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Abstract
Industrial fault diagnosis exhibits the perennial problem of reasoning with partial and real-valued
information. This is mainly due to the fact that in real-world applications, industrial systems
are only instrumented insofar, as sensor information is required for their functioning. However,
such instrumentation leaves out much information that would be useful for fault diagnosis. This
is problematic since consistency-based fault diagnosis uses available information and computes
intermediate values within a system description. These values are then used to compare expected
normal behaviour to actual observed values. In the past, this was done only for Boolean circuits.
Recently, satisfiability modulo non-linear arithmetic (SMT) formulations have been developed that
allow the calculation of real values, instead of only Boolean ones. Leveraging those formulations, we
in this article present a novel method to infer missing sensor values using an SMT system description
and the notion of critical pairs. We show on a running example and also empirically that we can
infer novel measurements for five process industrial systems. We conclude that, although SMT
calculations accumulate some error, we can infer novel optimal measurements for all systems.
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1 Introduction

Consistency-based fault diagnosis identifies faults by comparing predictions from a logical
system description to actual observations from a system. In the past, the system description
was specified by experts, usually in propositional or predicate logic and often solely for
Boolean circuits [39]. It was also assumed that the system description is a complete model
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of the underlying system [9] and thus models all the system’s normal behaviour (weak-fault
model). However, recently several publications have shown the possibility to learn at least
parts of the system description from data for hybrid, i.e. discrete and continous industrial
systems [16, 36, 28, 17]. The challenge with those approaches is that they are neither sound
nor complete, i.e., they do not guarantee that the complete behaviour of the system is
captured. This is due to two reasons: (i) Many of the methods still have severe limitations,
(ii) Often observations about the system are missing. Usually, these approaches use a special
formulation for the system description of the form∧

ci∈COMP Sk

ci → obsi (1)

for some component ci ∈ COMPSk, with COMPSk ⊂ COMPS being a subset of the
components whose behaviour has an influence on the observables obsi ∈ OBS. In other
words, those approaches reason against the flow of causality. They conclude from anomalous
observations back towards possible components causing the anomaly. To obtain Eq. (1)
it is necessary to first identify which observables exist within a system (i.e., the system’s
sensors). Then, system identification and causal reasoning techniques are used to identify
those components that have an influence on a single observable. And finally, they use this
knowledge to formulate propositional logic system descriptions. The problem with this
approach is: since those methods only rely on the observable data, the resulting system
descriptions may not be able to distinguish each fault. This means faults in some components
may be indistinguishable from each other, thus increasing the diagnostic load of service
technicians.

A system description that contains components that are not fully diagnosable suffers from
partial observability. Observability can only be increased through the addition of sensors.
However, possible locations to add sensors increase exponentially with system size and heavily
depend on system complexity. Further, some locations may garner more information than
other locations, while some locations may be redundant to already existing sensors.

In this article, we present a solution to infer the placement of new sensors based on
three main ideas: (i) For modelling the system, we use the more expressive satisfiability
modulo theory with non-linear arithmetic (SMT-NRA) instead of propositional logic. (ii)
We compute critical pairs to infer which components are not diagnosable, given a system
description, and (iii) we compute the exact locations where to add new sensors as well as
the operating range of the sensors’ values for non-faulty behaviour. We require the use of
SMT-NRA to be able to compute the non-linear behaviour of most components that are
used in industry. Previous work has already shown how SMT-LRA, i.e., SMT using linear
arithmetic can be used for fault diagnosis [15]. Critical pairs are a common technique used
to identify non-diagnosable components within logical knowledge bases [2]. They rely on
system traces, meaning temporally ordered sequences of observations that establish, whether
some trace exists that can identify a component unambiguously. By computing critical pairs,
we can therefore identify a set of components that is non-diagnosable. Following some of
the author’s previous work [3] we then show how, given an SMT-NRA system description,
we can compute the possible normal operating ranges of the sensors that would be added
for each of the non-diagnosable components. In the end, we can therefore determine which
sensors may be added to the system and what the minimum normal operating ranges are.
The greatest weakness of our approach is that through the computation of intermediate
values through SMT-NRA significant errors may be introduced depending on the lengths of
the paths through the system [18].
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Overall, this article makes the following contributions:
We show how to compute critical pairs based on a system description for consistency-based
diagnosis formulated in SMT-NRA.
We present a novel method to compute normal operating ranges for each possible sensor
location as well as minimality criterions for optimal placement.
We present the novel algorithm SynthesizeObs that first computes critical pairs, then
suggests novel observables, and finally selects optimal observables and their normal
operating ranges that should be added to an existing system.

With our solution, we thus help practitioners to (i) determine whether their system
description is fully diagnosable, and (ii) how to select the optimal sensor placement to
increase diagnosability.

2 Running Example

Figures 1 to 3 present the running example that we will use throughout the rest of the article.
It is a simple system with three components and two observables.

Figure 1 The running example with three components and two observables.

Looking at Figure 1 we assume one input connected to components c0 and c2, with
component c0 connected with c1. The outputs out0 and out1 of components c1 and c2
are monitored by the observables obs0 and obs1. Obviously, since the input, as well as the
connection between components c0 and c1 is unmonitored, if some fault is recognised in
obs0 both, c0 or c1 may be responsible.

Figure 2 The running example with the virtual component c0c1.

So for practical purposes, c0 and c1 may be interpreted as being some virtual component
c0c1 as depicted in Figure 2.

Only through the introduction of some additional observation (Figure 3) can the observ-
ability be increased and thus faults in c0 and c1 be unambiguously distinguished.

DX 2024
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Figure 3 The running example with an additional, synthetically generated, observation to increase
the system’s observability.

3 Related Work

Within the fields of diagnosability research and fault diagnosis four different categories
can be identified: diagnosability of discrete-event systems, analysing hybrid systems (i.e.,
systems with discrete and continuous behaviour), fault diagnosis itself, and integration with
cyber-physical systems. In all of those fields the goal is to investigate whether a model is
suitable for diagnosis, while the type of model varies from automata-like approaches, physical
equations, logical approaches, and formal specifications.

Diagnosability of discrete-event systems is an important area of research for many academic
and industrial use-cases. Usually, those systems are modelled using Petri-Nets [7], automata
[33], or similar approaches that divide a systems’ operation into states and events. With
those modelling formalisms it is necessary that practitioners know which places and states
can be visited, whether the model correctly models the real systems under investigation, and,
in the case of fault diagnosis, if all faults can be distinguished. One of the first authors who
analysed diagnosability of discrete event systems systematically was the approach of Sampath
et al. [41] in 1995 that they soon extended with active approaches [40]. A brief history of
diagnosability research and its relation to diagnosis is given by Lafortune et al. [30]. More
recently, Grastien and others [26, 51] have investigated the diagnosability of discrete-event
systems with uncertain observations. Boussif et al. [5] have extended diagnosability analysis
to the recognition of intermittent faults with the help of a digital twin model. Bittner et
al. [2] have developed a comprehensive work on the formal analysis of discrete-event system
diagnosability. From the same research group, Bozzano et al. [6] have investigated the
testing for diagnosability. Another recent work has been published by Lamperti et al. [31]
on sequence oriented discrete event systems.

Hybrid systems are more complex than discrete event systems. And while in several real
world use-cases the continuous behaviour can often be abstracted away or can be roughly
approximated, in many other use-cases this is impossible. Therefore, also the diagnosability
of models used for hybrid systems needs to be investigated. Benedetto et al. [13] investigated
the diagnosability of hybrid automatons. Trave-Massuyes et al. [47] has analysed the
diagnosability of analytical redundancy relations and sensor placement. Those relations are
common in control theoretic approaches to fault diagnosis (for details, refer [46]). They
have also investigated the sensor placement problem [45], which answers the question of
where to place sensors within a system to improve diagnosability. Cordier et al. [11] has
compared approaches between discrete system diagnosability and approaches to hybrid system
diagnosability. The work of Trave-Massuyes was extended first through Nejjari et al. [37] and
later through Verdiere et al. [49]. Fourlas et al. [24] were one of the first to specify hybrid
system diagnosability in the terminology of discrete-event system diagnosability. Although
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this was later taken up by Bayoudh et al. [1] as well. Diene et al. [19] have developed an
approach to analyse the diagnosability of linear time invariant systems. Leal et al. [32]
have developed an algorithm to check the diagnosability of hybrid systems specified through
analytical redundancy relations. Vignolles et al. [50] have analysed diagnosability of hybrid
systems with a special emphasis on fault diagnosis and remaining useful life prognosis. Also
from a control theoretic standpoint, a recent approach has been introduced by Su at al.
[44] where they investigated the sensitivity of residuals with regard to fault isolability. In
line with residuals, fault diagnosability was done with structural analysis as described by
Krysander et al. [29] and within the seminal work of Escobet et al. [22].

The notion of fault diagnosis itself in this article is in line with the definitions by De
Kleer [12] and Reiter [39]. The theory behind fault diagnosis was recently well explained
by Feldman et al. [23], Metodi et al. [35], and Stern et al. [43]. Our notion of system
descriptions was introduced in earlier work by Diedrich et al. [18] and follows a line of
abductive reasoning by Pill et al. [38] and Bochman et al. [4].

In this article, the goal is to apply the diagnosability analysis to system descriptions in
order to infer novel observables in cyber-physical systems. In the area of cyber-physical
systems research, aspects of these are touched in the verification of cyber-physical system
research. Mehrabian et al. [34] have presented an approach for the run-time verification for
uncertainties in cyber-physical systems. Caimilli et al. [8] has investigated the verification of
cyber-physical systems when they are reconfigured in the presence of faults. Varela-Vaca et
al. [48] have proposed a framework for diagnosing and verifying security requirements. While
Dowdeswell [20] has shown how to create function blocks for programmable logic controllers’
programming that are diagnosable by design.

Summary. Several research fields are concerned with analysing the diagnosability of their
respective models. Most important for this article are those using the Dulmage-Mendelsohn
decomposition, i.e., approaches that analyse the diagnosability and sensor placement of
analytical redundancy relations. This was primarily done by Krysander et al. [29] and
Trave-Massuyes [47]. Concretely, we use the formulation of critical pairs from Bittner et al. [3].

4 Background

We work within the setting of standard first-order logic and employ the standard semantic
notions of interpretation, model, satisfiability, and validity. A term is defined as either
a constant, an individual variable, or an n-ary function symbol applied to n terms. An
atom is defined as either a propositional variable or an n-ary predicate applied to n terms.
Subsequently, formulae are defined as either atoms, or as the application of the standard
Boolean connectives ¬,∧,∨,→,↔ to formulae, or the application of a quantifier ∃,∀ to one
or more variables and a formula.

4.1 Logical Modelling
Satisfiability Modulo Theories (SMT) [10] addresses the problem of determining whether a
satisfying assignment to the free variables exists in a first-order formula, where non-logical
symbols are interpreted within a decidable background theory T .

In first-order logic, an atomic formula is the simplest type of formula that cannot be
broken down into smaller logical components and is used to construct more complex formulas.

DX 2024
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▶ Definition 1 (Atomic logical formula). An atomic logical formula is an expression consisting
of one predicate applied to terms and has a Boolean truth value in {⊤,⊥}.

Within this work, we focus on the theory of Nonlinear Arithmetic over the reals (NRA).
The theory of NRA is the first-order theory with equality whose atoms are nonlinear
polynomial constraints interpreted over R. We have numerical constants and real-valued
variables. Using the standard function symbols +,−, ·,÷, these numerical constants and
real-valued variables can be combined to form arithmetic terms.

▶ Definition 2 (Arithmetic term). An arithmetic term in SMT is an expression consisting of
a variable, a numerical constant, or combinations thereof connected through {·, +,−,÷}.

With the predicate symbols <,≤, >,≥, =, arithmetic terms can be combined with nu-
merical constants or other arithmetic terms to form arithmetic formulae. Depending on the
number of combinations, the resulting formula can be an atomic arithmetic formula.

▶ Definition 3 (Atomic arithmetic formula). An atomic arithmetic formula is an expression
consisting of two arithmetic terms connected through {<,≤, >,≥, =} and has a Boolean truth
value in {⊤,⊥}.

SMT allows the combination of first-order logical and theory specific formulas with the
logical connectives ¬,∧,∨,→,↔ in order to express complex contexts.

▶ Definition 4 (SMT-NRA formula). An SMT-NRA formula denotes the combination
of (multiple) atomic first-order logical formulas and (multiple) atomic arithmetic formulas,
connected via the logical connectives ¬,∧,∨,→,↔.

If φ0, φ1 are atomic formulae or SMT formulae, then φ = φ0 ⊕ φ1 with ⊕ ∈ {∧,∨,→,↔
, =,≤,≥} is also an SMT formula. This SMT formula φ is considered satisfiable if and only
if it has a model M.

▶ Definition 5 (SMT Model). A model M of a formula φ is defined as a pair consisting of
an assignment, which maps each variable to an element of its domain, and an interpretation
of the non-logical symbols that satisfies the formula.

▶ Definition 6 (Satisfiability). An formula φ is satisfiable, when a model M exists, where
[[

∧
φi∈φ φi]]M = ⊤.

The satisfiability of an SMT formula φ can be checked by an SMT solver. An SMT
solver is a software tool designed to determine whether a given formula is satisfiable; it
may either provide a satisfying assignment or a proof of unsatisfiability. Most modern SMT
solvers employ a lazy approach: they first use a SAT solver to enumerate potential satisfying
assignments of the formula’s Boolean abstraction. Then, theory solvers verify the satisfiability
of the corresponding set of constraints for each assignment. If the theory solver finds the set
of constraints consistent, a model is established. Otherwise, new clauses are generated to
prevent the recurrence of assignments that lead to inconsistencies.

Especially in the context of fault diagnosis, often it is not only relevant to determine
the satisfiability of an SMT formulae or the proof of unsatisfiability, but also to find the
maximum satisfiability set of a formula φ that is unsatisfiable.

▶ Definition 7 (Maximum Satisfiability). A maximum satisfiable set (mss) of a set of SMT
expressions φ are those expressions that can be satisfied even though φ itself is unsatisfiable,
with mss = argmaxα,M φ, where α is a complete assignment to all variables within φ, using
a single model M .
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4.2 Fault Diagnosis
This section presents the theoretical background on i) how to obtain observations OBS :
Rn×m, n, m ∈ N from some system, and ii) how a given system description can be used to
perform diagnosis.

We begin by defining a single measured value from a cyber-physical system as a sensor
reading mi ∈ R. The explicit mention of time is omitted, as we assume that all sensor values
are read concurrently at a single point in time, given a suitable sampling rate. Therefore, we
write mi instead of mi(t). Observations are discretised sensor readings that we define by
some suitable function d(·).

▶ Definition 8 (Observation). A single observation obs ∈ {⊤,⊥} is a discretised assignment
obsi = d(mi, λ) to some or all inputs and outputs of a cyber-physical system, where d(·), with
d : R→ {⊤,⊥}, is a suitable discretisation function, λ ∈ R|λ| are parameters, and mi ∈ R.

We will write |λ| to denote the cardinality of λ. The set of all observations is denoted as
OBS. In other words, we require the existence of a function d(·) that discretises a real-valued
input with the parameters λ into a Boolean value. Usually, function d(·) is realised through
residual values [27]. A residual takes some of the observable parameters of a cyber-physical
system in the form of input, output, and state variables and outputs 0 in the fault-free case
and ̸= 0, otherwise. Formally, a residual is a function

r(mi, λ) =
{

0; no fault
̸= 0; else

(2)

with sensor value mi ∈ R and λ ∈ R|λ| is a set of parameters. Usually, the set of parameters
λ contains guard conditions around the input, output, and state variables. The set of all
residuals is denoted as R. Several existing approaches use observer or structural equations
to calculate residual values, but rely on expert-defined first-principles models. [25] provide a
good overview over existing methods to generate residuals.

Example. An implementation of the discretization function in the form of a residual can
be done through, for example, threshold values τ , such that d(mi, τ) : τl ≤ mi ≤ τh → obsi,
where τl, τh ∈ R are some threshold values, obsi is a symbol denoting the observation, and
mi ∈ R is the denoised sensor value. In previous work, we showed that such threshold
equations can be translated into propositional logic through satisfiability modulo linear
arithmetic theory [15].

With residuals, real-valued signals from a cyber-physical system are discretised into
Boolean observations. But how is it possible to use these for fault diagnosis? Fault diagnosis
algorithms are employed to identify inconsistencies between the observations from a cyber-
physical system and its system description. Formally, a diagnostic system is defined as
follows.

▶ Definition 9 (Diagnostic System). A diagnostic system is a three-tuple (SD, COMPS, OBS),
where SD is the system description formulated in propositional logic, COMPS is the set of
components, and OBS are the Boolean observations grounded as propositional symbols, such
that SD ∪ COMPS ∪OBS is satisfiable.

In order to perform fault diagnosis, non-monotonic and abductive reasoning are employed.
This allows the system description to reason with an inconsistent knowledge base and
conclude from observations to causes. Reiter [39] called non-monotonic reasoning default

DX 2024
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reasoning whose main benefit is that it contains logical statements that are assumed to
be true unless proof to the contrary exists. Diagnosis uses non-monotonic reasoning to
retract those assumptions within SD (i.e. those components that might have caused some
observation to deviate from its normal behaviour) until a consistent diagnostic system is
achieved. From those retracted assumptions the diagnosis is then computed.

▶ Definition 10 (Diagnosis). A diagnosis ω is a set derived from the set of retracted
assumptions, which satisfies SD ∧OBS ∧ COMPSω ∧ COMPS¬ω

where COMPSω are the faulty components and the set COMPS¬ω are the remaining healthy
components. Within this article we use a compilation-based approach and compute the
diagnosis by calculating the maximum satisfiable set within an SMT-NRA system description.
In many cases, the size of individual diagnoses can be quite large and sometimes contain
hundreds of components. Therefore, the size of a diagnosis needs to be limited. A minimum
cardinality diagnosis is a diagnosis that contains the smallest possible number of components.

▶ Definition 11 (Minimum Cardinality Diagnosis). A Minimum Cardinality Diagnosis is a
diagnosis ω′, so that |ω′| ≤ |ω| for each diagnosis.

Whenever we employ a diagnosis algorithm, the goal is always to find the minimum cardinality
diagnosis.

5 Problem Description

To diagnose faults in technical systems, a system description is required that describes the
system’s normal behaviour. For this work, we assume the existence of an SMT-NRA system
description. The system description is divided into two parts: The first part describes
each component’s behaviour and the second part describes the observables, modelling the
evaluation of each observable value. More formally, we divide SD into SD = B ∪ O, for the
SMT-NRA behavior description B and the observable description O

For modelling B we extend the formalism that was originally suggested by Feldman et al.
[23] for propositional logic

hi → outi = gi(ini) (3)

where hi ∈ {⊤,⊥} indicates the health of the respective component with index i ∈ N. The
function gi(·) : Rn → R computes the output outi ∈ R from inputs ini ∈ Rn, with index
i ∈ N and number of input signals n ∈ N. Overall, Equation (3) is said to be a weak-fault
model of the system, i.e., it describes only the system’s normal behaviour.

To observe whether the system behaves normally, we need to add the second part of the
system description O, using the observables obs ∈ OBS. We therefore use expressions of the
form

hi → obsi = d(outi, θi) (4)

with observable obsi ∈ {⊤,⊥}, input outi ∈ R, a set of parameters θ ∈ Rn, and an observation
evaluation function d(·) : R→ {⊤,⊥}, where hi ∈ {⊤,⊥} indicates the health of the sensor.

The problem we tackle in this article is two-fold: (i) We investigate which components
within a given system description SD can be diagnosed given the available observations. In
other words, which observations will allow us to diagnose a fault in a component unambigu-
ously, such that only the real faulty component is identified? For this we use a single-fault
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assumption such that we assume only one component is faulty at a given time. (ii) Given a
set of non-diagnosable components, which observables do we need to increase the system’s
observability and decrease the set of non-diagnosable components?

To illustrate the problems we use the running example with an exemplary and simplified
system descriptions such as

h0 → int0 = g0(in0) (5)
h1 → out0 = g1(int0) (6)
h2 → out1 = g2(in0) (7)
ha → obs0 = d(out0, θ0) (8)
hb → obs1 = d(out1, θ0) (9)

We can now assume concrete realisations of functions g, d. For this, lets assume in the
running example we have a process industrial system with a pump c0, and valves c1, c2.

Figure 4 The running example using real physical components.

Using this, we can specify the physical modelling functions g(·) as part of the behaviour
system description B through the equations for tanks and valves. For pumps, we use the
model

∆P = Pmax −RpQ (10)

where Q ∈ R is the flow rate, ∆P ∈ R is the pressure difference, Pmax ∈ R is the maximum
pressure the pump can generate, and Rp ∈ R is the pump resistance. For a valve, we can for
simplicity assume the following model

Q = Cx∆P (11)

where Q ∈ R is the flow rate, ∆P ∈ R is the pressure difference, C ∈ R is the valve coefficient,
and x ∈ [0 . . . 1] is the valve opening.

We then model the observables within part O of the system description through

obsi = τl ≤ outi ≤ τh (12)

with the thresholds τl, τh ∈ θi.
Overall, we can now specify the complete system description as SMT-NRA expressions

Pump c0: h0 → int0 = Pmax −Rpin0 (13)
Valve c1: h1 → out0 = Cx∆int0 (14)
Valve c2: h2 → out1 = Cx∆in0 (15)

Observable obs0: ha → obs0 = τl0 ≤ out0 ≤ τh0 (16)
Observable obs1: hb → obs1 = τl1 ≤ out1 ≤ τh1 (17)

DX 2024
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It is evident that by placement of the observables component c0 (the pump) cannot be
diagnosed. In what follows we present first a method that establishes the diagnosability of
systems using these types of system descriptions and then, in section 7, we will describe how
to infer additional sensor values to increase a system’s diagnosability.

6 Finding Critical Pairs for Diagnosability in SMT-LRA System
Descriptions

Historically, diagnosability can be reduced to the search for critical pairs [3, 2]. A critical
pair is defined based on the definition of traces (formalizing an execution of the plant).

▶ Definition 12 (Plant). A plant P is a symbolic transition system ⟨V, Vo, I, T ⟩, where V is
a finite set of state variables; Vo ⊆ V is the set of observable state variables; I is a formula
over V defining the initial states, and T is a formula over V , V ′ (with V ′ being the next
version of the state variables) defining the transition relation.

A state s is an assignment to the state variables V . The observable part obs(s) of a state
s is the projection of s on the subset Vo of observable state variables.

▶ Definition 13 (Trace). A system trace is an infinite sequence of states s0, s1, s2, . . . starting
from s0 such that, for each k ≥ 0, ⟨sk, s′

k+1⟩ satisfies T .

The observable part of a trace π = s0, s1, s2, . . ., denoted obs(π), is the sequence obs(s0),
obs(s1), obs(s2), . . ..

In this paper, we are interested in diagnosing the faulty status of components, i.e., a
diagnosis for component c can be defined as the healthy status hi of the i-th component. We
give the following definition for critical pairs.

▶ Definition 14 (Critical Pair). Given a plant P , a diagnosis condition c and a delay d,
a critical pair for P and c at i is a pair of traces π1 and π2 of length i + d such that
obs(π1) = obs(π2) (traces are observationally equivalent), π1, i |= c (trace π1 satisfies c at i),
and π2, j ̸|= c for all j such that j ∈ [i− d, i + d] (trace π2 does not satisfy c in the interval
[i− d, i + d]).

Our definition of diagnosability corresponds to the notion of bounded delay diagnosability,
i.e., diagnosability within a delay d, following [2].

Searching for critical pairs can be done using the twin-plant construction [2], and can be
implemented using an SMT solver, by unrolling the transition relation and looking for a pair
of traces satisfying the conditions of Def. 14.

7 A Novel Method to Synthesize new Observables

We have seen in the last section how critical pairs identify those components that, given two
observable traces, cannot be distinguished in terms of their faulty behaviour. In this section,
we describe a novel method to synthesize new minimal observables, given the SMT-NRA
system description SD and a set of critical pairs.

The intuition behind our approach is the following: We assume that there exists an
SMT-NRA system description. Then we first compute the intermediate values (assumables)
that are the output of the non-observable component through logical inference. For each of
those outputs we then attempt to compute a new observable that is described through a
logical expression template and its historical values.

We therefore use the following definition.
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▶ Definition 15 (Novel observable). A novel observable is an additional measurement obsi ∈ R
with an associated range rl, rh ∈ R with rl ≤ obsi ≤ rh during normal operating conditions.

we say that the range of a variable is defined through the two functions

obsil
= argmin

ini

g(ini, θi) (18)

and

obsih
= argmax

ini

g(ini, θi) (19)

where argmin and argmin take the ranges of the normal operating conditions, given by
the underlying system. In other words, the values of ini are constrained by the values seen
in historical data under normal working conditions. The calculation of these intermediate
values is easy, since we use SMT-NRA for the behaviour models of all components. Thus, we
can calculate the outputs of each component up to an accuracy limited by the SMT solver.

To combat the accumulation of errors in the sequential computation of ranges [18] we
introduce several heuristics. The first is the range-minimal novel observable.

▶ Definition 16 (Range-minimal Novel observable). A range-minimal novel observable is an
additional measurement obsi ∈ R with additional constraints limiting the range rl, rh ∈ R
with rl ≤ obsi ≤ rh.

We use this observable to obtain those novel observables that have the smallest normal
operating range and thus are assumed to be the most sensitive to faults. In other words, we
want those observables whose range does not include too much operational variability.

Another helpful definition is the count-minimal novel observable. Using these observables
the highest number of critical pairs can be removed and the maximum number of components
become diagnosable.

▶ Definition 17 (Count-minimal Novel observable). A Count-minimal novel observable is an
additional measurement obsi ∈ R with range rl, rh ∈ R with rl ≤ obsi ≤ rh that removes the
maximum number of critical pairs.

The range- and count-minimal novel observable can be determined using weak-fault
models, i.e., models only describing the normal working behaviour of the system [23]. These
are always calculated first. It is then possible to apply heuristics to these novel observables
in order to improve the diagnostic performance.

To obtain heuristics, we require more parameters than a common weak-fault model
provides. After having calculated the range- or count-minimal observables we can thus
calculate those observables that provide the maximum information gain. The intuition is as
follows: Assuming we want to add those observables that provide the maximum information
gain, we first need to determine how much more we can diagnose, if specific sensors are added.
In earlier work, we demonstrated that such information can be obtained using entropy and
information-gain calculations [14]. To calculate the entropy we require information about
the reliability of single components which usually can be obtained either from experience or
through design documentation such as mean-time-between-failure analysis.

▶ Definition 18 (Entropy-maximal Novel observable). An entropy-maximal novel observable
is an additional measurement obsi ∈ R with range rl, rh ∈ R with rl ≤ obsi ≤ rh whose value
adds the maximal amount of knowledge about the system.
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We suggest an entropy-based approach [42] to reduce critical pairs by introducing an
entropy-maximal novel observable. An entropy-based approach facilitates that an observable
leads to a maximal information gain. We assume that the set of observables OBS can be
divided into two subsets OBSu, OBSc, with OBSu ∩OBSc = ∅, and OBSu ∪OBSc = OBS,
where OBSu = {obs0, obs1, ..., obsn−1} , n ∈ N is the set of sensors currently used to diagnose
the system and OBSc = {obsn+1, obsn+2, ..., obsm} , n, m ∈ N is the set of candidate sensors
that could be added to the system (i.e. the determined range-minimal, or count-minimal
observables). The intuition now is to calculate the entropy based on the current sensor setup
OBSu, reflecting the uncertainty in distinguishing between different states given the existing
sensors. For each sensor of the set OBSc calculate the conditional entropy to see how much
uncertainty remains if that sensor is added.

The entropy is calculated through

H(X) = −
∑
x∈X

pOBSc
(y) log (pOBSc

(y)) (20)

with x ∈ X describing the different possible states of the system’s components and pOBSc(y)
describing the component’s probability of being in that faulty state, under the condition that
the component is not observable.

We can then calculate the information gain for each possible observable placement through
the individual information gain

▶ Definition 19 (Information Gain). The information gain by adding a sensor obsi ∈ OBSc

to the set OBSu is defined over the given entropy H as follows:

IGH(obsi) = H(X)−H(X|obsi) (21)

Note that H(X|obsi) ≤ H(X) resulting in IGH(obsi) ≥ 0 and that maximizing the informa-
tion gain maxsi∈Sc IGH(si) can be directly reformulated as a minimization problem of the
form minsi∈Sc

H(X|si).
To illustrate, consider equipping the running example shown in Figure 3 with novel

observables: First we have to determine all ways in which the system may fail. There are
multiple cases that could lead to faulty outputs. Overall, faults within c0, c1, and c2 might
cause one or both outputs to be incorrect. These possible states are detailed in Table 1. The
last column of this table lists the minimal hitting sets, indicating which components, if faulty,
would result in the observed output.

Assuming a fictitious fault probability of five percent for all components, the entropy values
and information gains are presented in Table 2. The first column provides the index, while
the second column lists the possible diagnosis in terms of single faults. Subsequent columns
show the entropy values for the current set of sensors and for scenarios with one additional
observable. Table 3 presents the entropy value H() for each index and the corresponding
information gain IGH(). The optimal observable to place is the one that minimizes entropy
or maximizes information gain. In this case, the decision is not straightforward, as obs0 and
obs1 both yield the same information gain.

7.1 Algorithm
Algorithm SynthesizeObs summarises the above definitions into pseudocode. The intuition
behind the algorithm is to detect non-observable components using the calculation of critical
pairs. Once the critical pairs within a system are known, we calculate optimal observables.
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Table 1 Different states of the running example and possible diagnosis.

Index out0 out1 ωmin

0 0 0 -
1 1 0 c0 ∨ c1

2 1 1 (c0 ∨ c1∨) ∧ c2

3 0 1 c2

Table 2 Entropy for all possible observations.

Index ωmin ∩ Sc H(x) H(X|c0) H(X|c1) H(X|c2)
1 c0 ∨ c1 0.09860 0.0629 0.0629 0.09860
2 (c0 ∨ c1) ∧ c2 0.0108 0.006 0.006 0.09860
3 c2 0.0629 0.0629 0.0629 0

Table 3 Entropy and Information Gain for possible new observables.

X X|obs0 X|obs1 X|obs2

H() 0.1723 0.1318 0.1318 0.1972
IGH() 0 0.0405 0.0405 -0.0249

If information about failure rates is available, we use it to calculate the entropy-maximal
observables. If no further information is available, we return either the count-minimal, or
the range-minimal novel observable, depending on the concrete implementation.

We will now explain the algorithm in detail. In Line 3 we use the SMT system description
and the current observations to infer all intermediate values within the system using an
appropriate solver for SMT-NRA. This is basically how GDE [12] works on propositional
logic. Line 4 calculates the critical pairs from the system description by generating system
traces using the available observations. If the set of critical pairs is non-empty, Line
6 generates either a count-minimal, or range-minimal novel observable through properly
designing function generateObservable. The function determines the ranges from the
inferred values I of the system description, and through the historical observations HIST .
Line 7 determines whether failure probabilities are known for each component. If this is not
the case the algorithm only returns the range-minimal or count-minimal novel observable.
Contrarily, if the failure information is available, the algorithm computes the entropy of
possible novel observables and their information gain (Line 9). All possible novel observables
are added to set C. Line 11 finally only returns the entropy-maximal novel observable.

8 Evaluation

To evaluate our approach, we have used the Berfipl benchmark with four tank systems
developed by Ehrhardt et al. [21]. The benchmark describes an industrial bottling plant
and was implemented as a simulation using OpenModelica 1.13. The four modules are a
mixer, a distill, a filter, and a bottling module. The modules may be used stand-alone or
may be connected. For the evaluation in this article, it was assumed that the modules are
stand-alone and effects from one module do not propagate into another module. The mixer
perturbs three substances and stores the mixed products in a tank. The mixer is connected
to a distill, which splits substances with different boiling temperatures. The filter subsystem

DX 2024
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Algorithm 1 SynthesizeObs: Calculate synthetic novel observables.

Data: SD, OBS, HIST

Result: Entropy-maximal observable
1 C ← ∅ ;
2 I ← inferV alues(SD, OBS) ;
3 for ci ∈ criticalPairs(SD, OBS) do
4 obsnew ← generateObservable(ci, I, HIST ) ;
5 if ∀ci, p(ci) is known then
6 H(X) = −

∑
x∈X p(obsi) log (p(obsi)) ;

7 IGH(obsi)← H(X)−H(X|obsi) ;
8 C ← C ∪ (obsnew, IGH(obsi) ;
9 else

10 C ← C ∪ obsnew ;
11 return(max(C) ;

removes residue from the fluid stream. As the last module, the bottling subsystem fills the
produced substance into tiny glass bottles. Figure 5 shows the piping and instrumentation
diagram of the four modules: a) filter, b) mixer, c) distill, and d) bottling.

Figure 5 Four modules of the Berfipl benchmark presented by Ehrhardt et. al [21].

For the evaluation we have used an abstract model of each subsystem implemented in
Python 3.11 and run on a 64-bit Windows 11 operating system with 32GB RAM, and Intel
Core i7-12800H processor. For simplicity, and to keep the number of SMT expressions small
we only calculate the flow through all components, while we did not model the intricacies of
the special components filter and mixer. We modelled valves as a constant parameter that
adjust the flow rate by multiplication

outflow = C × a× inflow (22)
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Table 4 Experimental results for the Berfipl benchmark [21].

System Critical Pair Range Correct
DS1 pump0, valve1 [0..9] ✓

valve1, filter0 [0..9] ✓

filter0, valve2 [0..9] ✓

DS2 valve0, pump0 [0..6.72] ✓

valve1, pump0 [0..6.72] ✓

valve3, pump0 [0..6.72] ✓

DS3 pump0, valve1 [0..9] ✓

DS4 pump0, valve1 [0..9] ✓

with parameter C ∈ R, the size of the opening a ∈ [0..1], and the inflow inflow ∈ R. In the
same way we have modelled pumps such that they increase the flow, using

outflow = Pmax−Rp× inflow (23)

with Pmax, Rp ∈ R modelling the pressure drop within the pump. Finally we have modelled
tanks through

outflow = C × a×
√

2g(level + inflow) (24)

with parameter C ∈ R, size of the output orifice a ∈ R, the gravitational constant g, and
sum of the tank level and inflow. We then ran algorithm SynthesizeObs on each of the
model, identified the critical pairs and calculated the range-maximal novel observations for
each possible sensor location.

Table 4 presents the empirical results of algorithm SynthesizeObs. Since we have used
the same parameters for the tanks, pipes, pumps etc. the different ranges are comparable.
For each experiment, the algorithm was able to calculate the correct ranges for potential
synthetic observations. Limitations are evident that by using SMT-NRA we calculate the
square root within the tank equations. Here we observed errors up to five percent.

We have also evaluated the generation of entropy-maximal novel observables. For this
evaluation, we have used a slightly larger system than the running example. Consider the
system in figure 6 that contains a source, two tanks and a sink. The pipes between source
and tank1 as well as between the two tank are equipped with a pump and a valve each.
Consider the system to be equipped with one observable per tank that measures the fill
level and provides two observations: high-level and low-level. The possible states of the
observables can be seen in Table 1. The pumps can have two fault modes: higher pxh or
lower pxl performance than expected. The valve may fail through clogging vx. The possible
faults are summarised in the last column as single faults. Possible combinations are not
shown.

Figure 6 Example tank system.

Some faults have just one single element as a possible diagnosis. These failure states
can be directly diagnosed. Others show multiple components that could cause this effect.
However, given the observables, in many cases the diagnosis can contain multiple components.
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The problem of critical pairs arise if two components cannot be distinguished. This is the
case for the combination of pump and valve in each pipe.
If we let the probability of a fault in the pumps and valves be five percent this leads to the
entropy values and information gain stated in Table 5. The first column denotes the index.
The second column shows the possible diagnosis. The following columns show the entropy
values for the current sensors and one additional sensor. The lower table shows the entropy
value H() for each index and the information gain IGH(). The best sensor to place is the
one that results in the minimum entropy or gives the maximum information gain. In this
case this is sensor p2.

Table 5 Possible states of the system.

State ID x ωmin ∩ Sc H(x) H(x|p1) H(X|v1) H(X|p2) H(X|v2)
1 p1h ∨ p2l ∨ v2 0.195 0.13 0.195 0.13 0.13
2 p1h 0 0 0 0 0
3 p2l ∨ v2 0.13 0.13 0.13 0 0
4 p1l ∨ v1 ∨ p2h 0.195 0.13 0.13 0.13 0.195
5 p2h 0 0 0 0 0
6 p1l ∨ v1 0.13 0 0 0.13 0.13
7 p2h 0 0 0 0 0
8 p2l ∨ v2 0.13 0.13 0.13 0 0

X X|p1 X|v1 X|p2 X|v2

H() 0.78 0.52 0.585 0.39 0.455
IGH() 0 0.26 0.195 0.39 0.325

9 Discussion and Conclusion

While the evaluation has shown that we can successfully infer range- and count-minimal
novel observations using SMT-NRA system descriptions and the computation of critical
pairs, our method has some practical drawbacks:
1. Using SMT-NRA for process industrial systems requires the computation of square roots.

But computing the square roots introduces significant errors through chaining effects.
2. The SMT-NRA system descriptions we use are quite simple. Computing critical pairs

on those system descriptions does not distinguish between the type of component. In
practice, some components, such as a filter will lead to different downstream effects than,
for example, a tank. Therefore, some components and their effects may be diagnosable,
even though there is no sensor directly attached to them.

3. We performed the entropy calculations outside of the SMT-NRA system description. In
future work this should be integrated to obtain a unified formulation for calculating novel
observables.

4. Our approach requires significantly more expert knowledge than is available for many
industrial processes. While the additional historical data that we require can often be
obtained, the fault probabilities for individual components are often not widely available.

5. We do not take different operating modes into account and thus need to assume there is
only a normal working mode.

Overall we have presented a new method to compute novel observables using algorithm
SynthesizeObs. For this we use the well-known tuple (SD, COMPS, OBS) along with
historical data in the form of traces for the computation of critical pairs. The critical pairs
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provide us with the information which components within a system are non-diagnosable.
We then use algorithm SynthesizeObs to compute optimal novel observables that include
synthesized normal operating ranges which can thus be used for anomaly detection and fault
diagnosis. If information about individual fault probability is given, then we also compute
the entropy-maximal novel observable, i.e. that observable whose addition in the system
would gather the most information.

We hope that our method aids practitioners in improving the observability particularly
of learned system descriptions in industrial use-cases.
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