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Abstract
Distributed ledgers nowadays manage substantial monetary funds in the form of cryptocurrencies
such as Bitcoin, Ethereum, and Cardano. For such ledgers to be safe, operations that add new
entries must be cryptographically sound – but it is less clear how to reason effectively about such
ever-growing linear data structures. This paper demonstrates how distributed ledgers may be viewed
as computer programs, that, when executed, transfer funds between various parties. As a result,
familiar program logics, such as Hoare logic, are applied in a novel setting. Borrowing ideas from
concurrent separation logic, this enables modular reasoning principles over arbitrary fragments of
any ledger. All of our results have been mechanised in the Agda proof assistant.
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1 Introduction

Ledger-based cryptocurrencies manage large amounts of money and record monetary transfers.
On the Cardano blockchain alone, transactions valuing over 300M USD are recorded every
day. The underlying blockchain that records transactions, gigabytes in size, is an ever growing
linear data structure. How could we ever hope to reason about such colossal and monolithic
data structures?

To illustrate this point, consider the following simplified example, giving two simple lists
of transactions, also known as ledgers:

Alice pays Bob 5; Dana pays Bob 5;
Carroll pays Dana 3; Alice pays Dana 3;
Dana pays Alice 2; Carroll pays Dana 3;

Are these transactions “the same”? Although a simple calculation shows that they have
the same net effect, one of the two might fail: for instance, if Dana has less than five funds
available these two behave differently. Now suppose that these transactions are interleaved
with an arbitrary number of other transactions, some even involving the same accounts. Can
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10:2 Program Logics for Ledgers

we still say anything about how they might behave? For many financial applications, such
as fraud detection or ledger compression, it is crucial to study fragments of the ledger in
isolation to ensure analyses remain computationally tractable.

This paper explores the application of program language semantics to the domain of
financial ledgers, such as those underlying cryptocurrencies. Starting from simple ledger
based accounts, we extend our study to cover the Unspent Transaction Outputs model (UTxO),
underlying modern cryptocurrencies including Bitcoin [27] and Cardano [9]. Crucially, we
explore how to employ separation logic to enable effective and modular reasoning about
ledger-based financial transactions. Just as imperative programs mutate computer memory,
financial transactions mutate bank accounts. Hoare logic and separation logic enable us
to rigorously prove the correctness of computer programs. Surprisingly – as this paper
demonstrates – these logics can be adapted to reason about the financial transactions stored
on a ledger with the same degree of confidence. To this end, this paper makes the following
novel contributions:

First and foremost, we demonstrate how the financial transactions stored in a ledger form
a simple programming language. We present denotational and axiomatic semantics of
account-based ledgers, together with a separation logic that enables modular reasoning
over ledger fragments (Section 2). The separation logic that arises in this context, however,
turns out to be subtly different, yet strictly more general than the typical logics used to
reason about computer programs.
We show how these same semantics can be given for blockchain ledgers (Section 3), in
particular ones based on the UTxO model. Separation logic, however, poses more of a
challenge as the hash-based nature of UTxO adds new side conditions to the frame rule
that were not necessary for account-based ledgers.
To address this problem, we propose a novel variant of UTxO, dubbed Abstract UTxO. In
contrast to regular UTxO, our Abstract UTxO model supports compositional reasoning
using separation logic without further side conditions (Section 4). The resulting logic
enables us to reason locally and safely about a limited number of transactions, sprinkled
arbitrarily throughout a larger ledger.

It is important to emphasise that we do not study individual smart contracts or other such
programs that might manipulate the ledger; the focus of this paper is the meaning of the
ledger as a whole.

All the definitions and theorems presented in this paper have been mechanised in Agda [22]:

https://omelkonian.github.io/hoare-ledgers/

We use mathematical notation rather than “literate programming” style, but still provide
hyperlinks to the actual mechanisation indicated by the Agda logo ( ). The proofs themselves
are typically quite simple – the hard work is in finding the definitions that make them so.

While the semantics and logics may be unsurprising to program language experts, we feel
their application in a novel setting is ample reason for excitement. Just as previous work has
shown how complicated financial contracts are built from simple functional combinators [30],
this work aims to discover mathematical structure where none is apparent.

2 Account-based ledgers [ ValueSepExact.Main]

To start things off, we give a formal definition of the syntax and semantics of a simple
account-based ledger. This illustrates one of the key ideas underlying our work: applying
programming language theory in a novel domain. For the sake of simplicity, we assume a

https://omelkonian.github.io/hoare-ledgers/
https://omelkonian.github.io/hoare-ledgers/ValueSepExact.Main
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fixed set of participants P . Each participant may spend or receive funds. At any given point
in time, we model the state of all the participants’ accounts as a (finite) map, mapping each
participant to their current balance:

S := P 7→ N

Note that this model does now allow negative account balances; one could generalise this to
any fixed bound other than zero to model overdraft.

We will treat a finite map σ as a function from keys to values for simplicity, retrieving a
key k with σ(k) and constructing a new map with anonymous λ-functions. As we saw in
the introduction, a ledger records the history of transfers between accounts. We view such a
ledger as a program, describing updates to the state of the accounts modelled by S. The
abstract syntax of our ledger is defined as:

T := P n−→ P
L := ϵ | T ; L

Each transaction T describes the transfer of funds n from one person to another; the ledger
consists of a list of such transactions, with the most recent transaction last. Now that we
have the syntax in place, we present the semantics of L in three different styles.

2.1 Denotational semantics [ ValueSepExact.Ledger]
We give the denotational semantics of a ledger by mapping L to a function of type S →
Maybe S, executing all the transactions in the ledger starting from a given state with given
account balances. The optional return type is used to model the case where a transaction
fails due to insufficient funds: the result is just a new state after successful execution or
nothing to signal an error.

This semantics for ledgers is straightforward to define by iterating its transactions:

J_K : L → S → Maybe S

JϵK = just
Jt; lK = d(t) >=> JlK

(f >=> g)(s) =
{

g(s′) if f(s) = just s′

nothing if f(s) = nothing

d : T → S → Maybe S

d(p1
n−→ p2)(σ) =


just λp.


σ(p) − n if p = p1 ̸= p2

σ(p) + n if p = p2 ̸= p1

σ(p) otherwise
if σ(p1) ≥ n

nothing otherwise

The Kleisli arrow (>=>) composes partial functions by collapsing to nothing when the first
function fails. A transaction’s semantics (d) checks the validity of each transfer and fails if
not enough funds are available, otherwise updates the state accordingly. We will write “t is
valid in σ” as a uniform way to express the validity of a transaction t with respect to a given
state σ, which will become more intricate when we consider blockchain ledgers in the next
section.

We formulate and prove a simple compositionality result, stating that the appending of
ledgers (++) is mapped to the composition of their denotations.

FMBC 2025
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10:4 Program Logics for Ledgers

▶ Theorem 1. For any ledgers l1 and l2, we have Jl1 ++ l2K = Jl1K >=> Jl2K.

This result, however, gives us only limited modularity – we still need to break a ledger
into sequential pieces that we consider individually. To handle large ledgers, however, we
would like to reason about arbitrary ledger fragments; in particular, we may be interested in
an arbitrary subset of the transactions that are related to a specific smart contract in the
blockchain setting.

2.2 Axiomatic semantics [ ValueSepExact.HoareLogic]
We also define an axiomatic semantics for L. To do so, we define inference rules for Hoare
triples of the form {P} l {Q}, where P and Q are predicates on our state space S.

stop
{P } ϵ {P }

{P } l {Q}
step

{↑ P ◦ d(t)} t; l {Q}

The base rule dictates that executing an empty ledger leaves the state unchanged, while
the inductive step rule provides the weakest pre-condition by viewing the transaction as a
predicate transformer [14].

Also note the necessary operation ↑, lifting a predicate over S to a predicate over Maybe S.
There are two canonical ways to achieve this lifting: the weak lifting that collapses to true
when a transaction fails, and the strong lifting that collapses to false upon failure. Since we
wish to observe failing transactions, we opt for the strong version, which we prove sound
with respect to the denotational semantics:

▶ Theorem 2. {P} l {Q} holds iff (P (σ) ∧ JlK(σ) = just τ) implies Q(τ) for all σ and τ .

We add the typical rule for weakening/strengthening pre-/post-conditions:

P ′ ⇒ P {P} l {Q} Q ⇒ Q′
consq

{P ′} l {Q′}

The soundness theorem also allows us to derive a sequencing rule as a corollary of the
equivalent statement about ledgers in the denotational semantics:

{P} l1 {Q} {Q} l2 {R}
app

{P} l1 ++ l2 {R}

▶ Remark 3. For the rest of the paper, whenever we axiomatize inference rules (e.g. stop,
step, consq) we imply that they are at the same time proven sound with respect to the
denotational semantics. Moreover, any subsequent derived inference rules (e.g. app above)
are implicitly proven using either the axioms or directly appealing to their denotational
counterparts.

Example specification

Equipped with a program logic for transactions, we now formulate properties using Hoare
triples and prove them in a sequential fashion akin to equational reasoning:

{λσ. σ(A) = 2} A
1−→ B {λσ. σ(A) = 1} A

1−→ C {λσ. σ(A) = 0}

The above reads as follows: we start from a state where A holds 2 units of currency; then
execute a transfer of one of those from A to B resulting in a state where only a single unit
remains in A’s account; and we subsequently transfer the other unit to C reaching a final
state where A holds no funds.

https://omelkonian.github.io/hoare-ledgers/ValueSepExact.HoareLogic
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However, to prove such statements amounts to providing evidence for each Hoare triple
at each step, which involves predicates over the whole state, although each transaction can
only refer to two distinct participants. In the case of a more complicated state space than
just a single participant, this approach is non-compositional, since you would need to talk
about the whole state you care about in one go. This is precisely the reason we now turn
our attention to separation logic [32].

2.3 Separation logic [ ValueSepExact.SL]
Both of our denotational and axiomatic semantics rely on having the complete ledger at our
disposal – we cannot yet use these semantics to reason about arbitrary subsets of transactions,
independent of the others. To this end, we define a separating conjunction combining two
predicates, P and Q, on our state space S. Before we do so, however, we need to consider
how to combine states S. In most program language semantics, this is done by splitting
the memory state (i.e. the heap mapping variable addresses to their value) into two disjoint
parts. The separating conjunction, P ∗ Q, is then defined as follows:

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊎ σ2

Here, σ is the resulting heap of combining two smaller heaps σ1 and σ2 using the disjoint
union operation (⊎).

When considering financial ledgers, however, we can do better. As each transaction
preserves the overall funds, we do not require the maps to be disjoint; instead, we divide the
funds from both maps into two distinct parts! To do so, we begin by defining the following
operation of combining ledger states by pointwise addition of their funds:

(σ1 ⊕ σ2)(p) := σ1(p) + σ2(p)

Using this operation, we now define the separating conjunction of predicates as follows:

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊕ σ2

The frame rule, used to introduce the separating conjunction, now becomes:

{P} l {Q}
frame

{P ∗ R} l {Q ∗ R}
Crucially, this version of the frame rule does not have the usual side conditions required
to reason about imperative languages, namely, that the set of variables modified by l must
be disjoint from the free variables mentioned by R. Intuitively, this rule is valid since
transactions preserve the total amount of funds in circulation: we split off some of these
funds (leaving funds that satisfy R left over), move these funds in accordance with l, and
then recombine the result with the funds satisfying R.

To complete this semantics, however, we need to add a few basic rules that are currently
missing. The rule for handling a single transaction is very simple indeed:

send
{p1 7→ n} p1

n−→ p2 {p2 7→ n}
The precondition, p1 7→ n, states that participant p1 has a total of n funds (and all other
participants have none). After executing this transaction, p2 has received these n funds (and
all other participants, including p1, have none). By itself, this rule does not seem useful –
but in combination with the frame rule above, it can be used to execute a single transaction
in any larger state – leaving all other funds untouched. The final two rules describe the
behaviour of an entire ledger:

FMBC 2025
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empty
{emp} ϵ {emp}

{P } l1 {Q} {Q} l2 {R}
app

{P } l1 ++ l2 {R}

The first rule states that the empty ledger leaves the empty state unchanged; the second
describes how transactions from two non-empty ledgers are run sequentially.

2.4 Concurrent separation logic [ ValueSepExact.CSL]
Furthermore, we can define a (non-deterministic) interleaving operation on ledgers, l1 || l2.
One of the more promising observations we can make is that the familiar rule for concurrent
separation logic also holds for the interleaving of two ledgers:

{ P1 } l1 { Q1 } { P2 } l2 { Q2 }
par

{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }

This provides a modular reasoning principle for ledgers: it allows us to focus on an arbitrary
subset of the ledger’s transactions and reason about this subset in isolation. Whenever
we interleave its transactions with the remainder of the ledger, any properties we have
established still hold of the composite ledger. We refer the reader to Appendix A for example
derivations.

3 UTxO [ UTxOErr.Main]

In the coming sections, we will explore how to define similar semantics for UTxO-based
blockchains. To do so, requires abandoning our previous assumption that there is a fixed
set of participants, each with their own account. The UTxO model is quite different: rather
than develop a model based on accounts and transactions between them, the UTxO model
focuses on “unspent funds”. Such unspent funds are locked by a validator script. These funds
can be spent by anyone, provided they can provide the redeemer data, that is, data mapped
to true by the associated validator script:

Output := {validator : DATA → B, value : N}

Typically, such a validator script might use public-private key pairs to allow access only
to the person holding the private key. This model is more general than the account-based
model we have studied so far: funds might be shared by different parties that each must
provide their private key to unlock the corresponding funds. The overall state of the ledger
is a collection of unspent transaction outputs (UTxOs) – we will make this more precise
shortly, but first need to describe how transactions work in the UTxO model.

If all unspent funds are locked by a validator script – how can we possibly move funds?
In the UTxO model, each transaction consumes unspent funds from inputs, producing new
unspent outputs:

T := {inputs : [Input], outputs : [Output]}

Each input needs to refer to the unspent output being consumed and provide the redeemer
data required to unlock the corresponding funds:

Ref := {tx : HASH , index : N}
Input := {ref : Ref , redeemer : DATA}

https://omelkonian.github.io/hoare-ledgers/ValueSepExact.CSL
https://omelkonian.github.io/hoare-ledgers/UTxOErr.Main
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There is a subtle point to consider here: how should an input refer to an unspent transaction
output? This is usually done by referring to the transaction’s hash. As each transaction
produces a list of unspent transaction outputs, we also require an index into this list to refer
to a specific transaction output. We write t#

k to refer to the k-th output of the transaction t.
Finally, the ledger itself consists of a list of transactions – as we have seen before.

L := ϵ | T ; L

For the sake of clarity, we have elided some additional fields and validator arguments that
do not play a significant role in our semantics:

adding a single transaction field forge : N to create new currency immediately gets us to
Bitcoin’s UTxO model [3];

T := {. . . , forge : N}

an additional field datum : DATA in outputs and extending validators with additional
context further brings us to the Extended UTxO model employed by Cardano [9] that
supports fully expressive smart contracts;

Output := {validator : Context → DATA → DATA → B, value : N, datum : DATA}

generalising output values from N to token bundles and including policies to control how
to mint these tokens enables native tokens and multi-currency support [11, 10].

TokenBundle := HASH 7→ HASH 7→ N
T := {. . . , forge : TokenBundle, mintingPolicies : . . . }

Output := {. . . , value : TokenBundle}

At any given point, the state records the currently unspent transaction outputs:

S := Ref 7→ Output

We again treat finite maps as functions from keys to values; we write k ∈ σ to check for
membership in the map; σ \ ks to remove a set of keys; σ ⊎ σ′ for the disjoint union on maps.

For some examples of transactions, see Appendix B.

3.1 Denotational semantics [ UTxOErr.Ledger]
In the previous section, a transaction could fail due to insufficient funds. Similarly in the
UTxO setting, transactions are only valid under certain conditions. Given transaction t and
state σ, t is valid in σ iff all the following criteria are met:

referenced outputs are unspent:

∀(i ∈ t.inputs). i.ref ∈ σ

there is no double spending:

∀(i, j ∈ t.inputs). i ̸= j → i.ref ̸= j.ref

value is preserved:∑
i∈t.inputs

σ(i.ref).value =
∑

o∈t.outputs
o.value

FMBC 2025
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all inputs validate:

∀(i ∈ t.inputs). σ(i.ref).validator(i.redeemer) = true

All other parts remain identical to the previous semantics, Hoare logic rules included,
except the denotation of a single transaction: instead of updating account balances, it instead
removes all previous UTxOs consumed by its inputs and then inserts new UTxOs for each
output:

d : T → S → S

d(t)(σ) = σ \ {i.ref | i ∈ t.inputs} ⊎ {t#
k 7→ o | t.outputs[k] = o}

3.2 Separation logic [ UTxOErr.SL]
So far it has been straightforward to extend our results from the previous sections to UTxO-
based blockchains: once we have the denotation of a single transaction, the semantics of a
ledger is simply the composition of its constituent transactions. When we attempt to define
a separation logic for the UTxO model, however, we encounter a new problem.

The UTxO model refers to existing outputs by name (i.e. the hash of the enclosing
transaction), while the previous model for account-based ledger transferred funds directly
by value. This allowed us to split and combine the finite maps, σ1 ⊕ σ2, that associate each
participant with their available funds. In the UTxO situation, however, funds are locked by
a validator script and must be consumed as a whole: we cannot readily split and combine
funds in the same way as we saw previously. Therefore, predicates such as t#

3 7→ v ∗ t#
3 7→ v′

no longer make sense, since the third output of transaction t can only be spent once. Thus
our separating conjunction has to be restricted only to disjoint fragments of the state:

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊎ σ2

As a result, we have to extend the frame rule with a disjointness side-condition, familiar
from the semantics of imperative programs that mutate memory:

{P} l {Q} l # R
frame

{P ∗ R} l {Q ∗ R}

The condition l # R ensures all references in l are disjoint from the support of R, i.e. the
validity of the predicate does not depend on parts of the state that the ledger mutates:

l # R := ∀s.R(s) ↔ R(s \ {i.ref | i ∈ l.inputs})

3.3 Concurrent separation logic [ UTxOErr.CSL]
Similarly, the parallel rule also needs to be restricted to only disjoint interleavings:

{ P1 } l1 { Q1 } { P2 } l2 { Q2 } l1 # P2 l2 # P1 par
{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }

This is the point in our development where we have lost the stronger compositionality
properties that the previous semantics enjoyed. To use the frame rule to reason about
UTxO-based blockchains, this side condition requires checking disjointness (see Appendix B
for examples) – where previously we were free to split off arbitrary funds from the account
state.

https://omelkonian.github.io/hoare-ledgers/UTxOErr.SL
https://omelkonian.github.io/hoare-ledgers/UTxOErr.CSL
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4 Abstract UTxO [ ValueSepUTxO.Main]

Another way to approach the problems with a separation logic for UTxO ledgers identified in
the previous section would be to tweak the UTxO model itself to make it easy to accommodate
compositional reasoning techniques.

Rather than give up on UTxO entirely, we instead define a variation of UTxO where we
abstract away from hash-based references and refer to unspent outputs by value:

Ref := Output

It is important to emphasise what changes here: rather than refer to an unspent transaction
output using the transaction hash (and the index in the list of outputs it produces), each
input refers directly to the values of the unspent outputs it consumes.

The rest of the basic definitions remain intact, except that the state of the ledger can no
longer be represented by a map from references to outputs, but rather as a bag of outputs,
since we need to keep track of duplicates which are now perfectly fine (there can be multiple
outputs with the same exact value).

S := Bag⟨Output⟩

These bags, also known as multi-sets, can again be viewed as functions mapping outputs to
quantities (N), so we will reuse the notation from the previous sections; now σ(k) returns
how many times an element k occurs in bag σ. If we furthermore exploit the monoidal nature
of the number of occurrences, we get access to an overlapping union operator that performs
pointwise addition, as well as a notion of bag inclusion:

(σ1 ⊕ σ2)(p) := σ1(p) + σ2(p) σ ⊆ τ := ∀x.σ(x) ≤ τ(x)

We call the resulting ledger model Abstract UTxO (AUTxO), given that it abstracts away
the ordering on transaction outputs imposed by the UTxO model.

4.1 Denotational semantics [ ValueSepUTxO.Ledger]
To define a denotational semantics for AUTxO, we need to revise the validity conditions
that check a transaction t given a current ledger state σ, and redefine the state transition
function, d. Validity of abstract transactions closely follows the criteria we set previously
in Section 3.1, except that inputs now only contain a monetary value locked by a validator
(i.e. they are no longer represented as unspent outputs attached to previous transactions), so
we need only check that the current bag of unspent values contains at least the consumed
amount, and there is no longer a requirement to check for duplicate references, since it is
now perfectly sensible to have two inputs that carry the same value. Formally:

there are sufficient funds in σ:

t.inputs ⊆ σ

all inputs validate:

∀(i ∈ t.inputs). i.ref.validator(i.redeemer) = true

value is preserved:∑
i∈t.inputs

i.ref.value =
∑

o∈t.outputs
o.value

FMBC 2025
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Notice that value preservation has become significantly simpler to formulate in this more
abstract model, since we no longer need to query the value of a referenced output from the
current state σ: the reference is the value!

The denotational semantics of a single transaction removes previously unspent transaction
outputs, replacing them with the outputs of the new transaction:

d : T → S → S

d(t)(σ) = σ \ {i.ref | i ∈ t.inputs} ⊕ t.outputs

We derive the rest of the scaffolding to sequentially derive the denotation of a whole ledger
exactly as before. The axiomatic semantics do not change in any way, except that they work
on predicates over bags of outputs instead of maps from references to outputs.

4.2 Separation logic [ ValueSepUTxO.SL]

We can finally regain modularity for our separation logic, thanks to transaction inputs
in AUTxO referring to existing outputs by value. In particular, we can define separating
conjunction:

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊕ σ2

Notice how we utilise the monoidal composition of two bags that may overlap, regardless of
whether they are disjoint or not.

The resulting inference rules are identical to the ones presented previously for account-
based ledgers in Section 2, where we now use the monoidal actions on bags of values instead
of the pointwise sum on finite maps.

{P } l {Q}
frame

{P ∗ R} l {Q ∗ R}
{ P1 } l1 { Q1 } { P2 } l2 { Q2 }

par
{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }

In particular, the par rule enables us to reason about separate parts of the ledger inde-
pendently. We can now prove properties at the AUTxO level in a modular fashion (see
Appendix C for an example), and have confidence that they also hold in an equivalent UTxO
ledger with hash references and ordered outputs.

Note that the elements of each bag are pairs of a validator function and available funds.
While previously in the account-based ledger model, we used the monoidal action on the
monetary funds – adding their monetary value when splitting the state into smaller parts. In
the UTxO model, however, we cannot split locked funds: if the same validator locks two values
v and v′, we cannot deduce that it locks v + v′ – a property that the simple account-based
ledgers did support. We will discuss this limitation in more detail later (Section 7), but leave
its resolution for future work.

4.3 Sound abstraction [ ConcreteToAbstract]

The relation between AUTxO and UTxO is not yet satisfying, as we need some kind of full
abstraction [24] result that lets us conduct compositional proofs at the abstract (A) level
which then translate to properties about an actual concrete (C) ledger. One can informally
see that all properties that do not observe the implementation details of the concrete model
should be derivable from their abstract counterparts. To formalise this intuition, we first

https://omelkonian.github.io/hoare-ledgers/ValueSepUTxO.SL
https://omelkonian.github.io/hoare-ledgers/ConcreteToAbstract


O. Melkonian, W. Swierstra, and J. Chapman 10:11

define the abstraction of a concrete state as viewing its range as a bag:

absS : C.S → A.S

absS(σ) = {σ(k)|k ∈ σ}

We can then build up abstraction functions for valid transactions (absT ) and ledgers (absL),
where we resolve the actual outputs that references consume. Most importantly, UTxO
validity is transformed into AUTxO validity, making it possible to then relate their respective
denotational semantics.

▶ Lemma 4. Given a UTxO ledger l valid in σ, applying the UTxO semantics and then
abstracting the resulting state is the same as first abstracting the state and then running the
AUTxO semantics on the abstracted ledger:

l valid in σ CJ l K(σ) = just τ

AJ absL(l) K(absS(σ)) = just absS(τ)

Finally, we can prove soundness of our abstract model with respect to the UTxO model,
at least for properties that do not observe implementation details.

▶ Theorem 5. Given a UTxO ledger l valid in some initial concrete state σ, we can discharge
a concrete Hoare triple with abstract pre-/post-conditions by proving its abstract counterpart:

A{P} absL(l) {Q} l valid in σ
soundness

C{P ◦ absS} l {Q ◦ absS}

where both Hoare triples have been implicitly instantiated to the state σ that is universally
quantified at the outermost level.

This means it is sound to conduct modular proofs on the abstract level; the equivalent
statement on concrete ledgers will also hold. Note that our abstract model is not complete,
since we can only cover abstract state predicates of the form P ◦ absS , thus we cannot hope
to prove a full abstraction result. We feel that this will not be problematic in practice: these
predicates mention implementation details that arguably should be kept abstract.
▶ Remark 6. While making this formal connection to UTxO is important to make sure our
results readily transfer to existing blockchains, there is still something to be said about
AUTxO in isolation, as an alternative underlying model for new blockchains. From the
pragmatic lens of blockchain validation, AUTxO seems to allow far more liberal transaction
sequences than UTxO, where you would need to re-submit transactions to resolve conflicts.
This contention bottleneck heavily influences how many transactions can be validated in
parallel, hence a blockchain built on AUTxO might allow higher transaction throughput.
Although an experimental validation of this claim still remains to be done, we note that there
have been some initial experiments that explore similar relaxations of the UTxO model [25],
as employed in the IOTA distributed ledger [26].

5 Perspectives

Why care about semantics? Oftentimes blockchains are designed with cryptographic security
guarantees in mind; the intended ledger semantics is usually clear, but as is often the case, the
devil is in the details. This shows up when considering separation logic for ledgers built on
the UTxO model, where cryptographic details about hashing and the model’s implementation
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leak into the logic. Exposing the underlying mathematics, as our AUTxO model does, nails
down the exact behaviour once and for all. We believe there are numerous applications
that would be difficult, if not impossible, to reason about without a clearly specified formal
semantics. This section sketches several such directions.

Formal verification of smart contracts

So far we have only tackled the verification of individual transactions, but there is nothing
preventing us from reasoning about resources in the more elaborate setting of smart contracts.

Given the extensions to the UTxO model outlined in Section 3 to allow for fully-fledged
smart contracts to be expressed in validator scripts, it is crucial to observe that such contracts
will again manifest as transaction outputs holding a certain amount of funds. In other words,
smart contracts would appear as another kind of participant in Hoare triples, and we can
reason about its resources in the usual manner. Moreover, smart contracts would now appear
in a sequence of related transactions, while possibly also interacting with other non-contract
resources; the modularity of our Hoare-style framework gives us the ability to focus on exactly
the subset of transactions we are interested in.

One immediate application of this method to EUTxO smart contracts would be to prevent
the common issue of double satisfaction [38], arising when a single input resource is used to
satisfy multiple constraints coming from different validators/scripts. Within our framework,
the resource in question would be precisely characterised in a Hoare triple, either to rule out
double satisfaction or exhibit that it occurs (in case it was deliberate).

Ledger compression

Another application of this work would be in ledger compression: denotation semantics give
us a natural algorithm for minimising the ledger, while concurrent separation logic lets us
reason under the substitution of the original ledger with the compressed one.

Inspired by the technique of normalisation by evaluation [5], we proceed as follows for a
given ledger l that we wish to compress:
1. Compute the denotational semantics JlK, i.e. a function that transforms states.
2. Read back a minimal ledger by observing the net change to participant accounts. The

resulting compressed ledger is guaranteed to have the same semantics as the ledger we
started with, therefore we can instead prove a Hoare triple for the smaller ledger.

3. Complete our reasoning by utilising the par rule to embed our results from step (2) in
the context of the whole ledger L, which is expected to be way larger than l.

While the above works for the account-based ledger of Section 2, things become trickier
in the UTxO case: the hash references appearing in the resulting state will always necessarily
differ after compression. However, if we ignore the hashes and instead consider the values
that they refer to, we would be able to see that the associated values indeed remain identical.
In other words, this application requires reasoning modulo hashes, which is exactly what the
AUTxO model of Section 4 provides.

It is also worth mentioning that the same technique can be used to detect fraud when
“mixers” obfuscate the provenance of certain funds by moving them around between different
accounts. Since the net effect of such “rings” would be zero, ledger compression would then
optimise them away, enabling us to read off the fraudulent addresses that were involved.
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6 Related work

Blockchain theory

The entire line of research on UTxO-based ledgers starts from Bitcoin [27, 3, 4], later
extended in the Cardano blockchain to Extended UTxO (EUTxO) [39] so as to enable the
full expressivity of smart contracts. Thankfully, there are mechanised formalisations for
the meta-theory of both Bitcoin [35] and EUTxO [9, 10], all of which however suffer from
a monolithic approach, where the only reasoning provided is based on induction over the
whole history of the ledger. We believe that the approach present here does not contradict
in any way with the basic assumptions in these formulations; we expect it can be readily
deployed in each respective setting. One experiment for ledger modularity in the EUTxO
setting [23] led to the inevitable non-compositional notion of separation we addressed here.

On the Bitcoin side, there is a mechanised program logic for reasoning about Bitcoin’s
script language [1] based on predicate transformer semantics [14]; the striking similarity with
our work lies in the use of weakest preconditions to model access control, which is essentially
what we use to define the step rule for our Hoare logic in Section 2.

Alternative approaches to solving the modularity problem include the algebraic model of
Idealised UTxO [16] where ledgers are generalised to ledger chunks with open-ended inputs
rather than an inductive structure and naming is handled using nominal techniques [15],
as well as the categorical treatment of Nester’s material history [28, 29] where one reasons
about resources and ownership in the intuitive graphical language of symmetric monoidal
categories [33, 12].

In the non-UTxO setting, where the underlying ledger follows the account-based variant
of models led by Ethereum, an approach based on ownership influenced by the program
logic literature is used for implementing sharding – a technique for scaling up transaction
validation across multiple nodes – for the Zilliqa blockchain [31].

Concurrency theory

Analogies between the study of blockchains and classic concurrent or distributed computing
have already been noted by experts in the latter that subsequently became involved in
blockchain research [18, 34].

One particular separation logic in existing work bears close resemblance to the one
developed in this paper, namely that of fractional permissions [6, 13] for handling partial
ownership of resources. Similarly to our work, separating conjunction does not enforce
disjointness but admits some level of overlap, in this case used to model scenarios in parallel
programming with many readers and a single writer, for instance.

Last but not least, we note our initial inspiration from previous work that applied the idea
of separation logic on something other than computer programs mutating memory, namely
in the domain of version control systems [36].

Type Theory

The resource-oriented nature of our logics also echoes efforts in type theories that track
resource usage in some way or another, for instance Quantitative Type Theory [20, 2], currently
supported by the Idris programming language [7].

Blockchains have to do with monetary resources above everything else, thus provide a
natural setting to apply these resource-oriented frameworks, and indeed there is already
research supporting this in the context of the Tezos blockchain [17].
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7 Future work

Decompositionality

One aspect that fails to translate to the UTxO setting is the treatment of separated conjunc-
tions as arithmetic formulas, where equivalences such as A 7→ 2 ≈ A 7→ 1 ∗ A 7→ 1 hold by
definition. We can refer to this property as decompositionality, since it lets us automatically
decompose a large resource into its constituent parts.

This is simply not true in the UTxO model, as noted in Section 4.2, since we still need
to consume previous outputs as a whole, whose funds are predetermined by the enclosing
transaction. However, we could get around this by silently inserting transactions that perform
the necessary split/merge operations, thus allowing us to reason at an even more abstract
level modulo transactions that merely redistribute funds. Accounting for such silent steps in
the (A)UTxO model is a topic for further work.

Connection with existing separation logics

Although our approach draws heavily from the rich literature of separation logic in program-
ming languages, we have not yet made a formal connection with our definitions and various
notions of separation. One way to accomplish that is to instantiate an existing framework
that supports various kinds of separation logics. A suitable candidate for that would be
Abstract Separation Logic [8], where we could prove that the various ledger states across our
development obey the interface and corresponding laws of separation algebras.

A more practically oriented course of action would be to directly implement our proposal
in the Iris framework [19] which supports a wide variety of separation logics in the Rocq
proof assistant [37]. Given how extensible Iris is and the relative simplicity of our program
logics, the transliteration of our Agda formalisation to Iris should be straightforward and
quickly give us a practical verification tool.

8 Conclusion

We have presented a compositional approach to reasoning about UTxO ledgers, made possible
by exploiting the analogy between programs mutating memory and transactions transferring
funds between accounts. The key methodological insight is that the ledger can be viewed as a
programming language, thus opening up the possibility of developing program logics to reason
about (sequences of) transactions. We have demonstrated how ideas from separation logic in
particular provide the modularity principle to reason about ledger fragments independently
of one another.

In the future, this work may lay the foundations for scaling up verification of complex
UTxO-based smart contracts, or even offer multiple program logics depending on the desired
level of modularity and detail. Reasoning about monolithic ledgers cannot scale without
modular reasoning principles – this paper presents a first step in that direction.
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A Account-based examples [ ValueSepExact.Example]

Example derivation using FRAME

We now introduce an example derivation that will act as a running example across the various
logics we will develop throughout the paper, in order to demonstrate the relative strengths
and weaknesses of each approach.

We will have two transactions between participants A and B exchanging a single unit of
currency back and forth, interleaved with another two transactions of the same form but
now between different participants C and D. Overall, this set of transaction leave the state
of account balances unchanged after execution.

Apart from the aforementioned basic rules, we will also make use of the fact that separating
conjunction is symmetric, in the form of the following derived rule:
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swap
{P ∗ Q} ≈ {Q ∗ P}

The frame rule lets us focus on a small part of a larger separating conjunction and
apply the rule locally only on the part of the state that concerns the two participants of the
transaction at hand:

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}

A
1−→ B ⊣ frame(C 7→ 0 ∗ D 7→ 1, send)

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 0 ∗ D 7→ 1}
≈

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 0 ∗ B 7→ 1}

D
1−→ C ⊣ frame(A 7→ 0 ∗ B 7→ 1, send ◦ swap)

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 0 ∗ B 7→ 1}
≈

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 1 ∗ D 7→ 0}

B
1−→ A ⊣ frame(C 7→ 1 ∗ D 7→ 0, send ◦ swap)

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 1 ∗ D 7→ 0}
≈

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 1 ∗ B 7→ 0}

C
1−→ D ⊣ frame(A 7→ 1 ∗ B 7→ 0, send)

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 1 ∗ B 7→ 0}
≈

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀

Example derivation using PAR

Notice how in the previous example the first and third transaction only involve A and B,
while the other two only involve C and D. That is why we can do better using the par rule,
where we assemble a compositional proof from smaller proofs:

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}

(A 1−→ B; B
1−→ A) || (D 1−→ C; C

1−→ D)

∋ (A 1−→ B; D
1−→ C; B

1−→ A; C
1−→ D) ⊣ par(HAB , HCD)

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀

where
HAB :=

{A 7→ 1 ∗ B 7→ 0}

A
1−→ B ⊣ send

{A 7→ 0 ∗ B 7→ 1}

B
1−→ A ⊣ send ◦ swap

{A 7→ 1 ∗ B 7→ 0} ◀

HCD :=

{C 7→ 0 ∗ D 7→ 1}

D
1−→ C ⊣ send ◦ swap

{C 7→ 1 ∗ D 7→ 0}

C
1−→ D ⊣ send

{C 7→ 0 ∗ D 7→ 1} ◀
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B UTxO examples [ UTxOErr.Example]

Example transaction

Let us define an example transaction in the UTxO model. First, we associate the notion of a
participant – which does not inherently exist in the UTxO model – with a validator script
that restricts access to the funds solely to said participant.1

Therefore, an output of the form “1$ locked by A” carries a single unit of currency that
only A can unlock. Moreover, a single transaction can pack together multiple inputs and
outputs, thus immediately performing exchange between multiple “participants”.

Given a starting state where participants A and C hold a single unit of currency (in the
form of two unspent outputs assumed to already exist in previous transactions), a transaction
t can transfer these funds to another set of participants B and D, and another transaction t′

give B’s funds back to A.
This can be compactly depicted as a directed acyclic graph, whose left fringe contains

dangling outputs that comprise the current state of unspent outputs and the right fringe
corresponds to the resulting state, commonly referred to as the UTxO set:

t

t′

1$ locked by A 1$ locked by B 1$ locked by A

1$ locked by C 1$ locked by D

Note that the actual transaction fields are omitted in the node in the graph, since these can
be easily deduced from the incoming and outgoing edges. Therefore, the above transactions
denote a transition from the source state {ta#

i 7→ 1$ locked by A, tc#
j 7→ 1$ locked by C}

(left fringe) to the resulting state {t′#
0 7→ 1$ locked by A, t#

1 7→ 1$ locked by D} (right
fringe), assuming previous outputs in ta and tc holding the initial funds for A and C.

Example derivation using FRAME

Back to our running example, we can prove similar derivations for UTxO-based ledgers,
although our predicates now have to also include references to previous transactions. We
denote singleton predicates by ti 7→ v at p, where we require a single UTxO to be unspent in
the i-th output of transaction t, holding a value v locked by validator function p.

1 This could be achieved by naively having the redeemer be a password only known to the participant, or
via a public-key approach where the validator script verifies a signature with respect to the participant’s
private key.
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t1 t3

t2 t4

1$ locked by A 1$ locked by B 1$ locked by A

1$ locked by D 1$ locked by C 1$ locked by D

{t0
0 7→ 1 at A ∗ t0

1 7→ 1 at D}
t1 ⊣ frame(t0

1 7→ 1 at D, . . . , send)
{t1

0 7→ 1 at B ∗ t0
1 7→ 1 at D}

≈
{t0

1 7→ 1 at D ∗ t1
0 7→ 1 at B}

t2 ⊣ frame(t1
0 7→ 1 at B, . . . , send)

{t2
0 7→ 1 at C ∗ t1

0 7→ 1 at B}
≈

{t1
0 7→ 1 at B ∗ t2

0 7→ 1 at C}
t3 ⊣ frame(t2

0 7→ 1 at C, . . . , send)
{t3

0 7→ 1 at A ∗ t2
0 7→ 1 at C}

≈
{t2

0 7→ 1 at C ∗ t3
0 7→ 1 at A}

t4 ⊣ frame(t3
0 7→ 1 at A, . . . , send)

{t4
0 7→ 1 at D ∗ t3

0 7→ 1 at A}
≈

{t3
0 7→ 1 at A ∗ t4

0 7→ 1 at D} ◀

Note that this derivation now requires additional proof obligations, marked with . . . ,
ensuring the disjointness of relevant transactions.

Example derivation using PAR

The par can slightly improve the situation by composing smaller proofs, but is no longer
a scalable solution since we still need to provide evidence that the interleaved ledgers are
disjoint:

{t0
0 7→ 1 at A ∗ t0

1 7→ 1 at D}
t1 . . . t4 ⊣ par(. . . , HAB , HCD)

{t3
0 7→ 1 at A ∗ t4

0 7→ 1 at D} ◀

where
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HAB :=

{t0
0 7→ 1 at A}

t1 ⊣ send
{t1

0 7→ 1 at B}
t3 ⊣ send

{t3
0 7→ 1 at A} ◀

HCD :=

{t0
1 7→ 1 at D}

t2 ⊣ send
{t2

0 7→ 1 at C}
t4 ⊣ send

{t4
0 7→ 1 at D} ◀

C AUTxO examples [ ValueSepUTxO.Example]

As was the case for UTxO, we consider validator scripts as a replacement for participant
identifiers A, B, C, D, assuming transactions t1 . . . t4 that have the corresponding structure
that enacts the transfers we defined in the initial non-blockchain example.

Unsurprisingly, the Hoare conditions remain identical and only the enclosed transactions
change from the initial proof on account-based ledgers (Appendix A):

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}
t1 ⊣ frame(C 7→ 0 ∗ D 7→ 1, send)

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 0 ∗ D 7→ 1}
≈

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 0 ∗ B 7→ 1}
t2 ⊣ frame(A 7→ 0 ∗ B 7→ 1, send)

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 0 ∗ B 7→ 1}
≈

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 1 ∗ D 7→ 0}
t3 ⊣ frame(C 7→ 1 ∗ D 7→ 0, send)

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 1 ∗ D 7→ 0}
≈

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 1 ∗ B 7→ 0}
t4 ⊣ frame(A 7→ 1 ∗ B 7→ 0, send)

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 1 ∗ B 7→ 0}
≈

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀

Most importantly, we no longer need to provide disjointness proofs as in the UTxO case.
We finally demonstrate how we have regained compositionality in the AUTxO setting:

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}
t1 . . . t4 ⊣ par(HAB , HCD)

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀

where
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HAB :=

{A 7→ 1 ∗ B 7→ 0}
t1 ⊣ send

{A 7→ 0 ∗ B 7→ 1}
t3 ⊣ send

{A 7→ 1 ∗ B 7→ 0} ◀

HCD :=

{C 7→ 0 ∗ D 7→ 1}
t2 ⊣ send

{C 7→ 1 ∗ D 7→ 0}
t4 ⊣ send

{C 7→ 0 ∗ D 7→ 1} ◀
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