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Abstract
Determining whether two computational artifacts share the same behavior is fundamental. In
general, smart contracts and their interactions can be modeled as the concurrent composition of
processes where: (i.) contracts are processes, (ii.) parties to the contract are processes, and (iii.) the
blockchain itself is a process. In this paper we describe how we apply this view of smart contracts
to the verification of an optimizing transformation in the Faustus smart contract programming
language. Faustus compiles to the embedded domain specific language (eDSL) Marlowe. With
Marlowe as the target compilation language, the operators and semantics of Milner’s value passing
Calculus of Communicating Systems (CCS) inspired the design of Faustus. In CCS, unobservable
transitions (τ -transitions) arise from the parallel composition of processes that share a label and
a co-label (e.g. a and ā). CCS also supports a restriction operator (P \A) which internalizes,
within P , the labels in the set A. From an observer’s point of view, any number of τ -transitions
followed by an observable transition, say a, looks like a single transition on a. In Faustus, similarly,
unobservable actions arise by adding actions to be internalized to a set A. A proof that two Faustus
contracts are weakly bisimilar (P ≈ Q) verifies that, with respect to their observable executions,
they exhibit identical behaviors. This paper describes an application of observational equivalence,
witnessed by the existence of a weak bisimulation relation, to verify that a smart contract and its
transformed instance preserves observable behavior. More precisely, if P⌜ ⌝ is the result of applying
our transformation to a contract P , we prove ∀P. P ≈ P⌜ ⌝. The smart contract transformation
verified here trades time for space in smart contracts running on the Cardano blockchain. The
results of this paper have been formalized in the Isabelle theorem prover, and we have formalized
the small-step semantics of Faustus contracts together with the labeled transition system induced
by those semantics.
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1 Introduction

Smart contracts, initially proposed by Szabo [43], are self-enforcing, self-executing protocols
governing interactions between several (potentially distrusting) parties. Smart contracts
automate the execution of an agreement between participants. Trust is established between
the participants by the use of a blockchain, which is an unforgeable distributed ledger where
transactions are added in a cryptographically secure manner.
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9:2 Verifying Smart Contract Transformations Using Bisimulations

Because blockchains are massive distributed systems, the cost of running and maintaining
the blockchain must be paid in some way. Typically, this cost is a transaction fee, colloquially
referred to as “gas”. The cost of running a smart contracts has led to a culture where
programmers apply optimizations to minimize gas costs [17, 37, 4, 14]. These optimizations
may introduce errors not in the original contract; there are no guarantees that they preserve
the semantics of the original smart contract.

Reports of smart contracts being hacked are legion, and the losses from hacked contracts
can be astronomically large [7, 23, 2]. The potential for, and the magnitude of, financial losses
is a motivation for applying the most rigorous correctness guarantees to smart contracts,
i.e. formal verification. The work reported here was funded by Input Output Global
(IOG, formerly IOHK), the developers of the Cardano Blockchain1. The IOG development
methodology is based on application of agile formal methods for specification and verification
of the system [22, 16] and the work reported here follows that methodology.

Faustus, the smart contract language used here, compiles to the Marlowe smart contract
language [26, 24] developed at IOG. Prior to our work, the Marlowe developers formalized
the evaluation semantics of Marlowe in Isabelle/HOL [38]. That formalization served as the
basis for a verification of the correctness of the Faustus (to Marlowe) compiler [29, 30] and
for the further developments described in this paper.

1.1 Related Works
Formal verification has previously been used to prove individual smart contracts satisfy some
properties. A recent survey of these efforts can be found in Tolmach et al. [44]. These
techniques verify the correctness of a smart contract with respect to a formal specification.
For example, tools have been developed to verify unannotated common smart contracts
against their canonical forms [13], automated tools have been developed to verify liquidity in
BitML [11] and Solidity contracts [8, 12, 9], and verified super-optimization techniques have
been applied to Ethereum smart contracts [4].

Nelaturu et al. [37] have developed a methodology for optimizing the cost of smart
contracts, and synthesize bisimulation relations to verify the correctness of the optimizations.
Their techniques are limited by the constraints on the inputs to the automated tools they
use in their system, e.g. the programs must be deterministic and the kinds of loops their
system can operate on are restricted.

Similar to the work described in this paper, Sergey and Hobor [42] aim to provide an
analogy between smart contracts and concurrent processes. Differing from previous works
of low-level verification, Sergey and Hobor argue that smart contract programmers and
verifiers will work more efficiently and be less error prone by adopting the perspective of
smart contracts as concurrent processes.

Building on the perspective of viewing smart contracts as concurrent processes, Qu et al.
[41] presented a method for modeling and verifying smart contracts using Communicating
Sequential Processes (CSP) [21]. Their technique is used to verify that a smart contract is
safe against particular attacks. In their methodology, smart contracts that are written in
Solidity are translated into CSP. This step introduces a gap between the actual code and the
model, as they do not verify the correctness of the translation.

Additionally, a lot of work has already been done in the field of developing programming
languages for specifying and implementing financial contracts. Peyton Jones et al. [40]
developed a declarative language for specifying executable financial contracts in Haskell and

1 https://iohk.io/

https://iohk.io/
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proved that two syntactically different contracts are equivalent using denotational semantics.
Interestingly, this paper is one of the few that focuses on proving the equivalence of contracts.
Andersen et al. [6] expanded on that work with their Contract Specification Language (CSL).
Then Henglein et al. [19] provided a static analysis framework for verifying properties of
CSL contracts, such as fairness and party participation. In a separate piece of work, Seijas
and Thompson [26] developed Marlowe, a Domain Specific Language (DSL) for writing
financial contracts on the Cardano blockchain. All Marlowe contracts are total - they are
all guaranteed to terminate. They used the Isabelle/HOL theorem prover to prove that
all Marlowe contracts terminate and pay out any locked funds. Seijas et al. [24, 25] also
developed a static analysis tool that can verify all possible executions of a Marlowe contract
never result in an error.

Another related field of work is the development of smart contract languages based on
process algebra. Rholang, based on the ρ-calculus, was developed as the native smart contract
language for the RChain blockchain [18]. Then Bartoletti et al. [11] developed the process
calculus BitML as a DSL for writing Bitcoin smart contracts. Rholang executes natively on
the RChain blockchain, while BitML is compiled to Bitcoin transactions. Finally, another
process calculus, Illum, was recently developed by Bartoletti et al. [10] as an intermediate
language for compiling higher level languages into transactions on the Bitcoin and Cardano
blockchains.

1.2 Our Contribution
This paper describes the Faustus smart contract language and a methodology for verifying
equivalence of Faustus contracts based on bisimulation [39, 34] from the perspective of parties
interacting with the contract. Our work differs from the previous works in the following
ways:
1. We have developed a methodology based on Milner’s Calculus of Communicating Systems

(CCS) [33, 34, 35] to prove the observational equivalence of contracts, i.e. to prove
that Faustus contracts are semantically equivalent from the perspective of the parties
interacting with the contract. Other work that we are aware of is: limited by the types
of contracts that can be verified; verifies properties of individual contracts; or develops
tools to analyze safety and liveness properties of specified contracts.

2. In Faustus, reasoning using CCS based techniques is done directly on well-formed code of
the smart contract. There is no translation from the smart contract code to a separate
model for verification. In many methodologies the first step is an unverified translation
from a contract/program to a model suitable for formal analysis.

3. In our formal model, Faustus processes include a set of actions that, when executed, are
hidden from users. Following Milner [34], we call this collection a restriction set. The
behavior of a Faustus process with a nonempty restriction set corresponds to a parallel
composition of processes. In the process defined by the parallel composition, actions in
restriction set are unobservable.

4. Our methodology for verifying two processes are equivalent is to prove the two are
observationally equivalent by exhibiting the appropriate bisimulation between the two.
We describe a program (contract) transformation, and apply this methodology to formally
prove that an arbitrary contract and the resulting transformed contract are observationally
equivalent.

5. The work described here has been formalized in the Isabelle/HOL interactive theorem
prover. We provide proofs for theorems and lemmas in this paper where possible, and
give a more informal outline if the proof relies on theorems outside of the scope of this
work.

FMBC 2025



9:4 Verifying Smart Contract Transformations Using Bisimulations

1.3 Paper Organization
This paper briefly introduces the Faustus smart contract language, and then shows how to
interpret Faustus contracts as CCS-style processes based on the transition relation given
by the operational semantics of Faustus. Finally, we apply the methodology to verify a
nontrivial transformation on Faustus contracts.

2 Introduction to Faustus

Faustus is based on an extension of Marlowe’s financial contract operators that makes it into a
(more) fully featured programming language. The formal interpretation of a Faustus program
is based on its operational semantics which have been formalized Isabelle/HOL [3]. Faustus
contracts describe allowable interactions between contracts and the parties to the contract.
Aside from blockchain addresses, which serve as parties, the details of the interaction between
the contract and the blockchain are hidden from the Faustus programmer.

It is quite natural to use the operational semantics to define a standard kind of automata,
a labeled transition system, where states of the automata are contract states, and labels are
the interactions. Milner’s CCS [34] is defined over labeled transition systems. CCS processes
are constructed with guarded commands, a choice operator, and parallel composition. We
have implemented these operators in the Faustus language of guarded commands2. Because
our execution semantics prioritize certain transitions, our target is a variant of CCS with
priority [27].

There are six basic things to note about the execution of Faustus contracts:
1. Faustus contracts run as a series of sequential statements that pause when waiting for

external input (from an agent or the blockchain) or a specific timeout to occur.
2. Hidden (τ -actions) arise in contracts by the evaluation of: variable declarations; assignment

statements; if-statements; close commands; assert statements; and pay statements. (See
Section 3.1.)

3. The when contract denotes actions that parties are allowed to take within the contract,
and a timeout contract in the case that no action is received before the specified time.
when contracts have the form when {g1 -> c1, · · · , gn -> cn} after t -> ct. The list of
guarded commands is tested in order until a guard evaluates to true in the current state
with the current action. If no guard evaluates to true and the time t < s, where s is the
start of the current time window, then the contract ct is evaluated.

4. Faustus contracts contain internal accounts for each party. Currencies are moved between
internal accounts and paid out to parties’ blockchain wallets according to the contract
logic.

5. All Faustus contracts end with a close command or a contract variable. Recursion is not
allowed to ensure termination. The close command ensures no funds are locked in the
closed Faustus contract by paying out all internal account balances.

6. Variables can be bound for any syntactical element.

We can illustrate more interesting features of Faustus through the three-party escrow
contract in Figure 1. At the beginning, two actions are declared corresponding to yes and
no votes for moving the money along. Then a parameterized contract is declared, called

2 Interestingly, we initially realized we could use choice and interleaving to compactly describe common
combinatorial patterns used in many Marlowe programs. This led us to consider the more full-bodied
implementation of CCS which this paper is based on.
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action yes(party p) = p chooses "agree";
action no(party p) = p chooses not "agree";
contract escrow(party alice, party bob, party escrow, time start_time) {

contract payout(int votes) {
if votes >= 2
then escrow pays 1000 ada to bob; close
else escrow pays 1000 ada to alice; close

};
when {

alice deposits 1000 ada into escrow -> {
int votes = 0;
when {

(yes(alice) -> votes := votes + 1 <+> no(alice))
<|> (yes(bob) -> votes := votes + 1 <+> no(bob))
<|> (yes(escrow) -> votes := votes + 1 <+> no(escrow)) -> {

payout(votes)
}

} after start_time + (90 days) -> payout(votes)
}

} after start_time + (3 days) -> close
};// alice bob escrow start_time
escrow(addr1q8zg...48g7, addr1qygn...9pl5, addr1qx2q...xlw7, 2025-05-04 00:00.00)

Figure 1 Three party escrow contract in Faustus.

three_party_escrow, which takes wallet addresses for the participants and the time the
contract will start. Inside three_party_escrow another payout contract is declared. Finally, a
when clause allows defining the interactions between the participants and the contract.

First, Alice is expected to deposit 1000 ada into the escrow account. After the deposit,
the 1000 ada will reside in an account that is internal to the contract for the escrow party.
The contract logic will not allow the funds to be used until the payout contract is called.

Each participant is then allowed to take either a yes or no vote. The choice operator
is <+>, and P<+>Q only evaluates P or Q, but not both. Note that the yes action also
increments votes. Then, those choices are allowed to be received in any order using the
interleaving operator <|>3. Note that until the final continuation contract is written, guards
may only be followed by variable reassignments, payments, or other guards. Both the <+>
and <|> operators prioritize executing the left operand.

After all of the votes are received, or the contract times out, the payout contract is called.
The payout contract checks if the votes meet a certain threshold to send the money to Bob.
Otherwise, it sends the money back to Alice. In each case, the contract is then fully closed.

3 Equivalent Contracts

A central question that arises when thinking about computational systems is, when do two
systems have equivalent behavior? Quoting Milner [36], “Until we know what constitutes
similarity or difference of behavior we cannot claim to know what ‘behavior’ means - and if
that is the case then we have no precise way of explaining what our systems do.”

3 In general, if there are k interleaved guarded commands there are k! (factorial) possible execution paths
induced by them.

FMBC 2025



9:6 Verifying Smart Contract Transformations Using Bisimulations

Thinking from first principles to answer what it might mean for a pair of processes, P

and Q, to be equivalent4, if we are very clever, we might come up with something like:

Processes P and Q are observationally equivalent if for every sequence of actions
(say s), applying s to P results in state P ′, then there is a state Q′ that results from
applying s to Q and P ′ and Q′ are themselves equivalent; and vice versa.

This idea has served as the basis of a whole host of formalisms for reasoning about processes
described as labeled transition systems.

It is convenient to use some notation for this relation. We write P ≈ Q to mean that
P and Q are observationally equivalent. To make the idea of a sequence of actions (say s)
being applied to a process P yielding P ′, we write P

s=⇒ P ′. With this notation we can make
the definition more precise as follows:

P ≈ Q if, and only if, for all sequences of actions s

i.) Whenever P
s=⇒ P ′ then, for some Q′, Q

s=⇒ Q′ and P ′ ≈ Q′.
ii.) Whenever Q

s=⇒ Q′ then, for some P ′, P
s=⇒ P ′ and P ′ ≈ Q′.

In the rest of this section, we describe the formalization of this idea in a form suitable for
proving equivalence of Faustus processes.

3.1 Faustus Processes
The operational semantics of Faustus is formalized in Isabelle/HOL [3]. The small step
semantics of Faustus are given as an inductive relation over configurations which consist
of a Faustus contract together with the Faustus state. The small step semantics define an
evaluator for Faustus. Configurations correspond to CCS processes. Transitions in the small
step semantics are either observable, and labeled with an action; or unobservable, and labeled
with a τ . Additionally, Faustus processes contain a set of actions that become restricted
and unobservable to the user. This formalization serves as the basis of our development of
observational equivalence.

▶ Definition 1 (Blockchain Primitives). String is the set of all strings. P arty is the set of
all blockchain addresses. Curr is the set of all blockchain currencies or kinds of tokens.

▶ Definition 2 (Labeled Transition System). A labeled transition system (LTS) is a triple
⟨S, L, Σ⟩ where S is a set of states, L is a set of labels, and Σ ⊆ (S × L × S) is a transition
relation (see e.g. [34]).

We now provide definitions with the end result of defining an LTS for Faustus processes.
The states of the Faustus LTS will be the contract, its execution state, and a restriction set.
The transition relation is defined by the operational semantics of Faustus. The labels will be
actions paired with a time window when they are generated.

▶ Definition 3 (Faustus Execution State).

State = ⟨Context, Env, Acct, Choice, (Z, Z), [P ayment], [Assertion]⟩

Where Context is a typing context (a map of variable names to types); Env is an envir-
onment (a map of variable names to their meanings); Acct are account balances (a map
of elements of (P arty, Curr) pairs to integers); Choice are the choices that have been

4 This is exactly what Milner [31, 32], Hoare [20], and Park [39] did.
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made (a map of choice name and party pairs to integers); the start and end times of the
current transaction window are given by a pair of integers interpreted as POSIX Times;
[P ayment] is the history of payments; and [Assertion] is the history of failed assertions.
We use variables {σ, σ1, σ2, · · · } to denote arbitrary execution states.

In practice, we use a small step semantics to define the transition relation used to evaluate
Faustus processes (see Definition 8). The small step semantics manage the actions in the
restriction set to make them unobservable to parties observing the progress of a running
contract.

There are three ways to interact with a contract running on the blockchain. They are the
choice, deposit, and notify actions.

A choice action allows a party to provide an integer value for a specific choice, labeled
by a string. For each choice action ⟨choice, p, c, x⟩ encountered during the evaluation of a
contract, the choice-party pair is mapped to the integer value x in the execution state (see
Definition 3). This data can be referred to later, both as part of the logic of the contract
itself and by other parties, to guide future behavior. The party and choice in the user action
must match a party and choice specified in a choice guard of the current when. In a choice
guard, choice values are specified to be in a list of range values, [[y1, z1], · · · [yk, zk]]. A guard
is triggered if, for the particular choice value x, if yi ≤ x ≤ zi for some i ∈ {1..k}.

A deposit action ⟨deposit, p1, x, c, p2⟩ specifies that party p1 (recall, strictly speaking,
parties are addresses on the blockchain5) deposits x tokens of currency c into party p2’s
account in the contract. During the execution of a contract, the contract itself holds the
deposited funds. These funds may be paid back out of the contract to a party (an address
on the blockchain) as specified by the logic of the contract. Deposit actions of the form
⟨deposit, p1, x, c, p2⟩ are only successful if the parties, amount of the deposit and the currency
match the deposit guard exactly. Funds internal to a contract are tracked in the Acct map
of the execution state.

The notify action allows parties to notify a contract that it can proceed with execution.
Notify guards are of the form notify b -> {C} where b is a Boolean expression and C is the
next contract to evaluate if the expression b evaluates to true in the current execution state.
For a notify action to trigger a notify, the expression b must evaluate to true.

▶ Definition 4 (User Actions). There are three types of user actions; choice, deposit, and
notify. We define the sets Choice, the set of all choice actions; Dep, the set of all deposit
actions; and Notif , the set of all notify actions as follows:

Choice
def= {⟨choice, p, c, x⟩ | p ∈ P arty, c ∈ String, x ∈ Z}

Dep
def= {⟨deposit, p1, x, c, p2⟩ | p1 ∈ P arty, x ∈ Z, c ∈ Curr, p2 ∈ P arty}

Notif def= {notify}

We define Act
def= Choice ∪ Dep ∪ Notif .

Faustus processes are triples containing the code of the contract that is executing, the state
of the executing contract, and a restriction set, a collection of actions that are unobservable6.

5 Cardano is based on an extended UTXO (Unspent Transaction Outputs) [15] model. Faustus uses an
account based model built on top of the EUTXO model of the Cardano blockchain.

6 For readers familiar with Milner and Hoare style process algebras this is similar to restriction.

FMBC 2025



9:8 Verifying Smart Contract Transformations Using Bisimulations

▶ Definition 5 (Faustus Processes). Let Contract be the set of all well-formed Faustus
contracts. Then we define the set of Faustus processes, P roc, to be the set of all pairs of
Faustus contracts and execution states restricted by an action set A:

P roc
def= {⟨C, σ⟩\A | C ∈ Contract, σ ∈ State, A ⊆ Act}

Note that we write ⟨C, σ⟩ when A is empty instead of ⟨C, σ⟩\{}, also, we write P (or
P1, P ′, Q, · · · etc.) to denote arbitrary elements of Contract × State.

Full transition labels include an action and a time window indicated by a start t1 and
end time t2, we use tt = ⟨t1, t2⟩ to denote an arbitrary time window ⟨t1, t2⟩. Due to the
latency between a transaction being submitted and evaluated on the blockchain, actions are
expected to be processed within the provided time window tt, and are rejected otherwise.
The times in tt are generated externally and provided in the stream of input to a running
process. Typically, the time window provided allows more than enough time to be evaluated
by the blockchain. These times are used to update the start and end time components of the
State according to the Faustus semantics.

▶ Definition 6 (Labels). When a Faustus process makes a transition, that transition is labeled
to indicate the external/user action, a, and a time window, tt, during which the transaction
containing the action is processed. The ϵ action allows a transition where time changes
without an explicit user action. The τ label indicates an unobservable transition; a transition
that does not require an external action. We define the set of all labels, Label, as follows:

Label
def= {⟨a, tt⟩ | a ∈ Act ∪ {ϵ}), tt ∈ Z × Z} ∪ {τ}

▶ Definition 7 (Composition of Transition Relations). If R ⊆ A × C and S ⊆ C × B we write
R · S to denote the relation on A × B constructed by (ordinary) composition of relations.

R · S def= {⟨x, y⟩ ∈ (A × B) | ∃z ∈ C. xRz ∧ zSy}

▶ Definition 8 (Faustus Transition Relation). We write ⟨C, σ⟩\A λ−→ ⟨C′, σ′⟩\A′ to denote
transitions restricted by A where A, A′ ⊆ Act. Under the small step semantics of Faustus7,
contract C in state σ with restricted actions A transitions on input (label) λ to contract C′, with
state σ′, and restriction set A′. Labels ⟨a, tt⟩ ∈ A×Z2 are hidden in the sense that transitions
made on labels containing actions in A are not observable8. When A = A′ (and it always
will be in this paper) we write ⟨C, σ⟩\A λ−→ ⟨C′, σ′⟩\A. In the case where P\A λ1−−→ R1\A,
R1\A λ2−−→ R2\A, and so on, up to Rk−1\A λk−−→ Q\A, we write P\A λ1···λk−−−−−→ Q\A (instead
of P\A( λ1−−→ · · · λk−−→ )Q\A) to denote a transition in the relation formed by the compos-
ition of λ1−−→ · · · λk−−→ . In the case where there is a vector of actions, α⃗ = ⟨α1, · · · ,αk⟩,
occurring sequentially with the same time window, we write P\A ⟨α⃗,tt⟩−−−−→ Q\A instead of
P\A ⟨α1,tt⟩···⟨αk,tt⟩−−−−−−−−−−→ Q\A. The full transition relation is defined by the following equations:

1.) P\A ⟨b,tt⟩−−−→0 Q\Adef= {⟨P\A, ⟨b, tt⟩, Q\A⟩ | b /∈ A ∧ P
λ−→ Q}

2.) P\A ⟨b,tt⟩−−−→k Q\Adef= {⟨P\A, ⟨b, tt⟩, Q\A⟩ | k > 0 ∧ b ̸= ϵ ∧ b /∈ A ∧ ∃α⃗ ∈ Ak.P
⟨α⃗·b,tt⟩−−−→ Q}

3.) P\A ⟨b,tt⟩−−−→ Q\A def=
⋃

k∈N {P\A ⟨b,tt⟩−−−→k Q\A}
4.) P\A τ−→ Q\A def= {⟨P\A, τ, Q\A⟩ | P

τ−→ Q}

7 Formally, in the Faustus semantics, ⟨C, σ⟩ λ−→ ⟨C′, σ′⟩ is defined by [[Γ, A ⊢ C : contract]] σ λ = ⟨C′, σ′⟩.
8 In CCS [34] unobservable τ -transitions arise by the synchronization of a name (a label) say λ and its

co-name λ̄.
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Note that λ−→
∗

denotes the reflexive transitive closure of λ−→ , i.e. it is the relation defined
by the composition of any number of λ−→ relations including 0.

The Faustus transition relation allows an arbitrary number of hidden actions from the
restriction set to occur before an observable transition. In this way, the restriction set not
only prevents the users from sending actions in the set, but it also corresponds to a process
running concurrently with the Faustus smart contract that can send any of the actions in
the restriction set. Regular τ -transitions and timeout transitions remain unchanged by the
restriction set.

▶ Definition 9 (Faustus Labeled Transition System). The Faustus LTS is defined as the triple
⟨P roc, Label, −→ ⟩. The states of the Faustus transition relation are elements of P roc. The
labels of the Faustus transition system are elements of Label. The transition relation −→
is defined in Definition 8, and given by the small step semantics of Faustus; the details of
which have been formalized in Isabelle/HOL [3].

Typically, users interact with contracts using an empty set of restricted actions. Non-
empty sets of restricted actions allow for traversing different contract structures through
multiple transactions without requiring additional user interaction. This will be explained in
more detail in Section 4.

With the definition of the Faustus transition relation, we also define the experiment
relation between Faustus processes on sequences of labels.

▶ Definition 10 (Experiment Relation). Let s = λ1 · · · λn ∈ Label∗. We define the experiment
relation s=⇒ as follows:

=⇒ def= τ−→
∗

s=⇒ def= =⇒ · λ1−−→ · =⇒ · · · =⇒ · λn−−→ · =⇒

Thus, s=⇒ is the behavior that allows an arbitrary number of τ actions before, between, and
after the observable actions in s.

3.2 Observational Equivalence
A bisimulation is a binary relation between states of processes. It identifies states that
cannot be distinguished from one another by any sequence of observable actions. From the
perspective of a user interacting with two bisimilar processes, the same inputs result in
the same outputs for both processes. The user cannot tell the difference between the two
processes by interacting with them. If two processes, P and Q, are bisimilar, we write P ≈ Q.
It turns out that ≈ is an equivalence relation [35].

▶ Definition 11 (Weak Simulation). Let F = ⟨P roc, Label, −→ ⟩ be the Faustus LTS, and
let R ⊆ (P roc × P roc) be a binary relation, and s ∈ Label∗. R is a weak simulation over
F when the following property holds:

If (P1, Q1) ∈ R and P1
s=⇒P2 then there exists Q2 ∈ S such that Q1

s=⇒Q2 and (P2, Q2) ∈ R

This definition leads to the definitions of weak bisimulation and observational equivalence.

▶ Definition 12 (Weak Bisimulation, Observational Equivalence). Let F = ⟨P roc, Label, −→ ⟩
be the Faustus LTS, and let R ⊆ (P roc × P roc) be a binary relation. Then R is a
weak bisimulation over F , if it and its converse are both weak simulations. We say P and
Q are observationally equivalent, written P ≈ Q, if there exists a weak bisimulation R such
that (P, Q) ∈ R.
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P

1 when {a1 -> c1,

2
...

3 an -> cn
} after t -> { close }

Q [k < n]

1 when {a1 -> c1

2
...

3 ak -> ck
p chooses fresh within [0, 0] -> {

4 when {ak1 -> ck1

5
...

6 an -> cn
7 } after t -> { close }

}
8 } after t -> { close }

Figure 2 A contract (P ) and the result (Q) of recursively applying the transformation.

Processes are called observationally equivalent when there is a bisimulation between them.
The number of unobservable transitions may differ when evaluating two observationally
equivalent processes on the same observable transitions. We have proved in Isabelle/HOL
that bisimulations on Faustus processes are equivalence relations, and that simulations are
closed under union. The proofs of these properties are well understood, and can be found in
multiple works by Milner [33, 34, 35, 36].

With the definition of observational equivalence, we can now prove transformations of
Faustus contracts do not modify their observed behaviors. The next section describes a
common transformation that is applied to Faustus contracts, and proves the result of the
transformation is observationally equivalent to the original.

4 Contract Transformations

In each round of computation on the blockchain, Faustus programs run until they pause
for external input at a when contract, or are closed. The computation time between each
pause may take longer than the maximum computation time allowed per transaction on the
blockchain, leading to out of gas errors [1]. If an out of gas error occurs, the contract will
revert back to its state prior to that round of computation. Reverting to the prior state can
result in code that never progresses while still generating gas costs.

Consider the contract on the left side of Figure 2. Assume that in each round of
computation there is only enough time to check k + 1 guards before an out of gas error
occurs. Then there are n − (k + 1) guard continuations that are unreachable when running
the contract on the blockchain. On the right side of Figure 2, the sequence of n guards has
been replaced by a length k + 1 sequence of guards, the last of which is a fresh choice guard
that cascades to a when containing the rest of the transformed contract. We have colored
this section blue to indicate it will be recursively transformed.

To allow every guarded command to be reachable, programmers apply this transformation
where the list of guarded commands is truncated, and moved into a sub-contract that runs
after a “fresh” choice action is taken. The key aspect is selecting a choice name that does
not appear in the original contract, i.e. it is fresh, hence (p chooses fresh within [0, 0])9 is a
choice guard that does not occur in the original contract. The result of the transformation

9 The range [0,0] simply means p must choose 0.



K. McIlwaine and J. Caldwell 9:11

(* sg - split guards *)
function sg :: "ChoiceName ⇒ FContract ⇒ FContract" where
"sg cn (When guards t cont) = (

let
newGuards = map (λ(Case g c) ⇒ (Case g (sg cn c))) guards;
newCont = sg cn cont

in
if (k > 1 ∧ length newGuards > k)
then (When (take k newGuards @

[Case (ActionGuard (Choice (FChoiceId cn p) [(0, 0)]))
(sg cn (When (drop k guards) t cont))])

t newCont)
else (When newGuards t newCont))" |

"sg cn (Close) = Close" |
"sg cn (StatementCont s c) = (StatementCont s (sg cn c))" |
"sg cn (If e c1 c2) = (If e (sg cn c1) (sg cn c2))" |
"sg cn (Let i v c) = (Let i v (sg cn c))" |
"sg cn (LetObservation i v c) = (LetObservation i v (sg cn c))" |
"sg cn (LetPubKey i v c) = (LetPubKey i v (sg cn c))" |
"sg cn (LetC i p b c) = (LetC i p (sg cn b) (sg cn c))" |
"sg cn (UseC i a) = (UseC i a)"

Figure 3 Isabelle implementation of the transformation algorithm.

applied to P in Figure 2 is Q in the same figure. As we will see below, the “fresh” choice
allows for a transition that leads directly to a when contract. Since when contracts pause
execution until the next round of blockchain computation, the out of gas error is avoided,
and the rest of the guard continuations can be reached in the next round of computation.

This type of transformation has been informally described by Bush [14] as a best practice
for Marlowe contracts with complex logic. The Isabelle function in Figure 3, which acts on
the Faustus abstract syntax tree from Appendix A, formally describes the transformation.

▶ Definition 13 (Transformation Constants). The transformation function in Figure 3 has
two constants associated with it, p and k. The first one, p, is an arbitrary P arty that will
be allowed to send signals containing the ⟨choice, p, c, 0⟩ action that traverses the cascading
when contracts; and k is a natural number representing the maximum number of guarded
commands before a split into cascading when contracts should be performed. These constants
can take on any values of the appropriate type.

Evaluation of different guard expressions may take different amounts of time; thus,
experimentation may be required to determine the safe value for k for a specific contract.

▶ Definition 14 (Transformed Contracts). Given a contract C, and choice name c, we use
the notation C⌜ ⌝

c to denote the result of applying the transformation (sg c) to C. We also
overload the notation for ⟨C, σ⟩⌜ ⌝

c to denote application of the transformation to C as well as
all contracts mentioned in the environment in σ. See Definition 3 for the definition of the
environment in σ.

In the example from Figure 2, Q = P⌜ ⌝
fresh. To verify this transformation, we must show

that there is a weak bisimulation between them for an arbitrary restriction set A, i.e. that
⟨P, σ⟩\A ≈ ⟨P, σ⟩⌜ ⌝

fresh\(A ∪ {⟨choice, p, fresh, 0⟩}).
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1 when {
2 a -> c1,
3 a -> c2
4 } after t -> { close }

1 when {
2 a -> c1,
3 p chooses fresh within [0, 0] -> {
4 when {
5 a -> c2
6 } after t -> { close }
7 }
8 } after t -> { close }

Figure 4 A contract without disjoint guards before and after applying the transformation.

4.1 Restriction - Making Observable Actions Unobservable
The strategy of the transformation is to transform a when contract having a long list of
guarded commands into a new contract having a structure of cascading when contracts
whose guarded command lists are length less than or equal to k + 1. To accomplish this, we
introduce a choice action with a choice name that does not occur in the original contract
called c. The guard in the contract takes the form (p chooses c within [0, 0]), so that inputs
of the form ⟨⟨choice, p, c, 0⟩, tt⟩ induce a transition.

▶ Definition 15 (Restricted Choice Action). Given a choice name c ∈ String we define the
choice action, αc

def= ⟨choice, p, c, 0⟩.

The action αc is used to traverse the cascading when structure introduced by the trans-
formation. As long as c does not occur as choice name in P , αc can safely be used to
internally transition along the chain of cascading whens introduced by sg in P⌜ ⌝

c (see Figure
3). Adding αc to the restriction set hides those transitions when evaluating P⌜ ⌝

c . This allows
us to show that there is a bisimulation between P\A and P⌜ ⌝

c\(A ∪ {αc}).

4.2 Verifying the Transformation
To be a candidate for the transformation requires a kind of predictability in the behavior of
the contract to be transformed. Specifically, the guards in every when having more than k

guarded commands must be disjoint, in the sense that at most one guard evaluates to true
in any state-action pair.

The example contracts in Figure 4 demonstrate the issue that occurs if the guards are
not disjoint. In the original contract on the left there is no way to get to the c2 continuation.
This is because the guards in a when are evaluated in the order they appear in the list. If
the guarded command (a->c1) is triggered, then (a->c2) would have been triggered as well.
(a->c1) will always continue to c1 before (a->c2) is ever evaluated. On the other hand, the
transformed contract on the right can reach both c1 and c2. If the label ⟨a, tt⟩ reaches c1,
then the sequence ⟨αfresh · a, tt⟩ reaches c2, which was previously unreachable. Also note that
αfresh is hidden, so to any observer, the labels ⟨αfresh · a, tt⟩ and ⟨a, tt⟩ appear to be identical.
As this example shows, the transformed contract may have more behaviors than the original
contract, and there is no evaluation of the original contract that will simulate those behaviors.
By requiring the guards to be disjoint, we guarantee that there is no unreachable code
uncovered by the transformation. In practice, most contracts are written to have disjoint
guards. For example, the three-party escrow contract in Figure 1 has disjoint guards since
all choice guards in the when are for different parties or allow different choices of values for
the vote, and there is only one deposit guard.
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While outside the scope of this work, Appendix B describes a transformation that will
make all guards in the lists of guarded commands disjoint for contracts where programmers
find the need to write non-disjoint guards. The transformation would maintain the behavior
of the contract by prioritizing the guard that appears earlier in the when. By modifying
the logic of the later guards, it is possible to remove the logic that overlaps with the earlier
guard while maintaining the non-overlapping logic. Since bisimulations are equivalence
relations, once a bisimulation is shown to exist using the disjoint transformation, the disjoint
transformation can be composed with the sg transformation, and the result would be
observationally equivalent to the original contract.

▶ Definition 16 (Disjoint Guards). A contract-state pair ⟨C, σ⟩ is disjoint if, for each contract
in ⟨C, σ⟩ of the form (when gs after t -> cont), the list of guarded commands gs is disjoint.
gs is disjoint when, for all l and r such that gs = l ++ r, the following two properties hold in
for all actions in all execution states:
i.) If l contains a guard that evaluates to true then all guards in r evaluate to false.
ii.) If r contains a guard that evaluates to true then all guards in l evaluate to false.

Next, we define a binary relation between original processes and their transformed
counterparts, and prove it is a bisimulation.

▶ Definition 17 (Split Guards Relation). For all c ∈ String let SGc be the following binary
relation over P roc:

SGc
def= {⟨⟨C, σ1⟩\A, ⟨C, σ2⟩⌜ ⌝

c\(A ∪ {αc})⟩
| c fresh in ⟨C, σ1⟩, disjoint ⟨C, σ1⟩,

σ1 = ⟨Γ , e, accts, choices1, t, ps, asrt⟩,
σ2 = ⟨Γ , e, accts, choices2, t, ps, asrt⟩,
∀x ∈ String, p ∈ P arty . x ̸= c implies choices1[(x, p)] = choices2[(x, p)] }

The binary relation SGc is a relation in P roc × P roc, where the second element is the
result of applying the transformation function (sg c) to the first element. Also note, the
original contract must have disjoint guarded command lists; and the Faustus execution states
in the two elements of the relation are equivalent up to the choices for the new choice name
c. We will use SGc to show a bisimulation between an original contract and a transformed
contract under the condition that the choice name used in the transformation is not in the
original contract.

▶ Lemma 18. For all c ∈ String, SGc is a weak simulation over (P roc, Label, −→ ).

▶ Lemma 19. For all c ∈ String, SG−1
c is a weak simulation over (P roc, Label, −→ ).

Proof. The proofs of Lemmas 18 and 19 are done in Isabelle/HOL by induction on the
structure of the experiment relation ( =⇒ ), and by cases on the structure of the transition
relation ( −→ ). Assume membership in the relation (SGc or SG−1

c ) and an arbitrary transition
for the first member of the relation. Then for each case of the transition relation, we show
the second member of the relation will transition on an experiment containing the same label
to another element of P roc that maintains membership in the relation (SGc or SG−1

c ). ◀

▶ Theorem 20 (Transformation Verification). Let ⟨C, σ1⟩\A, ⟨C, σ2⟩⌜ ⌝
c\(A ∪ {αc}) ∈ P roc be

states in the Faustus LTS (P roc, Label, −→ ), for some arbitrary c ∈ String such that:
i.) c is fresh for C and σ1, i.e. c does not occur as a choice name in either.
ii.) Guarded command lists in ⟨C, σ1⟩ are disjoint.
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iii.) σ1 = ⟨Γ , e, accts, chs1, t, ps, asrt⟩
iv.) σ2 = ⟨Γ , e, accts, chs2, t, ps, asrt⟩,
v.) ∀x ∈ String, r ∈ P arty.x ̸= c implies chs1[(x, r)] = chs2[(x, r)].
Then ⟨C, σ1⟩\A ≈ ⟨C, σ2⟩⌜ ⌝

c\(A ∪ {αc}).

Proof. Assume an arbitrary c ∈ String, ⟨C, σ1⟩\A, ⟨C, σ2⟩⌜ ⌝
c\(A ∪ {αc}) ∈ P roc, and that

(i.) through (v.) hold. From Lemma 18, Lemma 19, and Definition 12 of bisimulation,
we can conclude that SGc is a bisimulation. Then by the definition of SGc, we know that
⟨⟨C, σ1⟩\A, ⟨C, σ2⟩⌜ ⌝

c\(A ∪ {αc})⟩ ∈ SGc. Thus ⟨C, σ1⟩\A ≈ ⟨C, σ2⟩⌜ ⌝
c\(A ∪ {αc}). ◀

With Theorem 20 we have verified contracts have the same observable behavior before
and after the transformation is applied. Programmers can safely apply the transformation to
their contracts using the initial execution state and empty restriction set before they are
loaded onto the blockchain. The conditions required to guarantee the bisimulation is valid
are: i.) the choice name used in the transformation is fresh, and ii.) the guarded command
lists in the original contract are all disjoint.

5 Conclusions and Future Work

In this paper we have described an Isabelle formalization of a bisimulation verifying that smart
contracts written in Faustus and their transformed instances are observationally equivalent.
The formalization introduces a notion of hidden actions in a way different from Milner’s CCS
[34]. Also, Hoare’s CSP [21] has a restriction operator, but it differs in a number of ways;
perhaps most significantly, his restriction sets enumerate the allowable actions.

There are a few clear ways this work can be continued. The first is that we plan to apply
this methodology to many more transformations. First among them will be to formalize, in
Isabelle, one that transforms an arbitrary guarded command list into one that is disjoint.
A strategy for this transformation is described in Appendix B. Since the verification of
the transformation in this paper requires the guarded command lists in the contract to be
disjoint, it would be useful for programmers to have more contracts that the transformation
can be applied to.

Also, we plan to apply these techniques to other smart contract programming languages
(perhaps Solidity [8]). In Faustus, labels for the transition relation are clearly given in the
syntax of the contract as guards in the guarded commands of a when contract. In Solidity,
the require statements act like guards. Marmsoler and Brucker [28] have formalized the
semantics of Solidity in Isabelle/HOL, which would serve as a good starting point.

Another area of investigation is applying the additional methodologies used for Timed
CCS. We include time information as part of the labels in the Faustus LTS and use that
information to update the State time information according to the Faustus semantics.
Timed CCS variants use clock signals as labels in processes transitions [5, 27]. In order to
show a bisimulation between Faustus processes, the State information must be included in
the relation. By moving the time information out of the State and using the clock labels
that timed CCS variants use, it should reduce the complexity of the relations required to
verify smart contract transformations.
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9:18 Verifying Smart Contract Transformations Using Bisimulations

datatype FAction =
Deposit FParty FParty Token FValue

| Choice FChoiceId "Bound list"
| Notify FObservation

datatype FStatement =
Pay FAccountId FPayee Token FValue

| Assert FObservation
| ReassignVal Identifier FValue
| ReassignObservation Identifier FObservation
| ReassignPubKey Identifier FParty

datatype FGuardExpression =
ActionGuard FAction

| GuardThenGuard FGuardExpression FGuardExpression
| GuardStmtsGuard FGuardExpression "FStatement list"
| DisjointGuard FGuardExpression FGuardExpression
| InterleavedGuard FGuardExpression FGuardExpression

datatype FContract =
Close

| StatementCont FStatement FContract
| If FObservation FContract FContract
| When "FCase list" Timeout FContract
| Let Identifier FValue FContract
| LetObservation Identifier FObservation FContract
| LetPubKey Identifier FParty FContract
| LetC Identifier "FParameter list" FContract FContract
| UseC Identifier "FArgument list"

and FCase = Case FGuardExpression FContract

Figure 5 Isabelle: constructors for Statements, Guard Expressions, and Contracts.

A Faustus Abstract Syntax Tree

The Isabelle data type definitions in Figure 5 are the result of parsing a Faustus program.
Each constructor represents a different type of the same syntactical object. The construct-
ors of FContract each define a type of Faustus contract. Similarly, the constructors of
FGuardExpression and FStatement each define a type of guard expression or statement
that can occur in a Faustus contract, respectively. The constructors of FAction give the
types of basic action guards for the actions that users can take while interacting with Faustus
processes. The list inside the When contract is a list of Cases, the full constructor for a
guarded command.

B The Disjoint Guards Transformation

The verification of the sg transformation requires guarded command lists in the original
contract to be disjoint. In Figure 6 we provide an algorithm for creating disjoint guards
when given two that may match on the same user action. Since guarded command lists and
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fun left_prioritize_action :: "FState ⇒ FAction ⇒ FAction ⇒ FAction" where
"left_prioritize_action σ

(Deposit p11 p12 t1 v1)
(Deposit p21 p22 t2 v2) =

(if (evalFParty σ p11 = evalFParty σ p21) ∧
(evalFParty σ p12 = evalFParty σ p22) ∧
t1 = t2

then Deposit p21 p22 t2 (Cond (ValueEQ v1 v2) (Constant (-1000)) v2)
else Deposit p21 p22 t2 v2)" |

"left_prioritize_action σ

(Notify obs1)
(Notify obs2) =

(Notify (AndObs (NotObs obs1) (obs2)))" |
"left_prioritize_action σ

(Choice (FChoiceId cn1 p1) bounds1)
(Choice (FChoiceId cn2 p2) bounds2) =

(if (evalFParty σ p1 = evalFParty σ p2) ∧ cn1 = cn2
then Choice (FChoiceId cn2 p2) (left_prioritize_bounds bounds1 bounds2)
else Choice (FChoiceId cn2 p2) bounds2)" |

"left_prioritize_action σ _ a = a"

Figure 6 Isabelle: constructors for Statements, Guard Expressions, and Contracts.

guard expressions prioritize the top/left, we can make contract guards disjoint by modifying
the guard that has lower priority. A full Isabelle/HOL verification of this algorithm has not
been completed yet, but it will use the bisimulation method described in this paper.

In Faustus, a negative deposit is not an action that a user can make. Thus, if two deposits
are identical, to avoid a situation where the deposit guards overlap, we disable the second
deposit guard by making its value negative. In this way, we make two deposit guards disjoint
while prioritizing the first. Note that disabling the second will have no effect, because it is
identical to the earlier one.

The algorithm handles choice guards much like deposit guards. Checking the equality of
the choice names and parties, and then performing an interval difference operation gives
disjoint choice guards.

In a simpler case, two notify guards can be made disjoint by taking the Boolean formula
of the left guard b1 and combining it with the Boolean formula in the right guard b2 in the
formula ¬b1 ∧ b2 .

Finally, left_prioritize_action σ _ a = a handles all other cases, where the guards
being prioritized are not the same, e.g. the caser where the first is a deposit guard and the
second is a notify

Figure 6 shows how to perform these operations on the Faustus AST.
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