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—— Abstract

We propose a unified framework for an Earth-independent Al system that provides explainable,

context-aware decision support for EVA mission planning by integrating six core components: a
fine-tuned EVA domain LLM, a retrieval-augmented knowledge base, a short-term memory store,
physical simulation models, an agentic orchestration layer, and a multimodal user interface. To
ground our design, we analyze the current roles and substitution potential of the Mission Control
Center — identifying which procedural and analytical functions can be automated onboard while
preserving human oversight for experiential and strategic tasks. Building on this framework,
we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a
proof-of-concept toolset that combines Microsoft Phi-4-mini-instruct with a FAISS (Facebook Al
Similarity Search)-powered EVA knowledge base and custom A* path planning and hypogravity
metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy
to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response
effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the
feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing
cognitive load, and improving safety for deep-space exploration missions.
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1 Introduction and Background

Current extravehicular activity (EVA) sorties are highly choreographed and rely on con-
tinuous support from ground control teams [5][6][33]. Flight controllers in Mission Control
meticulously monitor the astronauts’ suit telemetry and progress during EVA, managing
safety and tasks in real time[33][39]. While this Earth-dependent model is feasible for current
International Space Station (ISS) and lunar EVAs, future lunar habitats and surface infra-
structure will necessitate multiple concurrent EVAs, and Mars missions will face significant
communication latency and limited bandwidth[33][34][9]. Past missions have highlighted the
challenges in on-the-fly EVA decision-making. For example, Apollo 14 astronauts attempted
to reach Cone Crater without real-time navigation aid and had to abort when they became

! Correspondence: Department of Mechanical and Aerospace Engineering, UC Davis, One Shields Ave,
Davis, CA 95616, USA

© Kaisheng Li and Richard S. Whittle;
37 licensed under Creative Commons License CC-BY 4.0
Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025).

Editors: Leonie Bensch, Tommy Nilsson, Martin Nisser, Pat Pataranutaporn, Albrecht Schmidt, and
Valentina Sumini; Article No. 6; pp. 6:1-6:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:ctli@ucdavis.edu
https://mae.ucdavis.edu/
https://orcid.org/0009-0000-7030-7890
mailto:rswhittle@ucdavis.edu
https://mae.ucdavis.edu/
https://orcid.org/0000-0002-7437-5433
https://doi.org/10.4230/OASIcs.SpaceCHI.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

6:2

Toward an Earth-Independent System for EVA Mission Planning

disoriented and fatigued, despite coming within approximately 40 meters of the rim[32]. They
carried only a paper map and made judgments on the ground while mission control tracked
their vital signs[32]. This incident underscores the need for Earth-independent autonomous
planning, monitoring, and decision-making support during EVAs.

NASA’s Personalized EVA Informatics & Decision Support (PersEIDS) initiative repres-
ents an important step toward autonomy by leveraging the Crew State & Risk Model (CSRM)
to project individualized crew health and performance parameters — such as metabolic rate,
thermal load, fatigue, COy dose, and decompression stress — over EVA timelines [35][1].
PersEIDS develops user interfaces, visualizations, and data-science methods that deliver
actionable, data-driven options and recommendations to extravehicular and intravehicular
crewmembers for safe, efficient planning and execution under high-latency conditions [35].
It also automatically tracks and probabilistically assesses suit consumables against flight
rules to improve mission completion time and preserve consumables relative to unsupported
operations [35]. However, while PersEIDS excels at biomedical decision support and consum-
able management, it does not provide end-to-end task planning, context-aware reasoning, or
the fully autonomous “virtual flight controller” functionality needed when ground support
is delayed or unavailable. Moreover, a fully autonomous decision-support system can dir-
ectly interpret CSRM’s predictive outputs, streamlining EVA planning without adding crew
cognitive workload.

To fill this gap, an autonomous, Earth-independent artificial intelligence (AI) system —
integrated within spacecraft, habitats, or embedded directly in astronaut suits — is envisioned
by acting as a local “virtual flight controller” for the crew. Such a system could enhance
astronaut safety and efficiency by dynamically replanning routes, monitoring astronaut
health, providing task-related information, and advising the crew immediately, rather than
waiting for delayed input from Earth. This can optimize EVA outcomes in real time, reducing
reliance on ground support. Recent technological advancements underscore the feasibility of
deploying sophisticated Large Language Models (LLMs) in space. In mid-2024, Booz Allen
Hamilton, in collaboration with Hewlett Packard Enterprise (HPE), successfully deployed
an LLM retrieval-augmented generation (RAG) application aboard the ISS using HPE’s
Spaceborne Computer-2 to help perform certain maintenance and repair procedures [17].
This milestone demonstrated that disconnected Al operations in austere environments are
achievable.

In this paper, we introduce a framework for an Earth-independent Al system for EVA
mission planning and decision support that integrates: (a) a small-parameter EVA domain
LLM fine-tuned on astronaut-ground transcripts, NASA EVA handbooks, flight rules, and
related literature; (b) a retrieval-augmented knowledge base of procedures, checklists, opera-
tional logs, and related documents; (c) a suite of physical simulation models (path planning,
metabolic prediction, thermal load, radiation dose, life-support performance, communications
quality, power consumption, and more); (d) a short-term memory store that persistently
captures mission context (objectives, timeline), crew profiles (roles, expertise, health/status),
prior user—agent interactions, and live sensor telemetry; (e) an agentic orchestration layer
that sequences semantic retrievals, model invocations, ReAct-style iterative reasoning, and
generation into fully traceable, explainable EVA recommendations; and (f) a multimodal
user interface (text, voice and visual) that delivers concise guidance, annotated maps, task
timelines, and underlying rationale with source citations. Building on this framework, we
introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a
proof-of-concept toolset that implements these components to deliver context-aware, quant-
itatively grounded decision support — emulating key Mission Control functions, enhancing
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crew autonomy, and safeguarding astronaut safety when Earth support is delayed or unavail-
able. This paper provides a high-level review of relevant literature, outlines our proposed
architecture and experimental plan, and discusses associated risks and future steps toward
realizing this vision.

2  Current Roles and Substitution Potential of Mission Control Center

The Mission Control Center (MCC) serves as the operational hub for space missions, providing
critical support across multiple domains [24]. For EVA operations specifically, MCC fulfills
several essential functions that must be considered when designing an Earth-independent
alternative. These functions include managing EVA timelines, tracking suit telemetry and
consumables, providing contingency guidance during off-nominal situations, conducting real-
time risk assessment and decision-making, optimizing resource usage, delivering specialized
scientific guidance, coordinating communication between the crew and ground teams, monit-
oring astronaut physiological and behavior health, and strategically adjusting mission plans
in response to discoveries or unexpected challenges [38][39][37][41][40][25][15]. Given these
roles, what could be substituted with an onboard Al agent? The potential for substituting
these functions with automated systems or alternative technologies is closely tied to the
nature of the knowledge they require. The knowledge types employed by MCC can be
categorized as:

Procedural Knowledge: Formalized processes, checklists, and operational sequences
documented in NASA handbooks and flight rules.

Experiential Knowledge: Expertise developed through years of mission operations,
including pattern recognition and analogical reasoning applied to novel situations.
Analytical Knowledge: Quantitative assessment capabilities for system performance,
environmental conditions, and mission constraints.

Domain-specific Knowledge: Specialized expertise in areas such as geology, medicine,
engineering, or other disciplines relevant to mission objectives.

Strategic Knowledge: High-level mission planning capabilities that consider multiple
interdependent factors and long-term consequences.

Tasks characterized by procedural and analytical knowledge — those governed by well-defined
steps, rules, or data-driven logic — are generally more amenable to automation or delega-
tion to technological systems. Conversely, tasks that depend heavily on experiential and
domain-specific knowledge, such as those requiring nuanced judgment, intuition, or expertise
developed through practical experience, pose greater challenges for automation [4]. Con-
sequently, functions predominantly rooted in procedural or analytical knowledge exhibit
a higher potential for substitution, while those reliant on experiential or strategic expert-
ise demonstrate a medium substitution potential. Additionally, the psychological support
function demonstrates limited substitution potential. Despite advancements in artificial intel-
ligence, the nuanced interpretation of complex emotional signals, empathetic communication,
and personalized adaptation to individual psychological requirements remain predominantly
within the expertise of human professionals. Therefore, automated systems should be viewed
primarily as supportive tools rather than comprehensive replacements in this deeply human-
centered function [27]. This analysis highlights the potential to substitute many functions
of the current Mission Control Center (MCC) with automated systems, particularly those
rooted in procedural and analytical knowledge. However, it also reveals limitations in fully
replacing tasks that demand advanced cognitive, contextual, and emotional capabilities.
Table 1 provides a summary of the current functions of MCC and their substitution potential
for EVA operation specifically.
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Table 1 This table categorizes MCC responsibilities during EVAs and assesses their potential for
AT substitution[38][39][37][41][40][25][15].

K led Substituti
Function Description nowlecge ubstl u. ton
Type Potential
Procedure sTtZaCl:ngstEVAuﬁilrzzli:eirlfr?; i(ijrilng Procedural High
Management p y PE ’ g &
deviations
Tracki it tel t
Systems raciing sult teleme r.y, Analytical .
. consumables, and environmental High
Monitoring Procedural
parameters
Contingency Providing troubleshooting guidance Experiential .
. . . Medium
Response for off-nominal situations Procedural
Risk Assessment R'eal-time evaluation of r'nission Experieptial Medium
risks and go/no-go decisions Analytical
R(.eso.ur(:(.e Managing c.onsumables. usage and Analytical High
Optimization recommending pace adjustments
fontifi Providi : )
Sc1.ent1 ¢ rov1d.1ng expertise .on sample Domain-specific Medium
Guidance collection and experiment protocols
Communication Managing communication between
. EVA crew, vehicle crew, and Procedural High
Coordination
ground
Medical Assessing astronaut vital signs and Analytical .
. . . Medium
Monitoring health status Domain-specific
Strategic Substantial timeline modifications Experiential .
. . . . . Medium
Replanning due to discoveries or failures Strategic
Monitori st t psychological
Psychological om orlng a,b ronat 'pbyc olosiea Experiential
state, providing emotional support, . . Low
Support e . Domain-specific
and mitigating stress-related risks

3 Evolution from Text Generation to Agency

LLMs have evolved rapidly from early transformer-based models like BERT [13] to sophistic-
ated systems like GPT-ol [44], with capabilities extending far beyond text generation. This
evolution has been marked by key innovations in both model architecture and application
techniques. Recent advancements have transformed LLMs from passive text generators into
systems with agent-like capabilities. These include self-reflection and output critique [51][31],
effective use of external tools and APIs [50][45][56], complex task planning and decomposition
[57][55], and multi-agent collaboration through structured dialogues [11][49]. Collectively,
these developments enable LLMs to operate as increasingly autonomous, goal-directed
systems.
Several key approaches have proven effective for domain-specific applications:

Domain Adaptation and RAG: Fine-tuning on specialized corpora [18] and retrieval
augmentation [30] enable LLMs to access and incorporate domain expertise.
Reasoning Enhancements: Techniques like instruction tuning[60] and chain-of-thought
reasoning [55] improve models’ ability to follow constraints and demonstrate explicit
reasoning.

Efficiency Optimizations: Small-parameter models reduce computational requirements
while maintaining performance on specialized tasks, making deployment possible in
resource-constrained environments [47].
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In space applications, these advances have enabled a spectrum of notable implementations.
Mission support systems have seen early deployments through CIMON, an ISS-based Al
assistant designed to reduce crew workload through natural dialogue [3], and NASA’s Callisto
experiment, which validated a voice assistant capable of handling procedural queries without
Earth communication [16]. Autonomous decision support capabilities advanced significantly
with the successful 2024 deployment of a generative Al system with RAG capabilities on
ISS, validating the technical feasibility of operating advanced AI within space hardware
constraints [17]. Meanwhile, an AI4U assistant — with a capability of learning new skills
during operation as a result of its reinforcement learning approach — is being tested in the
Mars Desert Research Station (MDRS) facilitates [42] [7]. More recently, CORE (Checklist
Organizer for Research and Exploration) and METIS (Mars Exploration Telemetry-Driven
Information System) have been proposed as offline-capable intelligent personal assistants that
integrate knowledge graphs, retrieval-augmented generation, and augmented reality to deliver
reliable, flexible, and intuitive procedural guidance for astronauts aboard the ISS, the Lunar
Gateway, and future deep-space missions[7][8]. These developments collectively demonstrate
the utility of AT and LLMs across multiple operational domains in space exploration.

It’s important to note that baseline LLMs have limitations that must be addressed
for mission-critical use. They are prone to hallucination — confidently stating incorrect
information — which is unacceptable when astronaut safety is on the line [21]. They also
lack up-to-date awareness of the world beyond their training data cutoff. To mitigate these
issues, the current state of the art uses Retrieval-Augmented Generation (RAG) and related
techniques. RAG involves retrieving relevant documents or facts from an external knowledge
source and feeding that into the LLM during query answering [58]. In our context, that
means when the astronaut asks the Al a question (e.g., “What’s the next step? My COq
level is high.”), the system would fetch pertinent information (for example the COq scrubber
malfunction procedure from the EVA manual, or a rule about terminating EVA upon high
COy), and the LLM would incorporate that into its response. This approach keeps answers
grounded in authoritative sources and reduces the chance of the Al “making stuff up”. In
NASA’s own research, integrating RAG has been shown to improve the feasibility and
correctness of LLM-generated solutions in a domain task [54].

The requirements for explainability, robustness to unexpected inputs, and operation
within tight computational constraints still pose challenges in developing LLMs in safety-
critical space applications. Astronauts must understand AI recommendations sufficiently
to evaluate them in high-stakes situations, which require an appropriate level of trust and
accuracy of information provided. Current LLM implementations, even those enhanced
with basic RAG capabilities, fundamentally fail when confronting problems requiring precise
analytical computation or physical simulation. These limitations are especially pronounced
in EVA contexts where accurate metabolic modeling, dynamic path optimization, and
physical environmental interactions demand capabilities beyond text generation and retrieval
alone. Standard language models cannot effectively perform the mathematical modeling,
spatial reasoning, or physical predictions needed for critical EVA parameters such as oxygen
consumption rates, thermal regulation, or optimal traversal planning across variable terrain.
To address these limitations, the agentic RAG paradigm extends the traditional framework
by embedding an AT agent capable of orchestrating a sequence of actions. In this pipeline,
the LLM is not merely a passive answer generator; it actively plans and executes multiple
retrievals, engages external tools (such as a path planner, or other physical simulation APIs)
and iteratively refines its reasoning [10]. For example, an EVA planner agent could break
down a task, namely planning a route from point A to B, into a series of deliberate steps:
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retrieving the mission map and constraints, invoking a path planning module to identify
possible routes, consulting a metabolic cost prediction model to estimate oxygen usage,
checking predefined procedures and rules, and finally comparing options against safety limits
to produce a recommendation complete with explanations. Recent surveys highlight that this
agentic RAG approach offers unparalleled flexibility and context-awareness, enabling dynamic
retrieval strategies and multi-step reasoning that mirror the decision-making processes of a
human flight controller [52]. We aim to leverage these benefits in the EVA domain, effectively
creating a digital assistant that can think through an EVA plan similarly to how a human
flight controller would — by consulting manuals, running calculations, and deliberating over
options.

4 Proposed Framework and Toolset

The framework we propose consists of several integrated components to create a system that
provides decision support comparable to Earth-based mission control while operating within
the constraints of deep-space missions. An architectural schematic is presented in Figure 1.
These components include:

Fine-Tuned EVA Domain LLM: A language model (with relatively small parameters
for on-board deployment) that has been fine-tuned on a corpus of EVA-related text. This
includes transcripts of astronaut-ground conversations, EVA procedure documents, NASA
operations handbooks, flight rules, and relevant academic literature. The fine-tuning
process imbues the LLM with domain-specific vocabulary and an understanding of the
structure of EVA activities. This LLM serves as the reasoning and language generation
engine of the system — it will produce explanations, summaries, and recommendations in
understandable terms. Crucially, it will not rely solely on its internal knowledge but will
use the following modules to ground its outputs.

Retrieval-Augmented Knowledge Base (RAG Module): A database of EVA
knowledge that the LLM agent can query as needed. This knowledge base could be
implemented as a vector-indexed document store containing segmented texts from manuals,
checklists, plans, and previous EVA logs. When the agent faces a question or task, it can
perform a semantic search to fetch relevant snippets. Those snippets are then fed into
the LLM’s context window so that its decisions and responses cite actual references. The
design ensures that even if the LLM’s training data is outdated or if it “forgets” a detail,
it can retrieve the latest ground-truth information. This is key for explainability — the Al
can provide answers directly grounding its advice in source material.

Physical Simulation Models (Tool Use): A suite of domain-specific physical models
that the LLM agent can invoke as needed via standardized APIs. Each module encapsu-
lates a discrete aspect of EVA logistics — such as path planning, metabolic prediction,
thermal load, radiation dose, suit life-support performance, communications link quality,
and battery consumption — and returns quantitative metrics (e.g., distance, elevation
gain, estimated Oy usage, cumulative radiation exposure, power draw). When the agent
evaluates a proposed EVA plan or contingency, it issues a structured query to the relevant
model(s). The returned outputs are then incorporated into the LLM’s context window so
that recommendations are grounded in up-to-date, physical data. This modular approach
ensures that the Al’s reasoning is both objective — comparing candidate plans across
multiple safety and performance dimensions — and explainable, since each decision point
can be traced back to concrete model outputs rather than inferred solely from language
patterns.
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Agentic Orchestration Layer: The central coordination engine that seamlessly in-
tegrates the components mentioned above into a unified decision-making workflow with
four specialized agents — planning, retrieval, ReAct, and generation. The planning
agent first defines task objectives and determines which information and simulations
the LLM requires to address a given EVA scenario. The retrieval agent then performs
semantic searches of the knowledge base for authoritative procedure snippets and invokes
the appropriate physical models to generate quantitative metrics. The ReAct agent
(Reason-and-Act) iteratively evaluates retrieved documents and model outputs against
safety constraints and mission rules, refining queries or plan steps as needed to close
any information gaps; and the generation agent synthesizes the validated context into a
concise, actionable recommendation — complete with clear rationale and source citations.
This layer ensures that each plan or contingency is grounded in up-to-date textual guid-
ance, domain knowledge, and physical evidence, while logging each intermediate step for
auditability and verification.

Short-Term Memory Store: A rolling buffer that continuously captures and organ-
izes critical contextual information — including overall mission objectives and timeline,
individual crew profiles (roles, expertise, current health/status), the history of prior
user—agent exchanges, and real-time sensory inputs (e.g., suit telemetry, environmental
sensor data). This memory module supplies the Orchestration Layer with up-to-date
situational awareness and conversational continuity, ensuring that every planning cycle,
retrieval query, and recommendation remains consistent, personalized, and aligned with
the evolving EVA context.

User Interface: A multi-modal interaction layer that enables astronauts to seamlessly
engage with the AI toolset via voice commands and/or a visual display (tablet or
helmet HUD). Designed for hands-busy, high-noise EVA environments, the voice interface
supports natural language queries and delivers spoken recommendations, while the visual
display presents concise, contextually relevant information — such as annotated maps,
task timelines, and highlighted procedure snippets. All outputs include clear rationale
and source citations (e.g., flight rule references or model outputs) to ensure transparency
and foster user trust. The interface dynamically adapts its presentation based on task
urgency and crew workload, surfacing only the most critical information during high-stress
scenarios and offering deeper explanatory detail when time permits.

Fine-tuning strategy and data availability

Within the proposed framework, the domain LLM will be adapted through a two-step,
resource-aware pipeline: (i) task-adaptive pre-training (TAPT) on the full raw EVA corpus,
approximately 18 M token outlined in Table 2, to familiarise the backbone with mission-
specific vocabulary and discourse [18], and (ii) parameter-efficient QLoRA fine-tuning on
a carefully curated dataset of several thousand question—answer pairs, inserting low-rank
adapters while the 4-bit base weights remain frozen [12]. Source PDFs are processed with
olmOCR, which converts each page image into clean, ordered text, removes noise, and drops
duplicates before embedding [48]. The cleaned corpus will be also segmented, embedded, and
stored in the Retrieval-Augmented Knowledge Base to ensure that training and real-time
grounding reference the same documents. LoRA/QLoRA studies demonstrate that models
in this parameter range can achieve substantial gains from just a few thousand high-quality
instruction-response examples [22][59]; therefore, our curated Q&A dataset fully supports
effective fine-tuning. All sources are public-domain U.S. Government works. This workflow
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Figure 1 Conceptual Architecture of the AI EVA Planner.

minimizes on-orbit compute demands and allows future document updates to be re-embedded
and adapter-patched without modifying the frozen backbone, preserving consistency across
the integrated framework.

Physical-Simulation Suite

Each physics model is encapsulated as a uniform JSON-RPC endpoint that the LLM
can invoke on demand [26]. The exemplar modules listed in Table 3 — the path planner,
the hypogravity metabolic-cost model, the thermal-load and radiation-dose estimators,
and the suit-consumables tracker — are drawn from literature with extensive prior studies
demonstrating their suitability for seamless integration. For every call, the agent submits
a compact JSON request and receives a structured reply that returns hard numbers (e.g.,
way-points, ascent, ETA, VO,, coolant margin, O2). Each request—response pair is logged,
routed through downstream checks, and ultimately surfaced to the crew with full parameter
context, yielding an auditable retrieve — compute — evaluate loop. Because the framework
is inherently versatile, additional or higher-fidelity simulators can be added at any time
by exposing the same endpoint schema, allowing the toolset to grow without altering the
surrounding architecture.

Concept of Operations

In operation, the proposed Al toolset would support EVA mission planning at every stage —
from high-level strategy during pre-mission planning to dynamic decision support in real time.
During mission planning, astronauts and flight planners can simulate multiple EVA scenarios,
asking “what if” questions such as “What if we add a geology stop here — can we still
return to the lander in time given our oxygen reserves and estimated metabolic expenditure?”
to refine task sequences and resource allocations. Once on the surface, the system helps
brief and verify the day’s EVA plan, enabling the crew to request a final check — “Are all
tasks feasible within a six-hour EVA given current consumables and predicted metabolic
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Table 2 Summary of Extravehicular Activity Document Corpus (token counts estimated using

the conservative heuristic of 250 words per page and 1.3 tokens per word[53][43]).

Pages Words Tokens
D
ocument Set (approx.) (x10°) (x10%) Source

NASA .
Mercury-Apollo-Gemini 46,000 11,500 15,000 | NASA JSC History

Lo . Collection
Communications Transcripts
EVA Console Handbook & JSC-26843
Flight-Control Operations 1,800 450 585 JSC-29229
Manual JSC-20597

NSTS-12820
IASI;OE(I)' %tsga? Shuttle & 5,000 1,250 1,625 | Apollo 8 - 17 Final
& es Flight Mission Rules
Exploration EVA System EVA-EXP-0042
Concept of Operations & 200 50 65 EVA-EXP-0034
Technical Standards ] )
NASA Technical Standards 900 995 290 NASA-STD-3000
(Human Factors and Health) NASA-STD-3001
EVA Tools and Equipment 750 190 250 ISC-20466
Reference Book
JSC-E-DAA-

xEMU Data Book 600 150 195 TN55224
Selected EVA technical
library documents NASA EVA
(roadmaps, analog debriefs, 1,600 400 520 Technical Library
etc.)
Total (approx.) 57,000 14,200 18,500

load?” — with immediate confirmation or warnings if constraints would be violated. During
the EVA, the tool continuously monitors progress: if an astronaut falls behind schedule or
deviates from the planned route, the astronauts can ask the Al to recompute the timeline
and recalculate metabolic costs for alternative routes to ensure safe return margins. In an
anomaly — such as a malfunctioning tool — the Al retrieves step-by-step troubleshooting
procedures while simultaneously assessing whether continued work would exceed safe workload
or consumable limits, leveraging its embedded metabolic prediction model to advise whether
to proceed, adjust tasks, or terminate the EVA. Crucially, all functionality operates offline,
providing immediate, explainable guidance even when communications with Earth are delayed
or unavailable, while still complementing Mission Control for higher-level decisions when
connectivity permits.

5 The RASAGE Project

Currently, we are developing a proof-of-concept toolset named Retrieval & Simulation Aug-
mented Guidance Agent for Exploration (RASAGE). RASAGE is designed as an integrated
Earth-independent decision support system that combines a compact on-board LLM with a
structured retrieval framework and physical simulation in an agentic RAG pipeline. Its core
language component, Microsoft-Phi4-mini-instruct, is an open-source 3.8 billion-parameter
model quantized to 4 bits and optimized for small-scale GPUs [2]. We will fine-tune Phi-4-mini
on a curated EVA corpus — NASA EVA handbooks, flight rules, astronaut-ground transcripts,
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Table 3 Example Physics-Based Simulation Tools.

Planning

Module

Inputs

Outputs (per call)

Path planner

Start/goal, DEM tile, slope
limits, oxygen constraint

Optimal path, distance,
ascent, travel-time,
predicted O2 usage

model

Hypogravity metabolic-cost

Speed, grade, suit mass, g

VOQ, kcal h_l, O2 usage

Solar angle, wind, suit RL

Skin/core T traces, coolant

Thermal load estimator
parameters

SPENVIS pre-computed
look-up & shielding depth
Task timeline, suit power
profile

margin

Radiation dose calculator mSv per EVA

Remaining Wh, Oz, CO2

Suit-consumables tracker
absorbent

anomaly reports, and analog mission debriefs. Complementing the LLM is a vector-indexed
knowledge base composed of metadata-annotated, semantically segmented document chunks,
built using FAISS (Facebook AI Similarity Search) — an open-source library designed for
efficient similarity search and clustering of dense vectors[23][14].

In our system, raw EVA documents are converted to plain text and segmented into
coherent chunks using a recursive splitting algorithm that preserves procedural structure and
context. Each chunk is enriched with detailed metadata (source, section, page, timestamp)
for precise traceability, and is transformed into a dense vector representation via Phi-4-mini’s
embedding head. These embeddings, along with their metadata, are then indexed in a
FAISS vector store, enabling rapid semantic searches. During operations, RASAGE performs
semantic retrievals of authoritative procedure snippets, grounding every recommendation in
up-to-date source material and ensuring full traceability and explainability.

RASAGE’s agentic coordination engine orchestrates a seamless retrieval-augmented
workflow that integrates both textual guidance and quantitative simulation outputs via
standardized function calls. Domain-specific physical modules, including an A*-based
path planner [19] over high-resolution lunar digital elevation models (DEMs) and a hypo-
gravity ambulation metabolic prediction model [28], are indexed and fused into the LLM’s
context window. The resulting recommendations undergo iterative refinement against safety
constraints and mission rules, with every decision logged for auditability. A multi-modal
interface (text, voice and tablet display) delivers concise, contextually relevant information —
complete with clear rationale and source citations — dynamically adapting output detail based
on task urgency and crew workload to maximize situational awareness and trust during EVA.

5.1 Experimental Design

To evaluate the feasibility and effectiveness of the proposed Al system, we will first conduct
a series of controlled digital simulation experiments in an EVA environment modeling lunar
terrain, a physical astronaut model, and a library of representative tasks. The prototype of
the digital simulation interface using Apollo 14 EVA scenarios is shown in figure 2. First, we
will evaluate route-planning performance by tasking the Al to generate navigation plans under
predefined time and resource constraints and comparing its chosen paths, EVA duration, and
energy use against baseline strategies (shortest-distance routing and expert-derived plans).
Next, we will validate metabolic model accuracy by benchmarking the AI’s consumable-usage
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predictions (Og and battery) against published NASA EVA metabolic data and historical
EVA logs [46], quantifying prediction error and iteratively adjusting model parameters until
errors consistently fall within predefined safety thresholds.

We will then conduct human-in-the-loop analog trials that simulate off-nominal EVA
events (e.g., rising suit COs levels) under realistic communication delays. In these scenarios,
we will measure the AI’s response latency, correctness of guidance against NASA flight rules,
and success in resolving anomalies before Earth-based support could intervene. By comparing
paired scenarios with and without the AI assistant, we will quantify impacts on crew task
efficiency, error rates, and cognitive workload — demonstrating whether RASAGE maintains
or improves EVA performance and safety under deep-space conditions. Additionally, we
will log and categorize every participant query to the system, using these data to identify
usability gaps and inform iterative interface and capability improvements.

Cost: 6183.75
Threshold: 10000000.00
Scor

Waypoin 5

oints Left: 5

Real Time: 504.25

Game Time: 6323.95
550

peed: 0.10m/s
Position: (966.7, 185.3)
Wireframe: False

Figure 2 Prototype digital simulation interface in Apollo 14 EVA scenarios, showing the Lunar
EVA Assistant’s user interface (left) and a 3D lunar terrain visualization (right).

After software validation, our next step is a preliminary field evaluation in a nearby
outdoor environment that mimics EVA conditions (e.g., uneven terrain, limited visibility,
and communications delay). In this lab-led field test, participants wearing mock-up suit
gear will use RASAGE to plan routes, respond to simulated anomalies, and complete task
checklists while we measure task completion rates, time to resolution, error incidence, and
log every user query for iterative design feedback. Building on these results, we will then
propose deploying the system in established analog facilities (including NASA facilities such
as Desert RATS, NEEMO, or HERA, and other facilities such as the Mars Desert Research
Station Utah, MDRS) during designated “crew-autonomous” EVA days under a 20-minute
round-trip communication delay. These higher-fidelity trials will collect both quantitative
mission-outcome metrics (objective achievement, anomaly resolution speed) and qualitative
insights (usability, clarity, trust) to refine RASAGE’s interface, guidance phrasing, and
operational integration.

5.2 Evaluation Metrics Summary

Across these experiments, success will be measured by both quantitative metrics (e.g.,
reduction in excess distance traveled, percentage of scenarios where the Al correctly averts
a problem, accuracy of model predictions) and qualitative assessments (crew confidence in
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the system, perceived workload reduction, trust in recommendations). We expect the Al to
demonstrate measurable improvements in EVA planning efficiency and contingency response.
For instance, we aim for a >20% improvement in energy efficiency of routes (compared to
baselines) and near-100% compliance with safety constraints (the AI should never violate
a known flight rule). Additionally, we’ll evaluate explainability: we will survey users on
whether they felt the AT’s explanations were sufficient and clear. The ideal outcome is that
users not only accept the Al’s advice but can also articulate why the plan is what it is,
indicating successful knowledge transfer from the Al.

5.3 Risk Analysis

Developing and deploying an Al-driven EVA planning system carries several technical and
operational risks that must be carefully managed:

Reliability & Safety: LLM hallucinations or incorrect suggestions could jeopardize crew
safety. Mitigations include retrieval-grounded responses, strict constraint enforcement,
mandatory source citation for safety-critical advice, and a formal verification & validation
process analogous to flight-software certification.

Scope & Competence: The Al’s knowledge is inherently limited to its training corpus.
RASAGE will self-assess uncertainty (“I don’t know”) and defer novel or ambiguous
scenarios to human judgment, with clear documentation of system boundaries.
Computational Constraints: Space hardware has limited processing capacity. We
mitigate this by using a quantized Phi-4-mini model optimized for onboard accelerators,
designing a modular architecture that isolates faults, and ensuring graceful degradation if
simulation modules fail.

Human—System Integration: Trust and usability are essential in EVA operations. The
user interface will surface only mission-critical information under high workload, provide
transparent rationale for recommendations, and be refined through analog mission testing
to prevent information overload.

Accountability & Bias: All agent reasoning steps, retrieved sources, and simulation
outputs are logged for post-event auditing. Crew training exercises — both with and
without Al assistance — will calibrate trust and mitigate automation bias.

By embedding these safeguards and following established NASA and industry guidelines for
trustworthy AT [36][29][20], RASAGE is designed as a support tool that errs on the side of
caution and enhances — not replaces — human decision-making.

6 Future Work

Building on the envisioned proof-of-concept system introduced in Section 4, multiple avenues
remain for advancing the technical robustness, operational readiness, and domain applicability
of RASAGE and similar Al-driven EVA support systems.

Extending Simulation Fidelity: While our initial focus is on path planning and meta-
bolic modeling, the environment can be expanded to include detailed rover integration,
robotic assistance, and realistic environmental hazards like regolith dust accumulation or
dynamic lighting conditions in crater shadows. Incorporating these additional paramet-
ers would refine route optimization and contingency responses to better mirror actual
planetary surface operations.
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High-Fidelity Analog Testing and Crew Training: Following controlled digital
simulations, the next step involves extended field trials in environments such as the NASA
NEEMO underwater habitat, Mars Desert Research Station (MDRS), the Desert RATS
analog, or the HERA (Human Exploration Research Analog) facility. By subjecting the
system to mission-length EVA simulations and real-time anomalies under operational
constraints, we can collect user performance metrics and refine interface design, agent
orchestration algorithms, and knowledge-base coverage.

Coping with Partial or Degraded Data: EVA telemetry may be noisy or incom-
plete, particularly in harsh environments. Future versions of the system can incorpor-
ate robust sensor-fusion and error correction mechanisms, using Bayesian inference or
state-estimation techniques to ensure reliable feed-forward to the LLM and simulation
modules. This will help maintain safe operation even with intermittent sensor failures or
degraded communications.

Adaptive Autonomy Levels: The system currently provides planning, retrieval, and
reasoning capabilities. Ongoing research could explore dynamic adjustments to the “level
of autonomy” based on crew workload, mission criticality, and time constraints. This
feature would allow RASAGE to operate in a more advisory capacity under normal con-
ditions, yet assume higher authority for rapid decision-making in critical or time-sensitive
scenarios when Earth-based assistance is unavailable.

Cross-Mission and Cross-Domain Integration: Many of the functionalities outlined —
such as retrieval-augmented guidance, physical modeling, and multi-modal user interfaces —
are relevant beyond EVA, potentially assisting with in-vehicle maintenance, habitat
operations, or scientific payload management. Expanding the knowledge base to additional
mission domains would increase the utility and cost-effectiveness of onboard Al systems.

7 Conclusion

This paper outlines a vision — and an early technical framework — for an Earth-independent,
onboard Al system capable of providing real-time decision support during extravehicu-
lar activities (EVAs). By combining a large language model fine-tuned on EVA proced-
ures, retrieval-augmented knowledge bases, physical simulation modules, and a lightweight
agentic orchestrator, the proposed system seeks to emulate key aspects of ground-based
flight-controller expertise directly within the spacesuit. Planned experiments in route optimiz-
ation, metabolic load modeling, and anomaly response are designed to quantify improvements
in crew efficiency, resource management, and operational safety. Initial results from the
RASAGE prototype suggest that a self-contained, offline-capable AI tool can successfully
manage complex EVA tasks while respecting established flight rules and safety margins.

Transitioning this concept into a flight-worthy capability entails addressing several
persistent challenges. Chief among these are ensuring robust performance under uncertain or
incomplete data, generalizing across diverse mission architectures, and meeting the rigorous
safety, verification, and transparency requirements of human-rated flight software. Despite
these hurdles, recent advances in large language models, retrieval augmentation, and physical
simulation point toward a future in which onboard autonomy becomes indispensable for
deep-space exploration. As crewed missions extend to the lunar surface, Mars, and beyond,
Earth-independent AT decision support promises to enhance astronaut safety, maximize
scientific return, and reduce dependence on ground control — thereby laying a critical
foundation for sustainable human presence beyond low Earth orbit.
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