
System-Level Timing Performance Estimation
Based on a Unifying HW/SW Performance Metric
Vittoriano Muttillo #

University of Teramo, Italy

Vincenzo Stoico #

Vrije Universiteit Amsterdam, The Netherlands

Giacomo Valente #

University of L’Aquila, Italy

Marco Santic #

University of L’Aquila, Italy

Luigi Pomante #

University of L’Aquila, Italy

Daniele Frigioni #

University of L’Aquila, Italy

Abstract
The rapidly increasing complexity of embedded systems and the critical impact of non-functional
requirements demand the adoption of an appropriate system-level HW/SW co-design methodology.
This methodology tries to satisfy all design requirements by simultaneously considering several
alternative HW/SW implementations. In this context, early performance estimation approaches
are crucial in reducing the design space, thereby minimizing design time and cost. To address the
challenge of system-level performance estimation, this work presents and formalizes a novel approach
based on a unifying HW/SW performance metric for early execution time estimation. The proposed
approach estimates the execution time of a C function when executed by different HW/SW processor
technologies. The approach is validated through an extensive experimental study, demonstrating its
effectiveness and efficiency in terms of estimation error (i.e., lower than 10%) and estimation time
(close to zero) when compared to existing methods in the literature.
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1 Introduction

In the last thirty years, there has been an exponential increase in the exploitation of
embedded systems in everyday life. This increase has led to a rise in the complexity of such
embedded systems due to: (i) the continuous demand for additional improvements in both
functional and non-functional requirements and (ii) the growing design automation with the
application of embedded systems in various domains (e.g., Automotive, Aerospace) [11,25].
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3:2 System-Level Timing Performance Estimation

Therefore, designing these systems is even more a critical task and so early-stage HW/SW
performance estimation for rapid design space exploration at higher abstraction levels becomes
crucial [10, 29].

In this context, numerous studies have explored the use of Machine Learning (ML)
techniques for performance estimation [2, 14, 15, 17, 28, 34]. The adoption of these techniques
has been driven by the challenges associated with creating an accurate analytical model of
the HW/SW micro-architecture, which is often error-prone or sometimes impossible due
to the lack of detailed documentation and necessary human expertise for model design [2].
Despite this scenario, the current state of the art lacks, to the best of our knowledge, of a
unified HW/SW model capable of facilitating rapid performance estimation across several
platforms at the system level.

For the above reasons, this study investigates how to overcome the limitations of the
existing methods, particularly those restricted to specific application domains or technologies,
through an approach that allows performance estimation of different HW/SW designs at
the system level of abstraction. The provided approach uses the LASSO model to estimate
the CC4CS performance metric presented and validated in [26]. CC4CS is a statement-level
metric that can be used to quantify and, therefore, compare the performance of different
processor technologies (i.e., Commercial Off-the-Shelf – COTS 8/32-bit embedded processors
and HW components synthesized on FPGAs). CC4CS is defined as the ratio between the
clock cycles and statements executed by a C function. In addition, this study presents a
preliminary evaluation of the accuracy of the LASSO model in estimating CC4CS values.
The evaluation of the accuracy of LASSO is carried out by using the SLIDE-x1 framework,
which executes a benchmark of well-known C functions across a set of 3 processors, namely
Intel 8051, Atmega328p, Leon3, and an FPGA, i.e., the Artix7. Consequently, SLIDE-x
outputs the CC4CS values that are used to train the LASSO model. Finally, the accuracy of
LASSO is evaluated by comparing its predictions against the measurement profiled using
SLIDE-x. The results are promising as they show a Mean Absolute Percentage Error (MAPE)
of less than 10% for the Intel 8051, Leon3, and Artix7, with a maximum speed-up of up
to 32x compared to the traditional HLS flow. In summary, our paper offers the following
contributions: (1) formal HW/SW processor characterization through statistical analysis;
(2) a detailed regression-based approach for evaluating HW/SW design performance; (3) a
preliminary assessment of the accuracy of our performance predictions. This work is useful
for system designers, helping them evaluate multiple HW/SW solutions and reduce design
space exploration overhead.

2 Related works

In this section, we review the current state of research focused on two key areas within
embedded systems design: predicting the timing performance of processors built to execute
a given Instruction Set Architecture (ISA) (i.e., General Purpose Processors – GPPs, called
SW processors), and of processors designed to directly execute application functions (i.e.,
Single Purpose Processors - SPPs, called HW processors) at the system level of abstraction.

To describe a SW processor and its behavior, several levels of abstraction can be considered.
Accordingly, several timing estimations can be performed [27]. In such a context, the authors
in [14] use a linear regression technique based on an application analysis performed at
the Register Transfer Level (RTL) internal representation of the GNU GCC compiler (i.e.,

1 SLIDE-x repository: https://github.com/hepsycode/SLIDE-x

https://github.com/hepsycode/SLIDE-x
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needs for micro-architectural knowledge of the system). Zhang et Al. [34] use a linear
regression model to estimate the performance of a given embedded software executed by
the RISC-V processor, using metrics related to (assembly) instruction level. The final
speed-up in comparison to the cycle-accurate simulation is up to 5x for RV32I and 4.2x for
RV32IM. Finally, Amalou et Al. [2] present several approaches: (1) Ithemal: a tool that
uses a Recurrent Neural Network (RNN) architecture with a hierarchical Long Short-Term
Memory (LSTM) approach to predict the throughput of a set of instructions considering
the opcodes and operands of instructions in a basic block (BB); (2) CATREEN: an RNN
predictive algorithm able to predict the steady-state execution time of BBs in a program;
(3) ORXESTRA: a tool that predicts the execution time of BBs within compiled binaries
using a ML technique named Transformers XL, a recurrent variant of Transformers.

In the HW domain, the use of High-Level Synthesis (HLS) tools has become of vital
importance [3,16]. HLS tools provide automatic transformation of C/C++/SystemC spe-
cifications into Hardware Description Languages (HDL) like Verilog or VHDL, significantly
boosting productivity in custom hardware development 23. However, for large-scale sys-
tems, the time needed to perform HLS can often become a bottleneck [27]. Additionally,
fast platform selection remains a significant challenge for developers due to the significant
performance variations among platforms for the same workload [8].

To address this issues, Makrani et al. [15] introduced the Cross-Platform Performance
Estimation (XPPE) tool based on ML. XPPE uses the resource usage reported by the Xilinx
HLS tool and predicts application acceleration on various platforms using a Neural Network
(NN) model, considering both application characteristics and FPGA platform parameters.
The authors of [28] propose HLSPredict, an ML-based cross-platform estimator. Unlike
XPPE, HLSPredict uses workloads as inputs to estimate performance on an FPGA by
executing them on a Commercial Off-The-Shelf (COTS) host CPU. Finally, [17] presents
Pyramid, a tool that uses ML to estimate optimal performance and resource usage of HLS
designs, with the Random Forest (RF) outperforming other ML models.

2.1 State-of-the-Art Limitations
Table 1 compares our work with state-of-the-art ML studies by examining prediction errors.
While existing studies focus on reducing errors through SW implementation or HW synthesis,
none offer a unified HW/SW model with low prediction times and errors. This gap highlights
the need for a unified model to compare HW and SW processors at the system level. Our
paper aims to address these limitations.

3 Preliminaries

Our work introduces a method for system-level execution time estimation of C functions
across different HW/SW processor technologies, using the CC4CS performance metric [26].
This metric, already used in literature for HW/SW Co-Design methodologies [21,24], sim-
plifies performance estimation and comparison by abstracting the execution of “generic C
statements”. Our approach is built on the model in [5], which defines a “generic C statement”
as a combination of fundamental units, called “atoms”. Atoms are the basic components
of statements, and the complexity of a statement depends on the number of atoms it con-

2 Panda/Bambu Project: https://panda.dei.polimi.it/
3 Vitis HLS: https://www.xilinx.com
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3:4 System-Level Timing Performance Estimation

Table 1 Comparison of literature Timing Estimation works. L/NL:= Linear/Non-Linear, LR:=
Linear Regression.

Work Target Approach Error (%)

[14] ARM926EJ-S (SW)
LEON3 (SW) LR 8.25% ≤ · · · ≤ 15.45%

8.03% ≤ · · · ≤ 13.60%

[34] RV32I (SW)
RV32IM (SW) LR 7.03%

5.27%

[2] ARM Cortex M4, M7,
A53, A72 (SW)

ITHEMAL 9.1% ≤ · · · ≤ 18.2%
CATREEN 8.9% ≤ · · · ≤ 13.4%

ORXESTRA 6.2% ≤ · · · ≤ 8.9%
[28] Artix7 (HW) L/NL ML 1.88% ≤ · · · ≤ 9.79%
[15] 20 Xilinx FPGA (HW) NN 5.1% ≤ · · · ≤ 9%
[17] 3 Xilinx FPGA (HW) L/NL ML 3.5% ≤ · · · ≤ 4.8%

Our
Work

8051 (SW - CISC),
ATmega (SW - RISC),
LEON3 (SW - RISC))
Bambu (HW - Artix7)

System-Level
Linear ML

(Unified HW/SW
Approach)

4.26% ≤ · · · ≤ 6.53%
6.99% ≤ · · · ≤ 22.04%
0.34% ≤ · · · ≤ 2.58%
6.54% ≤ · · · ≤ 11.84%

tains. Although the complexity of a C statement is not strictly predefined [26], factors like
programmer experience, coding style, and standards [13] usually keep it at a “low/medium
average complexity”. A “generic C statement” reflects the common way programmers write
statements. When a C function runs with input data set Dk, each atom and statement
executes a certain number of times, enabling the collection of profiling data, such as through
tools like Gcov.

3.1 Performance Model for SW Processors
This subsection introduces a general mathematical model representing the execution time of
a C function executed by a basic GPP (i.e., no advanced microarchitecture features, such as
pipeline), refining the model proposed in [5]. To perform timing performance estimation, a
model for the approximate (ideal) execution time T k is required. Therefore, in a basic GPP,
the ideal execution time of a generic C function is:

T
SW

k = N I
k · CCj · τj (1)

where CCj is the average number of clock cycles per statement, τj is the GPP processor’s
clock period, and N I

k represents the number of executions of all assembly instructions in the
generic C function when run with input data set Dk.

3.2 Performance model for HW Processors
HW implementation (i.e., SPP) of a generic C function can be done using HLS tools
like Bambu2, LegUp [6], or Vitis HLS3. As noted in [27], common HLS practices use an
intermediate representation to capture the control and data flows of the C code. Basic Blocks
(BBs) represent the code control flow at the statement level.

The visual representation of control and data flow using BBs is called Control and Data
Flow Graph (CDFG). Each operation is assigned to a Functional Unit (FU) capable of
executing it [1], and FUs are encapsulated within the BBs of the CDFG model, as shown in
Figure 1. Each datapath within the q-th BB contains LF U

j,q functional units of type FUj,q,v
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Figure 1 CDFG representation. F U∗,2 is one of the FU of basic block B2, while γ2 is the total
latency of basic block B2.

(e.g., sum, mul, sub). The total propagation time (latency) depends on Integrated Circuit (IC)
technologies and micro-architecture. LF U

j,q is obtained from code analysis on non-scheduled
DFGs, while delays from registers and multiplexers are ignored. The actual execution time
of a generic C function synthesized as an SPP is defined as:

T HW
k =

NBB
k∑

q=1

Nst
j,q,k∑

h=1

1
Nst

j,q,k

LF U
j,q∑

v=1
ωj,q,v · γj,q,v,k · τj

where ωj,q,v =
{

1 if FUj,q,v ∈ longest data path
0 otherwise

(2)

where T HW
k in Eq. 2 is the execution time of the q-th BB in a generic C function synthesized

as SPP pj with input data set Dk. NBB
k is the total number of executed BBs, Nst

j,q,k is
the number of executed statements in the q-th BB, and γj,q,v,k is the latency of the v-th
FU in the q-th BB. The clock period τj depends on IC technology, micro-architecture, and
scheduling policy. Assuming no multi-cycling, pipelining, or chaining, τj is given by the
following equation.

τj = max
∀{v,q}

t(FUj,q,v)

An average slack time (i.e., idle time of operations in a control step) can be used in multi-
cycling and pipelined implementations [27] to calculate τj . HLS tools allow setting a desired
clock period τj (e.g., Bambu2), and aim to minimize the difference between the desired τ j

and the actual τj. From Eq. 2, the simplified execution time model for a generic C function
synthesized as SPP can be approximated as follows:

T
HW

k,h =
∑Lst

h=1
T

HW

k,h = 1/Nst
k ·
∑NBB

k

q=1

∑LF U
j,q

v=1
ωj,q,v · γj,q,v · τ∗

j (3)

where T
HW

k,h is the average execution time of the h-th statement belonging to the q-th BB in
a generic C function synthesized as SPP pj with data Dk under the desired clock period τ∗

j .

PARMA-DITAM 2025



3:6 System-Level Timing Performance Estimation

3.3 Proposed Unified HW/SW Performance Model
The proposed unified HW/SW performance model integrates the timing behavior of a generic
C function executed on a GPP with that of the same function synthesized as an SPP, achieved
through HLS tools.

For the SW side, let N I
h,k,j represent the number of assembly instructions needed to

execute statement h of the C function on GPP pj with input data set Dk. This can be
determined using an assembly-level execution trace [20]. The average number of executed
assembly instructions N

I

k is:

N
I

k = 1/Nst
k ·

Lst∑
h=1

N I
h,k,j and N I

k =
Lst∑
h=1

N I
h,k,j = N

I

k · Nst
k

N I
k is the total number of executed assembly instructions, and Nst

k is the total number of
executed statements for a generic C function with Dk. Therefore, Eq. 1 can be redefined:

T
SW

k = N
I

k · Nst
k · CCj · τj = Nst

k ·
∑Lst

h=1 N I
h,k,j · CCj

Nst
k

· τj (4)

According to Eq. 4, the expressions for the approximate (ideal) T k can be redefined for basic
GPP processors as follows:

T
SW

k = Nst
k · t(ST k)SW (5)

t(ST k)SW = 1/Nst
k ·

Lst
s∑

h=1
N I

h,k,j · CCj · τj (6)

CCSW
j,k =

Lst∑
h=1

N I
h,k,j · CCj (7)

Eq. 7 shows the total clock cycles CCSW
j,k needed to execute a generic C function on GPP

pj with input Dk. This value is normalized in Eq.6 to the total number of C statements
executed with input Dk.

For the HW side, based on Eq. 3, the number of clock cycles CCHW
j,k needed to execute a

generic C function synthesized as an SPP can be evaluated using HLS tools2. These tools
generate HDL files (Verilog or VHDL) and provide the required clock cycles for executing C
functions with data Dk, as follows:

CCHW
j,k =

NBB
k∑

q=1

LF U
j,q∑

v=1
ωj,q,v · γj,q,v (8)

According to Eq. 5 and Eq. 8, a generic C function with input data Dk executed by a
GPP or by an SPP requires an execution time of:

T
HW
SW

k = Nst
k · t(ST k) HW

SW = Nst
k ·

CC
HW
SW

j,k

Nst
k

 · τj (9)

The fraction within parentheses in Eq. 9 represents the unified metric Clock Cycles
for C statements (CC4CS) [26]. The CC4CS metric, at the statement level of abstraction,
encompasses both atoms (SW) and blocks (HW). According to Eq. 9, the empirical evaluation
of the CC4CS metric across a set of HW/SW processor technologies requires a well-defined
methodology for automated and repeatable operations, as shown in Figure 2.
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CC4CS = 

Compilation/Synthesis 
for the target processor

Program Profiling

Number of Clock Cycles

Executed C Statements

ISS (SW)

HDL Simulator (HW)

Figure 2 CC4CS Evaluation Methodology.

For a specific processor pj , each C function is taken from the benchmark. Random input
data Ds,k is generated and uniformly distributed within a set range. Two parallel processes
then determine the clock cycles required by the target HW or SW processor to execute the
function (CC

HW
SW

j,k ) and the number of C statements executed (Nst
k ), which depends only

on the input data and function, not on the processor. To evaluate CC4CS across HW/SW
processors, the process involves: (a) selecting target processors pj ; (b) choosing benchmark
C functions; (c) generating input data sets Dk; (d) profiling C functions to find the number
of executed statements Nst

k (using tools like Gcov); (e) compiling/synthesizing C functions
for each processor; (f) performing cycle-accurate simulations to extract the real execution
time t(STk). This is done through ISS or HDL simulations. Each processor pj will then have
a Cumulative Distribution Function (CDF) of CC4CSj . Different compiler optimization
flags can be applied, though in this work, the -O0 flag is used as proof of concept, leaving
other flags for future exploration.

3.4 Performance Estimation Approach
This work addresses the challenge of determining an estimator, T̂s,k, for the actual (real)
execution time of a given C function zs implemented or synthesized through both HW/SW
processor technologies. The total actual (real) estimation time of a generic C function is
expressed as follows:

Tk =
Lst∑
h=1

Nst
h,k · t(STh,k) ≃ f(Nst

k , t̂(STk)) = T̂k (10)

where t̂(STk) is the estimated average time to execute a statement STk in a generic C
function. The error to be minimized over functions and input data sets is:

min
∀{Dk}

ϵ2
k = min

∀{Dk}
(Tk − T̂k)2 (11)

According to Eq. 10, our proposed solution uses the Least Absolute Shrinkage and
Selection Operator (LASSO) [7] to exploit an approach called the CC4CS LASSO Regression
Approach (CLRA), as follows:

T̂k = β0 + Nst
k · t̂(STh) · β̂ + λ · |β̂|

t̂(STh, zs) = t(STk) + δ (12)
t(STk) = g(CC4CSj , τj) AND δ = h(θ, CC4CSj , τj)

where θ depends on correction functions like, e.g., the affinity value defined in [4]. LASSO
regression performs an L1 regularization that adds a penalty equal to the absolute value of
the magnitude of the coefficients. LASSO solutions are quadratic programming problems
best solved with dedicated software tools (e.g., Matlab). According to Eq. 11 and Eq. 12,
we define the final estimation problem as follows:

PARMA-DITAM 2025



3:8 System-Level Timing Performance Estimation

min
β0,β̂

1/2d
∑d

k=1
[Tk − β0 − Nst

k · t̂(STh) · β̂]2 + λ · |β̂| (13)

where d is the number of observations (i.e., number of C function executions), Ts,k is the
execution time with input data set Dk, Nst

k is the number of executed C statements with
input data set Dk, λ is a non-negative regularization parameter. The parameters β0 and β̂

are scalar values.

4 Experimental Activities

This section outlines the experimental activities used to validate the proposed processor
characterization and performance estimation approach. Based on Eq. 9 and Figure 2, we
developed the SLIDE-x (System-Level Infrastructure for HW/SW Dataset E-xtraction)
framework to evaluate CC4CS across various processors. While implementation details
are beyond the scope of this paper, the source code is freely available on GitHub1. All
experiments were performed on a PC with an Intel® Xeon CPU E3-1225 v5 @ 3.30 GHz, 32
GB memory, and 128KB L1, 1 MB L2, and 8 MB L3 caches.

The benchmark includes 15 control- and data-dominated C functions from well-established
HW/SW benchmarks [27]. Each function was tested with various data types (namely: int8,
int16, int32, int64 from stdint library, single precision IEEE 754 floating point data types)
and randomly generated input files. A total of 6 ∗ 104 inputs were generated via uniform
random distribution, with additional tests using 6 ∗ 105 and 6 ∗ 106 inputs showing no
significant difference. The benchmark avoids function calls, recursion, external files, or library
routines, and input ranges were set to prevent overflows.

CC4CS was evaluated for specific HW/SW processor technologies. For GPPs, we con-
sidered: (1) Intel 8051 CISC microcontroller4; (2) Microchip ATmega328/P5, a low-power
CMOS 8-bit microcontroller; and (3) LEON36, a 32-bit SPARC V8-compatible soft pro-
cessor. The 8051 was simulated using Dalton ISS4, Atmega328/P with SimulAVR ISS7, and
LEON3 with Cobham Gaisler TSIM ISS6. For SPPs, FPGA synthesis for the Xilinx Artix7
XC7A35T-1CPG236C was done using Bambu HLS2.

4.1 Processor Characterization Results
In our work, we aimed to identify which classical probability distribution best fits the
empirical cumulative CC4CSj distributions obtained via the SLIDE-x framework (e.g.,
Normal Gaussian, Lognormal, Beta, Weibull). These distributions were evaluated using
Goodness-Of-Fit (GOF) metrics, including NLogN, BIC, AIC, and AICc. The analysis
revealed that the Lognormal distribution is best for GPPs, while the Normal distribution
suits SPPs, as shown in Figure 3.

We then outlined an approach to characterize GPPs and SPPs, focusing on estimating
distribution parameters (mean µ, standard deviation σ) for specific processors. To derive
the values for GPPs, it has been applied the Moment Matching Approximation (MMA)
method [33], which approximates the statistics of an empirical distribution function, with mean
µ̂ and square mean µ̂2, with a Lognormal random variable Z = ex such that X ∼ N(µx, σ2

x).

4 U. of California, Dalton Project: https://newit.gsu.by
5 M. Technology, ATMega328/P: https://www.microchip.com
6 Gaisler Website: https://www.gaisler.com/
7 SimulAVR: http://savannah.nongnu.org

https://newit.gsu.by/resources/CPUs/i8051/VHDL/
https://www.microchip.com/en-us/product/ATmega328P
https://www.gaisler.com/
http://savannah.nongnu.org/projects/simulavr


V. Muttillo, V. Stoico, G. Valente, M. Santic, L. Pomante, and D. Frigioni 3:9

{
µ̂ ≜ E[Z] = E[ex]
µ̂2 ≜ E[Z2] = E[e2x]

{
µ̂ = eµx+ 1

2 ·σ2
x

µ̂2 = e2·µx+2·σ2
x

µx = log µ̂2√
µ̂2

σ2
x = log µ̂2

µ̂2

(14)

The µ and σ parameters for SPPs were set to the arithmetic mean µ̂ and standard deviation
σ̂ of the empirical distribution, with the fitted distribution being the Normal distribution
N(µ̂, σ̂2). These parameters are shown in Figure 3. This approach allows for the performance
characterization of any processor technology using CC4CSj . Such characterizations can be
included in datasheets or other relevant materials and made available for further analysis.

(a) 8051 (Lognormal parameters: µ = 5.29784,
σ = 0.649823).

(b) ATmega (Lognormal parameters: µ =
3.13073, σ = 0.714748).

(c) LEON3 (Lognormal parameters: µ =
5.42068, σ = 1.21775).

(d) Bambu (Normal parameters: µ = 1.7326,
σ = 1.4489).

Figure 3 CC4CSj sampling distribution and fitted probability density function.

4.2 CLRA Performance Prediction Results
The predictive equations are given in Eq. 12, where τj represents the clock period of the
HW/SW processor. We use the cumulative distribution function from Section 4.1 to estimate
each function’s execution time as follows:

t(STs,k) = Q2 · τj AND δ(zs) = 0 for GPPs (15)
t(STs,k) = µ · τj AND δ(zs) = 0 for SPPs (16)

Q2 represents the median of the lognormal distribution for the 8051, Atmega328/P, and
LEON3 processors, while µ is the mean of the normal distribution for the Bambu SPP. To
build the CLRA model, the dataset was split into 80% for training (48 ∗ 103 inputs) and 20%
for testing (12 ∗ 103 inputs). We then used Matlab R2022b’s LASSO function with 10-fold
cross-validation and the elastic net method, with alpha = 1.0.

PARMA-DITAM 2025



3:10 System-Level Timing Performance Estimation

Defining the estimation error as ϵs,k = Ts,k − T̂s,k, we finally evaluate the errors for the
different processors pj using Percentage Error (PE) and Mean Absolute Percentage Error
(MAPE) defined as follows [7]:

PEj =
(

1
n ∗ d

n∑
i=1

d∑
k=1

ϵs,k

Ts,k

)
· 100, MAPEj =

(
1

n ∗ d

n∑
i=1

d∑
k=1

|ϵs,k|
Ts,k

)
· 100 (17)

In this work, we have used the R2 measure of goodness of fit metric and defined an additional
reliability metric as follows:

RELj =
2 ·
∑n

s=1

∑d

k=1

∑d

r=k+1 µs,k,r

n · d · (d − 1) , where µs,k,r =


0 if (T̂k > T̂r and Tk < Tr)

or if (T̂k < T̂r and Tk > Tr)
1 otherwise

Table 2 shows Pearson correlation and slope values between clock cycles and executed
C statements. Correlations for 8051 and ATmega328/P are lower (< 0.9), while LEON3
is close to 1. The slope indicates estimation uncertainty increases with input data bits for
Atmega and 8051 but remains stable for LEON3 and Artix-7. The table also shows that
8051 performs worst with float data types due to the lack of an FPU, while Bambu has the
lowest correlation (< 50%).

Table 2 CC4CS HW/SW Statistical Analysis results (p-value ≪ 0.001 for every value).

pj

Data Type Corr.1 Data Type Slope3

int8 int16 int32 float int8 int16 int32 float

LEON3 0.993 0.919 0.9280 0.973 341.086 335.759 343.400 335.705
ATmega 0.849 0.905 0.976 0.934 8.633 10.755 14.582 24.624

8051 0.994 0.987 0.928 0.747 85.829 106.111 129.371 247.771
Artix7 0.424 0.372 0.362 0.408 2.250 2.300 2.289 3.273

a) 1 Corr.: Pearson Correlation; 2 Slope: Regression Slope Parameter;

Table 3 shows the results from the CLRA approach. Generally, the table reports high
reliability and R2 values for most input types, with some exceptions due to underfitting
caused by data inconsistency or imbalance (e.g., Atmega int32 or Bambu int8). Despite lower
reliability and R2 compared to other SW processors, LEON3 has the lowest mean error in
PE (from −1.37% to 6.08%) and MAPE (from 0.34% to 2.58%) due to caches and pipelines
creating a stronger linear link between executed statements and clock cycles. Atmega shows
the largest errors and p-values, while 8051 has smaller errors due to its CISC architecture,
which has a more linear dependency between statements and clock cycles. Artix 7 shows
a smaller PE range (from −2.12% to 0.36%) but higher MAPE (from 6.54% to 11.84%)
and stronger R2 and reliability compared to SW processors. This is because synthesis in
HW depends on data size rather than input values. Despite Bambu’s low correlation and
higher errors for 8-bit types, the approach performs well for HW processors, with errors
consistently below 10% for data types larger than 8 bits. Based on the works listed in Table 1,
our approach consistently outperforms other works for SW processors like the 8051 and
LEON3. For HW processors, other techniques may give better results but at the cost of
longer execution times and greater resource demands [17]. Our approach, leveraging the
CC4CS metric, provides accurate estimations for both HW and SW technologies at the
system level. Errors are always below 10% for 8-bit CISC and 32-bit RISC processors with
caches and pipelines (e.g., 67% more accurate than [14] for LEON3 with -O0 flag). Our
approach also eliminates the need to compile/run target code for each architecture, using
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a linear LASSO model to represent processor behavior. Although computing the CC4CS
metric for new processors can take hours, once completed, estimation time for new data
is minimal. Solving the CLRA optimization takes around 1 minute, with execution time
estimation negligible.

Table 3 CLRA Performance results across various data type sizes and architectural targets.
H0 : MAPE ≥ 10%.

Target Intel MCS51 AVR Atmega328/P
Metrics int8 int16 int32 float AVG int8 int16 int32 float AVG
PE (%) -16.03 6.06 8.16 -6.10 -1.98 -2.97 -1.39 -14.04 -2.82 -5.30

MAPE (%) 5.13 6.53 6.88 4.26 5.70 9.10 12.15 22.04 6.99 12.57
p-value 0.0211 0.0397 0.0161 2.7E-04 2.7E-06 0.9041 0.9622 0.9889 0.8598 0.9994

Rel 0.925 0.924 0.931 0.925 0.926 0.929 0.930 0.935 0.937 0.933
R2 0.969 0.963 0.981 0.982 0.974 0.975 0.980 0.986 0.989 0.982

Target Sparc-V8 LEON3 Xilinx Artix7 (XC7A35T)
Metrics int8 int16 int32 float AVG int8 int16 int32 float AVG
PE (%) 6.08 0.18 3.90 -1.37 2.20 -2.12 -0.15 -0.19 0.36 -0.52

MAPE (%) 1.40 2.34 2.58 0.34 1.66 11.84 6.54 7.09 6.65 8.03
p-value 7.2E-07 1.6E-05 2.1E-05 8.9E-20 1.1E-22 0.727 8.6E-04 0.001 9.3E-04 0.0033

Rel 0.922 0.923 0.919 0.935 0.925 0.939 0.937 0.940 0.946 0.940
R2 0.892 0.906 0.930 0.960 0.922 0.985 0.999 0.999 0.999 0.996

While extracting the initial dataset is time-consuming, our approach greatly reduces
prediction times compared to Bambu, lowering prediction errors after data collection and
training. The overall speed-up reaches up to 32x (≈ 97%). In comparison, state of the
art report a 17% reduction using NNs [15] and 43.78% with RFs [28], both lower than the
LASSO model’s speed-up. Thus, our approach offers a significant speed-up over traditional
HLS methods. For SW processors, the key advantage is model portability and the ability to
evaluate performance across various inputs and code complexities.

5 Threats to validity

The internal validity may be influenced by how the CLRA model is trained, as MAPE values
in Table 3 are based on a dataset where 80% was used for training and 20% for testing. This
could reduce the observed error. In the future, we plan to introduce a control group for
training. For external validity, the main concern is generalizability. Results may vary with
different HW/SW environments or workloads outside the training set. To address this, we
validated the approach using well-known benchmarks, though future work may need to include
more diverse inputs and benchmarks. Construct validity may be affected by the characteristics
of the selected processors and FPGA (Intel 8051, Atmega328p, LEON3, Artix7). Factors
like cache, virtual memory, and external memory could influence performance, and our small
set of simple HW limits the generalization of our claims. Additionally, our assumption that
CC4CS values follow lognormal and normal distributions may not hold for more complex
platforms. Conclusion validity concerns the reliability of our findings. We used appropriate
statistical tests to avoid biases and errors, and we have made our repository available to
reproduce and validate our work1.
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6 Conclusion and Future Work

This work presents a system-level performance estimation approach using the CC4CS, a
unified HW/SW metric for early performance estimations. The paper formalizes this metric
and proposes an estimator based on statistical analysis. Experiments validate the approach,
showing effectiveness with an estimation error below 10% and an estimation time close to 0.
As shown in Table 1, our method enables system-level estimation without compiling and
running the code on each architecture. It uses statistical analysis and linear regression to
model different HW/SW processors. While calculating the CC4CS metric for a new processor
may take hours, the subsequent estimates for new C functions are immediate. Furthermore,
the estimator provides reliable predictions of execution times with limited error. Future work
will (1) increase the amount of data extracted through also the usage of advanced observability
mechanisms [32] and generate models for common compiler configurations; (2) integrate more
HLS tools and ISSs (e.g., RISC-V, ARM, Vitis HLS), targeting various FPGA families [23],
heterogeneous targets [31], and SW processors with advanced micro-architectural features
(e.g., pipelines); (3) enrich the reference benchmark by considering different sources [9] across
various application domains [12, 30]; (4) improving the exploitation of non-linear ML models
(e.g., SVM, Regression Trees, Random Forest, Neural Networks) [19]; (5) extend the approach
with additional statistics (e.g., Kolmogorov-Smirnov tests, ANOVA, t-tests) [18].
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