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Abstract
Cyber-physical systems (CPS) attempt to meet real-time and safety requirements by using hy-
pervisors that provide isolation via virtualisation and Real-Time Operating Systems that manage
the concurrency of system tasks. However, the operating system’s (OS) decisions may hinder the
efficiency of tasks because it needs more awareness of their specific intricacies. Hence, one critical
limitation to efficiently developing CPSs is the lack of tailored parallel programming models that
can harness the capabilities of advanced heterogeneous architectures while meeting the requirements
integral to CPSs, such as real-time behaviour and safety requirements. While conventional HPC
languages, like OpenMP and CUDA, cannot accommodate critical non-functional properties, safety
languages, like Rust and Ada, are limited in their capabilities to exploit complex systems efficiently.
On top of that, accessibility to the programming task is essential to making the system usable to
different domain experts. HiPART tackles these challenges by developing a comprehensive frame-
work holistically addressing efficiency, interoperability, reliability, and sustainability. The HiPART
framework, based on OpenMP, provides tailored support for (1) real-time behaviour and safety
requirements and (2) the efficient exploitation of advanced parallel and heterogeneous processor
architectures. This support is exposed to users through extensions to the OpenMP specification and
its implementation in the LLVM framework, including the compiler and the OpenMP runtime library.
With this framework, HiPART will contribute to realising more capable and reliable autonomous
systems across various domains, from autonomous mobility to space exploration.
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1 Introduction

The demands of our rapidly evolving society and the ever-expanding scope of industrial
applications urge a substantial leap forward in the autonomy and intelligence of complex
Cyber-Physical Systems (CPSs), like those used in autonomous mobility and space exploration.
The increasing need for High-Performance Computing (HPC) capabilities coupled with the
requirements regarding Real-Time (RT) behaviour exacerbates two critical challenges in CPS’
development: (1) the coordination of a potentially extensive set of tasks that often require
real-time execution and significant computational resources, and (2) the complexities entailed
by the parallel and heterogeneous platforms upon which CPS are commonly deployed.

Nowadays, CPSs attempt to meet real-time and safety requirements through hyper-
visors [13] that provide isolation via virtualisation and Real-Time Operating Systems
(RTOS) [11] that manage the concurrency of tasks that increasingly encompass dynamic
and resource-intensive computations (e.g., AI flows). However, current software development
environments fail to enable a comprehensive analysis of the entire system, impeding the
efficient utilisation of highly parallel and heterogeneous architectures.

There is an urgent need in CPS development for parallel programming models tailored
to harness the parallel capabilities of advanced processors efficiently while fulfilling the
non-functional requirements (NFR) that are integral to CPSs. Unfortunately, conventional
programming models, like OpenMP and CUDA, do not support essential NFRs, such as real-
time behaviour (e.g., task deadlines and periods, predictability, and event-based execution)
and safety requirements (e.g., functional correctness and resilience).

HiPART, depicted in Figure 1, originates in the limitations of current programming
systems to provide an unified computing framework equipped with mechanisms for devel-
oping, deploying, and executing complex CPSs on parallel and heterogeneous architectures.
HiPART considers a holistic approach that integrates primary requirements in CPS [10]:
(1) efficiency, optimising the amount of resources (e.g., energy and time) required to de-
liver the expected functionalities; (2) interoperability, ensuring seamless compatibility and
scalability, and support heterogeneity to compose various components into a cohesive system;
(3) reliability, operating as expected, even under challenging conditions, providing robustness,
availability, and predictability; and (4) sustainability, enabling adaptability, resilience, and
reconfigurability. The HiPART framework is based on OpenMP and its implementation in
the LLVM compilation framework, integrating extensions at the levels of the programming
model, the compiler and the runtime system to meet real-time constraints, event-based
execution, resilience, efficiency and adaptability.

2 State of the art (SoA)

HiPART builds upon three main pillars: parallel programming models for critical real-time
computation, mechanisms to boost the performance and adaptability of the evolving CPS,
and mechanisms to meet reliability and resilience expectations.
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Figure 1 HiPART’s overview and intended application.

Parallel programming models and real-time. A programming language is selected based
on factors like the system’s requirements, performance constraints, and the desired level
of control. Languages like Ada prioritise safety, with Ada Ravenscar for determinism and
SPARK for formal verification. Despite their merits, these languages, except for the young
Rust, fail to achieve popularity. Conversely, widely used languages like C/C++, with fine-
grained control for performance-critical applications, and Python, offering a high level of
abstraction that simplifies task development, are embraced for their versatility. Despite their
popularity and support for parallelism, these languages are either inaccessible to non-expert
programmers or cannot provide the required efficiency. Contrarily, models like OpenMP
and SYCL are well-adopted for their efficiency but exhibit shortcomings in supporting NFR.
Nonetheless, aspects such as real-time behaviour [28, 26, 5, 14] and correctness are already
considered [33, 23, 22] for extensions to the OpenMP tasking model (see Section 3).

Efficiency and adaptability in heterogeneous systems. Over the past decade, GPUs have
become popular in fields like scientific computing and machine learning, where parallel
tasks are frequent. Although parallel programming models like OpenMP offer high-level
interfaces with competitive productivity in heterogeneous platforms [7], they may fall short
in performance compared to hand-tuned applications using low-level models like CUDA [3].
Challenges arise in achieving performance portability, scalability, and adaptability. New
techniques, like highly dynamic task-based parallelism and asynchronous programming, aim
to streamline the development process. However, the overhead introduced by the parallel
orchestrator [9, 12, 34] and the lack of features to describe adaptability opportunities may
impede optimal execution in evolving environments. This is critical in rapidly evolving
heterogeneous architectures where specific devices might not be available or even present
failures, and the overall conditions of the system constantly vary.

PARMA-DITAM 2025
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Reliability and resiliency. The development of trustworthy CPSs is challenged by the
intricate interaction between the computational and physical realms. Schedulability [27]
and fault-tolerance are integral in CPSs, given that missing deadlines and processing errors
can potentially lead to catastrophic consequences. Techniques for space redundancy, like
N-modular redundancy [30] and task replication [6], and time redundancy, like application-
level checkpointing [31] may enhance fault-tolerance but also compromise the schedulability
of the system [1] if tasks miss their deadlines due to increased computing requirements.
Furthermore, these mechanisms need to be made aware of the structure of the applications
and either require error-prone processes for manually determining the checkpointed data [29]
or increase overheads and memory footprint due to poorly decided checkpoints.

Considering the limitations mentioned above, HiPART leverages proposals and know-
how from previous projects that have worked towards converging the HPC and the critical
real-time domains using OpenMP, like AMPERE [19], RESPECT [21], HP4S [32], and the
yet to finish RisingSTARS [24] and LIONESS [25] projects to revolutionize the landscape of
complex CPS. Through extensions to OpenMP and an open-access implementation based
on LLVM, HiPART will facilitate the design, deployment, and execution of real-time HPC
CPS on advanced parallel and heterogeneous architectures, holistically addressing efficiency,
interoperability, reliability, and sustainability.

3 The OpenMP programming model

HiPART builds on OpenMP, the de facto standard for programming shared-memory systems
within the HPC community. The model defines an application programming interface (API)
with compiler directives to annotate C/C++ and Fortran applications. Figure 2 shows
an OpenMP task-based example, with a code snippet in Figure 2a and an extended task
dependency graph (TDG) in Figure 2b describing the execution constraints among the
different tasks. This example illustrates the most relevant features of OpenMP utilized in
the HiPART project in the following paragraphs.

1 #pragma omp parallel num_threads(N)
2 #pragma omp single
3 #pragma omp task / / T0
4 {
5 p00();
6 #pragma omp task depend(out:x) / / T1
7 {
8 p10();
9 #pragma omp task / / T2

10 { p20(); }
11 p11();
12 }
13 p01();
14 #pragma omp task / / T3
15 { p30(); }
16 #pragma omp task depend(inout:x) / / T4
17 { p40(); }
18 } / / I m p l i c i t b a r r i e r

(a) Sample code. (b) Task dependency graph (TDG).

Figure 2 OpenMP tasking example.

OpenMP implements fork-join parallelism, i.e., a program starts sequentially until it
reaches a parallel construct (line 1) and creates a team of threads associated with the
parallel region where different mechanisms can distribute work. The thread model defines an
abstraction of user-level threads that exposes low-level architectural details for exploiting
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loop-intensive applications. The tasking model provides a high-level abstraction to define
independent regions of work, namely tasks. The accelerator model leverages the tasking
model to offload tasks to accelerators and the thread model to exploit parallelism within the
accelerator. Given its programmability and productivity [20] and the extensions proposed to
adapt it to real-time systems (see Section 2), this work builds on the tasking model.

An OpenMP task (lines 3, 6, 9, 14, and 16) is an independent work unit with a block of
executable code and its data environment. Tasks can be synchronized through memory fences,
like the taskwait and barrier constructs, including the implicit barriers like those at the
end of the single and the parallel regions (line 18), or the data-flow synchronizations defined
by the depend clause coupled with the in (line 6), out, and inout modifiers (line 16). Tasks
can also be nested, where each nesting level entails an isolated domain of synchronization.
Task-based program commonly use the single construct to allow only one thread in the
single region to execute the sequential code. Meanwhile, the rest of the threads wait in the
implicit barrier at the end of the region until there is work to do (i.e., tasks are instantiated).

When a thread encounters a task construct at run-time, it creates a task instance that
becomes ready when all its input dependencies are satisfied. In mainstream implementations,
e.g., GCC and LLVM, ready tasks are dynamically scheduled by the runtime system to the
available OpenMP threads. Furthermore, threads use work-stealing when they do not have
work enqueued but other threads in the team still have work in their queues.

4 The HiPART framework: Extended OpenMP for real-time HPC

Building on the OpenMP tasking model (introduced in Section 3) and considering the
limitations described in Section 2, the HiPART framework leverages and introduces extensions
to the OpenMP specification and its implementation in LLVM, including the Clang frontend
for processing new directives and clauses, the LLVM compiler for static analysis and code
generation, and the OpenMP runtime library for runtime support, to address efficiency,
interoperability, reliability, and sustainability. The reminder of this section introduces the
extensions leveraged from previous projects and planned to be refined during the project
(see Sections 4.1, 4.2, and 4.3) and the extensions already prototyped and preliminary tested
since the beginning of the project in September 2024 (see Sections 4.4 and 4.5).

4.1 Graph-based execution

The recently released OpenMP6.0 [2] incorporates the taskgraph directive. This functionality
implements reusable graphs of tasks to reduce the overhead of task orchestration (e.g.,
task creation) and minimise contention on shared resources (e.g., task ready queues). The
functioning of taskgraphs is illustrated in Figure 3, with a sample code showing a taskgraph
directive in Figure 3a and the execution flow depicted in Figure 3b. Overall, the taskgraph
construct encloses a region of code that can be captured as a TDG. Hence, it includes
task-generating constructs (e.g., task and taskloop) that are executed whenever the region
is reached and other statements (e.g., control-flow statements) that will only be executed
when the region is recorded. When a taskgraph region is encountered at runtime, if a graph
of tasks already exists for that region, it is played. Otherwise, or if the user explicitly asks for
regenerating the graph through the additional graph_reset clause (e.g., when the condition
within the clause in line 5 resolves to true), then the system generates the TDG of the region.
How the TDG is generated and executed is implementation-defined, so it can either be
generated statically, at compile-time, or dynamically, at run-time. In the latter case, it can
be created while executing the region or in a preprocessing step to later execute the graph.

PARMA-DITAM 2025
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1 #pragma omp parallel
2 #pragma omp single
3 {
4 for (int i = 0; i < N; ++i) {
5 #pragma omp taskgraph graph_reset(i%2==0)
6 {
7 #pragma omp task depend (out:a[i])
8 produce_element (a[i]);
9 #pragma omp task depend (in:a[i])

10 consume_element (a[i]);
11 }
12 }
13 }

(a) Sample code.

taskgraph

First 
execution?

Execute and 
record graph

Execute 
graph

Re-record?

Yes

No

No

Yes

(b) Workflow.

Figure 3 OpenMP taskgraph example.

The taskgraph framework has already been tested using several HPC benchmarks including
task and taskloop constructs. The results show speedups of up to 6x compared to the LLVM
native implementation of tasking [34]. While upstream LLVM alreay implements a record and
replay mechanism relying on runtime routines, a prototype implementation of the taskgraph
construct including static (compile-time) and dynamic (run-time) recording capabilities is
publicly available in https://gitlab.bsc.es/ppc-bsc/software/llvm-taskgraph.

Graph-based computation has recently become popular as it allows reducing the overheads
of task orchestration in CPUs [34] and enhancing the performance of CPU-GPU heterogeneous
systems using CUDA graphs (for NVIDIA devices) or HIP graphs (for AMD devices).
Leveraging the similarities between taskgraphs and CUDA and HIP graphs, an extension
of the OpenMP taskgraph framework has been proposed to deploy OpenMP taskgraphs in
GPUs using the GPU native graphs [35], i.e., CUDA or HIP graphs. The results show similar
or better performance compared to original target tasks exploiting the target threading
model due to the reduction of kernel offloads and an optimised orchestration of the tasks.
Furthermore, the framework also shows better scalability with the number of processors.

4.2 Adaptability through function variants
Adaptability and performance portability in complex and changing heterogeneous systems can-
not only be accomplished through compiler optimisations or runtime mechanisms. OpenMP
includes features to define function specialisations. In the standard, different user functions
can be linked together through the declare variant directive, which establishes different
functions to implement a unique functionality and the condition that the compiler must
check to statically decide which implementation is used in each function call. Although this
presents a step forward, adaptability can only be obtained at compilation time. Therefore,
runtime changes (e.g., a permanent failure in a device) cannot be considered.

HiPART relies on an extended interpretation of OpenMP variants that gathers metrics
at run-time to dynamically decide among the set of function specialisations provided by
the user [15]. This procedure allows for considering the system’s dynamic conditions, like
workload and energy consumption. To that end, the compiler follows the flow shown in
Figure 4, producing two distinct binaries: (1) an instrumented version equipped with runtime
calls that collect metrics about resource usage and (2) a version that interprets the metrics
gathered by the instrumented version to guide variant selection. The second binary is
generated only after the instrumented binary runs and collects the metrics.

The metrics captured during warm-up include average and peak CPU usage (%), average
and peak GPU usage (%), thread stack memory consumption (%), heap memory consump-
tion (%), GPU memory consumption (%), and execution time (ms). During the execution of

https://gitlab.bsc.es/ppc-bsc/software/llvm-taskgraph
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Figure 4 Workflow of the extended LLVM to support dynamically selected function variants.

the final binary, users can provide a list of metrics to guide variant selection, represented as a
set of comma separated triplets of the form of metric:threshold:weight, where metric is
cpu, gpu, mem, stack or heap, threashold indicates a percentage that, when reached, forces
the runtime to select the variant that stresses less the corresponding metric, and weight is
an optional parameter that indicates the weight of the metric.

The evaluation of this proposal [15] shows the capability of the system to tune the
optimal number of threads for each parallel region, prevent errors or slowdowns in systems
with limited memory, and effectively swap between CPU and GPU implementations when
one resource is overloaded. However, the method might introduce unbearable overheads in
systems with rapid fluctuations, and decisions might soon be outdated. HiPART plans to
mitigate these effects with mechanisms like splitting functions. Furthermore, other planned
extensions include more refined predictive models that can foresee system state changes and
new metrics like power consumption.

4.3 Predictable execution via task-to-thread mapping heuristics

The dynamic nature of the OpenMP task scheduler and the use of work-stealing to balanc the
workload of all threads introduce uncertainty in the execution and, although good-enough in
general terms, entail certain overheads. Recent works have proposed the use of temporal
conditions to derive a more efficient task-to-thread mapping able to reduce system response
time and running time and providing better predictability [26]. The scheduling mechanism
proposed is depicted in Figure 5. It is split into two phases: (1) allocation, assigning each
task to a thread, and (2) dispatching, selecting a task from the ready task queue. A series of
heuristics are proposed for each of these phases, leveraging information about the number of
tasks in a thread’s ready queue and their execution time, among other aspects.

An evaluation of the proposed heuristics compares to common implementations in
OpenMP runtime, including breadth-first scheduler (BFS) and work-first scheduler (WFS),
regarding response time and running time. The results show that the response time produced
by some heuristics is lower than the default LLVM scheduler in most cases, and the variability
in the results given by the heuristics is lower than that of the default scheduler.

HiPART plans to extend this work by providing a schedulability analysis of state-of-the-art
mapping strategies and the suggested heuristics in relevant applications. Furthermore, the
project considers extending these mechanisms to heterogeneous systems with multiple GPUs.

PARMA-DITAM 2025
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Figure 5 Task-to-thread mapping workflow.

4.4 Fault tolerance

Several CPSs are sensible to transient faults due to the harm these may cause to the safety
of people, the environment and the system itself. Unfortunately, models like OpenMP lack
the mechanisms to provide fail-operational behaviour. Accordingly, HiPART is developing
fault-tolerance techniques to enable software-based task-level replication and user-directed
fault detection to mitigate the impact of transient faults.

The proposed fault-tolerance mechanism is based on an extension to OpenMP to define
task replication. Figure 6 shows an example of such an extension. The sample code in
Figure 6a illustrates the syntax proposed (lines 9 to 11) [17], where:

the clause replicated specifies the number of replicas to create through an integer
expression > 1 (3 in the example) that indicates the total number of tasks to be generated
(including the original instance and the replicated instances), and the replication strategy
through the spatial, temporal, or spatial_temporal optional keywords. Spatial rep-
lication forces each task to be executed on a different resource, such as a processor core
or an architecture, allowing them to run in parallel; temporal replication ensures that
tasks execute one after the other, enforcing sequential execution; and spatial_temporal
replication combines both approaches, requiring tasks to run on different resources while
also executing sequentially. If no replication type is specified, the default behaviour allows
the tasks to run in parallel without restrictions, thus favouring performance.
the clause replica_private defines variables that will be replicated for each task replica,
i.e., each task will have its own copy of the variable. By making data private to replicas,
this clause prevents data races and ensures each replica operates independently without
causing inconsistencies in shared data.
the clause replica_firstprivate specifies a list of variables that must be firstprivate to
each replica (i.e., each task will allocate a new space and initialize its value to the value
of the original variable at the time the task is instantiated). The compiler performs a
shallow copy unless a shaping expression (e.g., [size]a, an array a of size elements) is
defined, in which case it performs a deep copy considering the corresponding size. This
clause ensures that the replicas start with a consistent state, improving fault tolerance
while maintaining independent execution for each replica.
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1 void foo() {
2 int v = 2;
3 int size = sizeof(int)*10;
4 int *a = (int *) malloc (size);
5 #pragma omp parallel
6 #pragma omp single
7 {
8 #pragma omp task \
9 replicated(3, spatial) \

10 replica_private([size]a) \
11 replica_firstprivate(v)
12 {
13 for (int i=0; i<10; i++)
14 a[i] = v;
15 }
16 }
17 }

(a) Sample code. (b) Execution flow.

Figure 6 OpenMP task replication proposal example.

The execution flow in Figure 6b illustrates the behaviour of the replication mechanism.
The thread that encounters the task replicated (line 8) creates a replication set with three
tasks: the original and two replicas. Since the spatial constraint is specified, the OpenMP
runtime system prevents threads from executing multiple tasks within the same replication
set. Threads can further be bound to cores through the OMP_PROC_BIND environment variable
for the whole execution or the proc_bind clause, attached to a parallel construct.

Figure 7 shows preliminary results of the impact of using task replication in the Barcelona
OpenMP Task Suite (BOTS) [8], a benchmark suite with eleven benchmarks exposing
different memory profiles and CPU consumption when randomly inserting a single bitflip
per execution in either memory or registers. The result of a bitflip can be a benign fault,
when the application completes with the correct result without detecting any error, an output
error when the application finishes normally but the output is incorrect, a crash, when the
application terminates unexpectedly due to an internal error, or timeout, when the application
hangs and does not complete. The results compare a bitflip in the sequential vanilla version,
namely vanilla, with a bitflip in the replicated version, namely GuOMP. Considering that
bitflips typically occur in the stack in applications with minimal memory usage, examples like
Floorplan, Alignment, Fib, Nqueens, and Knapsack exhibit high tolerance to faults because
the majority of the stack is not actively used. Oppositely, benchmarks like UTS, which uses
about 1.5MB of stack memory, are more prone to crashes. On the other hand, applications
with higher use of dynamic memory see more significant effects from bitflips. Still, this
behaviour depends on the specific algorithms and their memory access patterns. For example,
a single bitflip in the Sort integer array disrupts the output, as sorting algorithms depend on
precise memory operations.

HiPART plans to extend the proposal for fault-tolerance in OpenMP with a user-defined
consensus and voting mechanism that will provide better accuracy when comparing results
from different replicas. Furthermore, replicas will be extended to exploit function variants
to boost resilience in heterogeneous systems. Finally, to provide fault-recovery capabilities,
HiPART plans to enable communication between the runtime system and the application
through runtime routines and OpenMP data structures and offer a checkpointing mechanism
to store selected memory objects. These methods combined will enable users to handle errors
in the most adequate way for each application.

PARMA-DITAM 2025
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Figure 7 Comparison of the consequences of memory bitflips in BOTS with sequential vanilla
and task-replicated versions.

1 void tdg_computation() {
2 #pragma omp target nowait \
3 depend(out:dep1) attach(event1)
4 {...} / / T1
5 #pragma omp target nowait \
6 depend(in:dep1) depend(out:dep2)
7 {...} / / T2
8 #pragma omp target nowait \
9 depend(out:dep3) attach(event2)

10 {...} / / T3
11 #pragma omp target nowait \
12 depend(in:dep2,dep3)
13 {...} / / T4
14 }
15 void notify() {
16 #pragma fulfill_event gpu_notify(event1)
17 #pragma fulfill_event gpu_notify(event2)
18 }

(a) Sample code. (b) TDG.

Figure 8 OpenMP event-based synchronization proposal example.

4.5 Real-time event-based execution
The throughput-centric design of GPUs poses challenges when integrating them into time-
sensitive CPS. Modern systems recently evolved to minimize overheads and interference along
the critical path through advanced mechanisms, such as CUDA graphs in NVIDIA devices
and HIP graphs in AMD devices. However, GPU vendors provide ecosystems specific to their
products, preventing code portability. HiPART has integrated event-based synchronizations
into OpenMP and extended the support for OpenMP taskgraph to CUDA/HIP graphs to
notably reduce interference and overheads in time-sensitive applications.

Figure 8 shows an example of the proposal for event-based synchronization in OpenMP.
Figure 8a depicts an example of generating four interdependent target tasks, two synchronized
with events. The corresponding TDG is shown in Figure 8b. Upon the encountering of
an attach clause, the implementation creates a new allow-launch event and connects it to
the beginning of the execution of the associated task region. The generated task can only
start executing its associated structured block when the allow-launch event is fulfilled. This
will happen when another thread encounters the fulfill_event directive with either the
cpu_notify or gpu_notify clauses taking the same event as the argument.

Preliminary experiments measure the response time and time variability of the Adaptive
Optics (AO) real-time controller illustrated in Figure 9. The application combines two
functionalities: (1) a pixel processing method that takes raw data from wavefront sensor
cameras and processes the pixels with a series of arithmetic kernels, and (2) a series of
matrix-vector multiplications that produce a command as a vector sent to the deformable
mirror actuators of the physical component, typically a telescope.
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Figure 9 AO pipeline.

Figure 10 shows the response time of the AO application using CUDA (in Figure 10a)
and HIP (in Figure 10b). In NVIDIA devices, our implementation (OpenMP CUDA Graph
& GPU sync) achieves 16µs max. jitter, with 538µs mean execution time (MET) and 554µs

maximum measured execution time (MMET). Although the response time is slightly higher
in our OpenMP CUDA version than the native solution (Regular CUDA Graph & GPU sync),
the max jitter is identical, showing comparable predictability. In AMD devices, however, the
OpenMP HIP version (OpenMP HIP Graph & GPU sync) achieves a slightly higher max.
jitter of 21µs (443µs MET and 464µs MMET). As expected, the third method using the
CPU synchronization strategy showed the largest execution times and a max jitter of 28µs

(562µs MET and 590µs MMET) with CUDA and 33µs (478µs MET and 511µs MMET) with
HIP. All in all, our proposal delivers MET and jitter comparable to the native CUDA/HIP
implementations while maintaining a simple, directive-based programming style.

5 Project plan and next steps

HiPART is organized into three technical Work Packages: (1) WP1 is dedicated to developing
and validating real-time high-performance systems through relevant use cases, (2) WP2
is dedicated to developing extensions for high-performance, including performance and
adaptability, and (3) WP3 is dedicated to extensions for critical real-time systems, including
resilience and predictability. Additionally, there is a dedicated WP for impact maximization
and project management, ensuring continuous dissemination of key findings1 and the smooth
development of HiPART. All WPs span the 4 phases of the project, including (1) phase 1
to define the use cases and the initial design, (2) phase 2 for the development and isolated
testing of software components, ensuring their individual functionality and compatibility
with the targeted platforms, (3) phase 3 for the integration and optimization of the parallel
framework, and (4) phase 4 for the validation and demonstration.

HiPART started in September 2024 and will expand three years of work. It is now in its
initial phase, where use cases and system requirements are being defined. This paper presents
the project and its intended solution for real-time high-performance systems. The project
is developing a unique framework for efficiently deploying advanced CPS in parallel and
heterogeneous processor architectures, holistically addressing real-time and HPC requirements.
The project leverages and extends OpenMP to accommodate requirements from the critical

1 Follow HiPART in the LinkedIn profile: https://www.linkedin.com/company/105114452.
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(a) CUDA on NVIDIA.

(b) HIP on AMD.

Figure 10 Histogram of response time.
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Figure 11 Timeplan of the HiPART project.

real-time domain, including event-based execution, time predictability and resilience, and the
HPC domain, including performance portability and adaptability. The project has preliminary
results for task-based replication, showing enhancements in detecting and bypassing faults,
and event-based execution exploiting heterogeneous OpenMP taskgraphs, showing competitive
performance, equivalent jitter and much better programmability than native solutions. Future
work includes further extensions for fault-recovery based on consensus-and-voting, N-version
programming and checkpointing and scheduling mechanisms to enhance the predictability of
heterogeneous systems, among others.
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