Phasing Data from Genotype Queries via the
u-PBWT

Davide Cozzi &
Department of Computer Science, University of Milano-Bicocca, Italy

Paola Bonizzoni &
Department of Computer Science, University of Milano-Bicocca, Italy

Christina Boucher =
Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Ben Langmead &
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Yuri Pirola &

Department of Computer Science, University of Milano-Bicocca, Italy

—— Abstract

Genotype phasing — the process of reconstructing haplotypes from genotype data — is a fundamental

problem in genomics with applications in ancestry inference, imputation, and disease association.
Traditional phasing methods rely on statistical models or combinatorial approaches which can be
computationally expensive, particularly when applied to large-scale reference panels.

In this paper, we present a first exploration of using the u-PBWT (a run-length encoded
Positional Burrows—Wheeler Transform) to solve the genotype phasing problem with a reference
panel. Leveraging our previous results on positional substrings, we propose an approach that can
explain a query genotype if the corresponding haplotype pair exists in the input panel. Moreover,
our method is extended to cases where such a pair does not exist, even though some regions should
remain unphased if they cannot be explicitly explained using the reference panel.

We implemented this method and compared it against Beagle, a state-of-the-art phasing tool,
demonstrating that, in the absence of mutations and recombinations, our approach correctly identifies
the haplotype pair that explains a genotype query while using seven times less memory than Beagle.
However, we also observe that as mutation rates increase, the quality of the phasing decreases as a
result of the growing difficulty of identifying consistent haplotype pairs in the presence of sequence
variation.

These findings highlight the potential of -PBWT as an efficient alternative for genotype phasing,
particularly in settings where computational resources are limited. The source code is publicly
available at https://github.com/dlcgold/muPBWT/tree/phase.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis

Keywords and phrases Positional Burrows—Wheeler Transform, r-index, minimal position substring
cover, set-maximal exact matches, genotype phasing

Digital Object Identifier 10.4230/0OASIcs.Manzini.2025.10

Supplementary Material
Software (Source code): https://github.com/dlcgold/muPBWT/tree/phase
archived at swh:1:dir:8131138a04fdd3a78c074d3b5707c43694bc7914

Funding P.B., Y.P., and D.C. have received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sktodowska-Curie grant agreement PANGAIA
No. 872539. P.B. is also supported by the grant MIUR 2022YRB97K, PINC, Pangenome Informatics:
from Theory to Applications, funded by the EU, Next-Generation EU, Mission 4 and ITN ALPACA
N.956229. C.B. was supported by NIH/NIAID (Grant No. R0O1AI14180) and NSF:SCH:INT (Grant
No. 2013998). C.B. and B.L were supported by NIH:NHGRI: (Grant No. R56HG013865).

© Davide Cozzi, Paola Bonizzoni, Christina Boucher, Ben Langmead, and Yuri Pirola;
37 licensed under Creative Commons License CC-BY 4.0

The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini’s 60th Birthday.

Editors: Paolo Ferragina, Travis Gagie, and Gonzalo Navarro; Article No. 10; pp. 10:1-10:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:d.cozzi@campus.unimib.it
https://orcid.org/0000-0003-2439-0608
mailto:paola.bonizzoni@unimib.it
https://orcid.org/0000-0001-7289-4988
mailto:christinaboucher@ufl.edu
https://orcid.org/0000-0001-9509-9725
mailto:langmea@cs.jhu.edu
https://orcid.org/0000-0003-2437-1976
mailto:yuri.pirola@unimib.it
https://orcid.org/0000-0002-8479-7592
https://github.com/dlcgold/muPBWT/tree/phase
https://doi.org/10.4230/OASIcs.Manzini.2025.10
https://github.com/dlcgold/muPBWT/tree/phase
https://archive.softwareheritage.org/swh:1:dir:8131138a04fdd3a78c074d3b5707c43694bc7914;origin=https://github.com/dlcgold/muPBWT;visit=swh:1:snp:e9a94c87d3650ddcf7a439acc956e21efe9c5da4;anchor=swh:1:rev:043fb1821168966c2e12e76f8976cffa8d0ecaf0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

10:2

Phasing Data from Genotype Queries via the u-PBWT

1 Introduction

Within the field of haplotype analysis, the Positional Burrows-Wheeler Transform (PBWT) [9]
has emerged as a fundamental data structure for efficiently encoding and searching large-scale
haplotype data. Its ability to rapidly detect long shared substrings between a query sequence
and a reference panel makes it a crucial tool for various genomic applications, including
haplotype imputation [19, 18], ancestral inference [13, 25], and genotype phasing [15]. One of
the key advantages of PBWT is its efficient representation of haplotype panels, allowing fast
and memory-efficient computations, particularly compared to traditional sequence alignment-
based approaches. Over the years, PBWT has been extended and refined to support more
complex operations [24, 26, 17, 21|, making it an essential component of modern haplotype
analysis pipelines.

Sanaullah et al. [22], who formulated the haplotype threading problem, the task of
representing a query haplotype using a minimal set of substrings derived from a reference
panel, introduced a significant development in PBWT-based haplotype analysis. To address
this problem, they introduced the Minimal Positional Substring Cover (MPSC) problem,
which seeks to identify the smallest collection of substrings that fully cover a query while
maintaining positional consistency with the reference haplotypes. Their work proposed
an efficient PBWT-based solution by modeling the solution space as a graph, enabling
computationally efficient haplotype threading. However, their approach focused primarily on
haplotypes rather than genotypes, leaving an open question as to how these methods could
be extended to genotype phasing, which requires handling heterozygous loci and potential
recombination events.

Building on this work, in 2024, Bonizzoni et al. [3] demonstrated that the MPSC problem
could be solved in sublinear space, significantly improving its scalability for large reference
panels. That approach was based on efficiently computing k-Set Maximal Exact Matches
(SMEMs) via k-Matching Statistics (k-MS), a technique that enabled the identification of
minimal positional substring covers with reduced memory requirements. This advancement
allowed for an efficient solution to the MPSC problem and its variations proposed by
Sanaullah et al. The ability to solve these problems in sublinear space is particularly valuable
for large-scale genomic datasets, where traditional PBWT-based methods may become
memory-intensive.

In this paper, we extend the results of Bonizzoni et al. [3] to the problem of genotype
phasing, adapting the MPSC framework to work with genotype queries instead of haplotypes.
The main idea that inspires this work is the observation that large reference panels likely
include a haplotype pair that explains a genotype query. However, we need methods that
can scale to such large panels. Here, we introduce a novel approach using u-PBWT [8], a
refined version of run-length encoded PBWT (RLPBWT) [2], to efficiently phase genotypes
while optimizing for minimal recombination events. Our method is designed to reconstruct
haplotype pairs that explain a given genotype by leveraging positional substrings (PSs)
and complementary positional substrings (CPSs) extracted from a reference panel. Unlike
previously proposed combinatorial methods that assume a perfect haplotype match [14, 4, 1],
our approach can handle cases where recombinations are required to fully explain the genotype,
making it more adaptable to real-world data. In addition, current state-of-the-art tools such
as Beagle [5, 6] are based on the Li and Stephens Hidden Markov Model [16], while our
approach is deterministic in the absence of mutation and recombination.

Our study focuses on two primary scenarios: (1) an ideal case where the reference panel
contains two haplotypes that fully explain the genotype without requiring recombination,
and (2) a more realistic setting where recombinations across haplotype segments of the panel

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

are needed due to the absence of a single haplotype pair that explains the genotype query. To
address these challenges, we introduce a combinatorial approach that processes 2-positional
substrings (2PSs) and identifies valid haplotype pairs that minimize recombination events.
Furthermore, we implement and evaluate our method against Beagle [6, 5], a state-of-the-
art statistical phasing tool. Our experimental results demonstrate that u-PBWT achieves
competitive accuracy while significantly reducing computational costs in scenarios with
low mutation rates. On the other hand, introducing target mutations (and consequently
recombinations not having the target parents in the reference panel) reduces the performance
of our approach, in terms of switch error rate/mismatch rate. Our method requires little
memory and can scale on very large reference panels, thanks to the u-PBWT index. This makes
u-PBWT a promising alternative for applications where memory efficiency and processing
speed are critical.

2 Related work

Due to the diploid nature of humans, chromosomes come in two copies, called haplotypes,
each copy inherited from one of the two parents (see [4] for a survey of the main concepts).
Sequencing an individual is a process that does not distinguish between the two haplotypes,
as reads are fragments uniformly distributed over both chromosomal copies. Distinguishing
the haplotypes from sequencing reads is biologically expensive, and thus computational
methods are employed for this purpose.

A genotype is simply the conflated information of a pair of haplotypes and can be easily
determined by sequencing. More precisely, a genotype is specified by a vector of allele pairs
at each locus, where the pairs consist of homologous or heterozygous alleles. In a genotype,
information on which heterozygous allele belongs to which haplotype is not available and
must be determined.

Observe that each haplotype inherited from a parent is itself the result of a mosaic of
the two parental haplotypes, due to recombination events, which are a typical evolutionary
phenomenon occurring in human populations. Recombination events regulate Mendelian
inheritance laws within a family trio and have been extensively studied in the context of
combinatorial methods for the phasing or haplotyping of input genotype matrices [4].

From a combinatorial perspective, a haplotype at a set of biallelic loci, the genomic
positions in which only two distinct alleles are observed in a population, is formalized as a
binary string. In this representation, the i-th position of the string is assigned a 0 if the
individual carries the reference allele at that locus (i.e. the allele matches the reference in
that locus), and a 1 if the individual carries the alternative allele.

The genotype of an individual is the combined representation of the two haplotypes
inherited from the two parents. Formally, a genotype is represented as a string on the
alphabet {0, 1,2}, where the i-th position is 0 if the individual has inherited the reference
allele from both parents at the i-th locus, it is 1 if the individual has inherited the alternative
allele from both parents at the i-th locus, or it is 2 if the individual, at the i-th locus, has
inherited the reference allele from a parent and the alternative allele from the other parent.
The positions where the genotype is 0 or 1 are called homozygous, while the others are
called heterozygous. We say that a pair (hi, he) of w-length haplotypes explains a w-length
genotype @ if and only if, for all ¢ € [1,w] we have that hq[i] = ha[i] = Q[d] if Q[i] # 2, or
hi[i] # hold] if Q[i] = 2. In simpler terms, a pair of haplotypes explains a genotype if they
match the genotype at homozygous positions and differ at heterozygous positions.

10:3

Manzini's Festschrift

10:4

Phasing Data from Genotype Queries via the u-PBWT

Then, the genotype phasing problem aims at reconstructing an individual’s haplotypes
from their genotype. More specifically, determining the exact pair of haplotypes that
correspond to the observed genotype. The problem is straightforward for homozygous
positions, where both haplotypes match the genotype; however, at heterozygous positions,
the phase is ambiguous because multiple pairs of haplotypes, differing only in the assignment
of alleles to each parent, can equally explain the genotype. There is a vast literature on
combinatorial methods for genotype phasing, mainly distinguished by how the problem is
modeled and by the type of input data considered. For example, Gusfield proposed solving
genotype phasing using the perfect phylogeny model [14, 1] when the input matrix consists
of a collection of genotype vectors.

The availability of large panels of population haplotype data has shifted the focus of
genotype phasing toward the use of statistical methods which, based on information from an
input panel, can effectively explain genotype queries. An example of this is Beagle [5], which
uses phased input data, that is, a known haplotype panel, to build a hidden Markov model
specifically tailored to diploid data.

In this paper, genotype phasing is addressed through the so-called haplotype threading,
which models the process of reconstructing a haplotype as a mosaic of haplotypes from a
reference panel.

More precisely, haplotype threading aims to cover a haplotype query using segments from
haplotypes in an input panel. The main idea is that a haplotype results from the accumulation
of recombination events, combining chromosomal segments from various haplotypes in the
panel. The Li and Stephens (LS) hidden Markov model (HMM) [16] produces a haplotype
threading for a query haplotype using a panel of known haplotypes, requiring time that is
linear in the size of the input panel. However, this running time becomes infeasible when the
haplotype panel is large, and thus sublinear-time solutions have recently been investigated,
mainly using the PBWT (Positional Burrows-Wheeler Transform) framework.

Moreover, modern haplotype panels typically exhibit much lower mismatch rates and
switch error rates, two key measures commonly used in the probabilistic modeling of the LS
framework. Observe that a zero mismatch rate between the query haplotype and the input
panel corresponds to the situation where the query can be entirely covered by segments from
the panel, with the number of such segments directly corresponding to the switch error. In
this case, combinatorial approaches become particularly attractive, especially when they offer
faster solutions than LS-based methods.

In particular, the solution proposed by Sanaullah et al. [20], the Minimum Positional
Substring Cover (MPSC) with non-overlapping segments, corresponds exactly to haplotype
threading under a zero mismatch error assumption. When overlapping segments are permit-
ted, identifying the breakpoint between two matching positional substrings corresponds to
determining the transition point between two distinct haplotypes in the panel.

Now, the input panel is not guaranteed to include the two haplotypes from which a query
genotype may have been generated, nor do we know whether the two haplotypes of a parent
are present in the panel when explaining a haplotype as the result of recombinations from
that pair. This is why the mosaic of segments may involve multiple haplotypes of the panel.

The introduction of the PBWT has significantly improved the time efficiency of com-
putational approaches to haplotype threading. The first major improvement concerns the
time required to find coverage of a haplotype, which has been reduced from O(N - M) to
O(N), where N is the number of sites in a haplotype sequence [20]. This reduction in time
complexity allows the methods to scale to a large number M of haplotype sequences, which
was not feasible with the original LS-based method. Finally, since the memory required

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

by these approaches can be extremely prohibitive, a further improvement was proposed in
[3], where a compressed data structure is introduced to store and manage the input panel
using the p-PBWT [8]. In particular, space efficiency is crucial for handling large cohorts of
haplotype data, helping to reduce mismatch errors and switch errors. In this paper, we will
assume an ideal future framework where the large amount of data allows for the assumption
that the two haplotypes that explain a genotype are part of the input data.

3 Background

3.1 The Minimal Positional Substring Cover Problems

Throughout this paper, we define a string X on a finite, ordered alphabet ¥ = {¢1,...,¢s}
to be the concatenation of |X| = w characters X = X[1..w] from ¥. We denote the empty
string as ¢, the string that spans ¢ through j as X[i..j] (with X[i..j] = ¢ if i > j), the i-th
prefix of X as X[1..7], and the i-th suffix as X[i..|X]].

A positional substring of a string X, in short PS; is a triplet (4,7, X) with 1 <14,j < |X]|
and we say that the substring corresponding to (i, j, X) is X[i..j]. Two positional substrings
(i,7,X) and (k,1,Y) are equal if and only if i = k, j = [, and X[i..j] = Y[k..[]. A positional
substring (i, j, X) is contained in a string Y if and only if X[i..j] = Y[i..j].

Given a set S of strings of length w (i.e., a panel), a positional substring (i,7, X) is a
k-positional substring in S, in short kPS, if (¢, j, X) is contained in at least k strings of S. A
k-positional substring cover of a w-length string P by S is a set C of positional substrings of
P such that: (i) each position [€ [1,w] of P is covered by a (i,j, X) € C (i.e., i <1< j),
(it) each (i, 7, X) € C is contained in P, and (%ii) each (4, j, X) € C is contained in at least k
distinct strings of S (i.e., they are KPS in S). The size of the cover is the number of elements
in C, which we denote as |C|.

Given a set S of h strings of length w and a string P of length w, the k-Minimal Positional
Substring Cover problem (k-MPSC) [20] seeks to compute, if it exists, a k-positional substring
cover of P by S with the smallest size over all k-positional substring covers of P by S.

We note that the MPSC problem is the k-MPSC problem where k is equal to 1, i.e., each
positional substring of the cover is contained in at least one string of the panel. It is easy
to see that a solution to the problem exists if and only if for every ¢, with 1 < i < w, the
positional substrings (7,4, P) are contained in at least k distinct strings of S, i.e., they are
kPS.

Given a panel S and a string P there can exist several distinct k-MPSC of the same
size (hence, several solutions to the k-MPSC problem). Since the solution to k-MPSC can
affect downstream applications, three variants have been proposed [20, 22] to constrain the
solution.

Sanaullah et al. [22] defined the problem of computing Leftmost MPSC using 1-positional
substring covers, while we generalize the method in [3] to compute Leftmost k-positional
substring covers. In the problem definition, given a k-MPSC C| the i-th positional substring
of C (for 1 <4 < |C|) refers to the i-th substring when listing all positional substrings of C'
in order of their starting positions.

Given a set S of h strings of length w and a string P of length w, the Leftmost k-MPSC
problem asks to find a leftmost k-MPSC C of P by S, where a leftmost k-MPSC is a k-MPSC
of P by S such that any i-th substring in C' starts at least as early as the i-th substring of
every other MPSC of P by S.

For the purposes of this manuscript, we relax the problem of computing MPSC to compute
a positional Substring Cover of P by S, which is not necessarily minimal, and we denote this
solution as a PSC.

10:5

Manzini's Festschrift

10:6

Phasing Data from Genotype Queries via the u-PBWT

3.2 Solving the k-MPSC problem variants using PBWT

The best known algorithm for computing a k-MPSC requires O(w) time [22], assuming that
an index of the haplotype panel S is given as input. This algorithm processes the haplotype
panel S column-wise from left to right, extending the matches of the query string P that are
shared with at least k strings of the panel S. In each column, if the current match cannot be
extended, then a new match is started from the current column. Optimality is ensured by
the property of k-MPSC modularity [20, Lemma 2]. Matches of P with at least h strings in
S are efficiently computed and extended using the Positional Burrows-Wheeler Transform
(PBWT) of S. Hereon, we denote h - w as n, which will be used throughout this paper to
bind the space and time complexity. The k-MPSC algorithm of Sanaullah et al. [20] requires
O(n)-space to ensure random access in constant time to the input panel and to the PBWT.

3.3 Positional Burrows—Wheeler Transform and pu-PBWT

In 2014, Durbin proposed the PBWT [9] as an efficient data structure to perform internal
and external pattern matching on a set S = {S1,...,Sn} of h binary sequences of length
w. The PBWT consists of two arrays per column j:(i) the prefiz array PA; and (ii) the
divergence array DA;.

Since the PBWT of column j is based on the co-lexicographic ordering of prefixes of S up
to column j — 1, PA; stores the permutation of the set of row indices, i.e., the set {1,...,h}.
Formally, PA;[i] = k if and only if Si[1..j — 1] is the i-th element in this sorting in all row
prefixes up to column j — 1. On the other hand, considering two consecutive prefixes in the
reordering for column j, i.e., SP/—\j[z'][l“j —1] and SPAj[ifl][l"j — 1], DA,[i] = ¢ iff £ is the
length of the longest common suffix between those two prefixes. Note that, by definition,
PA; ={1,...,h} and DA; = {0,...,0}.

Given the entire set of prefix arrays, we define the PBWT matrix PBWT[1..h][1..w] as the
matrix obtained by permuting each column of the input panel by the corresponding prefix
array. Formally, denoting the j-th column of a matrix X by col(X);, each column of the
PBWT matrix is defined as col(PBWT);[i] = col(M);[PA,[i]] for all i = 1..h and j = 1..w.

Additionally, to solve the pattern matching problem of a string against a panel, the
PBWT is augmented with an FM-index [12] like data structure, used to follow a certain row
in the permutations induced by the prefix arrays.

Regarding complexity, Durbin [9] proposed a set of algorithms that compute the entire
set of prefix arrays and the entire set of divergence arrays in O(hw)-time and O(hw)-space.

Durbin highlighted the potential of a run-length compression of the PBWT in his original
paper on this data structure. Later, Bonizzoni et al. [2] and Cozzi et al. [8] proposed various
combinations of data structures to efficiently store and query a run-length encoded PBWT
(RLPBWT).

In this paper, we consider the implementation of the RLPBWT of Cozzi et al. [8], referred
to as u-PBWT. For a detailed explanation of its definition and its application in addressing
the problem of identifying set-maximal exact matches between a reference panel and an
external query, we direct readers to the original paper. Next, we recall one of the key ideas
behind the u-PBWT algorithm: Matching Statistics.

» Definition 1 (Matching Statistics in the PBWT). Given a set S of h binary w-long sequences
S ={51,...,5n} and a pattern P[l..w], we define an array MS[1..w] of (row,len) pairs as
Matching Statistics of P with respect to S where, for each position 1 < j < w:
MS[jl.row and P share a MS[j].len-long match ending in j
this match is left-mazimal, i.e., P[j — MS[j].len..j] does not match any sequence in S
we have a mismatch iff P[j] does not occur in column j and we represent this event as
MS[j].row = — and M S[j].len =0

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

Using Matching Statistics, we can solve MPSC in O(w)-time and O(r)-space, where r
represents the total number of runs in the PBWT [3]. We refer the reader to Cozzi et al. [8]
and Bonizzoni et al. [3] for details about the algorithm used to compute Matching Statistics
and SMEMs.

4 The genotype phasing problem via positional substrings

In this section, we extend the definition of positional substring cover to the case of a genotype
and a panel S of strings. To accomplish this, we first define the concept of a complementary
positional substring (CPS) for patterns P and P’. A CPS consists of two positional substrings
(4,7, P) and (i, 4, P’), which are bitwise complementary. For simplicity, a complementary
positional substring will be simply identified by a triple (i, j, P).

Building on this concept, we let @@ be a w-long genotype query and S a set of w-long
strings, then a PSC, of genotype @ consists of a set C of positional substrings (4, j, Q) that
occur in at least two rows of panel S, i.e., 2PS, and a CPS (k,[,S) of S, such that: (i)
(k,1,Q) is a substring of @ of only 2’s, and (ii) all positions ¢ of @ are covered by C.

Next, we formally state the problem investigated in this paper. The core objective is to
phase the query genotype @ by covering it with positional substrings (PSs) or complementary
positional substrings (CPSs) derived from a panel of haplotypes S.

» Problem 1. Genotype-Positional-cover
INPUT: a reference panel S of haplotypes and a genotype query @Q,
OUTPUT: a PSCy for the query @ and the panel S.

In Problem 1, a natural optimization goal is to minimize ¢, the size of the PSC,. However,
to further reduce the number of recombinations, we focus on minimizing the number of
distinct pairs of haplotype sequences from S that contribute to the positional substrings
used to cover . In other words, our goal is to minimize the number of 2-PSs and CPSs
that originate from different haplotype pairs in S. We refer to this variant of Problem 1 as
minimum recombination genotype-positional phasing. The problem has no recombinations
if all 2-PSs and CPSs are derived from the same pair of haplotypes. This criterion will be
incorporated into the heuristic method we propose to solve the genotype-positional phasing
problem. The primary case we investigate in this paper is when the two haplotypes that
resolve () are already present in the panel S, which means that no recombinations occur. As
we will discuss in Section 5, the case of no recombination has a straightforward and efficient
solution. Finally, we recall that each 2PS is associated with a set of rows in the reference
panel, and we will explicitly use this set to solve Problem 1.

5 Methods

In this section, we present our approach to solving Problem 1 using u-PBWT. From this
point forward, we make the simplifying assumption that each column in the reference panel
contains at least two 0’s and two 1’s. This ensures that every homozygous position in
the query genotype shares a 2PS with the reference panel, simplifying the presentation of
our method. To effectively apply u-PBWT, we first refine how it identifies matches and

2-positional substrings (2PSs) shared between the target genotype and the haplotype panel.
Specifically, we introduce a constraint that limits the length of these 2PSs to at most two.

The rationale behind this constraint will be explained at the end of this section, where we
demonstrate how the use of 2-MPSCs affects the number of phased heterozygous sites.

10:7

Manzini's Festschrift

10:8

Phasing Data from Genotype Queries via the u-PBWT

a) b)
M 8 9 10 11 12 13 14 15 M ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1)7
1 1T[1 0Jo0o 0 0 o0(0 0) 1 0 of[0 1TJo 1[1 _0Jt o 0 1(0 0
2 1 1 0 0 1 1 0 0 0 0 2 0 1 1 0 0 0 1 0 0 1 1 0 0 0
A 3 0 of1r 01 0 1 1[0 0 403 o 1fo 1}0 of1 o}]1 o 1 1|0 o0
4 1 111 0)Jo 1 0 olo o 4laJ1 olo 1Jo ol1 o0oJo o o olo o
5 0 0 0 1 1 0 1 0 0 1 500 1 0 1 0 0 0 0 1 1 0 1 0 0 1
6 1 11 _0Jo 1 1 o0[0 0 6 0 0 0 o1 ©0Jo 1 1 0[0 0
P 2 TITTOTEAE 2 2 LU0 2 2 2 2 0T PP 2 2 f00TTE 2 2 TR 2 2 2 2 i)
M 8 9 10 11 12 13 14 15 M 7 8 9 10 11 12 13 14 1)7
1 1 _ojo o0 00y 1 Ll _0J:L 0.0 Lif0 0
2 00 1 0 0 2 1 0 0 1 1 0 o0fo o
3 10l 0 o o 3 o1 10 1 1/0 o0
B 10 1 o of Bl ol1 0Jo o o olo o
5 0 1 0 0 1 5 0 0 1 1 0 1 0 0 1
6 10 1 00 6 [) 00
R) 00 P 21022 2 2JT0. 0
M[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M 7 8 9 10 11 12 13 14 15
1 of1 o o 1[1 0Jo o o of0 0 1 1_0 0 0
2/0 11 of0o 1 1 0 0 1 1 0 0|0 0 2 00 0 0
c 3 0 1o My o) e 1o 0| e s o 0 o
4 iAo i il 0Jio 1 0. 0:l0 0 4 0ol1 o0 0 0
500 1 0 1 0 0 0 0O 1 1 0 1 0 0 1 5 0 0 1 .1 0 1
6 0 1 11 _0Jo 1 1 o0f[0 0 6 o (1T _0]i0. ([0 0
G T8 WO 0L 0 - s ES S P W |

Figure 1 Example of solving the phasing problem a) assuming two haplotypes that fully explain
the query genotype exist, i.e., in the absence of mutations and recombinations, and b) assuming this
pair does not exist and we need to use different haplotype pairs for different genotype regions, i.e.,
with mutations and recombinations.

5.1 Computing 2PSs

First, we compute a set C' of non-overlapping 2PSs of the genotype query with respect to the
reference. The computation of 2PSs, which involves at least two rows in the reference panel,
requires “resetting” the computation of two matching statistics each time M S[i].len > 2.
This ensures that the computation restarts at ¢ 4+ 1, similar to handling a mismatch in
column 7. As a result, each entry in the matching statistics array now contains (likely not
right-maximal) left-maximal matches with a length of at most two, involving at least two
rows in the input panel. To prevent overlaps, we adopt a strategy similar to the one proposed
in [3] for computing the leftmost MPSC set, thereby obtaining a set of non-overlapping
2PSs. Specifically, we modify that algorithm to incorporate 2-MSs, allowing us to skip
matches shared by @) with only a single row in the panel, as well as positions corresponding
to mismatches, which occur at heterozygous sites.

5.2 Solving the Haplotype Phasing Problem Without Recombinations

Now that we have computed the set C' for query @ and reference panel S, we describe our
approach for solving Problem 1. The key idea behind our approach is to analyze, for each
iteration, two consecutive 2PSs of C' to find possible haplotype pairs in S which can be used
as anchors for phasing the heterozygous region of the query @ that lies between. In other
words, given a heterozygous region in @), we want to find a CPS that covers that region and
shares at least a pair of rows with the previous 2PS and the next 2PS, i.e., the two anchors.

In practice, to solve a heterozygous region, we need to find two rows that complement each
other bitwise. Given two consecutive 2PSs, we compute the intersection of the corresponding
haplotype sets and use this intersection to extract the submatrix between them. Then, we
naively find all the complementary haplotype pairs that contain the CPS explaining the
substring of the genotype from the starting position of the first 2PS to the last position
of the second 2PS. At each iteration, to avoid unnecessary computation and to consider
previously computed pairs, we also need to store all the possible haplotype pairs which

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

explain the genotype query up to the current position. To formalize this, we denote Spqir as
the current set of row pairs. In other words, at each iteration, instead of simply considering
two consecutive 2PSs in C, we refine the possible pairs using the temporary result, that is,
the set of pairs that explain the current prefix of the genotype query. In other words, the left
anchor results from the filtering procedure. A similar filtering process is applied when two
consecutive 2PSs occur without any heterozygous region between them.

To simplify the explanation of this approach, we consider the ideal scenario in which
the reference panel contains the two haplotypes that fully explain the genotype query. We
iterate through the query @ and the set C of 2PSs from left to right, storing haplotype pairs
that are compatible with the query for a certain prefix. Note that, due to the assumption
of haplotype existence, at each filtering step, there is always at least one pair within the
current Spqir compatible with the pairs associated with the right 2PS, even if we have a
heterozygous gap. In other words, the left anchor, which results from the filtering procedure,

always consists of at least a row pair. To better understand this case, we refer to Figure 1.a.

In Figure 1.a.A, we depict the 2PS set C shared between a reference panel M and a genotype
query P (respectively S and @ in the previous discussion). Our iterative approach, which
filters incorrect row pairs, is shown in Figure 1.a.B. In this example, at first, we have several
row pairs after considering the first two 2PS: Spq:r = {(1,4), (3,4), (4,6)}. Note that, for
example, we exclude row 2 since it cannot be used as a left anchor, having a mismatch at
position 1. Continuing the iteration, we have two consecutive 2PSs, without any heterozygous
gaps. The unique rows in Sp. need to be filtered by the rows associated with this new
right 2PS but, in this case, each pair in Spqir is also present in the pairs set related to the
right 2PS, so we do not need to delete any pair. We now need to consider the fourth 2PS
as the right anchor. Note that row 1, in the substring that spans positions 6 to 7, does
not complement any of the other rows in {3,4, 6}, which are the remaining rows obtained
from the previous step. After this iteration, we get a new set of possible pairs which explain
the genotype in the pattern prefix up to position 9: Spur = {(3,4)}. Despite rows 3 and
6 sharing a complementary substring between positions 6 and 7, they are not considered

because they are not present in the first pair set (sharing the same symbol in position 2).

Finally, in the last iteration, the pair (3,4) is confirmed to be the only row pair that explains
the genotype, being present in the set of pairs associated with the last 2PS and sharing
complementary rows between positions 10 and 13. Figure 1.a.C summarizes the solution
phasing for the given input.

5.3 Handling Recombination Cases

The scenario with zero recombinations occurs when the sample belongs to an individual
already present in the panel or the analysis is restricted to a region without recombinations
within the panel. However, in practical cases where sequencing errors occur or the reference
panel has a limited number of haplotypes, the introduction of mutations and recombinations
becomes necessary. It is important to note that a mutation can create a small recombination
event around the mutation site. In this context, recombination refers to different segments of
the genotype being explained by different haplotype pairs from the reference panel.

We now describe how our method works in this scenario. Again, we proceed to scan
the set of 2PSs from the left to the right, by processing consecutive 2PSs using also the
current pairs set Spqir, according to the approach described above whenever we follow two
haplotypes that are present in the panel.

When the above assumption (i.e. the assumption of having zero recombinations) does not
hold, we need to manage two consecutive 2PSs differently (filtered by Spqir). Specifically,
we need to account for two possible cases. Recall that each adjacent 2PS is associated with

10:9

Manzini's Festschrift

10:10

Phasing Data from Genotype Queries via the u-PBWT

a list of row pairs, and we are considering the case where their intersection is empty. This
leads to two possible scenarios: (1) there exist two row pairs — one from each 2PSs — that
share at least one common haplotype but not both; or (2) no such two pairs exist. Recall
that the row pairs associated with the 2PSs are filtered by considering the row pairs we have
in Speir- In the first scenario, only one haplotype recombines at this position between the
two 2PSs, whereas in the second scenario, both haplotypes that explain the query undergo
recombination at this position. In both cases, we store the temporary results up to the end of
the first 2PS, then restart the iteration using all possible row pairs associated with the right
2PS. At this point, Spesr is stored and is updated to reflect the list of row pairs associated
with the right 2PS.

In the second case, we encounter two consecutive 2PSs (after filtering by Spqir) separated
by heterozygous regions that cannot be explained. This situation leads to two possible
scenarios. First, a CPS covers the heterozygous region, but its associated list of row pairs
does not overlap with any of the currently available pairs obtained from previous iterations.
Second, the two anchor 2PSs do not share any associated row pairs in the reference panel.
The latter case also involves any case in which there is no CPS in the heterozygous region.
Both cases require different considerations when determining the compatible haplotype pairs
to proceed.

In this situation, we can try to reset the current set Spqi, by updating it with all the pairs
associated with the left anchor, assuming a recombination. If we have pairs shared by this
new anchor and the one related to the right 2PS that explain the underlying heterozygous
region, we can continue to the next iteration using these pairs as Spqr after storing the
previous Spqir in memory. On the other hand, if we do not have such pairs or simply if the
CPS is not associated with any pair of rows in the panel, we skip those heterozygous sites
and start the iteration again from the right 2PS. This implies that we need to update Spqir
in the list of rows associated with the right 2PS but that these heterozygous sites will remain
unphased. Observe that each time we need to reset the set of possible pairs and store the
current Spqir, we add the last position in which it was consistent with the target genotype.
In other words, each time we have a recombination, we store the current Spqi- and the last
position in which it explains a genotype substring.

After scanning the entire input genotype, we have a list of possible sets Spqir that cover
various regions of the genotype, most likely all of them. Each genotype region can possibly be
explained by more than one pair, so we must select the optimal haplotype pair. The selection
is guided by an optimization function that aims to minimize the number of recombinant
haplotypes. From a combinatorial perspective, we aim to find a list of haplotype pairs, one
per region, that minimizes the number of pairs. This is the list of recombinant haplotypes
that explain the input genotype. To compute this efficiently, we use a greedy algorithm to
compute this list of pairs. Specifically, we sort all pairs by frequency and select the most
frequent pair for each genotype region. In this way, for each genotype region, we get just one
haplotype pair, which is the most common overall among the pairs that cover that region,
i.e., the pair that covers more other regions. If some pairs have the same frequency, the
selection is further weighted based on the pairs’ choices made in previous regions to ensure
consistency.

Figure 1.b illustrates the simplest case of recombination. In Figure 1.b.A, considering
the first two 2PSs, we obtain Spqir = {(3,4)} as the current set of pairs. However, this
pair cannot explain the genotype at positions 6 and 7, even resetting the left anchor not
having any CPS in that region, so this region remains unphased. Using the previously
described approach, as shown in Figure 1.b.B, we restart from the next 2PS pair and obtain

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

a) 2-MPSC b) 2PSC
M|01 02 03 04 05 06 |01 02 03 04 05 06 07 08 09 10
1 3Ll...l/1 1 0 el Lot 110 0 0 01
2 111 1 111 1 1
3 1 1 1 101 0 (1 1)/1 1[0 1 |1
4 0 0 1 1,0 0 0 01 1)i1 1:[1
P12 2] 1 1 1 [ii(2 201 11 1 [2 2]i1}

Figure 2 Example for advantages of using 2PS and CPS against MPSC. In a) we show that
using MPSC we should not be able to phase the two heterozygous regions between sites 2-3 and 8-9,
having a recombination inside the MPSC at sites 5-6, while in b) we show that using 2PS and CPS,
those regions are correctly phased.

Spair = {(1,6)}, which explains the last genotype region. At this point, we also store in
memory Spqir = {(3,4)} and the last consistent position with that set: 5. At the end of the
iteration, not having other possible pairs, we store Spqir = {(1,6)} and position 15. This
results in a recombination event between (3,4) and (1,6) even though we cannot infer the
exact haplotype configuration at positions 6 and 7, i.e. those sites remain unphased.

5.4 Advantages of 2PSs against 2-MPSCs

After explaining our method, it becomes clear why we needed to avoid using classical 2-MPSC
in favor of 2PS. As shown in Figure 2.a, if we rely on the use of 2-MPSC, we require less
flexibility in how we detect anchors. In detail, we should miss some recombinations that
occur in a position inside a 2-MPSC. In fact, using 2-MPSCs as in the example, we have
that the two heterozygous regions cannot be explained by any row pair despite having a
CPS which covers that substring. The first and second MPSC do not share any associated
row pair, which explains the heterozygous region in between positions 2 and 3. The same
happens when restarting the iteration from the entire second 2-MPSC and considering the
last 2-MPSC: the heterozygous region between positions 8 and 9 cannot be explained in any
way.

However, using 2PS, as in Figure 2.b, splitting the central MPSC into two 2PS, we can
detect the pair Spqir = {1, 2} that explains the genotype up to position 5, including P[2..3],
and the pair Spqir = {2,4} that explains the genotype from position 6 to the end of the
genotype query, including P(8..9].

5.5 Time and Space Complexity

For the time and space complexity of MS and the leftmost MPSC, refer to [2, 3, 8]. Although
computing 2PSs and MPSC share the same time complexity, the key difference lies in the
number of rows that share the same match. Since 2PSs generally involve smaller matches,
more rows tend to share them, increasing the computational overhead.

Additionally, our approach has a time complexity that is quadratic in the number
of possible haplotype pairs shared between the two anchors. In terms of extra space
requirements, we store the input panel along with a vector of sparse bitvectors, enabling
efficient reconstruction of submatrices. This avoids recomputing them using p-PBWT in
O(hlog p), with p as the total number of runs in the PBWT. Furthermore, we must consider
that storing all 2PSs and the current set of haplotype pairs can become memory intensive,
having in the worst case a total number of pairs which is quadratic in the number of
haplotypes.

10:11

Manzini's Festschrift

10:12

Phasing Data from Genotype Queries via the u-PBWT

Table 1 Total number of heterozygous variation sites as the mutation rate varies.

Mutation rate No. of het. sites

0% 60 604
1% 60862
3% 61362
5% 61995
10 % 63153
20% 65265

6 Results

In this section, we present some preliminary experimental results of our approach. Since this
approach is a proof-of-concept, the current implementation is inefficient for most subtasks,
from the extraction of complementary rows to the greedy algorithm used to select the
best pairs of haplotypes. All of these steps could be further optimized in the future, both
theoretically and practically.

To assess the applicability of our theoretical results, we integrate the genotype phasing
algorithm into the u-PBWT codebase and tested it in a simple genotype phasing scenario. For
this experiment, we considered the HGSVC2 reference panel [7, 10] for human chromosome 2,
with 68 haplotypes (34 samples) and 229 300 biallelic variation sites. We randomly selected
a sample (target sample) from this reference panel as a query, combining its haplotypes into
an unphased genotype target. The target sample we selected has 60,604 heterozygous sites
(~ 26% of the total number of variants on chromosome 2).

We used VCF as input format where 0|0 and 1|1 represent phased homozygous sites,
0|1 and 1|0 phased heterozygous sites, 0/0 and 1/1 unphased homozygous sites, and 0/1
unphased heterozygous sites.

We compared u-PBWT with Beagle [5, 6], a state-of-the-art phasing tool that is also
based on the use of a reference panel. We ran Beagle with default parameters, using the
HapMap [23] chromosome 2 genetic map for the GRCh38 reference genome.

We ran our experiments on a machine equipped with an Intel Xeon CPU E5-4610 v2
(2.30GHz), 256 GB of RAM, 8 GB of swap, and Ubuntu 20.04.6 LTS 64-bit with kernel 5.15.0.
We measured execution times and peak memory usage using the Unix time command.

Moreover, we simulate mutations in the target genotype by replacing the genotype at
each position with probability e. We considered five different values for e: 1%, 3%, 5%,
10%, and 20%. We refer to € as mutation rate. Table 1 summarizes the total number of
heterozygous sites after the mutation step. As explained above, mutations cause small
spurious recombinations at nearby sites. Thus, this small experiment allows us to test more
realistic scenarios.

The accuracy of the results was evaluated by considering (i) the switch error rate, i.e., the
rate of phase changes between the predicted haplotypes w.r.t. the ground truth haplotypes,
(it) the mismatch rate, i.e., the rate at which two switch errors occur at consecutive positions,
and (7i) the percentage of heterozygous sites that have been phased. The three metrics
were computed using the utility script publicly shared by the developers of HapCUT?2 [11]!,
considering the two haplotypes of the target sample as ground truth.

! https://github.com/vibansal/HapCUT2/tree/master/utilities

https://github.com/vibansal/HapCUT2/tree/master/utilities

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

a) Switch Error Rate b) Mismatch Rate) % of Heterozygous Phased Sites

0.06 0.030
0.05 0.025

o 004 0.020

Rate

Error Rats
o
R

8 0.015

E

0.02 0.010

0.01 0.005 20

0.00 0.000

01 3 s 10 20 01 3 s 10 20 01 3 s 10 20
Mutation % Mutation % Mutation %

—e— uPBWT —m- Beagle

Figure 3 Various statistical results of u-PBWT and Beagle at different genotype mutation rates.
In a) we have the switch error rate, in b) the mismatch rate, and in c¢) the percentage of heterozygous
sites phased over the total number of heterozygous sites.

Figure 3 presents the accuracy obtained by Beagle and u-PBWT at different mutation
rates (detailed results are available in Table 2). The results obtained in the scenario without
mutations (i.e., with a mutation rate equal to 0%) are consistent with how the two tools
approach the solution of the phasing problem. Beagle is a statistical approach that is not
expected to find the exact solution even if the target genotype can be perfectly explained by
two haplotypes in the reference panel. In contrast, u-PBWT implements a combinatorial
approach which is designed to always find a haplotype pair that explains the target, if such a
pair exists in the reference panel. In fact, in this scenario u-PBWT correctly identifies the
two haplotypes of the target sample, so both switch error rate and mismatch rate are equal
to 0.0%, while Beagle exhibits some fluctuations, with both metrics greater than zero.

As the mutation rate increases, the accuracy of p-PBWT decreases dramatically. In fact,
as we can see in Figure 3¢, even with a mutation rate of 5%, u-PBWT is able to phase only
62.6% of heterozygous sites. We recall that u-PBWT does not phase heterozygous sites that

are not explained by any haplotype pair that can be used as both a left and a right anchor.

As a consequence, the higher the mutation rate, the larger the heterozygous genotype regions
that do not have valid anchors and thus remain unphased. This fact further demonstrates
the dependency of our approach on the data available in the reference panel, which benefits
from panels including a large number of haplotypes. In addition to this strong dependency
on the reference panel, our approach is unable to estimate haplotype pairs that differ from
the ones obtained using the positional cover. Thus, around each mutation site, u-PBWT will
report pairs of haplotypes that differ from the ones of the target sample. However, a manual
inspection of the results revealed that one of the two reported haplotypes often coincides with
a haplotype of the target sample. However, these cases are handled better by Beagle, again
due to its probabilistic approach, which seems to be more robust against these mutations
and successfully phases each genotype site.

Figure 4 presents the computational resources used by the two approaches. The running
times of the two approaches are comparable. However, the running time of u-PBWT increases
as the mutation rate increases, since, as expected, the number of haplotype switches that
u-PBWT has to compute (instead of simply continuing the match) also increases. Each time
the algorithm cannot proceed with any pair, it has to start again, considering larger sets

of possible pairs whose analysis increases both the overall execution time and RAM usage.

Note that enlarging the number of reference samples would worsen performance in terms of
indexing and storing the reference panel, but it would likely reduce the number of possible

10:13

Manzini's Festschrift

10:14 Phasing Data from Genotype Queries via the u-PBWT

Table 2 Comparison of various genotype phasing accuracy metrics (such as the switch error rate
and the mismatch rate) of Beagle and u-PBWT as the mutation rate varies.

(a) Results with 0% and 1% mutation rate.

Mutation rate 0% 1%

Beagle u-PBWT Beagle u-PBWT
Switch error rate 0.0138 0.0 0.003 0.0021
Mismatch rate 0.0038 0.0 0.0 0.0004
Flat rate 0.491 0.0 0.454 0.0121
Phased count 60 604 60 604 60 862 54 547
N50 242130407 242130407 242130407 242130407
No. of SNPs max block 60 604 60 604 60 862 54 547

(b) Results with 3% and 5% mutation rate.

Mutation rate 3% 5%

Beagle u-PBWT Beagle w-PBWT
Switch error rate 0.0077 0.0076 0.0128 0.0121
Mismatch rate 0.0007 0.0024 0.0014 0.0042
Flat rate 0.4721 0.0272 0.4754 0.0397
Phased count 61362 44 365 61995 38803
N50 242130407 242130407 242065471 242065471
No. of SNPs max block 61362 44 365 61995 38803

(c) Results with 10% and 20% mutation rate.

Mutation rate 10% 20 %

Beagle w-PBWT Beagle w-PBWT
Switch error rate 0.0233 0.0286 0.0432 0.0652
Mismatch rate 0.0037 0.0122 0.0092 0.0325
Flat rate 0.4878 0.0745 0.4920 0.1638
Phased count 63153 27760 65265 15903
N50 242130407 242046972 242133632 242088948
No. of SNPs max block 63153 27760 65265 15903

pairs to consider at each iteration since longer matches would become more likely. On the
other hand, the running time of Beagle remains constant as the mutation rate increases since
it does not depend on the number of haplotype switches in the reported solution.

As expected, u-PBWT is very memory-efficient, requiring approximately 7 times less
memory than Beagle. These results show that y-PBWT could be run on low-end hardware
or, on the public cloud, at a fraction of the cost of running Beagle. We argue that further
refinements and improvements to the model and algorithm would not significantly impact
memory requirements, since memory usage in genotype phasing approaches is often dominated
by the space required to store the reference panel and pu-PBWT employs a very compact and
efficient index representation of the panel.

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

a) Execution Time b) Max Memory Usage

Wall Clock Time (s)
N
s

Max Memory (GB)

0 1 3 5 10 20 0 1 3 5 10 20
Mutation Percentage Mutation Percentage

—e— WPBWT —m— Beagle

Figure 4 a) Running time and b) peak memory usage (right) of u-PBWT and Beagle at different
mutation rates.

7 Conclusion

In this paper, we present a proof of concept showing how u-PBWT can be used to solve
the genotype phasing problem. First, we outline the theoretical framework underlying our
method, based on the foundations presented in [3]. We then introduce our combinatorial
approach to tackling the phasing problem, considering both scenarios: (i) when a haplotype
pair fully explains the target genotype and (ii) when multiple haplotype pairs are required to
cover different genotype regions. Experimental results indicate that our approach is sensitive
to the size of the reference panel, particularly when the mutation rate increases.

Improving the resolution of haplotype reconstruction in complex genomic regions remains
an important direction for future work. In particular, anchoring heterozygous regions using
flanking homozygous segments may enhance stability during phasing, while incorporating
methods to detect recombination events within heterozygous regions could improve accuracy
in the presence of structural variation and mutation.

These enhancements build on the current strengths of the proposed method, which, in
mutation-free settings, reliably identifies the correct haplotype pair. Furthermore, consistent
with the evaluations of u-PBWT, the method achieves high efficiency with minimal memory
requirements, making it suitable for execution on commodity hardware. Taken together,
these characteristics provide a strong foundation for future comparisons with state-of-the-art
phasing tools, particularly in real-world scenarios involving complex variant patterns and
sequencing noise.

—— References

1 Paola Bonizzoni. A linear-time algorithm for the perfect phylogeny haplotype problem.
Algorithmica, 48:267-285, 2007. doi:10.1007/S00453-007-0094-3.

2 Paola Bonizzoni, Christina Boucher, Davide Cozzi, Travis Gagie, Dominik Koéppl, and
Massimiliano Rossi. Data Structures for SMEM-Finding in the PBWT. In International
Symposium on String Processing and Information Retrieval, pages 89—101. Springer, 2023.
doi:10.1007/978-3-031-43980-3_8.

3 Paola Bonizzoni, Christina Boucher, Davide Cozzi, Travis Gagie, and Yuri Pirola. Solving the
minimal positional substring cover problem in sublinear space. In 35th Annual Symposium

10:15

Manzini's Festschrift

https://doi.org/10.1007/S00453-007-0094-3
https://doi.org/10.1007/978-3-031-43980-3_8

10:16

Phasing Data from Genotype Queries via the u-PBWT

10

11

12

13

14

15

16

17

18

19

on Combinatorial Pattern Matching (CPM 2024). Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2024.

Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Jing Li. The haplotyping
problem: an overview of computational models and solutions. Journal of Computer Science
and Technology, 18:675—688, 2003. doi:10.1007/BF02945456.

Brian L Browning, Xiaowen Tian, Ying Zhou, and Sharon R Browning. Fast two-stage phasing
of large-scale sequence data. The American Journal of Human Genetics, 108(10):1880-1890,
2021.

Brian L Browning, Ying Zhou, and Sharon R Browning. A one-penny imputed genome from
next-generation reference panels. The American Journal of Human Genetics, 103(3):338-348,
2018.

Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky, Tobias
Rausch, Eugene J Gardner, Oscar L. Rodriguez, Li Guo, Ryan L Collins, et al. Multi-platform
discovery of haplotype-resolved structural variation in human genomes. Nature communications,
10(1):1784, 2019.

Davide Cozzi, Massimiliano Rossi, Simone Rubinacci, Travis Gagie, Dominik K6ppl, Christina
Boucher, and Paola Bonizzoni. u-PBWT: a lightweight r-indexing of the PBWT for stor-
ing and querying UK Biobank data. Bioinformatics, 39(9):btad552, 2023. doi:10.1093/
BIOINFORMATICS/BTADS52.

Richard Durbin. Efficient haplotype matching and storage using the positional Burrows—
Wheeler transform (PBWT). Bioinformatics, 30(9):1266-1272, 2014. doi:10.1093/
BIOINFORMATICS/BTUO14.

Peter Ebert, Peter A Audano, Qihui Zhu, Bernardo Rodriguez-Martin, David Porubsky,
Marc Jan Bonder, Arvis Sulovari, Jana Ebler, Weichen Zhou, Rebecca Serra Mari, et al.
Haplotype-resolved diverse human genomes and integrated analysis of structural variation.
Science, 372(6537):eabf7117, 2021.

Peter Edge, Vineet Bafna, and Vikas Bansal. Hapcut2: robust and accurate haplotype
assembly for diverse sequencing technologies. Genome research, 27(5):801-812, 2017.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings 41st annual symposium on foundations of computer science, pages 390-398. IEEE,
2000. doi:10.1109/SFCS.2000.892127.

William A Freyman, Kimberly F McManus, Suyash S Shringarpure, Ethan M Jewett, Katar-
zyna Bryc, 23, Me Research Team, and Adam Auton. Fast and robust identity-by-descent
inference with the templated positional burrows—wheeler transform. Molecular Biology and
Evolution, 38(5):2131-2151, 2021.

Dan Gusfield. Haplotyping as perfect phylogeny: conceptual framework and efficient solutions.
In Proceedings of the sixzth annual international conference on Computational biology, pages
166175, 2002. doi:10.1145/565196.565218.

Robin J Hofmeister, Diogo M Ribeiro, Simone Rubinacci, and Olivier Delaneau. Accurate
rare variant phasing of whole-genome and whole-exome sequencing data in the uk biobank.
Nature genetics, 55(7):1243-1249, 2023.

Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recombination
hotspots using single-nucleotide polymorphism data. Genetics, 165(4):2213-2233, 2003.
Ardalan Naseri, Erwin Holzhauser, Degui Zhi, and Shaojie Zhang. Efficient haplotype matching
between a query and a panel for genealogical search. Bioinformatics, 35(14):1233-i241, 2019.
doi:10.1093/BI0OINFORMATICS/BTZ347.

Simone Rubinacci, Olivier Delaneau, and Jonathan Marchini. Genotype Imputation using the
Positional Burrows Wheeler Transform. PLoS Genetics, 16(11):1009049, 2020.

Simone Rubinacci, Robin J Hofmeister, Barbara Sousa da Mota, and Olivier Delaneau.
Imputation of low-coverage sequencing data from 150,119 uk biobank genomes. Nature
Genetics, 55(7):1088-1090, 2023.

https://doi.org/10.1007/BF02945456
https://doi.org/10.1093/BIOINFORMATICS/BTAD552
https://doi.org/10.1093/BIOINFORMATICS/BTAD552
https://doi.org/10.1093/BIOINFORMATICS/BTU014
https://doi.org/10.1093/BIOINFORMATICS/BTU014
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/565196.565218
https://doi.org/10.1093/BIOINFORMATICS/BTZ347

D. Cozzi, P. Bonizzoni, C. Boucher, B. Langmead, and Y. Pirola

20

21

22

23

24

25

26

Ahsan Sanaullah, Degui Zhi, and Shaoije Zhang. Haplotype threading using the positional
Burrows-Wheeler transform. In 22nd International Workshop on Algorithms in Bioinformatics
(WABI 2022). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.

Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. d-pbwt: dynamic positional burrows-wheeler
transform. Bioinformatics, 37(16):2390-2397, 2021. doi:10.1093/BIOINFORMATICS/BTAB117.
Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. Minimal positional substring cover is a
haplotype threading alternative to Li and Stephens Model. Genome Research, 33(7):1007-1014,
2023. doi:10.1101/gr.277673.123.

The International Hapmap 3 Consortium. Integrating common and rare genetic variation
in diverse human populations. Nature, 467(7311):52-58, September 2010. doi:10.1038/
nature09298.

Victor Wang, Ardalan Naseri, Shaojie Zhang, and Degui Zhi. Syllable-PBWT for space-
efficient haplotype long-match query. Bioinformatics, 39(1):btac734, 2023. doi:10.1093/
BIOINFORMATICS/BTAC734.

Yaoling Yang, Richard Durbin, Astrid KN Iversen, and Daniel J Lawson. Sparse haplotype-
based fine-scale local ancestry inference at scale reveals recent selection on immune responses.
medRxiv, pages 2024-03, 2024.

William Yue, Ardalan Naseri, Victor Wang, Pramesh Shakya, Shaojie Zhang, and Degui Zhi.
P-smoother: efficient PBWT smoothing of large haplotype panels. Bioinformatics Advances,
2(1):vbac045, 2022.

10:17

Manzini's Festschrift

https://doi.org/10.1093/BIOINFORMATICS/BTAB117
https://doi.org/10.1101/gr.277673.123
https://doi.org/10.1038/nature09298
https://doi.org/10.1038/nature09298
https://doi.org/10.1093/BIOINFORMATICS/BTAC734
https://doi.org/10.1093/BIOINFORMATICS/BTAC734

	1 Introduction
	2 Related work
	3 Background
	3.1 The Minimal Positional Substring Cover Problems
	3.2 Solving the k-MPSC problem variants using PBWT
	3.3 Positional Burrows–Wheeler Transform and mu-PBWT

	4 The genotype phasing problem via positional substrings
	5 Methods
	5.1 Computing 2PSs
	5.2 Solving the Haplotype Phasing Problem Without Recombinations
	5.3 Handling Recombination Cases
	5.4 Advantages of 2PSs against 2-MPSCs
	5.5 Time and Space Complexity

	6 Results
	7 Conclusion

