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Abstract
This work introduces GFT EnterpriseGPT, a regulatory-compliant, trustworthy generative AI
(GenAI) platform tailored for the financial services sector. We discuss the unique challenges of
applying GenAI in highly regulated environments. In the financial sector data privacy, ethical
considerations, and regulatory compliance are paramount. Our solution addresses these challenges
through multi-level safeguards, including robust guardrails, privacy-preserving techniques, and
grounding mechanisms. Robust guardrails prevent unsafe inputs and outputs, and privacy-preserving
techniques reduce the need for data transmission to third-party providers. In contrast, grounding
mechanisms ensure the accuracy and reliability of artificial intelligence (AI) generated content. By
incorporating these measures, we propose a path forward for safely harnessing the transformative
potential of GenAI in finance, ensuring reliability, transparency, and adherence to ethical and
regulatory standards. We demonstrate the practical application of GFT EnterpriseGPT within a
large-scale financial institution, where it successfully improves operational efficiency and compliance.
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1 Introduction

The integration of generative AI (GenAI) in the financial sector holds substantial potential,
particularly in applications such as credit assessments [4], personalized financial advice [6],
customer support [2], investment research [6], or audit assistance for regulatory compli-
ance [12]. For example, GenAI can be used in the compliance office to optimize processes
and to increase efficiency. The regulatory framework mandates stringent adherence to rules
and policies to mitigate risks such as a violation of data protection. Yet, the complexity and
volume of these internal and legal regulations require high effort from experienced auditors
to ensure compliance. As an auditing assistant, GenAI can provide comprehensive overviews
of existing rules and policies, highlight changes from previous versions, detect conflicting
policies, and ensure alignment with internal guidelines. Furthermore, GenAI can identify
gaps in the current regulatory framework, thus supporting more robust compliance strategies.

Despite the promising potential, the deployment of GenAI in finance, characterized
by its highly regulated environment and serious risk exposure, faces significant challenges.
Ensuring that AI-generated content is accurate, reliable, and free from errors in the form of
hallucinations [5] is crucial, as inaccuracies can erode trust among users and stakeholders [14].
Moreover, adhering to a strict ethical framework is essential [10]. GenAI systems must be
designed and trained to uphold ethical standards, ensuring that user requests are handled
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responsibly and that responses are unbiased and transparent. This includes preventing the
generation of harmful content or advice that could exploit users. Regulatory compliance
is another critical challenge, especially concerning data security. Financial data is highly
sensitive, and GenAI systems must comply with stringent regulations like GDPR to maintain
trust and avoid legal repercussions, ensuring robust data protection measures are in place [16].

2 Methodology

To address these challenges, our platform, called GFT EnterpriseGPT, incorporates several
measures to enable trustworthy GenAI. In general, these measures fall into three categor-
ies: guardrails, privacy and grounding. Figure 1 provides a high-level overview of GFT
EnterpriseGPT.
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Figure 1 High-level system overview of GFT EnterpriseGPT. Displayed in blue, green, and yellow
are measures to ensure trustworthy GenAI.

First, the user interacts with their browser to generate a prompt. This prompt is locally
analyzed. If the prompt is benign, a request, which is processed by the GFT EnterpriseGPT
backend, is created. GFT EnterpriseGPT can use different tools to augment the user prompt
with additional context. Finally, the augmented prompt is forwarded to an large language
model (LLM) provider, e.g., a local open-source model or a commercial provider. In the
following, we will introduce the separate measures for trustworthy GenAI in more detail.

2.1 Guardrails

Guardrails for foundation models and requests are measures to ensure their safe, ethical,
and effective use. They help in mitigating risks, preventing harmful outcomes, and ensuring
compliance with legal and ethical standards [15]. In general, a distinction can be made
between input and output guardrails. Input guardrails verify that requests that are classified
as risky will not enter the LLM model, for example, inquiries on a critical topic such as
the construction of weapons. In contrast, output guardrails also check for hallucinations [7].
All foundation model providers implement safety measures [15], like alignment fine-tuning.
While this provides a solid basis for ethical GenAI, they are not sufficient in practice as they
can not be adapted to specific use cases and can be overcome by malicious actors [3].
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Therefore, a client-based prompt analysis, called GFT AI Shield, is used to detect, for
example, unethical requests or violations of internal policies. This analysis is performed
purely inside the client and the prompt under inspection is never forwarded to a commercial
GenAI provider to prevent data leakage. Only when no violations, for example, a prompt
containing credit card information, were detected, the user prompt is forwarded to an LLM
for answer generation. The GFT AI Shield uses different methods to detect inadequate
content:

Simple pattern matching is used to detect restricted words
Named-entity recognition [13] using a local neural network checks if restricted categories
are used in the prompt
Using a plugin interface, customers can provide additional classifiers to detect problematic
prompts

If a prompt is flagged by one of the filters, the user is informed why the request is not being
processed. All violations against the guardrails are logged in a database. As it is always
the case with artificial intelligence (AI) applications, the GFT AI Shield can not guarantee
the perfect correctness of all predictions. To prevent users from simply switching to public
GenAI services, which have a lower security standard, the GFT AI Shield is tuned to limit
false positive errors.

In general, GenAI applications can either be targeted to an internal or public user base of
a company. In the case of an internal application, the employees can receive tailored training
for responsible GenAI usage. Furthermore, employers can, to some extent, enforce compliant
behavior through internal guidelines and terms of usage agreements. However, just relying
on compliant behavior is not sufficient as users may make errors or behave maliciously.

2.2 Privacy
Privacy for GenAI using GFT EnterpriseGPT is safeguarded through several key measures.
Selecting appropriate licensing is crucial, as it defines the terms under which user-generated
prompts, model answers, or datasets for fine-tuning, can be used by the foundation model
provider. Even though all model providers guarantee that data is not visible to other users,
end-users can not verify this guarantee. Using dedicated hardware, such as PTUs [11] or
dedicated servers to host open-source models, helps to prevent unauthorized access and
data leaks, providing a controlled environment where sensitive information can be processed
without exposure risks. Additionally, the GFT AI Shield can also be used for enforcing data
privacy. As prompts are directly processed on the user’s device rather than on remote servers,
the need to transmit personally identifiable information (PII) or confidential information
across networks to service providers is eliminated, minimizing the risk of data interception or
misuse. Finally, as GFT EnterpriseGPT also uses tools accessing the internet, for example
using a web search, user prompts are rewritten using GenAI to prevent prompt leakage
to another third-party service. Together, these measures create a robust framework for
protecting user privacy in the deployment and use of GenAI.

2.3 Grounding
Grounding for GenAI refers to the process of linking their outputs to real-world contexts,
facts, or external data sources. This ensures the models’ responses are accurate, relevant, and
contextually appropriate, enhancing their reliability and applicability in practical scenarios.
Retrieval-augmented generation (RAG) [9] is a standard method for grounding [8]. It
augments a user prompt with information retrieved from external sources before sending
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it to a foundation model. By implementing our own RAG approach instead of using a
commercial provider, a fine-tuned solution per use-case can be developed without exposing
all data sources to a third party. While this approach can be used to encode domain-specific
knowledge into the foundation model, hallucinations can still occur [5]. To ensure the
correctness of results, our platform offers the option to search for references for parts of the
generated answer. By reusing the retrieval part of retrieval-augmented generation (RAG),
we are searching for a context similar to a specific part of the answer selected for grounding.
If such a similar context exists, the correctness of the partial answer can be ensured.

3 Use Case

GFT EnterpriseGPT has been successfully implemented at Landesbank Baden-Württemberg
(LBBW) [1]. LBBW is a full-service commercial and central bank in Germany. Currently
supporting approximately 9,000 employees at LBBW in their daily work, GFT EnterpriseGPT
has proven its effectiveness in enhancing operational efficiency and compliance in a large-scale
financial institution. This success story underscores the practical viability and benefits of
trustworthy GenAI in the finance sector following regulatory requirements.

4 Conclusion

In summary, the integration of GenAI in finance offers transformative potential, enabling
more efficient and accurate processes in highly regulated environments. By implementing
multi-level safeguards addressing key challenges related to trustworthiness, ethical behavior,
and regulatory compliance, the full potential of GenAI can be harnessed. The success of our
deployment at LBBW illustrates the practical impact and value of combining measures for
building trust with GenAI, paving the way for broader adoption of GenAI in finance.
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