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Abstract

The efficacy of formal verification of smart contracts depends on being able to correctly specify and
carry out the verification of optimized code. However, code optimized for performance is rarely
optimized for intelligibility, which can make formally verifying optimized code difficult and costly.
To address this issue, we present a formal tool for reasoning about an optimized contract in terms of
its reference implementation. This tool reduces the work of formally verifying an optimized contract
to proving behavioral equivalence to the reference implementation.
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1 Introduction

The efficacy of formal verification to prevent actual, critical contract vulnerabilities depends
on the feasibility of applying formal verification to deployable contract code. However,
deployable code is typically optimized for performance, which typically makes it more difficult
to reason about formally [3]. Code highly optimized for performance thus risks vulnerability
due to the difficulty of formal reasoning, while code written for ease of formal reasoning may
not be efficient enough for the resource-scarce environment of smart contracts. Ideally, we
would reason about contracts in a state optimized for formal reasoning while still deploying
them in a state optimized for efficiency and gas consumption.

What is needed is a formal tool that enables us to reason about code in a format
optimized for intelligibility, design and formal reasoning, whose results can be applied to a
highly optimized and equivalent version of that code. As it stands no such framework exists for
smart contracts. To mitigate this we introduce a formal framework of extensional equivalence
between smart contracts in Coq, called contract isomorphisms. These equivalences will allow
us to use a reference implementation as a specification of an optimized contract, as well as
to port proofs between contracts that can be proved to be bisimilar.

We proceed as follows. In Section 2 we discuss related work. In Section 3 we define
contract isomorphisms, our notion of formal, extensional equivalence which implements a
bisimulation of contracts. In Section 4 we show that our definition of contract isomorphisms
induces a strong form of equivalence between contracts, a trace equivalence. In Section 5, we
give an example of a contract formally specified by equivalence to an existing contract and
port proofs over a bisimulation. In Section 6 we conclude.

2 Related Work

Bisimulations are a core component of theoretical computer science. They primarily denote
an equivalence of state transition systems [9, 12]. They are, for example, central in the study
of process algebras, which rely on a notion of equivalence between processes in order to
reason algebraically about the behavior of concurrent systems.

© Derek Sorensen;
licensed under Creative Commons License CC-BY 4.0

6th International Workshop on Formal Methods for Blockchains (FMBC 2025).
Editors: Diego Marmsoler and Meng Xu; Article No. 11; pp. 11:1–11:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d@dhsorens.com
https://derekhsorensen.com/
https://orcid.org/0000-0003-4937-6984
https://doi.org/10.4230/OASIcs.FMBC.2025.11
https://github.com/dhsorens/FinCert/tree/FMBC-25
https://github.com/dhsorens/FinCert/tree/FMBC-25
https://archive.softwareheritage.org/swh:1:dir:4373edebe9d83da3ce0c5452513515f60c7173aa;origin=https://github.com/dhsorens/FinCert;visit=swh:1:snp:10baf67521b4cebde46d4f933f58355eb5947c12;anchor=swh:1:rev:0ab8d6bd9e5d7bf4a398658d182df21875b1983e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de


11:2 Formal Specification via Bisimulation

One critical role that bisimulations play is in equivalence checking [4, 5]. Equivalence
checking is an approach to formal verification that consists in proving that two programs or
models are related modulo some equivalence relation, or that one is included in the other
modulo some preorder relation [4]. In this case, one uses a bisimulation to prove that a
particular program meets its specification, where the specification is defined not in prose but
as a program. Areas of formal reasoning and logic, including Hennessy-Milner logic, treat
bisimulations as full equality and cannot distinguish between bisimilar processes [8, 9].

To our knowledge none of these techniques have been applied to smart contracts, but one
can imagine that with a sufficient notion of contract bisimulation, we can mimic this process
and use a contract formally verified and optimized for formal reasoning as a specification for
a contract optimized for deployment. Proving the optimized contract correct then consists of
producing a contract bisimulation.

One could also conceive of porting proofs over such an equivalence of contracts, e.g. in
[2, 3, 15]. The strategy of porting proofs over equivalences is used in formal verification
elsewhere. For example, work by Ringer et al. uses type equivalences to efficiently reuse
proofs when updating a formally verified program [10]; work by Cohen et al. [2, 3] uses
refinement types to optimize code in a proof-invariant way. Our work here is in a similar
spirit, and may be applicable to future version of this work, but our equivalence in question
is a contract bisimulation instead of a type equivalence.

Previous work has used bisimulations to encode the notion of correct implementation on
a UTXO-based blockchain [6], but to our knowledge the work here is the first application of
bisimulations as a tool for formally verifying optimized contracts. We build off of previous
work in Coq which introduced the notion of a contract morphism, the key tool used to construct
contract bisimulations [14]. Our work here is a special use case of that theoretical tool. All of
our work is built in ConCert [1], a Coq-based formal verification tool with verified extraction
to high-level smart contract languages including Tezos’s LIGO and Concordium’s Oak.

3 Contract Isomorphisms

The fundamental contribution of this paper is a formal mechanism for proving equival-
ence (bisimilarity) between smart contracts in Coq, to be used in formal specification and
verification. To present this mechanism, we first give a theoretical definition of contract
isomorphisms as bisimulations between contracts (Section 3.1), moving onto the details of an
implementation in Coq (Section 3.2).

3.1 Bisimilarity
Bisimilarity is a stable and natural concept that describes equivalence between processes
[6, 11, 16]. A standard definition of bisimulation for labelled transition systems is as follows.

▶ Definition 1 (Bisimulation). Consider a labelled transition system (S, Λ, →), where S is a
set of states, Λ is a set of labels, and → is a set of labelled transitions (a subset of S × Λ × S).
A bisimulation is a binary relation R ⊆ S × S such that for every pair of states (p, q) ∈ R

and labels α, β ∈ Λ,
if p

α−→ p′, then there is q
β−→ q′ such that (p′, q′) ∈ R

if q
β−→ q′, then there is p

α−→ p′ such that (p′, q′) ∈ R.
A bisimulation defines equivalence between transition systems by defining a correspondence
between states that is stable under transition: given two equivalent states and a transition on
the first, there is a corresponding transition such that the output states are also equivalent.
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As we will see in the following section, ConCert models smart contracts as pure functions.
Since we wish to capture the notion of bisimulations of contracts by defining equivalences
of states that are stable under transitions, our specialized definition of bisimulation is a
natural isomorphism of pure functions. A natural isomorphism of two pure functions defines
a correspondence of function inputs and outputs that is stable under application of the
function. In the following definition, we consider the category of contracts defined in [14].

▶ Definition 2 (Natural Isomorphism of Pure Functions). Consider functions F : A → B

and G : A′ → B′. A natural isomorphism between F and G is a pair of isomorphisms,
ιA : A ∼= A′ and ιB : B ∼= B′ such that the following square commutes:

A A′

B B′

ιA

∼

F G

ιB

∼

Smart contracts modeled as pure functions get their state and entrypoint calls as inputs and
as output an updated state with the resulting transactions. Because contract calls result in
transitions between contract states, we can consider contracts as state transition systems.
The fact that the square commutes is precisely what makes it a bisimulation in this particular
interpretation of a state transition system.

3.2 Bisimulations in ConCert
We now move on to give details of a specific implementation of contract bisimulations in
ConCert.1 In ConCert, smart contracts are formalized with a Contract type as a pair of
pure functions init and receive. The init function governs contract initialization and the
receive function governs contract calls. The Contract type is polymorphic, parameterized by
four types: Setup, Msg, State, and Error which, respectively, govern the data necessary for
contract initialization, contract calls, contract storage, and contract errors. For a contract

C : Contract Setup Msg State Error

the type signatures of each component function C.(init) and C.(receive) are given in Listing
1, where the types Chain and ContractCallContext are ConCert-specific types used to model
the underlying blockchain and context.

Listing 1 Type signatures in ConCert of the init and receive functions of a contract.
C.( init) : Chain → ContractCallContext → Setup → result State Error.

C.( receive) : Chain → ContractCallContext → State → option Msg →
result (State ∗ list ActionBody) Error.

Following the theory in Section 3.1, we formalize bisimulations in ConCert between a
pair of contracts C1 and C2,

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2,

1 The definitions and results of this section are available at theories/ContractMorphisms.v

FMBC 2025
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AC1 A′
C2 AC1 A′

C2

BC1 B′
C2 BC1 B′

C2

fi

init init

fi

receive receive

fo fo

Figure 1 A bisimulation of contracts in ConCert is a natural isomorphism of each of the component
functions init and receive, which inductively constructs a contract bisimulation.

by constructing natural isomorphisms between the init and receive functions, respectively,
of C1 and C2. This is made by defining a correspondence of inputs and outputs to each of init
and receive which is stable under contract initialization and contract calls. Constructing
this equivalence consists of proving that the respective init functions are equivalent (the
base case) and then show that each of the steps are also equivalent (the inductive step).

As we will see in Section 4, these natural isomorphisms induce a trace equivalence of
contracts, or a bisimulation of contracts when considering them as state transition systems.
This is an extensional equivalence of contracts.

3.2.1 Constructing Bisimulations via Contract Isomorphisms
We can encode these extensional equivalences in ConCert using contract morphisms, a
category theoretic tool defined in ConCert for reasoning formally about one contract in terms
of another [14].

A contract morphism is a formal, structural relationship between two contracts which
formally relate the inputs, outputs, and state of both contracts in question. Much like the
natural isomorphism from before, contract morphisms are encoded in ConCert as a natural
transformation of contracts, which in diagram form differ from natural isomoprhisms only in
that the horizontal arrows only point in one direction (i.e. they are not necessarily invertible).

AC1 A′
C2 AC1 A′

C2

BC1 B′
C2 BC1 B′

C2

fi

init init

fi

receive receive

fo fo

Figure 2 A contract morphism between contracts C1 and C1 is a natural transformation of init
and receive functions, respectively.

The natural transformation depicted above in Figure 2 corresponds to a morphism f from
contracts C1 to C2, written either f : C1 -> C2 or, more formally,

f : ContractMorphism(C1,C2).

Morphisms compose, and there is a canonical identity morphism [14]. These two facts give
us everything we need to define an invertible pair of contract morphisms, or a contract
isomorphism, which will take as our notion of contract bisimulation.
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▶ Definition 3 (Contract Isomorphism). A contract isomorphism between contracts C1 and C2
is a pair of morphisms,

f : ContractMorphism C1 C2

g : ContractMorphism C2 C1,

such that f and g compose each way to the identity morphism.

To state this as a formal proposition, we summarize this definition as a proposition in Coq.

Listing 2 Contract isomorphisms are defined as a pair of morphisms that compose each way to
the identity morphism under the morphism composition function compose_cm.
Definition is_iso_cm

(f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) : Prop :=
compose_cm g f = id_cm C1 ∧
compose_cm f g = id_cm C2.

4 Contract Bisimulations Induce Trace Equivalences in ConCert

Our task now is to prove that contract isomorphisms actually induce the desired, strong
notion of equivalence between state transition systems. In fact, they induce an isomorphism
of the generated trace graphs of the contracts in question [16]. In this section we give a
formal proof in Coq that a contract isomorphism produces a trace equivalence of contracts.
We define trace equivalence in 4.1. We formalize a trace equivalence between contracts in
ConCert in Section 4.2, and then show that contract isomorphisms imply trace equivalence
in Section 4.3.

4.1 Trace Equivalences
A trace equivalence between contracts modeled as pure functions is an equivalence of all
possible execution trace graphs, or graphs where nodes are states and edges are state
transitions labelled with emitted transactions. This is proved inductively with a mapping of
nodes and edges which maps initial states to initial states (the base case), and that respects
state transitions (the inductive step à la Definition 1).

4.2 Trace Equivalences in ConCert
To codify trace equivalences in ConCert, we formally define contract traces and morphisms
betwen contract traces. With morphisms we can formalize equivalence via trace isomoprhisms.
Similar to contract morhpisms [14], contract trace morphisms are a formal, structural
relationship between the traces of two contracts. As we will see, an equivalence of contract
traces is the strong form of extensional equivalence that we are looking for.2

4.2.1 Contract Traces
We begin by defining some key data types. First, a contract’s trace is a chained list of
contract states, connected by contract steps.

2 The definitions and results of this section are available at theories/Bisimulation.v
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Definition ContractTrace (C : Contract Setup Msg State Error) :=
ChainedList State (ContractStep C).

Contract steps are a record type of the data for a successful contract call, or a call to the
receive function, which links two contract states. The record contains data for a successful
contract call such as the contract call context, the incoming message, the resulting actions,
as well as a proof that the call to receive succeeds.

Listing 3 Contract steps are successful calls to the receive function.
Record ContractStep (C : Contract Setup Msg State Error)

(prev_st : State) (next_st : State) := {
(* data for a successful contract call *)
seq_chain : Chain ;
seq_ctx : ContractCallContext ;
seq_msg : option Msg ;
seq_new_acts : list ActionBody ;
(* we can call receive successfully *)
recv_some_step :

receive C seq_chain seq_ctx prev_st seq_msg =
Ok (next_st, seq_new_acts) ;

}.

Contract traces codify the trace of contracts as state transition systems.

4.2.2 Contract Trace Morphism
A contract trace morphism, analogous to a contract morphism of [14], encodes a formal,
structural relationship between the traces of two contracts. For contracts

C1:Contract Setup1 Msg1 State1 Error1

C2:Contract Setup2 Msg2 State2 Error2,

a morphism of contract traces includes the following data:
A function between contract state types, ct_state_morph : State1 -> State2.
A proof that ct_state_morph sends valid initial states of C1 to valid initial states of C2.
A function cstep_morph that, for states state1 and state2 of C1, sends a contract step

step1 : ContractStep C1 state1 state2,
to a corresponding contract step of C2 between the corresponding states

step2 : ContractStep C2 (ct_state_morph state1) (ct_state_morph state2).
Inductively, this data gives us a relationship between all reachable states: initial states of
each contract are related via the function between state types, and from there, any contract
step of C1 is related to a contract step of C2 that respects the function on states. We codify
this with a type f : ContractTraceMorphism C1 C2.

▶ Example 4 (The Identity Contract Trace Morphism). For any contract C we can define the
identity morphism id_ctm, whose component functions are the identity and respective proofs
are trivial, and which inhabits the type ContractTraceMorphism C C.

▶ Example 5 (Contract Trace Morphism Composition). We can define composition of contract
trace morphisms similar to composition of contract morphisms in [14], via a function
compose_ctm, which takes morphisms

f : ContractTraceMorphism C1 C2 and g : ContractTraceMorphism C2 C3
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and returns a morphism

compose_ctm g f : ContractTraceMorphism C1 C3.

To compose contract morphisms, we simply compose their component functions. That
composition is associative comes trivially. Similarly, it comes immediately that composition
on either side with the identity is a trivial operation, and so composition and identity behave
as we might expect in a well-defined category.

4.2.3 Contract Trace Isomorphisms
Contract trace isomorphisms are then defined analogously to contract isomorphisms (3.2.1).

▶ Definition 6 (Contract Trace Isomorphism). A contract trace isomorphism between contracts
C1 and C2 is a pair of trace morphisms,

f : ContractTraceMorphism C1 C2

g : ContractTraceMorphism C2 C1,

such that f and g compose each way to the identity morphism id_ctm.

To state this as a formal proposition, we summarize this definition in a type in Coq.

Listing 4 Contract trace isomorphisms are defined as a pair of morphisms that compose each
way to the identity morphism.

Definition is_iso_ctm
(m1 : ContractTraceMorphism C1 C2) (m2 : ContractTraceMorphism C2 C1) :=
compose_ctm m2 m1 = id_ctm C1 ∧
compose_ctm m1 m2 = id_ctm C2.

By definition, if two contracts are related by a contract trace isomorphism, then there is a
one-to-one correspondence between all possible contract states; furthermore, this correspond-
ence respects initial states. Thus extensionally, contracts which are trace isomorphic have
identical behavior up to their state isomoprhisms. When considered as a labelled transition
system, their execution graphs are necessarily isomorphic. The behavior of a contract is
fully defined by its initial state and the steps it can take from there, and so contract trace
isomorphisms give us the strong form of extensional equivalence we are looking for.

4.3 Contract Morphisms to Contract Trace Morphisms
The final result of this section is that contract bisimulations induce contract trace iso-
morphisms. We prove this result by defining a function cm_to_ctm, which takes a contract
morphism

f : ContractMorphism C1 C2

and returns a contract trace morphism

cm_to_ctm f : ContractTraceMorphism C1 C2,

which respects identity and compositions. Contract morphisms and contract trace morphisms
define a category whose objects are contracts in ConCert, so cm_to_ctm is a functor.

FMBC 2025
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To define cm_to_ctm for a contract morphism f : C1 -> C2, we need a function between
the state types of C1 and C2 which respects initial states and state transitions. The obvious
candidate is, of course, the component function of f of contract states, f.(state_morph),
which respects initial states state transitions by the coherence conditions of its definition [14].

Furthermore, the identity contract morphism induces the identity contract trace morphism,
and compositions of contract morphisms induce compositions of contract trace morphisms.

Listing 5 Identity induces the identity.
Theorem cm_to_ctm_id : cm_to_ctm (id_cm C1) = id_ctm C1.

Listing 6 Compositions induce compositions.
Theorem cm_to_ctm_compose (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

(* the image of the composition = ... *)
cm_to_ctm (compose_cm g f) =
(* composing the image morphisms *)
compose_ctm (cm_to_ctm g) (cm_to_ctm f).

Since contract isomorphisms and contract trace isomorphisms are both defined as respective
morphism pairs which compose each way to the identity, a bisimulation of contracts induces
a trace equivalence. We have our desired result.

5 Using Bisimulation as a Tool for Formal Specification

Contract isomorphisms (bisimulations) could be considered as a tool in at least two ways:
first, to reuse proofs on a different contract version by porting them over the isomorphism and
achieve those results on the target contract, e.g. as in [14]; and second, to use a contract as a
specification. To show this, in this section we give an example of a contract whose specification
is another contract, e.g. a reference implementation, and explore the ways in which proofs
transport over a contract bisimulation. This is an example where a common optimization
makes a contract more difficult to reason about, and we use a contract bisimulation to
formally specify the optimized contract with the intelligible contract.3

5.1 Linked Lists and Dynamic Arrays

Consider a simple contract C_arr that manages an array of owners, e.g. for access control,
each identified by a natural number. It has functionality to add owners, remove owners, and
swap owners. Consider also a second implementation C_ll that does the same, except that it
stores owner IDs as a linked list instead of a dynamic array, a common contract optimization
strategy over arrays in Solidity which introduces nontrivial challenges to verification [7]. The
correctness criteria for the second, optimized implementation are that it behave identically
to the reference implementation from an extensional standpoint, precisely because the linked
list is supposed to emulate a dynamic array (though more efficiently at the bytecode level).

The two contracts C_arr and C_ll share setup and entrypoint types, but differ in their
storage types and the implementation of their entrypoint functions. Both contracts must
maintain a set of owners with no duplicates.

3 The contracts and bisimulations of this section are available at optimization2.v

https://github.com/dhsorens/FinCert/blob/FMBC-25/examples/Bisimulations/optimization/optimization2.v
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Listing 7 The entrypoint type shared by both C_arr and C_ll.
Inductive entrypoint :=

| addOwner (a : N) (* to add a as an owner ID *)
| removeOwner (a : N) (* to remove a as an owner ID *)
| swapOwners (a_fst a_snd : N). (* to swap a_fst for a_snd as owners *)

The first contract, C_arr, keeps track of owners in an array in its storage type storage_arr.

Record storage_arr := { owners_arr : list N }.

The optimized contract C_ll keeps track of owners in a linked list implemented (somewhat
unconventionally in Coq) via a finite mapping.

Record storage_ll := { owners_ll : FMap N N }.

The mapping emulates an array as follows: Using a global constant SENTINEL : N, the empty
list is emulated as the mapping which points SENTINEL to SENTINEL.

arr_to_ll := [] ⇒ { SENTINEL : SENTINEL }.

From here, to insert an element a into the mapping, we point SENTINEL to a, and a to whatever
SENTINEL used to point to (SENTINEL if a is the first element of the list).

arr_to_ll := [a] ⇒ { SENTINEL : a ; a : SENTINEL }.

This pattern continues such that in the mapping SENTINEL always points to the most recently-
added element, and elements form a chain until the last points back to SENTINEL. So for list
of the form [a, b, c], the corresponding mapping points SENTINEL to a, and a to b, b to c,
and c back to SENTINEL.

arr_to_ll := [ a, b, c] ⇒ { SENTINEL : a ; a : b ; b : c ; c : SENTINEL}

The three entrypoints behave analogously for their respective data structures. For our
array contract, C_arr, calling (addOwner a) simply appends a to the list of owners (provided
a is not already an owner).

addOwner a := {| owners_arr := l |} ⇒ {| owners_arr := a :: l |}.

For our linked list contract, C_ll, calling (addOwner a) inserts the owner into the linked list.

addOwner a := {| owners_ll := { SENTINEL : a’ ; ... } |} ⇒
{| owners_ll := SENTINEL : a ; a : a’ ; ... |}.

Removing an owner behaves similarly: for C_arr, (removeOwner a) removes a from the array,

removeOwner a := {| owners_arr := [ ..., b, a, b’, ... ] |} ⇒
{| owners_arr := [ ..., b, b’, ... ] |}.

while for C_ll, (removeOwner a) updates the pointers in the mapping to excise a.

removeOwner a := {| owners_ll := { ... ; b : a ; a : b’ ; ... } |} ⇒
{| owners_ll := ... ; b : b’ ; ... |}.

Finally, to swap owners in C_arr, (swapOwners a a’) replaces a with a’,

swapOwners a a’ := {| owners_arr := [ ..., b, a, b’, ... ] |} ⇒
{| owners_arr := [ ..., b, a’, b’, ... ] |}.

and C_ll, does the analogous operation by updating its pointers.

FMBC 2025
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swapOwners a a’ := {| owners_ll := { ... ; b : a ; a : b’ ; ... } |} ⇒
{| owners_ll := ... ; b : a’ ; a’ : b’ ; ... |}.

5.2 The Bisimulation
We now explore the consequences of a bisimulation, or a contract isomoprhism, between our
reference implementation C_arr and its counterpart C_ll.

Theorem bisim_arr_ll : contracts_isomorphic C_arr C_ll.

A witness of the proposition contracts_isomorphic C_arr C_ll is a contract isomorphism
between C_arr and C_ll. We first explore how a bisimulation between C_arr and C_ll lets us
use code as a specification (5.2.1), and then explore how the specification of each ports over
the bisimulation (5.2.2). Note that in the following example we assume some key properties
about array and map operations and their properties.

5.2.1 Contract as a Specification
The purpose of any contract optimization is to improve the performance of the code without
changing its behavior within some semantic domain. That domain is, at least in principle,
the domain of a formal specification. This almost always means that changes can be made
intentionally, affecting the inner workings of the contract, but extensional behavior – behavior
from an outside or semantic perspective – should remain the same. In the case of our contracts
C_arr and C_ll, we expect C_ll to behave identically to C_arr up to an equivalence of data
structures. That precise equivalence, of expected behavior of data structures and contract
entrypoints, is exactly the data held in the contract isomorphism.

To illustrate this point, we construct the contract morphism. To do so we need functions
between entrypoint, state, error, and setup types [14]. Because C_arr and C_ll differ only in
their entrypoint type, these functions are the identity on all but the entrypoint type; and
for the entrypoint type, these are the functions arr_to_ll and ll_to_arr specified above in
Section 5.1.

Listing 8 The component functions of morphisms between C_arr and C_ll.
(* msg, setup, and error morphisms are all identity *)
Definition msg_morph : entrypoint → entrypoint := id.
Definition setup_morph : setup → setup := id.
Definition error_morph : error → error := id.

(* storage morphisms *)
Definition state_morph : owners_arr → owners_ll := arr_to_ll.
Definition state_morph_inv : owners_ll → owners_arr := ll_to_arr.

With these component functions we can prove the corresponding coherence conditions,
and we get morphisms:

f : ContractMorphism C_arr C_ll and f_inv : ContractMorphism C_ll C_arr

The key point of data held in this pair of functions, which form a bisimulation, is in the way
that they codify the relationship in functionality between storage and entrypoints in each
contract. This is precisely the data of the argument we made in Section 5.1 that C_ll was
indeed an alternative representation of C_arr.
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Consider in particular the behavior of calling (addOwner a). We know from Section 5.1
that in C_arr this appends a to the list of owners, while in C_ll this inserts a into the
implemented linked list. We have a formal proof of this correspondence in the following two
lemmas. The functions add_owner_arr and add_owner_ll are, respectively, the functions that
implement the addOwner entrypoint in each of C_arr and C_ll.

Listing 9 Two coherence results which show the correspondence of the addOwner entrypoint
between C_arr and C_ll.
Lemma add_owner_coh : forall a st st’ acts,

add_owner_arr a st = Ok (st’, acts) →
add_owner_ll a (state_morph st) = Ok (state_morph st’, acts).

Lemma add_owner_coh’ : forall a st e,
add_owner_arr a st = Err e →
add_owner_ll a (state_morph st) = Err e.

These are coherence results à la Figure 2: adding a to the state of C_arr and then transforming
the state to a linked list is the same as transforming the state to a linked list first and
then adding a to the state of C_ll, and vice versa. They constitute a formal proof that the
behavior of the two contracts is the same up to the equivalence of their data structures for
the addOwner entrypoint.

We have analogous proofs for each of the remaining two entrypoints of C_arr and C_ll.
That they give us a bisimulation of contracts tells us that the behavior of the two contracts
is the same up to the equivalence of their data structures for each entrypoint – and the
equivalence of their data structures is precisely a formal description of how arrays are
emulated as linked lists in the state of C_ll. How could you possibly be more precise in
formally specifying C_ll as an optimization of C_arr than by a formal proof like this that the
two contracts are extensionally equivalent?

5.2.2 Porting Properties Over the Bisimulation
Standard practice for comparing an optimized contract to its reference implementation would
be to apply the same test suites or formal specification to the new contract and ensure that
it passes all tests and still conforms to the formal specification. If the formal specification
includes details of the inner workings of the contract, then relevant alterations are made to
the formal specification to accommodate the new setting. This is a translation effort, which
can be prone to mistranslation and resulting errrors by underspecification, so instead we
would rather see if we can port previously-proved results over a bisimulation.

Indeed, we can and we will do so here with a key property for both contracts: that there
be no duplicate owner IDs in storage. This property is important not only because of the
intended contract functionality of C_arr, but also in the optimization of C_arr into C_ll. Due
to the implementation of C_ll as a linked list via a mapping, being able to add a “duplicate”
would actually compromise the integrity of the linked list as a model of an array: the mapping
only allows for an owner ID to point to one other owner, so adding a “duplicate” would
mean altering the pointers and unlinking the data structure. That there not be duplicates
is thus an important property both from the perspective of high-level functionality (with
respect to contract permissions and control flow) as well as from the perspective of low-level
implementation correctness (linked list implementation emulating an array).

We first formally verify the reference implementation, C_arr, by proving that all reachable
contract states are free of duplicates, codified in the following result.
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Listing 10 All reachable states of C_arr have no duplicate owners in storage.
Theorem no_dup_arr (st : owners_arr) :

reachable C_arr st → no_duplicates_arr st.

Using the bisimulation, we can now prove the analogous result about C_ll using
morphism_induction, a proof technique that leverages contract morphisms to compare the
reachable states of contracts related by contract morphisms [14].

▶ Lemma 7 (Morphism Induction). Consider contracts C1 and C2 and a contract morphism f
: ContractMorphism C1 C2. Then every reachable state st_1 of C1 corresponds to a reachable
state st_2 of C2, related by the state morphism component of f such that

st_2 == f.(state_morph) st_1.

This lemma is codified as left_cm_induction in FinCert.4
Because we have a bisimulation, not only do we know that the states of C_arr and C_ll

are related by state_morph described in Section 5.2.1, but we know that state_morph has an
inverse. Thus using the details of that morphism we can prove that C_arr has duplicates
in storage if and only if C_ll has been unlinked, the analogous property for duplicates in a
linked list. By morphism induction, then, we have the analogous result on C_ll.

Listing 11 The desired result that all reachable states of C_ll have no duplicate owners in storage.
Theorem no_dup_ll (st : owners_ll) :

reachable C_ll st → no_duplicates_ll st.

6 Conclusion

The efficacy of formal verification on smart contracts depends on being able to correctly specify
and carry out the verification of optimized code. However, code optimized for performance
is rarely optimized for intelligibility, which can make formally verifying optimized code
difficult and costly. To remedy this, we introduced contract isomorphisms, a formal tool that
establishes a structural equivalence between smart contracts, and we proved that contract
isomorphisms give us full trace equivalences of contracts. We then demonstrated how contract
isomorphisms can be used to formally specify and verify an optimized smart contract by
proving it extensionally equivalent to its reference implementation. Our example illustrates
the practical application of this framework to a common optimization technique in smart
contract development. It shows how formal proofs of correctness can be ported over a
bisimulation and how a bisimulation enables the use of a contract as a specification. We
hope that this work paves the way for more robust and reliable smart contract verification,
enabling practitioners to more easily reason about optimized contracts in terms of their more
intelligible reference implementations.
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