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Abstract
Since the seminal works by Reiter and de Kleer and Williams published in the late 80’s, Model-based
Diagnosis has been a significant area of research. This has been motivated by the fact that MBD
assists us in tackling a challenge that we face almost on a daily basis, i.e., by MBD allowing us to
reason in a structured manner about the root causes for some encountered problem. MBD achieves
this in an intuitive, complete and sound way, based on the central idea of investigating the compliance
of some observed behavior with a model that describes how a system should behave – given this
or that input scenario and parameter set. Over the last 40 years, MBD has been adopted for a
multitude of applications, and we saw the emergence of a diverse set of algorithmic, optimizations,
as well as extensions to the initial theoretical concepts.We argue that MBD remains highly relevant,
with numerous scientific challenges to tackle as we face increasingly complex diagnostic problems.
We discuss several such challenges and suggest related topics for PhD theses that have the potential
to significantly contribute to the state-of-the-art in MBD research.
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1 Motivation

Model-based Diagnosis (MBD) [51, 11, 12] has been a significant area of research for almost
50 years. It is based on the central idea that diagnosis of a system can be achieved by
analyzing how deviations in behavior can be explained by undesired changes in the model
of the system. A key advantage of model-based diagnosis is that it relies solely on the
formal description of the design of the system, not diagnostic trees, expert systems or human
experience. Implementing a concept of reasoning from first principles, we construct the most
coherent explanation between our observations on what happened, and our knowledge about
how a system should behave. The implicit assumption is that the other parts of a system,
i.e., those whose behavior is inconsistent with the information, are those where something
went wrong. Being completely flexible in our choice, parts can be system components,
measurements, or any other knowledge we have available for exploitation in our diagnostic
reasoning process.

MBD is very flexible and thus allows us to focus the diagnostic analysis tailored to the
specific context at hand. For a failed regression test, for example, we might want to restrict
our focus to those system parts that were most recently changed as well as on components
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6:2 Challenges for Model-Based Diagnosis

interacting with them – a technique called program slicing [6] in the context of software
engineering. Or we might want to focus only on specific temporal phases in some temporal
sequence, like a system’s initialization.
In contrast to expert systems, one of MBD’s distinct advantages is that if we change or
revise individual system parts, we only need to remodel those parts – rather than having
to redevelop our entire knowledge base concerning the effects of individual faults and their
combinations on the behavior of the entire system.

MBD has proven to be a powerful technique and has been adopted for a variety of
problem settings and domains. Nevertheless, there remain open challenges that concern
fundamental topics as well as the exploitation of connections to complementing research fields.
A prominent example for the latter would be achieving resilience in an autonomous system,
which requires diagnostic information about a problem such as to successfully mitigate its
effects. In this paper, we articulate a selection of these challenges and encourage researchers
to address some of them in their future research.

We will have undoubtedly missed certain challenges to MBD, and we would also like
to point out that fellow researchers have similar ideas. So it is not the uniqueness of the
challenges that represents the contribution of this paper. Our intention is rather to draw the
scientific community’s attention to these challenges in order to revive old discussions and
trigger new ones on how we can address them in order to propel MBD research to be able to
have far wider applicability for the problems of today and tomorrow. We intend to maintain
this paper as a living document and will add and modify sections as we learn. So we request
the interested reader to send us their comments and inputs on these challenges and we will
update this paper accordingly.

2 Preliminaries: a Crash Course in Model-based Diagnosis

While we cover only the very basics, we still aim to provide the interested reader with the
relevant background information for our discussions – offering also citations of relevant and
more detailed publications.

MBD [51, 12] is a fundamental diagnosis framework that compares information about
what happened (in the form of a set of observations OBS) with a description of the system’s
supposed behavior (in the form of a system description SD). There is no specific required
format for expressing OBS or SD, but it includes some sort of reasoning engine that allows
us to verify whether OBS lives up to the expectations covered in SD– similar to the task
and purpose of a test oracle [46]. Formally, OBS should be consistent with SD, so that
OBS ∧ SD is satisfiable.

The innovation of MBD is, not the detection of an inconsistency but that it allows us to
reason about what went wrong when OBS is inconsistent with SD. That is, implementing a
concept of reasoning from first principles, MBD constructs maximum sets of information from
SD that are consistent with OBS– implicitly assuming that OBS is correct. Traditionally,
MBD algorithms [51, 12, 18, 41, 61] have been designed to be not only sound but also
complete, in that they can derive all such maximum sets. The complements (in SD) of
these maximum sets define diagnoses. That is, those parts that if they were to deviate
from their nominal behavior would explain the observed scenario. There are also incomplete
algorithms, i.e., algorithms that might shed some solutions in their search, while guaranteeing,
for instance, that they would still find a sound diagnosis of minimal cardinality [14].

Reiter’s theory of diagnosis [51] defines the model-based diagnosis of a system as fol-
lows (cf. also [12]): A system description SD captures the behavior of a set of interacting
components COMP such that SD contains sentences ¬AB(ci) ⇒ NominalBehavior(ci) en-
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coding a component’s behavior under the assumption that it is not operating abnormally.
That is, the assumption predicate AB(ci) triggers a component ci’s abnormal behavior, and
NominalBehavior defines its correct behavior in first order logic. Since there are no definitions
regarding abnormal behavior, the basic approach is considered to use a weak fault model
(WFM). Given some actually observed system behavior OBS , a system is recognized to be
faulty, if and only if SD ∪ OBS ∪ {¬AB(ci)|ci ∈ COMP} is inconsistent. A minimal diagnosis
for a diagnosis problem (SD, COMP, OBS) can then be defined as follows:

▶ Definition 1. A minimal diagnosis for (SD, COMP, OBS) is a subset-minimal set
∆ ⊆ COMP such that SD ∪ OBS ∪ {¬AB(ci)|ci ∈ COMP \ ∆} is consistent.

Reiter as well as de Kleer and Williams proposed to compute (all) the minimal diagnoses
as the minimal hitting sets of the set of (not necessarily minimal) conflicts for (SD, COMP,
OBS). This implements the idea that we indeed have to resolve such conflicts that individually
express the fact that it is not possible that a specific set of components all work correctly when
considering OBS . Thus, a conflict basically describes a set of assumptions that components
work correctly that is in conflict with the observations OBS :

▶ Definition 2. A conflict CS for (SD, COMP, OBS) is a set CS ⊆ COMP such that
SD ∪ OBS ∪ {¬AB(ci)|ci ∈ CS} is inconsistent. If no proper subset of CS is a conflict set,
CS is a minimal conflict.

Using a theorem prover or solver capable of returning conflicts, we can compute the
conflicts and diagnoses on-the-fly – using a variety of algorithms. Extensions of the first
algorithms by de Kleer and Williams [12], Reiter [51], or Greiner et al. [18], are able to
avoid redundancies in the computation [41], optimize the memory bloat associated with the
open node list [54], and considered the problem from a different point-of-view such as to
improve the computation [22]. In addition to new conflict-driven algorithms, researchers
have also published brute force approaches that compute diagnoses directly in a solver,
without explicitly computing conflicts [27, 36]. While such approaches were assumed in
Reiter’s seminal work [51] to show bad performance, comparisons showed that with today’s
computation hardware and recent developments in the context of SAT and constraint solvers,
they are indeed viable. In particular, it was observed that they seem to offer performance
that is at least on par with the original conflict driven approaches [35].

When deploying a strong fault model (SFM) MBD approach, we need to define the abnor-
mal behavior – like a stuck-at-1 fault for a logic gate [13]. Depending on the implementation,
the abnormal predicates from above would then be replaced by one or more variables that
select in which mode a component is supposedly in. Although these additional modeling
efforts result in a larger model, they offer the advantage of more specific diagnoses, identifying
the actual fault modes of components. Such information is precious insofar as it eases the
debugging process significantly by describing the scenario in more details. Furthermore,
with specific models – like when diagnosing specifications – a corresponding diagnosis even
reports a repair [40] like that we should have used operator F instead of G in a certain
place of a formula. As a non-negligible downside, however, the search space for diagnoses
grows significantly. That is, with n the number of components/selector variables and m the
maximum number of modes for any assumption, it grows from 2n to O(mn).

In our descriptions, we decomposed SD into components, a method commonly used
in Model-Based Design (MBD) literature. No such restriction in required. We can use
any subset of SD as a block and associate a health state or abnormal predicate with it.
Furthermore, MBD is also not limited to using any non-temporal [51, 12] or temporal [40]
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logic for capturing SD. Indeed also other formats, including Petri Nets [9], various kinds
of automata [32] or their symbolic implementation can be used (the latter two being close
to temporal logics). In particular, we only require the means for checking the consistency
of OBS with SD under the assumptions defined by a diagnosis (and ideally for computing
conflicts for the negative case) for being able to employ MBD (see also [51]). We can thus also
easily employ SFM MBD using a continuous Modelica model and an oracle that can consider
aspects like noisy sensors when checking whether OBS matches SD for a diagnosis ∆.

Regarding the use of automata for SD in a run-time verification context, we would also
like to direct interested readers to research on diagnosing discrete event systems There,
we often capture faults via unobservable faulty transitions and then investigate means for
detecting their presence via inspecting a DES’s language and the corresponding observable
traces [57]. Such execution-related aspects have been considered also for generating diagnostic
hypotheses for hybrid systems [34]. Further, more detailed discussions of MBD, like that
considering new observations is non-monotonic, are available in the seminal works [51, 12].

3 Critical Directions for Future DX Research

While MBD has been an active research area since the late 80s, the motivation of being able to
formally reason about the root causes for some encountered issue never lost in attractiveness
or relevance. The exponential search space and potentially large models entail a certain
computational complexity though, so that there is a continuous need to improve on the
efficiency of available algorithms, and look for methods to speed up the computations, e.g.,
by exploiting domain knowledge [56, 42]. Furthermore, there is a constant demand for new
MBD engines that would enable us to accommodate new types of models.

In the remainder of our paper, we list of further challenges for MBD. These challenges
complement the natural ones as introduced above by focusing on specific questions about
certain important aspects of MBD. Before motivating and discussing these challenges in
individual subsections, let us compile a brief, comprehensive list first:

Failure of function, not of a component is the core problem
The continuous and discrete worlds were never adequately integrated
Fault propagation
Wear/component degradation
Every model is an approximation
Getting our hands around resilience and how to measure it
Attacks or failure?
Improving physical reasoning in MBD
Exploiting synergies in terms of hypothesis discrimination and transferable insights when
having access to multiple system instances
Parallel computations with multiple cores and hardware acceleration
Improving diagnostic information provided to human operators and autonomous control
MBD as a design tool, or “Redesign by MBD”
Exploiting the full power of integrating symbolic with sub-symbolic computations
Where does the diagnosis model come from?

While this list is far from being complete, it targets algorithmic, systematic, usability-
centered, and other aspects of MBD – which highlights the complexity and diversity of
research on MBD. The topics illustrate also how tightly MBD connects and integrates with
topics from V&V, debugging, control and system design. Please note that although there
are many more topics of interest, we believe that addressing the presented challenges will
significantly broaden MBD’s applicability to current and future problems.
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Each of these challenges merits in-depth discussion in its own dedicated paper, but
our intention is to provide an overview. In the following subsections, we thus offer a brief
description and motivation for each challenge. We furthermore point out topics for PhD
theses that we could imagine to contribute significantly to solving the challenges.

3.1 Failure of Function
When your TV goes black, a repair person will not immediately go to the schematic and
analyze what hard- or software component might have changed its behavior (e.g., becoming
open or shorted for some electronic part). They will not start by looking at the sound circuit,
because they know it cannot cause the black screen. The repair person has and draws on a
common-sense intuitive understanding of TVs such that they know the sound circuit cannot
cause a problem in the picture circuits. If they find a faulty transistor in the remote control,
they will not get distracted by it because even though it is a deviation from the design, it
cannot cause the observed symptoms. This topic has received very little attention, yet is
fundamental to how humans troubleshoot. This is a very hard research topic because it
requires developing a representation of human diagnostic common sense.

From a technical perspective, as humans we intuitively create sort of a dependency graph
that captures also failure modes and their effects (and we do this at various abstraction levels),
so that we can make quick decisions on a very abstract level without having to consider
the entire system in all its detail. Creating technical models that can achieve this, while
maintaining completeness of the reasoning process and being fully aware of the potentials
and limitations of a specific model, is a severe challenge. Some initial steps have been made,
e.g., in the direction of deriving dependency graphs and dependent failure descriptions [59].
The rules/abstract models learned in [29] could be interpreted as very abstract models that
describe a systems abstract functionality. A full solution for this challenge could, however,
substantially propel research on safety and resilience aspects of autonomous systems, as well
as provide important stimuli for research on the efficient and effective control of complex
system-of-system architectures.

Identifying and Learning Abstract Concepts, Dependencies, and Interconnections in a
System’s Behavior for Their Exploitation in Model-Based Diagnosis
An Approach to Hierarchical MBD Enabled by Automated Model Abstraction and
Refinement Based on Capturing Functional Dependencies
A Distributed Approach to MBD of Systems-of-Systems Exploiting the Exchange of
Abstract System Models For Capturing Functional Interconnections
Hierarchical and Dynamic MBD for Resilient Resource-Constrained Embedded Systems
Developing a formal model of human common-sense diagnostic reasoning

3.2 Continuous and Discrete
A typical system has both continuous (e.g., resistor) and discrete (e.g., relay) components.
Model-based diagnosis has made significant progress for systems that are purely continuous
or purely discrete. Discrete components such as logic gates can be analyzed through causal
signal propagation. Continuous systems on the other hand typically do not have direct causal
paths. To analyze such systems requires solving simultaneous equations. It is much more
difficult to determine causality in such systems because in the worst case every component
can cause the observed symptoms. Fortunately, various techniques have been developed to
extract some of the causality from continuous systems through techniques such as parameter
estimation and structural analysis from the FDI community. However, systems that include
both discrete and continuous models remain very challenging.
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Such combined models might also surface in scenarios where we use different abstraction
levels for describing the individual system parts, e.g., when aiming to optimize our computa-
tions. That is, some electronic part might be represented at a logic level, while we need to
consider other components at the voltage or energy level for the problem under investigation,
even if both are logic gates.

An Approach to Modeling Systems for MBD that Unites Discrete and Continuous Model
Parts and Supports Scaling the Abstraction Level of Individual Parts
Capturing and Extracting Causality in Analog and Mixed-Signal Designs for Efficient
Mode-Based Diagnosis
Optimizing Model-Based Diagnosis of Mixed-Signal Designs

3.3 Fault Propagation
Fault propagation is rarely modeled in MBD approaches. The output stage of an amplifier may
develop an internal short but still function ok. This now overloads the prior amplifier stage.
The prior stage now blows its output transistor, causing the overall system to completely
fail. MBD will notice the pre-amplifier has failed and repairs it. But it won’t take long for it
to blow again. An experienced diagnostician would ask themselves the question “Why did
the output transistor blow”, and understand that the root problem is prior stage not the
output stage. They have a model that if a transistor is driving more current than designed,
it will fail soon. A simpler version of this issue arises when your home blows a fuse. Sure,
replacing a fuse will most probably restore your lights momentarily. But the ultimate cause
was a dangling bare wire in your attic.

Previous work like the dependency graphs and dependent failure descriptions computed
in [59] made first steps in this direction. With the rising demand for autonomous dependable
systems, we however can easily see that we need more elaborate solutions that take details like
effects from temporal fault sequences into account, support a continuous refinement during
system operation – for example when recognizing that the current model is insufficient – and
support resilient autonomous control in hypothesis discrimination [4, 20], fault mitigation [25,
67, 24] and contingency planning [66, 52].

A Model for Capturing Fault Propagation for MBD Purposes and Deriving Appropriate
Inspection and Debugging Strategies
Enhanced Automated Fault Mitigation in Autonomous Systems by Augmenting MBD
With Continuously Refined and Updated Fault Propagation Models
Integrating Fault Propagation and Prognosis for Exploitation in MBD for Optimizing
Resilient Autonomous Control

3.4 Component Degradation
MBD as it was defined originally [51, 12], employs a simple Boolean notion of whether a
system’s behavior captured in OBS adheres to the nominal one described in SD. In particular,
a component is working either correctly or faulty. When incorporating fault modes in our
reasoning [13], we’re looking at faulty behavior in more detail. That is, in an SFM model
we describe how a component can fail and a diagnosis then tells us in which fault mode
a component is supposedly in. When incorporating individual fault models, we can thus
reason about how a component failed – not how badly, but how. We are, however, not aware
of MBD research that considers the positive case in more detail. That is, approaches that
assess how good the current status of a system (and its components) is, and its remaining
useful life. Currently, and taking aspects like component degradation into account, MBD
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thus utterly fails to assist us in answering the question: is there some specific component that
is likely to fail shortly? The PHM community has various models of remaining useful life
(such as utilized in [25]), but none are compatible with MBD. [28] incorporates degradation
models in Modelica, but the actual physics based calculation of wear have to be performed
by an ad-hoc supplied physics model.

In the context of runtime-verification, a.k.a. monitoring, such considerations have been
made. In particular, monitors generated for the Signal Temporal Logic (STL) [16] – which is
a logic that merges continuous time and continuous signal values with the basic concepts
of Amir Pnueli’s Linear Temporal Logic (LTL) [49] – can consider specific quantitative
semantics that are in contrast to simple Boolean correct/faulty verdicts like we derive them
for MBD. These quantitative semantics allow us thus to capture how well some observed
behavior satisfies a property (SD in our case), or how badly it failed to do so. To this end, a
robustness degree is computed that encodes quantitatively to which degree some behavior
satisfies or violates a specified STL formula/model. Please note that in run-time verification
this means that we investigate a finite prefix that has been observed up to now, and take all
its potential continuations into account.

Translating such a concept of quantitative semantics to MBD would be a very interesting
extension. This would allow us to judge not only that things are OK, but also the degree
to which we should feel safe right now – probably limited to the scope of behavior that is
similar to the previously inspected one. It would be only natural to exploit such information
in a sensible ranking of diagnoses when deriving inspection strategies based on the diagnoses
(complementing the consideration of cardinality and other metrics). For intelligent systems
that exploit diagnostic information for achieving operational resilience to disturbances, such
quantitative information could also help to assess the severity of issues. This would allow
us to extend previous work like [67], where a reliability measure for an agent’s action was
computed via a data-driven diagnosis approach and then exploited in a monitoring and
(re-)planning approach for controlling the agent. Also more elaborate approaches that
incorporate MBD and prognosis concepts for achieving operational resilience [25] could profit
from this extension to the original MBD theory.

A Fine-Grained Notion of Consistency for MBD That Supports The Exploitation of
Component Degradation
Resilient Autonomy Supported by Continuous Tracking of Component Degradation via
Model-Based Diagnosis

3.5 Models are Approximations
Model-Based Diagnosis is based on having access to an accurate and complete model of the
system. If some phenomenon is not modeled, then MBD will have great difficulty pinpointing
the ultimate cause for a fault originating from this phenomenon. Let’s illustrate this in the
case of an overheating resistor R being physically located near a capacitor C on a printed
circuit board (PCB) with very minor airflow (like in an enclosure without active cooling).
When the heat causes the capacitor C to ultimately fail, MBD will probably pinpoint the
capacitor as the culprit – leading to a replacement of the capacitor C but not the resistor R
which was the initial root cause. Consequently, R will continue to heat the new C, which
will then ultimately fail again (see also our section on fault propagation). If the model had
contained a output heat-port for resistor R and an input heat-port for capacitor C, that
would only solve one aspect of this challenge. R and C may be very distant from each other
on the schematic and only coincidentally be nearby physically, so that the heat model would
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need to be based on the spatial and physical details of the assembled PCB. In order to
address this case, the system model has to include at least: (1) schematic, (2) heat ports on
component models, (3) physical distances between actual components.

There are a multitude of scenarios that we can imagine and where the model is limited
in its capabilities for the task at hand – due to one or the other reason. Be it a missing
(logical or physical) system dependency, some unmodeled environmental input (e.g., some
sort of radiation), an inappropriate abstraction layer, a missed change in the environment,
or simply a wrong (hidden) assumption. Currently, MBD research offers no concrete means
for assessing and expressing our confidence in a model.

Indeed, there is only initial research related to parts of the challenge, like considering
novelty in the context of anomaly and fault detection [30], learning models for diagnostic
purposes [32] and assessing our confidence in them during the learning process, as well
as techniques for diagnosing formal models [40] that can be integrated into workflows for
developing models [43]. To the best of our knowledge there is, however, no comprehensive
work investigating the challenge as a whole, i.e, which would allow us to continuously assess
and express the quality of an MBD model in general, its suitability for a specific diagnosis
problem at hand, as well as the confidence we should have in the results computed for a
specific diagnosis problem.

In the future, we hope to see MBD evolving such that it offers us the means to assess the
individual aspects of a diagnosis model and diagnosis process qualitatively and quantitatively
in terms of quality and confidence. This would allow us not only to progress from the
intuition that MBD is sound and complete with respect to the model, but it would allow
us also to employ further means for verifying the diagnostic hypotheses, i.e., the checks for
consistency between OBS and SD. That is, using a concept of simulation and exploring the
space for free parameters, we could come up with a verdict and confidence estimation for this
check in situations where the usual mathematically provable yes/no answer is not possible,
e.g., due to the lack of a reasoner that is capable of dealing with weak fault models.

An Investigation of Measures for Assessing the Quality of MBD Models, Their Correlation
to MBD Performance in Practice, and Their Application in Hierarchical MBD
Exploring the Design Space of MBD Models Based on a Quality Measure for Diagnosis
Results
Assessment-Driven Scaling of the Abstraction in MBD Models and its Connection to
Fault Mitigation Capabilities in Resilient Autonomous Systems

3.6 Defining Resilience
A resilient system is one that is robust with respect to faults, physical attacks, cyber-attacks,
weather and wear. MBD promises to be a key technology to achieve resilience, because it
can be embedded in the system itself so that it allows the system to diagnose a situation
and respond to disturbances never anticipated by the designer. This type of active resilience
provides a dramatic opportunity to improve operational resilience. The MBD DX community
has struggled to find a good a definition of resilience, hence it is challenging to measure
the improvement in resilience provided by active resilience. Nevertheless, the resilience of
factories, systems, supply chains, etc. is an important topic today and MBD can play a key
role in achieving it. That is, it provides diagnostic information for creating the awareness
that is needed to make the specific connection between component behavior and the correct,
desired overall function.

While resilience is not a new topic, its connection to MBD and the development of an
integrated theoretical framework have received insufficient attention. At the Dagstuhl Seminar
24031 Fusing Causality, Reasoning, and Learning for Fault Management and Diagnosis, there
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were promising discussions of these aspects (including the formulation of an appropriate
notion of resilience) which we hope come to fruition in the near future. Especially in the
context of the suggested PhD topics, we would like to pinpoint the interested reader to the
opportunities provided by generative MBD as discussed in Sec. 3.13.

Achieving System Resilience by Exploiting MBD to Generate the Situational Awareness
Necessary for Intelligent Control
A Notion and Measure of Resilience for Continuously Assessing a System’s Resilience
Capabilities and Performance
Supporting Operational Resilience at Design Time: Maximize a System’s Resilience
Capabilities by Adding Appropriate Run-Time Capabilities Based on Autonomous Agency
and Model-Based Diagnosis
An Architecture for a Resilient Agent: Integrating Learning, MBD, Prognosis and
Planning for Achieving Resilient Intelligent Control

3.7 Attacks or Failure?
One main motivation of model-based diagnosis is to diagnose the root causes of a failing
system, i.e., derive explanations for some observed unexpected behavior that pinpoint to
those system parts that are responsible for the problem by exhibiting faulty behavior. When
employing MBD, we often make the tacit assumption that it is indeed a fault that is
responsible which simply originates from the properties of the natural world. In general,
however, the reason for some system part not working as modeled can be many. One such
reason is suggested by the hidden MBD assumption that the system description SD is per
definition correct in terms of the nominal behavior, i.e., we could simply suffer from a fault
in the model itself.

As we discussed briefly in Section 3.5, a model and its interaction with the environment
are approximations, so that our understanding modeled in SD might be incomplete. Or our
understanding is complete, but we made a mistake when formally expressing the system
dynamics in SD. Consequently, we might not experience a system fault leading to a system
failure, but suffer from a fault in the model itself that tells us something went wrong
(while actually nothing went wrong). When thinking about resilient autonomous systems,
such problems can however manifest in undesired system behavior, the useless expenditure
of additional resources, or the activation of redundant system parts that contain faults
themselves – so that adversarial attacks are feasible.

While such faults can obviously occur also naturally, it is not difficult to fathom a situation
where somebody injected a fault on purpose, such as to be able to trigger specific behavior in
a certain context. A corresponding adversarial attack could then lead to either passively or
actively triggered malignant behavior – an actively triggered scenario requiring the adversary
to have the means to actively trigger the injected behavior via providing specific inputs. Such
scenarios received considerable attention in image classification [55], for instance. There are
multiple options for providing required inputs to a system and implementing appropriate
security countermeasures, such as at the sensor level [3]. We would have to consider, however,
also scenarios where an attacker simply focuses on a specific sensor at the physical level by
blinding parts of a camera’s view or by heating up a temperature sensor. While a formal
and diagnostic analysis of the model itself might unveil malignant functionality (depending
on the modeling style, the detail level, the level of redundancies in the model, as well as the
properties we’re investigating), identifying such a physical attack could be quite a challenge -
depending on the data and techniques available.
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6:10 Challenges for Model-Based Diagnosis

Some faults in the model itself could be identified by diagnosing the model, as, e.g.,
suggested in [40] where the authors diagnose formal properties in the context of example
behavior. Tools like RAT, which support the development of formal models through specific
workflows, enable us to explore the semantics of models under development [43]. When
combined with diagnostic techniques [40], testing methods such as combinatorial testing [46],
or technologies developed to address modeling issues (as discussed in Section 3.5), these tools
could allow us to identify and explore potential model problems more effectively.

So we could investigate the consistency and integrity in all the available sensor/input
information via concepts that investigate either concrete, analytical dependencies, or alter-
natives that take advantage of virtual sensing methods. The latter, in particular, would
employ ML/DL techniques to learn approximations of specific signals from other (sensor)
data, which means that we would learn approximations of physical and other dependencies
between observed quantities rather than having to model them. Either variant would not
only enable us to potentially detect faults in sensors, but would provide us also with more
context for the task of differentiating between system faults and issues triggered by attacks.

Currently, MBD does not investigate the reasons behind a diagnosis in detail, in that it
focuses on whether the provided diagnosis is consistent with the observed behavior – but
without evaluating the circumstances or their likelihood (at least most of the time). With
the ever-increasing system complexity and the importance of autonomy as a central system
feature, we argue that will not be enough though. We must consider diagnoses not only as
a means to explain a system’s failure (in meeting the expectations covered in SD), but we
need to go one step further and investigate as well as explain diagnoses themselves. This
information will provide the necessary background for resilient systems to autonomously
react to faults and other issues.

A Framework for Developing MBD Models With Enhanced Integrity
Distinguishing Between Faults and Attacks in Model-Based Diagnosis
Exploiting Virtual Sensing in MBD by Learning Inherent Dependencies for Assessing the
Integrity of Diagnostic Computations
Explaining Diagnoses Resulting from MBD

3.8 Physical Reasoning
Bearings are a weak point in many physical systems. One failure path is that microscopic
metal particles released from wear over time get into the races. The race then becomes pitted
and wears prematurely. This is in turn increases the clearances between the race and the
cage. Eventually the cage winds up carrying some of the load. But the cage is not designed
to carry a load, and collapses, producing catastrophic bearing failure and seizure. The prior
sentences describe a common-sense model-based approach that people do all the time. But
no current MBD approach can perform this type of reasoning.

Human diagnosticians are very good at this type of reasoning. They think through the
behavior physical properties of materials, gases, liquids, stresses, heat, etc. For example, the
problems with the heat shields on the space shuttle. Modeling all this physics up front is
impossible currently. Instead, human diagnosticians bring their physical knowledge to bear
when faced with a difficult diagnostic scenario.

Obviously there are tight connections between this challenge and previous ones like, e.g.,
the challenge of models being approximations only, or those of capturing fault propagation
or component degradation. However, the SD here is impossible to capture up front, but is
elaborated as diagnostic reasoning proceeds. Essentially the appropriate SD is constructed
as needed from underlying physics of the system being diagnosed.
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Analyzing the Imperfections of MBD Models of Cyber-physical Systems and Their Effects
on the Quality of a Diagnosis Process From a Physics-Centered Point-of-view
Defining and Exploiting A Measure of Confidence in Modeling Physical Processes for
Model-based Diagnosis Purposes
On-Demand Physics-based Common Sense Reasoning for Novel Diagnostic Scenarios
Introducing Dynamic Abstraction Into the Diagnostic Process

3.9 Synergies
Many systems in our civilization are massively replicated and widely used: Cars, screws,
transistors, airplanes, Xerox copiers, etc. It is extremely inefficient for technicians to
constantly rediscover the same fault. When a new fault is discovered in one airplane, we
would like that knowledge to communicated immediately to the entire fleet. Otherwise the
fault will have to be discovered over and over again.

It is not only the reporting of identified design faults that we allows us to profit from
synergies. That is, if we debug some faulty scenario autonomously or manually, taking
live or stored data from multiple system copies into account might improve the quality of
our debugging process. A motivating example would be when we saw that an airplane’s
autopilot reacted almost always correctly in a certain situation but failed only once, we
would intuitively prioritize explanations that are local to the scenario in which it failed. If it
failed more than once, we would probably assume a systematic problem in the design, so
that we would use the data observed for all airplanes and the problematic scenario to the
end of isolating the relevant parameters and mitigating the issue efficiently in a design repair.
Relevant applications would be production robots, autonomous and classic cars, drones,
planes and many others.

In a scenario with multiple heterogeneous but collaborating agents, synergies generated
by inspecting shared data might allow us to distinguish between isolated sensing faults (like
when only one agent reports a temperature deviation) and other problems that are spatial to
an agent in space or time from issues that concern all agents. The latter might be changes
in hidden assumptions, in the environment, or simply unanticipated and thus unmodeled
events and dependencies.

An extreme case of illustrating the potential of synergies is a scenario where we would
exploit a digital twin (with the obvious challenge of trying to create a scenario as similar
to the actual one as possible) for the purpose of being able to actively gather information
for hypothesis discrimination. Simulations with the digital twin could allow us to isolate
the right diagnosis or at least shrink the solution space significantly (see Sec. 3.11). We see
significant potential for exploiting synergies in diagnostic reasoning, particularly in two types
of scenarios. First, in autonomous reactive systems with strong safety requirements, such
as autonomous transportation in open environments or military applications. Second, in
missions with little room for failure due to hazardous environments and high costs of system
loss, like space probe applications. Future research on this challenge could investigate it in
the context of answering the questions of

how to do it, i.e., investigating algorithmic options – considering also security and privacy
when to do it, i.e., assessing the spatial and temporal locality of information, offering an
assessment when – and probably also in the context of which diagnosis – to take potential
synergies resulting from non-local information into account
how to adjust local and fleet-wide likelihoods and assess the resulting diagnosis quality
Approaches to fleet wide diagnostics learning

DX 2024



6:12 Challenges for Model-Based Diagnosis

3.10 Parallelized MBD

Today, even embedded devices like our smartphones feature multiple cores, and mainstream
x86 processors from the consumer market from AMD or Intel offer 12 physical cores capable
of handling 24 threads1 at a 250 € price point. When taking also memory prices into
account2, we can easily see that the hardware for exploiting parallel computation has indeed
arrived even in low-cost consumer PCs and wearables. Now, while research on distributed
diagnosis [50, 63] offer some potential hints at dividing a diagnosis problem into individually
solvable chunks, and naive as well as inefficient algorithms for computing multi-scenario
diagnoses [48] offer straightforward options for parallelization, it is quite surprising to observe
that we have not yet seen much research dedicated to parallel MBD algorithms, with the
notable exception of efforts like [21].

Such algorithms could reduce the experienced wall clock time significantly though and
thus directly enhance a major aspect of the MBD user experience – by cutting the time we
have to wait for diagnoses. For autonomous system, this is a very welcome effect as well,
since this would foster much quicker responses to a problematic situation. We thus argue
that research on parallel MBD has the potential to significantly boost MBD’s utility. If
such research would focus furthermore on dynamically scalable approaches that take the
currently available cores, power, and memory into account, MBD would be available also to
resource-limited autonomous embedded systems which are the backbone of the current age
of digitalization and ubiquitous computing.

The most obvious goal would be to investigate options for a multi-threaded approach,
i.e., how to leverage the multiple cores for individual tasks arising in MBD computations.
That is, we should aim to investigate multi-threading options in terms of single algorithms,
multiple stages, and also at the individual task level – like multi-threaded SMT3 oracles
for the consistency check. Complementing these efforts, research on intelligent concepts for
sharing information, results, and memory between the threads could significantly optimize
the potential (synchronization) overhead introduced with parallel concepts. It would allow
us in particular to avoid unnecessary computations (e.g., computing the same conflict more
than once) and also loading the same data multiple times from a disk into memory. A
non-negligible side effect would be a minimized resource footprint that is highly welcome for
reactive and embedded cyber-physical systems like wearables.

Complementing the exploration of parallelization options, it would be very interesting
to investigate architectures of dedicated computation hardware for accelerating MBD. For
other applications and tasks, e.g., audio and image processing, generic sub-symbolic AI and
cryptography, today’s processors feature a multitude of special purpose accelerators and
architectural choices. We hope that this would be the case in the future also for MBD,
potentially exploiting special structured models as suggested in [10].

Parallelized MBD Computations for Single- and Multi-Scenario Diagnosis Problems

A Threaded SMT Engine for Diagnostic Purposes

A Multi-Core Hardware Architecture for Accelerating MBD Computations

1 AMD Ryzen 5900XT 12 cores/24 threads/4.8 Ghz, https://geizhals.at: 15 offers 240-260€ 02/08/24
2 a 32GB major brand DDR4 3600Mhz DIMM being available at 60-70€, https://geizhals.at, 02/08/24
3 satisfiability modulo theories

https://geizhals.at
https://geizhals.at
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3.11 Improving on the Diagnostic Information Provided by MBD
By default, MBD provides us with a set of diagnoses that are sound and complete with
respect to the SD and OBS [51, 12]. Each such diagnosis suggests a set of components (or
knowledge blocks) that, if we assume them to be faulty, explain the observed behavior. In
the context of debugging, i.e., when we react on the obtained diagnoses, we basically have
two options. That is, we either start probing for new data towards the goal of being able to
narrow down the number of diagnoses, or we start investigating the components indicated by
the diagnoses – ruling out all those diagnoses that contain a component we find to be correct.

Research on sequential diagnosis [53] and probing strategies [20, 19] has been focusing on
the former option, i.e., at determining new measurements or distinguishing sequences [4, 62]
that should provide us with more and ideally enough information for discerning what actually
happened in the system [37]. It must be noted though that, in general, acquiring additional
data does not necessarily entail a monotonically decreasing set of diagnoses. Rather, it might
be the case that these new data unveils new problems in the system, such that MBD is
non-monotonic by default [51, 12].

Irrespective of whether we employ such means for narrowing down the number of diagnoses,
we will have to start inspecting the system based on one or more diagnoses at some point.
When doing so, we would certainly appreciate any situational data that would accompany
the diagnoses. Such data could help in explaining what makes a diagnosis a diagnosis, and
would assist us consequently in investigating the component by telling us where to look in the
component. This is precious information since the assumption of perfect bug understanding,
i.e., the assumption that we can easily isolate the fault in a component, requires extensive
expertise with a system and correlates seldomly with reality.

Research on this usability aspect of MBD has been neglected though. This is interesting
insofar as the conflicts obtained in the diagnosis process contain such information – like
timing information when a fault supposedly occurred in sequential behavior [40]. In MBD
algorithms like HS-DAG, GDE or RC-Tree, we exploit, however, only the part of a conflict
associated with health state variables/abnormal predicates. The additional explanatory
information that was already computed and would be appreciated during debugging, is
ignored algorithmically.

One could also imagine to explore further justifications for a conflict/diagnosis (possibly
to the extent of offering a complete set) and to provide a user with this valuable diagnostic
information that even comes with some guarantees (depending on the exhaustiveness of
the exploration) and touches on the ideas behind truth maintenance systems. Research on
chronicles and chronicle-based diagnosis [23] considers such justifications, but for serving an
entirely different purpose, i.e., that of computing a diagnosis via searching in OBS for relevant
patterns. We suggest to rather aim at isolating diagnosis problem-specific justifications for
the derived diagnoses, and to exploit these data for debugging – and potentially also for
deriving probing strategies.

An Augmented MBD Interface for Enhancing the Effectiveness of Debugging Reactive
Stateful Systems
A Comparison of Augmented User Interfaces for MBD From the Perspective of Automated
and Human Debugging

3.12 Where Does the Model Come From?
MBD critically depends on the quality of the model (SD) used in the reasoning process. That
is, we have to model all the aspects that we want to be taken into account in the reasoning
process. As we discussed in Sec. 3.5, a model is always an approximation and it is only
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as good as we make it (cf. our discussion about wear in Section 3.4, or about attacks and
failures in Section 3.7). To this end, we have to aim for an approximation level that allows
us to achieve the performance in terms of diagnosability and quality that we’re aiming for.
In medical diagnosis this relates to epistemic uncertainty (vs. aleatoric uncertainty).

The question is now how we can achieve that, and which type of knowledge we should
include in a model. The unsatisfying answer is that it is impossible to provide a universal
answer since MBD is completely domain- and task-agnostic from a technological perspective.
While this in turn means that we can’t come up with universal rules of thumb, we could
partly answer this question if there was a notion of confidence in a model. For this we would
need to be able to assess a model’s quality in the context of the application domain as well
as the diagnostic questions we would like to answer.

Aside the consideration of quality aspects, we have take also into account that WFM and
SFM models differ to some degree – in that a WFM model leaves a component’s behavior
completely undefined for the faulty case. Consequently, employing a WFM model does not
require us to define all the faulty behavior variants (which we might not be able to do), but
it also restricts us in terms of the engines that we can use for the consistency check. For
example, we can’t use a simulation model for WFM MBD, but it can serve in combination
with a test oracle (the latter for assessing the outputs) for SFM MBD if all inputs are known.
For SFM MBD, on the other hand, the computations are more complex (see Sec. 2) and
we need to obtain and model a complete, representative list of faults and their behavioral
descriptions. So there is a trade-off that we need to make between the engines we can use,
the information that we require to be available, the efforts we have to spend on the modeling,
the preciseness of the results, and the complexity of the reasoning process.

Regardless of a corresponding decision and an application’s details, we would certainly
appreciate (semi-) automated assistance when we have to create an MBD model. Especially
for abductive diagnosis there are indeed concepts available that help a user in generating the
appropriate models [44, 45]. With CatIO [33] there is also tool support that allows a user to
generate an abductive or an MBD model. As a side-note we would like to point out that
SFM MBD models can be indeed very similar or equivalent to abductive models, depending
on the abstraction level used and whether we have models of individual components or just
encode the effect of some faults on the outputs on a qualitative level.

In addition to workflow assistance for model creation, the challenge of creating MBD
models as a symbolic AI technique can greatly benefit from sub-symbolic AI approaches that
facilitate model learning. Automata learning [38], for instance, allows us to employ MBD by
learning a formal model that can be easily adopted for MBD [32] – supported by tools like
AALpy [31]. Virtual sensing concepts (see Sec. 3.7) can be employed to augment existing
models with additional signals that approximate certain interconnections and dependencies
in a system (or learn aspects from real data that were or could not be modeled). This
would support us in recognizing model limitations and issues by comparing the results of
different virtual sensors for the same signal or a virtual signal with a real one. There is an
abundance of further research on learning models [60, 5, 29] that contributes to tackling
some of the aspects of this challenge, but we are to the best of our knowledge not aware of a
comprehensive technology, methodology and framework for developing (and assessing) MBD
models.

We argue that modeling workflows from other fields, such as those used in developing
hardware specifications and models [43], should be adapted for MBD model development.
These workflows, and their underlying technologies that help users assess and verify model
semantics and quality (as implemented in tools like RAT [8]), could significantly improve the
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MBD modeling process. Considering the above mentioned tools, we can, for instance, achieve
this easily for models that use LTL-like concepts – like finite state machines or similar logics
– due to MBD having been translated already to LTL [40] (sharing even a code-base with
technology for generating test oracles [47]).

We do need such technology for a multitude of modeling formalisms though, and we thus
require a universal concept and technology base for developing corresponding frameworks.
This would allow us to translate technologies like diagnosability assessment [7, 64, 57], design
exploration via simulation [43], design assessment via verification [43], diagnostic support
during the development [40], and future research published at dedicated conferences like
ACM/IEEE MODELS4, DAC5 or DATE6 (in order to name just a view) more easily.

Formal Analysis of MBD Models for Quality Assessment and Development Support
A Framework for the Development of MBD Models for Cyber-Physical Systems
A Formal Approach to Maintaining MBD Models via (Semi-)Automated Correction
Triggered by Novelty and Change Detection
A Framework for a Structured Exploration of the Design Space for MBD Models

3.13 MBD as a design tool, or “Redesign by MBD”
MBD has a long tradition in being used to isolate the root causes of a problem – the
purpose for which it was developed. We would like to point out, though, that we could
employ MBD also in a generative way. Let us consider that for SFM MBD, we move from
answers suggesting that this set of faulty components explains the problem to stating that if
these components show this or that alternative behavior, this would match OBS . As already
exploited in [40], a tiny switch in context now unveils that MBD provides us also with the
means to suggest repairs – like for the design of a system. That is, we can rethink fault modes
as alternative behaviors and then determine a set of changes to a system model (employing
alternative behavior for some components) such that SD would be consistent again with
some supposed witness from a requirements document, i.e., with a trace that describes valid
behavior. The same is true for behavior that was described in the requirements document as
counterexample, but where we recognize in our design process that it is actually allowed by
the system. A similar application domain would that be of planning, i.e., tasks where we
seek to reach a desired goal via executing a certain sequence of actions.

This extension to MBD’s scope is not entirely new, so that it was exploited for repairing
LTL models [40], repairing logical models and interconnections [15] and generating designs
via configuring universal components [17]. Technologically, this task is close to solving
configuration problems. In practice, it is however the number and complexity of the
component’s alternative behavior models (which relate to mutation operators as used in
mutation testing and fault injection) that determine the effectiveness and performance of a
corresponding approach. In [40], for instance, those operators were quite limited in terms
of their number and complexity – which is supported by the common (sometimes hidden)
assumptions behind the competent programmer hypothesis [2] and an opportunistic reverse
view on the coupling effect [39]. These assumptions however not always correlate with reality,
and especially so in early design stages. We thus argue that these works were initial steps,
and that we need future research on how to efficiently explore the repair/design space in
order to fully exploit MBD’s generative capabilities.

4 http://www.modelsconference.org
5 https://www.dac.com/
6 https://www.date-conference.com/
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It is obvious that the more complex and numerous the mutation operators become, the
more optimal a solution we might find – at the cost of a having to conquer an immensely
growing search space. For is assessment, we can establish a simple upper bound O(nm)
with m the number of components and n the maximum number of mutation options per
component (cf. SFM MBD). For this estimation, we inherently assume mutual exclusiveness
of the mutations per component though, and also completely ignore the option of having
mutation sequences.

The envisaged problem is thus of very high complexity, and we argue that there is a
need for sophisticated solutions that will allow us to conquer the complexity in acceptable
time and with acceptable resources. An effective approach would have tremendous potential
though and could generate a huge impact. So it would certainly be a most valuable asset for
designing, maintaining, and also modeling systems considering the discussion of the previous
challenge. The largest impact we see, however, for resilient autonomous reactive systems,
i.e., for systems that are allowed to evolve themselves and their behavior in order to adapt
to changes in the environment, themselves (degradation), circumstances (regulations), or
their mission (like when being required to tackle new tasks). For such systems, we could
then add an automated designer to the system that re-designs it at run-time as required for
living up dynamic changes as we experience them in an open world.

Efficient Exploration Strategies for Conquering the Search Space in Generative MBD
A Generative MBD Framework for Design Space Exploration and Repair
Achieving Operational Resilience via Adding an MBD-based Run-Time Designer to
Reactive Systems

3.14 Fusing Symbolic and Sub-symbolic AI in the context of MBD
In many of the previous sections, we discussed options to fuse symbolic and sub-symbolic
techniques for improving MBD. This included sub-symbolic learning of symbolic MBD models,
sub-symbolic virtual sensing as a means for assessing the quality of symbolic MBD models,
but we could also learn a symbolic model from a neural network to employ MBD for assessing
encountered generalization problems [32].

In the literature, we can also find classifiers for diagnosis [26], medical diagnosis based
on image classification [65], data-driven approaches like spectrum-based fault localization
(SFL) [1] and many other sub-symbolic approaches that complement and compete with
MBD. These approaches often allow a much quicker inference/computation of diagnoses
compared to MBD, since we move the complexity from the run-time to the training phase,
or are content with an approximation as used for SFL. There are also downsides, like that
we have to spend a lot of resources when (re-)training classifiers whenever a system changes.
The limitations of the trained neural networks are also less graspable from an analytical
point of view, i.e., when trying to isolate for which situations we will encounter problems.
Furthermore, we have usually little fault data available for training purposes.

As visible from our discussions of the previous challenges, we argue that combining
symbolic and sub-symbolic techniques will allow us to leverage the advantages of both
approaches in tackling our challenges. While hybrid AI and the fusion of symbolic and
sub-symbolic AI concepts are indeed hot topics and are gaining in attention in general, we
need to increase our corresponding research efforts also specifically in the field of diagnosis
and MBD. Important discussions in this direction were led at the Dagstuhl Seminar 24031
Fusing Causality, Reasoning, and Learning for Fault Management and Diagnosis, and we
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hope to see a lot of upcoming research. Just as diagnosis research in the control community
was bridged with diagnosis research in the AI community [58], we need to build similar
bridges between the sub-symbolic and symbolic worlds in AI.

A Survey and Evaluation of Approaches Bridging Symbolic with Sub-Symbolic AI in the
Context of MBD

4 Summary

In this manuscript, we showed that Model-Based Diagnosis has never lost in attractiveness,
nor in its relevance. There is no doubt that we are still in need of approaches like MBD that
allow us to structurally reason about encountered problems, and especially so when taking
the ever-increasing complexity of the tasks we are facing in our everyday lives into account.
For being able to efficiently and effectively solve the most complex diagnostic tasks, there is,
however, an abundance of research questions left that we still need to answer – even after 40
years of research on MBD.

We discussed a corresponding set of MBD challenges that we think are important to
address, and which are related to a variety of MBD aspects. We covered the importance and
relevance of each challenge in brief discussions, and suggested potential topics for PhD theses
that could propel the state-of-the-art in MBD research significantly. While we discussed the
challenges individually (hinting at connections every now and then), it is important to point
out that there are a lot of cross-connections in terms of motivating agendas – which would in
turn multiply the suggested PhD topics from a technological perspective.

In our conclusion, we would like to state again that we were certainly not able to include
all the important challenges in this discussion (there is a space limit), and that we would
be very grateful for feedback from the interested reader that we could use to improve our
discussion for future manuscript versions. As a concluding remark, we would like to express
our sincere hopes that this paper would serve as motivation for one or the other researcher
and PhD student to work on tackling the described challenges and to contribute to the
Model-Based Diagnosis technology of tomorrow.
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