.10)

Table 2 Equation and component supports of the diagnosis tests.

Test Equation support Component support
T1 {(eq.1),(eq.5),(eq.6),(eq.7),(eq.8)} {Tank1, Sh1 , Sh2 , SQp

, SUb
}

T2 {(eq.2),(eq.5),(eq.6),(eq.8),(eq.10)} {Tank2, Sh1 , Sh2 , SUb
, SUo}

T3 {(eq.3), (eq.5), (eq.9)} {Cont, Sh1 , SUp
}

T4 {(eq.4),(eq.7),(eq.9)} {Pump, SQp , SUp}

Faulty plant components, i.e., Tank1 and Tank2. These components being faulty would
disrupt equation (eq.1) and equation (eq.2) respectively,
Faulty controller Cont, which would disrupt equation (eq.3),
Faulty actuator Pump, which would disrupt equation (eq.4),
Faulty sensors Sh1 , Sh2 , SQp

, SUb
, SUp

, and SUo
that would disrupt equations (eq.5) to

(eq.10).

The FSM is given by Table 3.

Table 3 FSM of the two-tank system.

Tank1 Tank2 Cont Pump Sh1 Sh2 SQp
SUb

SUp
SUo

T1 1 0 0 0 1 1 1 1 0 0
T2 0 1 0 0 1 1 0 1 0 1
T3 0 0 1 0 1 0 0 0 1 0
T4 0 0 0 1 0 0 1 0 1 0

Assume that the actual mode of the two-tank system is Cont faulty and all the other
components normal. Also assume that the evaluation of the diagnosis tests T1, T2, T3, and T4
with measurements provides the observed signature is (0, 0, 1, 0)T . The observed signature is
matched against the faulty component signatures found int the FSM columns, which provides
a unique one single diagnosis {Cont}, i.e. the PI controller.

3 Spectrum-based approach

Spectrum-based fault localization (SFL) is an approach based on probabilities considering
different executions of a program. The underlying idea is to count how often statements
are executed in passing and failing runs to compute a suspicious score for statements. For
example, a statement that is only executed in passing runs can be considered least suspicious
in causing a failure whereas a statement that is executed in all failing runs is most likely to
be the reason behind wrong behavior. The first who carried out this idea were Jones and
Harrold [5]. In their paper the authors introduced the basic concepts and their Tarantula
tool. In the past decades, SFL has gained much attention in the debugging community as
pointed out by Wong and colleagues [13].

In the following, we discuss the basic definitions and algorithms behind SFL considering
an example from a previous publication of one of the authors [14]. Figure 2 shows a simple
program comprising one class Foo and a method foo. The purpose of this program is to

L. Travé-Massuyès and F. Wotawa 5:7

1. public class Foo {
2. public static float a;
3. public static float c;
4. public static float pi = 3.14159;
5. public static void foo (
6. float d, int type) {
7. if (type == 0) { // Circle
8. float r = d / 2;
9. a = r * r * pi;
10. c = d * pi;
11. } else {
12. if (type == 1) { // Square
13. a = d * d;
14. c = 4 * d;
15. } else { // Error
16. a = -1;
17. c = -1;
18. }
19. }
20. }
21. }

Figure 2 Simple program Foo.foo computing the circumference and the area of a circle and
square depending on the second input (taken from [14]).

compute the circumference and the area of a circle and square. Table 4 shows typical tests
we would apply for verifying the correctness of Foo.foo. In order to show how SFL computes
the suspiciousness index, we need a fault version of a program, i.e., in our case Foo.foo’. In
Foo.foo’ we replace line 10 with c = r * pi; leading to a failing execution of test case T1
from Table 4. Note that all other test cases are passing ones, i.e., delivering the expected
values for both variables a and c.

To show SFL in action, we first define the notation of a program spectrum representing
the execution of statements of a program for all test cases.

▶ Definition 8 (Program spectrum). Given a program Π and a test suite TS. A program
spectrum is a matrix, where each line represents a statement of Π and each row a test case
T ∈ TS. A cell for a statement S ∈ Π and a test case T ∈ TS is set to 1 if and only if the
statement S is executed using test case T , and 0 otherwise.

To access an element of the program spectrum in column i and row j, we write xij . The
second important part of SFL is the error vector e. For each test case T ∈ TS there is a
corresponding entrance in e. This entrance is 1 if TS is a failing test case, i.e., the program
is returning an unexpected output, and 0, otherwise.

In SFL the program spectrum and the error vector together are the observation matrix.
In Table 5, we depict the observation matrix for Foo.foo’.

To compute the suspiciousness values for each statement, SFL, maps the observation
matrix, i.e., the spectrum and the error vector, into 4 different kinds of metrics aef for each
statement. Note that the aef represents the number of involvements of the given statement
to executions or non-executions in passing and failing runs, where e is 1 if the statement is

DX 2024

5:8 Bridging Hardware and Software Diagnosis

Table 4 Test cases for program Foo.foo from Figure 2 (taken from [14].

Test Fct. call Expected result
T1 foo(1,0) a=1.570795, c=3.14159
T2 foo(1,1) a=1.0, c=4.0
T3 foo(1,2) a=-1.0, c=-1.0
T4 foo(0,0) a=0.0, c=0.0
T5 foo(0,1) a=0.0, c=0.0
T6 foo(0,2) a=-1.0, c=-1.0

Table 5 Applying SFL to Foo.foo’ utilizing all 6 test cases.

T1 T2 T3 T4 T5 T6 a00 a01 a10 a11 cO Rank
7. if (type == 0) { 1 1 1 1 1 1 0 0 5 1 0.408 2
8. float r = d / 2; 1 0 0 1 0 0 4 0 1 1 0.707 1
9. a = r * r * pi; 1 0 0 1 0 0 4 0 1 1 0.707 1
10. c = r * pi; 1 0 0 1 0 0 4 0 1 1 0.707 1
11. } else {
12. if (type == 1) { 0 1 1 0 1 1 1 1 4 0 0.000 3
13. a = d * d; 0 1 0 0 1 0 3 1 2 0 0.000 3
14. c = 4 * d; 0 1 0 0 1 0 3 1 2 0 0.000 3
15. } else {
16. a = -1; 0 0 1 0 0 1 3 1 2 0 0.000 3
17. c = -1; 0 0 1 0 0 1 3 1 2 0 0.000 3
18. }
19. }
Error 1 0 0 0 0 0

executed and 0 otherwise, and f is 1 if the test case is failing and 0 otherwise. Formally, we
define aef for e = 0, 1, f = 0, 1 as follows:

a00(j) = |{i|xij = 0 ∧ ei = 0}|
a01(j) = |{i|xij = 0 ∧ ei = 1}|
a10(j) = |{i|xij = 1 ∧ ei = 0}|
a11(j) = |{i|xij = 1 ∧ ei = 1}|

For example, the a10(j) for a statement j indicates the number of passing test cases where j

is executed, whereas a01(j) represents the number of failing test cases where j is not executed.
SFL now takes these aef values to calculate a suspicious value for each statement. It is
worth noting that there are a lot of different similarity coefficients described in literature.
For example, Wong et al. [13] mentioned more than 31 of them. However, in the following we
utilize the Ochiai coefficient, which is one that is often used in practice because of delivering
good results.

The Ochiai coefficient for statement j is defined as follows:

cO(j) = a11(j)√
(a11(j) + a01(j)) · (a11(j) + a10(j))

Note that the fraction’s denominator in the Ochiai coefficient might become 0. In this
case, cO is defined to be 0. Note that the Ochiai coefficients for the Foo.foo’ program and
their ranks, defined from the coefficients ordering, are depecited in Table 5. We see that three
statements have the same coefficient and, therefore, the same rank and cannot be distinguished
by SFL. However, there are extensions of SFL also considering data dependencies, e.g., [14]
leading to better results.

L. Travé-Massuyès and F. Wotawa 5:9

4 Fault Signature Matrix versus Spectrum-based Fault Localization

The FSM approach is used primarily in hardware systems to detect and isolate faults. It
involves monitoring system inputs and outputs through diagnostic tests that are built from a
model of the physical system considering the impact of faults to parts of the model, e.g., the
residual equations.

The SFL approach is a method used in software engineering to identify the location of
faults within software by analyzing the program’s behavior during execution. In particular,
it considers executed statements for computing a fault likelihood of statements.

This section aims to highlight the similarities between the FSM and SFL approaches.
Although the first is dedicated to hardware systems and the second to software, the concepts
and objects they manipulate are comparable and the underlying principles and techniques
share common ground.

4.1 About tests

In software engineering and in SFL, a test case targets to execute a set of statements and
test cases are applied to the real program, i.e. the program is run with specific inputs for
which the program output is known.

On the other hand, when diagnosing a physical system that is in operation, it is generally
not possible to apply specific inputs to the system except in particular cases in which active
diagnosis [9] is viable but we do not consider this case in this paper. So, the inputs and
outputs of the physical system are taken as they are applied to the system by the controller,
designed to achieve the current control objectives. In the FSM approach, diagnosis tests – or
residual generators – are obtained from a mathematical model that is assumed to be a proper
representation of the physical system. They establish a relation between observable variables.
The physical quantities corresponding to observable variables that are linked by diagnosis
tests are connected through a subset of components of the system that establish a path
between these variables. These paths are identified through the equations representing these
components. Indeed, a diagnostic test results from a process of eliminating non-observable
variables, which can be implemented in the simplest case through sequential substitution
[12]. When a fault occurs in a physical component C whose normal behavior is represented
by the equation e, the inputs to the physical system that activate C generate outputs that
should disrupt equation e and hence all the tests that have e in their equation support,
or equivalently C in their component support. These test would then generate a non zero
residual.

Let us remember that a test case in the SFL framework is noted as T and a test in
the FSM framework as T . Although the differences above in their design, they share the
following commonalities:

they are supported by a subset of statements (SFL) and a subset of components (FDI),
respectively,

the tests pass when the statements or the components represented by the equations that
support the tests are normal,

the tests may fail when the statements or the components represented by the equations
that support the tests are faulty.

DX 2024

5:10 Bridging Hardware and Software Diagnosis

4.2 FDI fault signature matrix vs SFL observation matrix
Interestingly, it can be noticed that transposing the FSM of Table 3, and adding a row for
the residual binary vector resulting from the evaluation of the tests, i.e. for the observed
signature (called the error vector in SFL), we obtain an object that has the same semantics
as the SFL observation matrix (recalled in Table 7) as displayed below in Table 6.

Table 6 Transp. FS matrix.

T1 T2 T3 T4
Tank1 1 0 0 0
Tank2 0 1 0 0
Cont 0 0 1 0
Pump 0 0 0 1

Sh1 1 1 1 0
Sh2 1 1 0 0
SQp 1 0 0 1
SUb

1 1 0 0
SUp 0 0 1 1
SUo

0 1 0 0
obs-error ? ? ? ?

Table 7 SFL observation matrix.

T1 T2 T3 T4 T5 T6
7. if (type == 0) { 1 1 1 1 1 1
8. float r = d / 2; 1 0 0 1 0 0
9. a = r * r * pi; 1 0 0 1 0 0
10. c = r * pi; 1 0 0 1 0 0
12. if (type == 1) { 0 1 1 0 1 1
13. a = d * d; 0 1 0 0 1 0
14. c = 4 * d; 0 1 0 0 1 0
16. a = -1; 0 0 1 0 0 1
17. c = -1; 0 0 1 0 0 1
obs-error ? ? ? ? ? ?

At this point, we can already say that the processes used by FSM and by SFL could
be applied interchangeably on the FSM matrix or the observation matrix to obtain the
diagnoses. In particular, we would be able to use SFL to come up with the evaluation of
the suspiciousness value for each component and a ranking, which might be an improvement
in some practical cases. The results of applying the SFL Ochiai method to the two-tank
system for an observed signature/error vector (1, 0, 0, 0)T – that we denote obs-error in the
following – are given in Table 8.

Whenever an error vector is equivalently represented in a row, the suspiciousness index
becomes 1.0. Hence, such a row would be ranked on the top indicating that the corresponding
component is faulty. For example, in Table 8 the error vector is equivalent to the vector
stored in the row of component Tank1, which is ranked first in this example. This result is
the same as the one we would obtain using the FSM method. However, there is a difference.
If this error vector is not visible to 100%, the ranking of faults might help in case of double
and triple faults. In such a case the ordinary FSM would not deliver any output and would
have to be extended with the signatures of multiple faults to be effective [3]. Hence, the use
of SFL could provide another way to handle multiple faults, avoiding the burdensome task
of enumerating their signatures. This shows that utilizing the ideas from SFL could improve
diagnosis reasoning of hardware. Conversely, directly comparing the error vector with the
execution signature of each statement – defined as the program spectrum rows by analogy
to fault signatures in FSM – using a specific metric such as Hamming distance (commonly
applied in FSM) could also be a viable approach. Moreover, the methodology used in the
FSM framework to construct diagnostic tests by eliminating unmeasured variables could
offer useful insights for designing tests in software diagnostics.

4.3 Summary
The FSM and the SFL approaches share many commonalities considering components
as program statements and the residual generators (i.e., diagnosis tests) as test cases.
Considering an FSM as a program spectrum allows for computing a suspiciousness values
(e.g., the Ochiai coefficients) and a fault ranking. The advantage of this mapping is that

L. Travé-Massuyès and F. Wotawa 5:11

Table 8 Applying SFL to the Two-tanks system.

T1 T2 T3 T4 a00 a01 a10 a11 cO Rank
Tank1 1 0 0 0 3 0 0 1 1.000 1
Tank2 0 1 0 0 2 1 1 0 0.000 4
Cont 0 0 1 0 2 1 1 0 0.000 4
Pump 0 0 0 1 2 1 1 0 0.000 4
Sh1 1 1 1 0 1 0 2 1 0.5774 3
Sh2 1 1 0 0 2 0 1 1 0.7071 2
SQP

1 0 0 1 2 0 1 1 0.7071 2
SUb

1 1 0 0 2 0 1 1 0.7071 2
SUp

0 0 1 1 1 1 2 0 0.000 4
SUo 0 1 0 0 2 1 1 0 0.000 4
obs-error 1 0 0 0

also double and triple faults of hardware can be handled directly. On the other hand, the
concept of an “observed signature” in FSM could be translated into an “execution signature”
in SFL, and the methodology for constructing diagnostic tests in FDI could provide valuable
guidance for test design in software diagnostics.

Based on these suggestions, we further discuss an integrated approach that allows a
combined diagnosis of hardware and software in the following section.

5 Integrating FSM and SFL

In this section, we discuss how FSM and SFL can be combined together. For this purpose, we
use a small example to illustrate the basic underlying ideas behind the method integration.

Let us consider the two tanks system and assume that the control Up provided by the
controller to control the pump is now provided by the program Foo.foo2 that is a slightly
modified version of the program Foo.foo. The PI controller is replaced by a controller
delivering a control Up proportional to the weight of water in the tank, which is equal to
the area of the tank times the height of water. The tank may be circular or rectangular.
Figure 3 depicts the program Foo.foo2.

In the model of this cyber-physical system, equation (eq.3) modeling the PI controller is
now replaced by the code of the program Foo.foo2. We then can integrate the FSM and
SFL observation matrices as shown in Table 9, where the grey row for Cont indicates that
this row must be removed.

Note that test T3 that was previously supported by the component Cont (ghost line in
gray) is now supported by the statements that are executed to deliver Up (marked in bold in
Table 9).

Let us consider two scenarios for this cyber-physical system:

Scenario 1 : the two-tank cyber-physical system suffers a single fault in the software
Foo.foo2 controller in statement 9, i.e.,a=r*pi instead of a=r*r*pi, which is marked in
bold red in Table 9.

Scenario 2 : the two-tank cyber-physical system suffers a double fault, including the above
fault in statement 9 plus a fault in the hardware sensor Sh1 .

DX 2024

5:12 Bridging Hardware and Software Diagnosis

1. public class Foo {
2. public static float a;
3. public static float Up;
4. public static float pi = 3.14159;
5. public static void foo2 (
6. float d, int type, float h) {
7. if (type == 0) { // Circle
8. float r = d / 2;
9. a = r * r * pi;
10. Up = a * h;
11. } else {
12. if (type == 1) { // Square
13. a = d * d;
14. Up = a * h;
15. } else { // Error
16. a = -1;
17. Up = -1;
18. }
19. }
20. }
21. }

Figure 3 Program Foo.foo2 computing the control of the pump Up in the two-tank system for a
circle or square tank shape depending on the second input.

5.1 Scenario 1: single fault
Scenario 1 : the two-tank cyber-physical system suffers a single fault in the software Foo.foo2
controller in statement 9, i.e.,a=r*pi instead of a=r*r*pi, which is marked in bold red in
Table 9.

The application of the two methods, FSM and SFL to the two-tank system in Scenario 1
is illustrated in Table 10. The obs-error vector, resulting from the evaluation of T1 to T4 and
from running test cases T1 to T6 is given by (0, 0, 1, 0, 1, 0, 0, 1, 0, 0)T .

According to the FSM method, the obs-error vector matches the fault signatures of
the single faults {stat. 8}, {stat. 9} and {stat. 10} (“stat.” is used as an abbreviation
of “statement”), which definitively indicates a fault in the software controller but does not
discriminate between the three statements. The corresponding rows are colored green in
Table 10.

According to the SFL method, the Ochiai coefficients provide a ranking that also puts at
the first rank all three single faults {stat. 8}, {stat. 9} and {stat. 10}.

The results of the two methods are hence consistent. Note that these results are quite
understandable because the actual fault, a=r*pi instead of a=r*r*pi, is not discriminable
from a fault in statement 8, e.g. a wrong value for d in r=d/2 or a fault in statement 10,
e.g., a wrong value for h in Up=a*h.

5.2 Scenario 2: double fault
Scenario 2 : the two-tank cyber-physical system suffers a double fault, including the above
fault in statement 9 plus a fault in the hardware sensor Sh1 .

L. Travé-Massuyès and F. Wotawa 5:13

Table 9 FSM and SFL observation matrices integrated.

T1 T2 T3 T4 T1 T2 T3 T4 T5 T6
Tank1 1 0 0 0 0 0 0 0 0 0
Tank2 0 1 0 0 0 0 0 0 0 0
Cont 0 0 1 0 0 0 0 0 0 0
Pump 0 0 0 1 0 0 0 0 0 0
Sh1 1 1 1 0 0 0 0 0 0 0
Sh2 1 1 0 0 0 0 0 0 0 0
SQp

1 0 0 1 0 0 0 0 0 0
SUb

1 1 0 0 0 0 0 0 0 0
SUp 0 0 1 1 0 0 0 0 0 0
SUo 0 1 0 0 0 0 0 0 0 0
7. if (type == 0) { 0 0 1 0 1 1 1 1 1 1
8. float r = d / 2; 0 0 1 0 1 0 0 1 0 0
9. a = r * pi; 0 0 1 0 1 0 0 1 0 0
10. Up = a * h; 0 0 1 0 1 0 0 1 0 0
12. if (type == 1) { 0 0 0 0 0 1 1 0 1 1
13. a = d * d; 0 0 0 0 0 1 0 0 1 0
14. Up = a * h; 0 0 0 0 0 1 0 0 1 0
16. a = -1; 0 0 0 0 0 0 1 0 0 1
17. Up = -1; 0 0 0 0 0 0 1 0 0 1
obs-error 0 0 1 0 1 0 0 1 0 0

Dealing with multiple faults with the FSM method would require to generate their
fault signature, which is commonly performed by applying a logical OR to the single fault
signatures. In our scenario, according to the FSM method, the obs-error vector would then
match the fault signatures of the double faults {stat. 8, Sh1}, {stat. 9, Sh1}, and {stat.
10, Sh1}, identifying correctly and unambiguously the sensor Sh1 and the controller while
obviously leaving undiscriminated {stat. 8}, {stat. 9} and {stat. 10}. The corresponding
rows are colored green in Table 11.

According to the SFL method, the Ochiai coefficients provide a ranking that also puts at
the first rank all three the three double faults {stat. 8, Sh1}, {stat. 9, Sh1}, and {stat. 10,
Sh1}.

The results of the two methods are here again hence consistent.

5.3 Summary
The two scenarios solved using the FSM and SFL methods within the integrated framework
yield consistent results, demonstrating the compatibility of the two approaches and high-
lighting the effectiveness of the integrated framework in diagnosing cyber-physical systems.

6 Conclusion

In this paper, we have undertaken a comparative analysis of two key Fault Detection and
Isolation (FDI) methodologies: the Faults Signature Matrix approach (FSM), commonly
applied in hardware diagnostics, and the Spectrum-based fault localization (SFL) method,
prevalent in software systems. Despite their distinct application domains, our analysis has
shown that both approaches share fundamental principles. By leveraging the strengths of
each method – structured pattern recognition in hardware systems and statistical analysis in
software fault localization – there is significant potential to develop hybrid FDI strategies
that address the challenges of cyber-physical systems, which increasingly integrate both
hardware and software components.

DX 2024

5:14 Bridging Hardware and Software Diagnosis

Table 10 Single fault scenario – FSM and SFL observation matrices integrated (left of the table),
Ochiai results (right of the table).

T1 T2 T3 T4 T1 T2 T3 T4 T5 T6 a00 a01 a10 a11 cO Rank
Tank1 1 0 0 0 0 0 0 0 0 0 6 3 1 0 0,0000 5
Tank2 0 1 0 0 0 0 0 0 0 0 6 3 1 0 0,0000 5
Pump 0 0 0 1 0 0 0 0 0 0 6 3 1 0 0,0000 5

Sh1 1 1 1 0 0 0 0 0 0 0 5 2 2 1 0,3333 4
Sh2 1 1 0 0 0 0 0 0 0 0 5 3 2 0 0,0000 5
SQp 1 0 0 1 0 0 0 0 0 0 5 3 2 0 0,0000 5
SUb

1 1 0 0 0 0 0 0 0 0 5 3 2 0 0,0000 5
SUp 0 0 1 1 0 0 0 0 0 0 6 2 1 1 0,4082 3
SUo 0 1 0 0 0 0 0 0 0 0 6 3 1 0 0,0000 5

stat. 7 0 0 1 0 1 1 1 1 1 1 3 0 4 3 0,6547 2
stat. 8 0 0 1 0 1 0 0 1 0 0 7 0 0 3 1,0000 1
stat. 9 0 0 1 0 1 0 0 1 0 0 7 0 0 3 1,0000 1
stat. 10 0 0 1 0 1 0 0 1 0 0 7 0 0 3 1,0000 1
stat. 12 0 0 0 0 0 1 1 0 1 1 3 3 4 0 0,0000 5
stat. 13 0 0 0 0 0 1 0 0 1 0 5 3 2 0 0,0000 5
stat. 14 0 0 0 0 0 1 0 0 1 0 5 3 2 0 0,0000 5
stat. 16 0 0 0 0 0 0 1 0 0 1 5 3 2 0 0,0000 5
stat. 17 0 0 0 0 0 0 1 0 0 1 5 3 2 0 0,0000 5

obs-error 0 0 1 0 1 0 0 1 0 0

Table 11 Double fault scenario – FSM and SFL observation matrices integrated (left of the
table), Ochiai results (right of the table).

T1 T2 T3 T4 T1 T2 T3 T4 T5 T6 a00 a01 a10 a11 cO Rank
Tank1 1 0 0 0 0 0 0 0 0 0 5 4 0 1 0,4472 4
Tank2 0 1 0 0 0 0 0 0 0 0 5 4 0 1 0,4472 4
Pump 0 0 0 1 0 0 0 0 0 0 4 5 1 0 0,0000 6

Sh1 1 1 1 0 0 0 0 0 0 0 5 2 0 3 0,7746 1
Sh2 1 1 0 0 0 0 0 0 0 0 5 3 0 2 0,6325 2
SQp

1 0 0 1 0 0 0 0 0 0 4 4 1 1 0,3162 5
SUb

1 1 0 0 0 0 0 0 0 0 5 3 0 2 0,6325 2
SUp

0 0 1 1 0 0 0 0 0 0 4 4 1 1 0,3162 5
SUo

0 1 0 0 0 0 0 0 0 0 5 4 0 1 0,4472 4
stat. 7 0 0 1 0 1 1 1 1 1 1 1 2 4 3 0,5071 3
stat. 8 0 0 1 0 1 0 0 1 0 0 5 2 0 3 0,7746 1
stat. 9 0 0 1 0 1 0 0 1 0 0 5 2 0 3 0,7746 1
stat. 10 0 0 1 0 1 0 0 1 0 0 5 2 0 3 0,7746 1
stat. 12 0 0 0 0 0 1 1 0 1 1 1 5 4 0 0,0000 6
stat. 13 0 0 0 0 0 1 0 0 1 0 3 5 2 0 0,0000 6
stat. 14 0 0 0 0 0 1 0 0 1 0 3 5 2 0 0,0000 6
stat. 16 0 0 0 0 0 0 1 0 0 1 3 5 2 0 0,0000 6
stat. 17 0 0 0 0 0 0 1 0 0 1 3 5 2 0 0,0000 6

obs-error 1 1 1 0 1 0 0 1 0 0

The findings of this investigation highlight the complementary nature of these two
methodologies, suggesting that combining their capabilities could lead to more robust and
comprehensive diagnostic systems. This synergy could result in an integrated diagnostic
framework capable of managing the intricacies of both hardware and software failures in
modern, complex systems.

L. Travé-Massuyès and F. Wotawa 5:15

The theoretical insights gained from this study lay the groundwork for future research
into hybrid FDI systems, with practical applications that span a wide range of technological
platforms. By advancing the integration of these diagnostic techniques, we aim to contribute to
the development of more reliable, efficient, and adaptable fault detection systems, ultimately
improving the resilience and performance of cyber-physical systems.

7 References

References
1 Michele Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and application,

volume 104. prentice Hall Englewood Cliffs, 1993.
2 B Ould Bouamama, R Mrani Alaoui, P Taillibert, and M Staroswiecki. Diagnosis of a two-tank

system. Intern Report of CHEM-project, USTL, Lille, France, 2001.
3 M-O Cordier, Philippe Dague, François Lévy, Jacky Montmain, Marcel Staroswiecki, and Louise

Travé-Massuyès. Conflicts versus analytical redundancy relations: a comparative analysis
of the model based diagnosis approach from the artificial intelligence and automatic control
perspectives. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
34(5):2163–2177, 2004. doi:10.1109/TSMCB.2004.835010.

4 Carine Jauberthie, Nathalie Verdière, and Louise Travé-Massuyès. Fault detection and
identification relying on set-membership identifiability. Annual Reviews in Control, 37(1):129–
136, 2013. doi:10.1016/J.ARCONTROL.2013.04.002.

5 J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings ASE’05, pages 273–282. ACM Press, 2005.

6 Mattias Krysander, Jan Åslund, and Mattias Nyberg. An efficient algorithm for finding minimal
overconstrained subsystems for model-based diagnosis. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 38(1):197–206, 2007. doi:10.1109/TSMCA.
2007.909555.

7 Ronald John Patton and Jie Chen. Design methods for robust fault diagnosis. Control Syst.
Robot. Autom, 16:84–111, 2009.

8 Vicenç Puig and Masoud Pourasghar. Fault diagnosis using set-membership approaches. Fault
Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches, pages 237–261, 2019.

9 Ivo Punčochář and Jan Škach. A survey of active fault diagnosis methods. IFAC-PapersOnLine,
51(24):1091–1098, 2018.

10 Joseba Quevedo, Helem Sánchez, Damiano Rotondo, Teresa Escobet, and Vicenç Puig. A two-
tank benchmark for detection and isolation of cyber attacks. IFAC-PapersOnLine, 51(24):770–
775, 2018.

11 Raymond Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57–95,
1987. doi:10.1016/0004-3702(87)90062-2.

12 Christofer Sundström, Erik Frisk, and Lars Nielsen. Selecting and utilizing sequential residual
generators in fdi applied to hybrid vehicles. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 44(2):172–185, 2013. doi:10.1109/TSMC.2013.2248147.

13 W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software
fault localization. IEEE Trans. Software Eng., 42(8):707–740, 2016. doi:10.1109/TSE.2016.
2521368.

14 Franz Wotawa. Surveying and generalizing methods for combining dynamic slicing with
spectrum-based fault localization. In In Proceedings of the International Workshop on
Principles of Diagnosis (DX), Loma Mar, CA, USA, September 2023.

DX 2024

https://doi.org/10.1109/TSMCB.2004.835010
https://doi.org/10.1016/J.ARCONTROL.2013.04.002
https://doi.org/10.1109/TSMCA.2007.909555
https://doi.org/10.1109/TSMCA.2007.909555
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/TSMC.2013.2248147
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

	1 Introduction
	2 The Fault Signature Matrix approach
	3 Spectrum-based approach
	4 Fault Signature Matrix versus Spectrum-based Fault Localization
	4.1 About tests
	4.2 FDI fault signature matrix vs SFL observation matrix
	4.3 Summary

	5 Integrating FSM and SFL
	5.1 Scenario 1: single fault
	5.2 Scenario 2: double fault
	5.3 Summary

	6 Conclusion
	7 References

