
Circular Dictionary Matching Using Extended BWT
Wing-Kai Hon #

National Tsing Hua University, Hsinchu, Taiwan

Rahul Shah #

Louisiana State University, Baton Rouge, LA, USA

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
The dictionary matching problem involves preprocessing a set of strings (patterns) into a data
structure that efficiently identifies all occurrences of these patterns within a query string (text). In
this work, we investigate a variation of this problem, termed circular dictionary matching, where the
patterns are circular, meaning their cyclic shifts are also considered valid patterns. Such patterns
naturally occur in areas such as bioinformatics and computational geometry. Based on the extended
Burrows-Wheeler Transformation (eBWT), we design a space-efficient solution for this problem.
Specifically, we show that a dictionary of d circular patterns of total length n can be indexed in
n log σ + O(n + d log n + σ log n) bits of space and support circular dictionary matching on a query
text T in O((|T | + occ) log n) time, where σ represents the size of the underlying alphabet and occ
represents the output size.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases String algorithms, Burrows-Wheeler transformation, suffix trees, succinct
data structures

Digital Object Identifier 10.4230/OASIcs.Manzini.2025.11

Funding Supported by the US National Science Foundation (NSF) under Grant Numbers 2137057,
2434261 (R Shah) and 2315822 (S Thankachan).

Acknowledgements We thank all the anonymous reviewers (and Mano Prakash Parthasarathi) for
their valuable feedback, which helped improve this paper. We also thank Travis Gagie for pointing
out the independent work by Cotumaccio [25].

1 Introduction

Text indexing is a fundamental problem in computer science, where we are given a long string
(the text) for preprocessing into a data structure (the index) that supports efficient substring
matching. Specifically, when a shorter string (the pattern) is provided as a query, the goal is
to find all occurrences of the pattern as a substring within the text. Data structures such
as suffix trees and suffix arrays are commonly used for this task [67, 53]. However, a major
drawback of suffix trees and suffix arrays is their significant space requirement. To address
this issue, compact and space-efficient solutions have been developed [28, 41, 62]. Among
these, FM-index [28], Compressed Suffix Arrays [41], and Compressed Suffix Trees [62] are
particularly notable due to their historical significance. We refer to [57] for a comprehensive
survey on this topic.

Dictionary matching is an orthogonal problem to text indexing. Here, we are given
a set of patterns (the dictionary) and our aim is to design a data structure capable of
finding all occurrences of these patterns as substrings within a query text. Solutions to this
problem have applications in areas such as intrusion detection and bioinformatics, where
they are used to identify known DNA or protein sequences in genomic data. The classic

© Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini’s 60th Birthday.
Editors: Paolo Ferragina, Travis Gagie, and Gonzalo Navarro; Article No. 11; pp. 11:1–11:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wkhon@cs.nthu.edu.tw
https://orcid.org/0000-0002-0570-2904
mailto:rahul@lsu.edu
https://orcid.org/0000-0002-2190-5840
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/OASIcs.Manzini.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

11:2 Circular Dictionary Matching Using Extended BWT

solution to this problem is the Aho-Corasick automaton [1], which efficiently matches multiple
patterns simultaneously. However, as before, this data structure also suffers from a high space
requirement. To address this issue, compact and space-efficient solutions have been proposed.
The current best succinct-space result is due to Belazzougui [10], where an xBWT-like
technique [27] is applied for the succinct encoding of the Aho-Corasick automaton. We
refer the reader to [55, 59, 16] for follow-up work in this direction, including an entropy-
compressed solution [45]. For an an alternative solution based on sparse suffix trees, see [42].
A wide range of variations on this problem have been studied, including dynamic dictionary
matching [3, 18, 46, 26, 65], online dictionary matching [35, 51, 6], dictionary matching in
streaming model [36, 34, 37], dictionary matching with errors or gaps [5, 4, 24, 44, 47], internal
dictionary matching [19], dictionary matching under parameterized or order-preserving
models [52, 32, 33], 2D dictionary matching [2, 58], etc.

In this work, we investigate another variant of dictionary matching, termed circular
dictionary matching [48]. Here the patterns in the given dictionary are circular, meaning
their cyclic shifts are also considered valid patterns. For example, the set of cyclic shifts of
abcd is {abcd, bcda, cdab, dabc}, whereas that of abab is {abab, baba}. Note that circular
patterns arise naturally in applications in bioinformatics and computational geometry. For
instance, the genomes of many viruses, such as the herpes simplex virus (HSV-1), exist as
circular strings [64]. In computational geometry, polygons are often represented by listing
the coordinates of their vertices in clockwise order. The problem of matching a circular
pattern, or a collection of circular patterns, in a given text has been extensively studied from
an algorithmic perspective [23, 22, 20, 7, 49, 9, 40, 21]. Our objective is to design a solution
for the data-structural version of this problem.

▶ Problem 1 (Circular Dictionary Matching [48]). Given a set of d circular patterns D =
{P1, P2, . . . , Pd} of total length n on an alphabet Σ = [σ], design a data structure (called an
index) that supports the following query efficiently:

Input: A text T over Σ
Output: All occurrences of all circular patterns in T . Specifically, every substring of T

that corresponds to a cyclic shift of any pattern in D; a substring can be denoted by the
starting and ending position in the text. We use occ to denote the output size.

Problem 1 is equivalent to standard dictionary matching on an expanded dictionary D′,
which includes all circular patterns in D along with their cyclic shifts. Therefore, one approach
is to index D′, which is clearly inefficient, as the sum of the sizes of all patterns in D′ can be
quadratic to that of D in the worst case. To that end, we presented a succinct space index of
space n log σ + O(n + d log n + σ log n) bits and query complexity O(|T | log2 n + occ log n) in
our earlier work [48], which we improve upon in this paper.

▶ Theorem 2. For the circular dictionary matching problem, there exists an index requiring
space n log σ + O(n + d log n + σ log n) bits and query time O((|T | + occ) log n). Here n

denotes the total length of circular patterns in the dictionary D, d = |D|, σ denotes the size
of the alphabet set, T denotes the text (and |T | denotes its length) that comes as a query,
and occ denotes the output size.

Our new solution is based on a structure similar to the FM-index [28], which is built from
the extended Burrows-Wheeler Transformation (eBWT) [54], an extension of the traditional
Burrows-Wheeler Transformation (BWT) [15] that works over multiple strings [8, 13, 14,
17, 60]. We remark that the application of the eBWT to the space-efficient indexing of
circular patterns is not new. For example, in recent work, Boucher et al. [14] showed how to

W.-K. Hon, R. Shah, and S. V. Thankachan 11:3

construct an eBWT-based index for a collection of strings with full cyclic pattern matching
functionality in compressed space. This problem is distinct from the one we address in this
work; nonetheless, the techniques employed in this paper are closely similar to those in their
work.

▶ Remark. In work parallel to ours, Cotumaccio [25] independently achieved an index with
similar space-time complexity; specifically n log σ(1 + o(1)) + O(n + d log n) bits of space and
O((|T | + occ) log n) query time.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , σ − 1} denote the underlying alphabet. For a string S[1 . . s], we use |S|
to denote its length, S[i . . j] to denote its substring S[i]◦S[i+1]◦ · · · ◦S[j] when i ≤ j and an
empty string when i > j, where ◦ denotes concatenation. In addition, S[i . . j) = S[i . . j − 1]
and S(i . . j] = S[i + 1 . . j]. For an integer k ≥ 0, Sk denotes an empty string if k = 0, and
S ◦ Sk−1 otherwise, while S∞ denotes the concatenation of infinite copies of S. The root of
a string S, root(S) is defined as the shortest string R, such that S = Rk for some integer
k; we call S primitive if S = root(S). For example, a, ab, ababa are primitive, whereas
abab = (ab)2 is not. The result below follows from Fine and Wilf’s theorem [29] (also see
Theorem 1 in [12]).

▶ Lemma 3. Let X and Y be two distinct primitive strings. Then, the length of the longest
common prefix of their infinite repetitions, X∞ and Y ∞, is at most |X| + |Y | − gcd(|X|, |Y |),
where gcd(·, ·) denotes the greatest common divisor. This implies that although X∞ and Y ∞

are infinite in length, their lexicographic order can be established by comparing a bounded
number of characters.

Rank and Select Queries. For a character α ∈ Σ, rankS(i, α) denotes the number of
occurrences of α in S[1 . . i], selectS(j, α) denotes the location of j-th occurrence of α in S,
and partialRankS(i) = rankS(i, S[i]). There exist different space-time trade-offs for supporting
these operations. For example, a wavelet tree structure of space s log σ + o(s) + O(σ log s)
bits can support all three operations in O(log σ) time [39]. See [11, 38] for faster alternatives.

For our purpose, we use an s log σ+O(s+σ log s)-bit structure, which requires O(log log s)
time for rank and only O(1) time for others. The idea is to use the following result (indexible
dictionaries) by Raman et al. [61]: a binary string B[1 . . s] with f number of 1s can be
represented in f log(s/f)+O(f) bits and support rankB(·, ·) in O(log log s) time, selectB(j, 1)
and partialRankB(i) in O(1) time, where partialRankB(i) = rankB(i, B[i]) if B[i] = 1 and is an
arbitrary number otherwise. Therefore, for each α ∈ Σ, we maintain the following bit vectors
as indexible dictionaries: Bα[1 . . s], where Bα[i] = 1 iff S[i] = α. Let fα be the number of
occurrences of α in S. Then the total space is

∑
α∈Σ fα log(s/fα) + O(fα) = s log σ + O(s)

bits. To enable the operations on S, we employ the following connections: rankS(i, α) =
rankBα(i, 1), selectS(j, α) = selectBα(j, 1), and partialRankS(i) = partialRankBS[i]

(i).

Range Minimum Queries (RMQ). Let A be an array of numbers, we can design an
2|A| + o(|A|) bit structure that supports the following query [30] in constant time: input is a
range [a, b] and output is position t ∈ [a, b], such that A[t] is the smallest element in A[a, b].
For answering RMQ, we do not need to explicitly store A.

Manzini’s Festschrift

11:4 Circular Dictionary Matching Using Extended BWT

Tree Topology. The topology of an ordinal tree can be encoded in linear number of bits
and support various tree operations in O(1) time [63, 56]. The ones relevant to us are finding
the parent of a node, the range of leaves (i.e., the first and last leaves) in the subtree of a
node, and the lowest common ancestor (LCA) of two nodes. Here a node is referred to by its
pre-order rank.

3 Extended Burrows-Wheeler Transformation and Related Structures

In this section, we formally define the extended BWT, along with data structures analogous
to suffix trees and suffix arrays for circular strings, which we refer to as the extended suffix
tree and extended suffix array. The definition of extended BWT is first proposed by Mantaci
et al. [54]. For related concepts, different terminologies have been used in prior work; for
example, the extended suffix array was referred to as the circular suffix array in [48, 43],
and as the generalized conjugate array in recent work by Boucher et al. [14]. However, it
is straightforward to observe that these structures are equivalent. As we will show, the
succinct encoding of the extended suffix array follows naturally from the original ideas of
the FM-index. However, the definition of the extended suffix tree, or the use of it to solve
pattern matching problems, seem to be new. In the following, we will follow the terminologies
in [48, 43] to define the extended BWT, as they align more naturally in defining (more
importantly compressing) the extended suffix tree than those in the original paper [54]. Also,
we remark that encoding certain components of the extended suffix tree requires non-trivial
modifications of known results.

Let Q = {Q1, Q2, Q3, . . . , Qr} be a given set of r primitive strings, where Qi = Qi[1 . . qi]
and m =

∑r
i=1 qi. We call Qi,k = Qi[k . . qi] ◦ Qi[1 . . k) the k-th cyclic shift of Qi, where

k ∈ [1, qi]. Without loss of generality, we make an important assumption that no string in Q
is a cyclic shift of another.1 Next, we define the following sets:

eSUFFIXES(Qi) = {Q∞
i,k | k ∈ [1, qi]} and eSUFFIXES(Q) =

r⋃
i=1

eSUFFIXES(Qi)

Note that eSUFFIXES(Q) is a collection of m strings, which are infinite in length, but
pairwise distinct; therefore, their lexicographic order is well-defined. Moreover, by Fine and
Wilf’s theorem (see Lemma 3), the length of the longest common prefix between any two
strings in eSUFFIXES(Q) is at most 2m.

The Extended Suffix Tree (denoted by eST) is a compacted trie of all strings in
eSUFFIXES(Q). It consists of m leaves, say ℓ1, ℓ2, . . . , ℓm in the left-to-right order, which
are enumerated according to the lexicographic order of the infinite strings in eSUFFIXES(Q).
The number of internal nodes is at most m − 1. For any node u, str(u) denotes the
concatenation of edge labels on the path from the root to u and strlen(u) denotes the length
of str(u). Note that strlen(·) < 2m for all internal nodes from Lemma 3. However, each
edge connecting to a leaf has a label with an infinite length. This is unlike the standard
suffix tree. Yet, the tree topology is well-defined, because the lexicographic order of strings
in eSUFFIXES(Q) is well defined2. We remark that the idea of having leaf edges with

1 As we will see, our goal is to efficiently represent all cyclic shifts of strings in the collection. If two
strings are cyclic shifts of each other, they share the same set of shifts. Therefore, it’s sufficient to store
only one representative from each group of cyclically equivalent strings.

2 Note that this remains true even when each infinite string in eSUFFIXES(Q) is treated as a finite string
by considering only its first 2m characters.

W.-K. Hon, R. Shah, and S. V. Thankachan 11:5

unspecified lengths is not new; e.g., see Ukkonen’s suffix tree construction algorithm [66].
The suffix range of a string S is the maximal range [sp, ep] where S is a prefix of str(ℓj) for
all j ∈ [sp, ep], and is NIL if no such j exists. The range of leaves of a node u is the suffix
range of the string str(u).

The Extended Suffix Array eSA[1 . . m] is an array of pairs such that eSA[j] = (i, k),
where str(ℓj) = Q∞

i,k, and the Extended BWT eBWT[1 . . m] is a string, where eBWT[j] is
the last character of Qi,k. We remark that the terminology used in the original definition
of eBWT in [54] is slightly different (i.e., omega order), but there is no technical difference.
Note that eST and eSA take O(m log m) bits, whereas eBWT takes only m log σ bits.

As an example, consider the set Q = {Q1, Q2, Q3, Q4}, where Q1 = aab, Q2 = ab, Q3 =
abb and Q4 = b. Then eST consists of 9 leaves, such that
1. str(ℓ1) = Q∞

1,1 = aabaab . . .

2. str(ℓ2) = Q∞
1,2 = abaaba . . .

3. str(ℓ3) = Q∞
2,1 = ababab . . .

4. str(ℓ4) = Q∞
3,1 = abbabb . . .

5. str(ℓ5) = Q∞
1,3 = baabaa . . .

6. str(ℓ6) = Q∞
2,2 = bababa . . .

7. str(ℓ7) = Q∞
3,3 = babbab . . .

8. str(ℓ8) = Q∞
3,2 = bbabba . . .

9. str(ℓ9) = Q∞
4,1 = bbbbbb . . .

The corresponding eSA[1 . . 9] is (1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2), (3, 3), (3, 2), (4, 1)
and eBWT[1 . . 9] is babbaabab.

3.1 Succinct Representation of eSA
We maintain eBWT in m log σ + O(m + σ log m) bits to support rank, select and partialRank
operations efficiently as described in Section 2. Similar to the FM-index, we now implement
LF mapping and backward search [28].

Last-to-Front (LF) Mapping. Define eLF(j) = j′, where deleting the first character of
str(ℓj′) gives str(ℓj). The function eLF(j) can also be described in terms of eBWT as
eLF(j) = count(eBWT[j]) + partialRankeBWT(j). For any character α ∈ Σ, count(α) = |{i ∈
[1, m] | eBWT[i] < α}|. For all α ∈ Σ, this information can be stored explicitly in O(σ log m)
bits, and the partialRank operation takes only O(1) time. Therefore, the overall time for eLF
operation is constant.

Backward Search. Given the suffix range [sp, ep] of a string S, we can compute the suffix
range [sp′, ep′] of α ◦ S for any α ∈ Σ in O(log log m) time as follows. First compute the
following

sp′ = count(α) + rankeBWT(sp − 1, α) + 1

ep′ = count(α) + rankeBWT(ep, α)

If sp′ ≤ ep′, then return [sp′, ep′] as the suffix range of α ◦ S. Otherwise, conclude that the
suffix range of α ◦ S does not exist. The time complexity O(log log m) comes from the time
for rank operations.

To encode eSA, we replace it with a sparse eSA, where we store eSA values only at
some sampled positions. Specifically, we store an entry (i, k) iff k mod ∆ = 1, where ∆ be
a parameter. This reduces the number of values stored to O(d + m/∆), where d is the

Manzini’s Festschrift

11:6 Circular Dictionary Matching Using Extended BWT

number of indexed patterns; space is O(log m) bits per value. Suppose eSA[j] = (i, k), then
eSA[eLF[j]] = (i, k − 1), eSA[eLF[eLF[j]]] = (i, k − 2), etc., which means we can decode
eSA[j] (if not explicitly stored) by iteratively applying eLF (say h times) until we arrive at
a positions where eSA[·] = (i, k′) is stored. We then obtain eSA[j] = (i, k′ + h). The time
complexity is O(h) and h < ∆. By fixing ∆ = ⌈log m⌉, we obtain the following result.

▶ Lemma 4. There exists an m log σ + O(m + d log m + σ log m)-bit data structure that
returns eSA[j] for any given j in time O(log m).

3.2 Succinct Representation of eST
We encode and maintain the topology of eST in O(m) bits for supporting the relevant
tree operations in O(1) time. To encode the values of strlen(·), we modify the techniques
introduced by Sadakane [62].

For all i ∈ [1, r], define ePLCPi[1 . . qi], where ePLCPi[k] is the length of the longest
common prefix of Q∞

i,k and the string in the set eSUFFIXES(Q) that comes next in the
lexicographic order (say Q∞

i′,k′). Note that longest common prefix of Q∞
i,(k+1) mod qi

and
Q∞

i′,(k′+1) mod qi′
shares at least ePLCPi[k] − 1 characters. So, ePLCPi[(k + 1) mod qi] ≥

ePLCPi[k] − 1. By adding k on both sides and rearranging, we have

ePLCPi[k mod qi] + k ≤ ePLCPi[(k + 1) mod qi] + (k + 1)

Letting fi(k) = ePLCPi[k mod qi] + k, we have

fi(1) ≤ fi(2) ≤ · · · ≤ fi(|Qi|) ≤ fi(|Qi| + 1) = fi(1) + |Qi|

This means fi(k) : k ∈ [1, qi] is non-decreasing and its range is [fi(1), fi(1) + |Qi|]. We
store fi(1) explicitly in O(log m) bits and use unary encoding for the rest. Specifically, for
each i we store a binary string Bi = 10fi(2)−fi(1)10fi(3)−fi(2)10fi(4)−fi(3) . . . with O(1) time
rank/select supported [61]. To find fi(k), we simply count the number of 0s before k-th 1
and add fi(1). Subtracting k from this value gives ePLCPi[k]. Space required for a fixed i is
O(|Bi| + log m), where |Bi| = O(qi). Therefore, space over all i’s is O(m + d log m) bits.

We now present the last component for encoding strlen(·) values. Define array LCPe[1 . . m)
as follows. Suppose eSA[j] = (i, k), then LCPe[j] = ePLCPi[k]. We do not store LCPe
explicitly, but an RMQ structure over it in 2m + o(m) bits. To compute strlen(u), find [a, b],
the range of in the subtree of u and the position t ∈ [a, b) corresponding to the minimum in
LCPe[a, b) using an RMQ. Then obtain eSA[t] = (i′, k′) and strlen(u) = ePLCPi′

[k′]. The
time complexity (asymptotically) is equal to that of an eSA query.

▶ Lemma 5. By associating an O(m + d log m) bit structure with eSA, we can find strlen(·)
of any given node in time O(log m).

This concludes our discussion of the main data structure. In the following section, we
demonstrate how it can be used to solve the circular dictionary matching problem.

4 A Succinct Index for Circular Dictionary Matching

Traditional “non-circular” dictionary matching can be solved efficiently with a generalized
suffix tree of the patterns, by successively finding the locus of each suffix of the query text
T within the suffix tree, and then reporting the patterns that appear as the prefix of the
corresponding suffix. For circular patterns, we show that this can be done analogously

W.-K. Hon, R. Shah, and S. V. Thankachan 11:7

with the extended suffix tree. Yet, there are some technical challenges. First, as patterns
of different lengths can be represented by the same leaf, we need some care to verify if a
pattern actually appears in a certain text position. Another, more difficult, challenge is to
obtain the loci of the suffixes; a direct adaptation of the “non-circular” dictionary matching
approach cannot bound the running time as desired. In the following, we will explain how
such challenges can be solved.

Given a set of d circular patterns to index. We first make a critical step of replacing
each pattern with its lexicographically smallest cyclic shift. Denote the resulting set by
D = {P1, P2, . . . , Pd}. We then collect the roots of all Pi’s and call it Q = {Q1, Q2, . . . , Qr}.
The first step ensures that Q is invariant of the cyclic shifts of Pi’s. Let n =

∑
i |Pi| and

m =
∑

i |Qi|. Note that r ≤ d and m ≤ n.

4.1 The Data Structure
We construct and maintain the structures in Lemma 4 and Lemma 5 over the strings in Q.
Additional components are below.
1. We encode each pattern Pi ∈ D as a pair (i′, |Pi|), where Qi′ is the root of Pi, equivalently

Pi = Q
|Pi|/|Qi′ |
i′ . For each Qi′ ∈ Q, we maintain a list LISTi′ of patterns (in encoded

form) with Qi′ being their root. Each list is sorted in the ascending order of the pattern
lengths. Total space is O(d log n) bits. Therefore, given any (i′, τ), we can list all patterns
with root Qi′ and length ≤ τ in optimal time.

2. We want to support the query REPORT([a, b], τ), which reports all patterns Pi = (i′, |Pi|)
(i.e., in encoded form), where |Pi| ≤ τ and eSA[j] = (i′, ·) for some j ∈ [a, b]. Define an
array Length[1, m], where Length[j] is the length of the shortest pattern in LISTi′ , where
eSA[j] = (i′, ·). We do not store this array, but an RMQ structure over it in 2m + o(m)
bits. With that, we support the query using the following standard procedure.

When a = b, we decode i′, where eSA[a] = (i′, ·) and obtain the output from LISTi′ .
When a ̸= b, we find the position t ∈ [a, b] of the minimum element in Length[a, b]
using RMQ, and then make the query REPORT([t, t], τ). If it returns NIL (i.e., output
is empty), we conclude that REPORT([a, b], τ) is also NIL. Otherwise, we continue
our search for more answers in the remaining parts of the array, specifically in [a, t)
and (t, b] using queries REPORT([a, t), τ) and REPORT((t, b], τ), recursively.

Let g be the output size. Then it can be observed that the original query is split into
O(1 + g) subqueries. Therefore, the time complexity is O((1 + g) log m).

3. We mark a node u in eST if it is the highest node (i.e., closest to root) for some i ∈ [1, d],
such that Pi or a cyclic shift of it is a prefix of str(u). With each node, we associate
a bit, indicating if it is marked or not. Next, we want to support the following query:
given an arbitrary node u, list its marked ancestors. One could easily accomplish this by
first finding all of its ancestors (via finding parent nodes iteratively, starting u) and then
extracting those that are marked. But the time taken could be Θ(m) in the worst case. To
bound the time in terms of the number of marked ancestors, we store the lowest marked
ancestor (LMA) of the following sampled nodes explicitly: LCA(ℓt log m, ℓ(t+1) log m) for
all t ∈ [1, m/ log m). This scheme requires O(m) extra bits and guarantees that any path
towards the root with log m nodes contains a sampled node. Therefore, to list all the
marked ancestors of u, we traverse the path from u to root as before with the difference
that when we are at a sampled node, we jump to its LMA (i.e., skip all nodes in between)
and continue. All marked ancestors will be visited and the total number of nodes visited
(and total time) is bounded by O(log m) times the number of marked ancestors.

Total space is m log σ + O(m + d log n + σ log m) ⊆ n log σ + O(n + d log n + σ log n) bits.

Manzini’s Festschrift

11:8 Circular Dictionary Matching Using Extended BWT

4.2 Query Algorithm
We report all (x, i), where x ∈ [1, |T |] and (a cyclic shift of) Pi ∈ D occurs at position x

in T , using the following steps.
1. Find the maximum Lx, such that there exists a node ux where T [x . . x + Lx) is a prefix of

str(ux) and ux is the highest such node. Also, let [spx, epx] be the range of leaves of ux.
2. Report (x, i), if a cyclic shift of Pi ∈ D is a prefix of str(ux) and its length is ≤ Lx.

Note that the first step corresponds to finding the loci of T [x..] in the extended suffix
tree, for each x. For traditional suffix tree approach, we find the loci in ascending order of x.
Here, we do so in the opposite manner, in descending order of x. Intuitively, this change
allows us to replace the “downward” traversal of tree edges in the extended suffix tree to
“upward” traversals, where the latter can be implemented more efficiently with our auxiliary
data structures. We now show how to implement these two steps efficiently.

4.2.1 Details of Step 1
Initialize x= |T |, Lx+1 =0, and fix [spx+1, epx+1]=[1, m]. Then we compute (Lx, ux, spx, epx)
in the descending order of x using backward search as follows. We have two cases.
1. If T [x] has an occurrence in eBWT[spx+1, epx+1], then find the smallest number a and

the largest number b in [spx+1, epx+1], such that eBWT[a] = eBWT[b] = T [x]. Then
obtain spx = eLF[a], epx = eLF[b], ux = LCA(ℓspx

, ℓepx
) and Lx = 1 + Lx+1. The time

complexity in this case is O(log log m).
2. If T [x] has no occurrence in eBWT[spx+1, epx+1], then we find the lowest ancestor of ux+1,

say w, such that T [x] has an occurrence in eBWT[z, z′], where [z, z′] is the range of
leaves below w. Then find the smallest number a and the largest number b in [z, z′],
such that eBWT[a] = eBWT[b] = T [x]. Then obtain spx = eLF[a], epx = eLF[b], ux =
LCA(ℓspx

, ℓepx
) and Lx = strlen(ux). To find w, we perform a linear search on the path

from ux+1 to root until we find a node satisfying the required condition. This requires
O(h) rank queries, where h = O(1 + Lx+1 − Lx) is the number of nodes on the path
from ux+1 to w. Therefore, the time for a particular value of x is O(h log log m + log m).
When considering all values of x, we obtain the following total time complexity.3

|T |∑
x=1

((Lx+1 −Lx) log log m+log m) = (L|T |+1 −L1) log log m+ |T | log m = O(|T | log m).

In summary, the time for step 1 for all values of x combined is O(|T | log m).

4.2.2 Details of Step 2
Find u0

x = ux, u1
x, u2

x, . . . , uf
x, where uh

x is the lowest marked ancestor of uh−1
x for all h ∈ [1, f]

and f is the number of marked ancestors of ux. Let [sph, eph] be the range of leaves in the
subtree of uh

x. We make the following queries and collect their answers.
REPORT([sp0, ep0], Lx), which returns the Pi’s corresponding to (x, i) as the final output,
where the leaves corresponding to them are below u0

x.

3 An alternative way to find w is to perform a binary search along the path from ux+1 to the root. This
method requires a logarithmic number of rank queries and takes O(log m log log m) time for a particular
value of x. However, it results in a higher overall time complexity compared to what we described above.

W.-K. Hon, R. Shah, and S. V. Thankachan 11:9

For h ∈ [1, f], we perform the following two queries: REPORT([sph, sph−1), strlen(uh
x))

and REPORT((eph−1, eph], strlen(uh
x)), which return the Pi’s corresponding to (x, i) as

the final output, where the leaves corresponding to them are below uh
x, but not below

uh−1
x (this avoids reporting the same answer multiple times). For a fixed x, the output

size is at least f from the definition of marked nodes.
The total time of Step 2 is O((|T | + occ) log m), which thereby establishes the overall time
complexity. This completes the proof of Theorem 2.

5 Discussion and Open Problems

We present a succinct index for the circular dictionary matching problem that supports
queries efficiently in O((|T | + occ) log n) time. In our earlier work [48], we achieved a similar
result under the assumption that all patterns are approximately the same length (i.e., Θ(n/d)).
There, this assumption was necessary for the efficient encoding of strlen(·) values of nodes in
a suffix tree-like structure. Although we later managed to remove this restriction, it came
at the cost of a higher query time of O((|T | log n + occ) log n). The improved result in this
paper builds on a novel use of the eBWT, combined with a careful adaptation of Sadakane’s
technique for encoding strlen(·) values of nodes in the eST, as described in section 3.2.

We conclude with a list of problems that remain open for future research.
1. In contrast to the best known succinct solution for the standard dictionary matching

problem [10], which achieves a query time of O(|T | + occ), our solution has a query
complexity of O((|T | + occ) log n) in the circular setting. Even the recent alternative
solution by Cotumaccio [25] has the same query time. This raises an important and
natural question: Can the query time be further improved while maintaining the same
space bound? Although this does not seem immediate, we remark that a trade-off allowing
faster query time might be possible by adapting techniques from [41]; for example, using
O(n log σ) bits of space and achieving O((|T | + occ)(logϵ

σ n + log log n)) query time, where
ϵ > 0 is an arbitrarily small constant.

2. Another important question is the efficient construction of our data structure. While
the construction of the extended Burrows-Wheeler Transform is already a well-studied
problem [8, 13] (also see [43]), the remaining challenge lies in designing the construction
of the additional structures. While linear-space construction algorithms that require
near-linear time appear achievable, achieving space efficiency (i.e., using small working
space) and optimizing the polylogarithmic factors in time can be challenging. Additionally,
introducing engineering solutions, possibly through heuristics, could lead to a practical
approach, which would benefit from experimental analysis.

3. A repetition-aware index for circular dictionary matching would be desirable. While
it is relatively straightforward to reduce the space of the extended Burrows-Wheeler
Transform by applying run-length compression [14], encoding the remaining components
(specifically, the RMQ structures in Section 4.1) in a repetition-aware manner remains
challenging. Addressing this may require a careful adaptation of the techniques from [31]
or from very recent work in [50].

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to Bibliographic

Search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Amihood Amir and Martin Farach. Two-Dimensional Dictionary Matching. Inf. Process. Lett.,

44(5):233–239, 1992. doi:10.1016/0020-0190(92)90206-B.

Manzini’s Festschrift

https://doi.org/10.1145/360825.360855
https://doi.org/10.1016/0020-0190(92)90206-B

11:10 Circular Dictionary Matching Using Extended BWT

3 Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park. Dynamic Dic-
tionary Matching. J. Comput. Syst. Sci., 49(2):208–222, 1994. doi:10.1016/S0022-0000(05)
80047-9.

4 Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa Lewenstein, and
Michael Rodeh. Text Indexing and Dictionary Matching with One Error. J. Algorithms,
37(2):309–325, 2000. doi:10.1006/JAGM.2000.1104.

5 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the Gap! – Online Dictionary Matching with One Gap. Algorithmica, 81(6):2123–2157,
2019. doi:10.1007/S00453-018-0526-2.

6 Amihood Amir, Avivit Levy, Ely Porat, and B. Riva Shalom. Online Recognition of Dictionary
with One Gap. Inf. Comput., 275:104633, 2020. doi:10.1016/J.IC.2020.104633.

7 Tanver Athar, Carl Barton, Widmer Bland, Jia Gao, Costas S. Iliopoulos, Chang Liu, and
Solon P. Pissis. Fast Circular Dictionary-Matching Algorithm. Math. Struct. Comput. Sci.,
27(2):143–156, 2017. doi:10.1017/S0960129515000134.

8 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing and
Indexing the Bijective and Extended Burrows-Wheeler Transform. Inf. Comput., 297:105153,
2024. doi:10.1016/J.IC.2024.105153.

9 Carl Barton, Costas S. Iliopoulos, and Solon P. Pissis. Fast Algorithms for Approximate
Circular String Matching. Algorithms Mol. Biol., 9:9, 2014. doi:10.1186/1748-7188-9-9.

10 Djamal Belazzougui. Succinct Dictionary Matching with No Slowdown. In Amihood Amir
and Laxmi Parida, editors, Combinatorial Pattern Matching, 21st Annual Symposium, CPM
2010, New York, NY, USA, June 21-23, 2010. Proceedings, volume 6129 of Lecture Notes in
Computer Science, pages 88–100. Springer, 2010. doi:10.1007/978-3-642-13509-5_9.

11 Djamal Belazzougui and Gonzalo Navarro. Optimal Lower and Upper Bounds for Representing
Sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

12 Silvia Bonomo, Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino.
Sorting conjugates and suffixes of words in a multiset. Int. J. Found. Comput. Sci., 25(8):1161,
2014. doi:10.1142/S0129054114400309.

13 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. Computing the Original eBWT Faster, Simpler, and with Less Memory. In
Thierry Lecroq and Hélène Touzet, editors, String Processing and Information Retrieval -
28th International Symposium, SPIRE 2021, Lille, France, October 4-6, 2021, Proceedings,
volume 12944 of Lecture Notes in Computer Science, pages 129–142. Springer, 2021. doi:
10.1007/978-3-030-86692-1_11.

14 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. r-Indexing the eBWT. Inf. Comput., 298:105155, 2024. doi:10.1016/J.IC.2024.
105155.

15 Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
SRC Research Report, 124, 1994.

16 Bastien Cazaux and Eric Rivals. Linking BWT and XBW via Aho-Corasick Automaton: Ap-
plications to Run-Length Encoding. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy,
volume 128 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.CPM.2019.24.

17 Davide Cenzato and Zsuzsanna Lipták. A Theoretical and Experimental Analysis of BWT
Variants for String Collections. In Hideo Bannai and Jan Holub, editors, 33rd Annual
Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague, Czech
Republic, volume 223 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.CPM.2022.25.

18 Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic Dictionary
Matching and Compressed Suffix Trees. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada,

https://doi.org/10.1016/S0022-0000(05)80047-9
https://doi.org/10.1016/S0022-0000(05)80047-9
https://doi.org/10.1006/JAGM.2000.1104
https://doi.org/10.1007/S00453-018-0526-2
https://doi.org/10.1016/J.IC.2020.104633
https://doi.org/10.1017/S0960129515000134
https://doi.org/10.1016/J.IC.2024.105153
https://doi.org/10.1186/1748-7188-9-9
https://doi.org/10.1007/978-3-642-13509-5_9
https://doi.org/10.1145/2629339
https://doi.org/10.1142/S0129054114400309
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1016/J.IC.2024.105155
https://doi.org/10.1016/J.IC.2024.105155
https://doi.org/10.4230/LIPICS.CPM.2019.24
https://doi.org/10.4230/LIPICS.CPM.2022.25

W.-K. Hon, R. Shah, and S. V. Thankachan 11:11

January 23-25, 2005, pages 13–22. SIAM, 2005. URL: http://dl.acm.org/citation.cfm?
id=1070432.1070436.

19 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Internal Dictionary Matching. Algorithmica, 83(7):2142–
2169, 2021. doi:10.1007/S00453-021-00821-Y.

20 Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, and Wiktor Zuba. Circular Pattern
Matching with k Mismatches. In Leszek Antoni Gasieniec, Jesper Jansson, and Christos
Levcopoulos, editors, Fundamentals of Computation Theory - 22nd International Symposium,
FCT 2019, Copenhagen, Denmark, August 12-14, 2019, Proceedings, volume 11651 of Lecture
Notes in Computer Science, pages 213–228. Springer, 2019. doi:10.1007/978-3-030-25027-0_
15.

21 Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, and Wiktor Zuba. Circular Pattern
Matching with k Mismatches. J. Comput. Syst. Sci., 115:73–85, 2021. doi:10.1016/J.JCSS.
2020.07.003.

22 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,
Wojciech Rytter, Tomasz Walen, and Wiktor Zuba. Approximate Circular Pattern Matching.
In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th
Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam,
Germany, volume 244 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.35.

23 Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz
Walen, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In Olaf
Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov, editors,
41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024,
March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs, pages 24:1–24:22. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.STACS.2024.24.

24 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary Matching and Indexing
with Errors and Don’t Cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

25 Nicola Cotumaccio. Improved circular dictionary matching. In Paola Bonizzoni and Veli
Mäkinen, editors, 36th Annual Symposium on Combinatorial Pattern Matching, CPM 2025,
June 17-19, 2025, Milan, Italy, volume 331 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2025. doi:10.4230/LIPICS.CPM.2025.18.

26 Guy Feigenblat, Ely Porat, and Ariel Shiftan. An Improved Query Time for Succinct Dynamic
Dictionary Matching. In Alexander S. Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner,
editors, Combinatorial Pattern Matching - 25th Annual Symposium, CPM 2014, Moscow,
Russia, June 16-18, 2014. Proceedings, volume 8486 of Lecture Notes in Computer Science,
pages 120–129. Springer, 2014. doi:10.1007/978-3-319-07566-2_13.

27 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Structuring
Labeled Trees for Optimal Succinctness, and Beyond. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, pages 184–196. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.69.

28 Paolo Ferragina and Giovanni Manzini. Indexing Compressed Text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

29 Nathan J Fine and Herbert S Wilf. Uniqueness Theorems for Periodic Functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965.

30 Johannes Fischer and Volker Heun. Space-Efficient Preprocessing Schemes for Range Minimum
Queries on Static Arrays. SIAM J. Comput., 40(2):465–492, 2011. doi:10.1137/090779759.

Manzini’s Festschrift

http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dl.acm.org/citation.cfm?id=1070432.1070436
https://doi.org/10.1007/S00453-021-00821-Y
https://doi.org/10.1007/978-3-030-25027-0_15
https://doi.org/10.1007/978-3-030-25027-0_15
https://doi.org/10.1016/J.JCSS.2020.07.003
https://doi.org/10.1016/J.JCSS.2020.07.003
https://doi.org/10.4230/LIPICS.ESA.2022.35
https://doi.org/10.4230/LIPICS.STACS.2024.24
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.4230/LIPICS.CPM.2025.18
https://doi.org/10.1007/978-3-319-07566-2_13
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/090779759

11:12 Circular Dictionary Matching Using Extended BWT

31 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully Functional Suffix Trees and Optimal
Text Searching in BWT-Runs Bounded Space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/
3375890.

32 Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan,
and Yilin Yang. A Framework for Designing Space-Efficient Dictionaries for Parameterized
and Order-Preserving Matching. Theor. Comput. Sci., 854:52–62, 2021. doi:10.1016/J.TCS.
2020.11.036.

33 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving Succinct
Data Structures for Parameterized Pattern Matching and Related Problems. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 397–407.
SIAM, 2017. doi:10.1137/1.9781611974782.25.

34 Pawel Gawrychowski and Tatiana Starikovskaya. Streaming Dictionary Matching with Mis-
matches. Algorithmica, 84(4):896–916, 2022. doi:10.1007/S00453-021-00876-X.

35 Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Dynamic Dictionary
Matching in the Online Model. In Zachary Friggstad, Jörg-Rüdiger Sack, and Mohammad R.
Salavatipour, editors, Algorithms and Data Structures - 16th International Symposium, WADS
2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of Lecture Notes
in Computer Science, pages 409–422. Springer, 2019. doi:10.1007/978-3-030-24766-9_30.

36 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards Optimal Approximate Streaming
Pattern Matching by Matching Multiple Patterns in Multiple Streams. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 65:1–65:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.65.

37 Shay Golan and Ely Porat. Real-Time Streaming Multi-Pattern Search for Constant Alphabet.
In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 41:1–41:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.ESA.2017.41.

38 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/Select Operations on Large
Alphabets: A Tool for Text Indexing. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 368–373. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109599.

39 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-Order Entropy-Compressed
Text Indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 841–850. ACM/SIAM,
2003. URL: http://dl.acm.org/citation.cfm?id=644108.644250.

40 Roberto Grossi, Costas S. Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P. Pissis, Ahmad
Retha, and Fatima Vayani. Circular Sequence Comparison: Algorithms and Applications.
Algorithms Mol. Biol., 11:12, 2016. doi:10.1186/S13015-016-0076-6.

41 Roberto Grossi and Jeffrey Scott Vitter. Compressed Suffix Arrays and Suffix Trees with
Applications to Text Indexing and String Matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

42 Wing-Kai Hon, Tsung-Han Ku, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, Sharma V.
Thankachan, and Jeffrey Scott Vitter. Compressing Dictionary Matching Index via Sparsifica-
tion Technique. Algorithmica, 72(2):515–538, 2015. doi:10.1007/S00453-013-9863-3.

43 Wing-Kai Hon, Tsung-Han Ku, Chen-Hua Lu, Rahul Shah, and Sharma V. Thankachan.
Efficient Algorithm for Circular Burrows-Wheeler Transform. In Juha Kärkkäinen and Jens
Stoye, editors, Combinatorial Pattern Matching - 23rd Annual Symposium, CPM 2012, Helsinki,
Finland, July 3-5, 2012. Proceedings, volume 7354 of Lecture Notes in Computer Science,
pages 257–268. Springer, 2012. doi:10.1007/978-3-642-31265-6_21.

https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1016/J.TCS.2020.11.036
https://doi.org/10.1016/J.TCS.2020.11.036
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1007/S00453-021-00876-X
https://doi.org/10.1007/978-3-030-24766-9_30
https://doi.org/10.4230/LIPICS.ICALP.2018.65
https://doi.org/10.4230/LIPICS.ESA.2017.41
http://dl.acm.org/citation.cfm?id=1109557.1109599
http://dl.acm.org/citation.cfm?id=1109557.1109599
http://dl.acm.org/citation.cfm?id=644108.644250
https://doi.org/10.1186/S13015-016-0076-6
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1007/S00453-013-9863-3
https://doi.org/10.1007/978-3-642-31265-6_21

W.-K. Hon, R. Shah, and S. V. Thankachan 11:13

44 Wing-Kai Hon, Tsung-Han Ku, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter.
Compressed Dictionary Matching with One Error. In James A. Storer and Michael W. Marcellin,
editors, 2011 Data Compression Conference (DCC 2011), 29-31 March 2011, Snowbird, UT,
USA, pages 113–122. IEEE Computer Society, 2011. doi:10.1109/DCC.2011.18.

45 Wing-Kai Hon, Tsung-Han Ku, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Faster Compressed Dictionary Matching. Theor. Comput. Sci., 475:113–119, 2013.
doi:10.1016/J.TCS.2012.10.050.

46 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Succinct
Index for Dynamic Dictionary Matching. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra,
editors, Algorithms and Computation, 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer
Science, pages 1034–1043. Springer, 2009. doi:10.1007/978-3-642-10631-6_104.

47 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Sharma V. Thankachan, Hing-Fung Ting, and
Yilin Yang. Dictionary Matching with a Bounded Gap in Pattern or in Text. Algorithmica,
80(2):698–713, 2018. doi:10.1007/S00453-017-0288-2.

48 Wing-Kai Hon, Chen-Hua Lu, Rahul Shah, and Sharma V. Thankachan. Succinct Indexes
for Circular Patterns. In Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation - 22nd International Symposium, ISAAC
2011, Yokohama, Japan, December 5-8, 2011. Proceedings, volume 7074 of Lecture Notes in
Computer Science, pages 673–682. Springer, 2011. doi:10.1007/978-3-642-25591-5_69.

49 Costas S. Iliopoulos, Solon P. Pissis, and M. Sohel Rahman. Searching and Index-
ing Circular Patterns. In Mourad Elloumi, editor, Algorithms for Next-Generation Se-
quencing Data, Techniques, Approaches, and Applications, pages 77–90. Springer, 2017.
doi:10.1007/978-3-319-59826-0_3.

50 Dominik Kempa and Tomasz Kociumaka. Collapsing the Hierarchy of Compressed Data
Structures: Suffix Arrays in Optimal Compressed Space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 1877–1886. IEEE, 2023. doi:10.1109/FOCS57990.2023.00114.

51 Tsvi Kopelowitz, Ely Porat, and Yaron Rozen. Succinct Online Dictionary Matching with
Improved Worst-Case Guarantees. In Roberto Grossi and Moshe Lewenstein, editors, 27th
Annual Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel
Aviv, Israel, volume 54 of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.CPM.2016.6.

52 Avivit Levy and B. Riva Shalom. Online Parameterized Dictionary Matching with One Gap.
Theor. Comput. Sci., 845:208–229, 2020. doi:10.1016/J.TCS.2020.09.016.

53 Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

54 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An Extension
of the Burrows-Wheeler Transform. Theor. Comput. Sci., 387(3):298–312, 2007. doi:10.1016/
J.TCS.2007.07.014.

55 Giovanni Manzini. XBWT Tricks. In Shunsuke Inenaga, Kunihiko Sadakane, and Tetsuya
Sakai, editors, String Processing and Information Retrieval - 23rd International Symposium,
SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings, volume 9954 of Lecture Notes
in Computer Science, pages 80–92, 2016. doi:10.1007/978-3-319-46049-9_8.

56 J. Ian Munro and Venkatesh Raman. Succinct Representation of Balanced Parentheses and
Static Trees. SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

57 Gonzalo Navarro and Veli Mäkinen. Compressed Full-Text Indexes. ACM Comput. Surv.,
39(1):2, 2007. doi:10.1145/1216370.1216372.

58 Shoshana Neuburger and Dina Sokol. Succinct 2D Dictionary Matching. Algorithmica,
65(3):662–684, 2013. doi:10.1007/S00453-012-9615-9.

59 Enno Ohlebusch, Stefan Stauß, and Uwe Baier. Trickier XBWT Tricks. In Travis Gagie,
Alistair Moffat, Gonzalo Navarro, and Ernesto Cuadros-Vargas, editors, String Processing and

Manzini’s Festschrift

https://doi.org/10.1109/DCC.2011.18
https://doi.org/10.1016/J.TCS.2012.10.050
https://doi.org/10.1007/978-3-642-10631-6_104
https://doi.org/10.1007/S00453-017-0288-2
https://doi.org/10.1007/978-3-642-25591-5_69
https://doi.org/10.1007/978-3-319-59826-0_3
https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.4230/LIPICS.CPM.2016.6
https://doi.org/10.1016/J.TCS.2020.09.016
https://doi.org/10.1137/0222058
https://doi.org/10.1016/J.TCS.2007.07.014
https://doi.org/10.1016/J.TCS.2007.07.014
https://doi.org/10.1007/978-3-319-46049-9_8
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1007/S00453-012-9615-9

11:14 Circular Dictionary Matching Using Extended BWT

Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Peru, October
9-11, 2018, Proceedings, volume 11147 of Lecture Notes in Computer Science, pages 325–333.
Springer, 2018. doi:10.1007/978-3-030-00479-8_26.

60 Eric M. Osterkamp and Dominik Köppl. Extending the Parameterized Burrows-Wheeler
Transform. In Ali Bilgin, James E. Fowler, Joan Serra-Sagristà, Yan Ye, and James A. Storer,
editors, Data Compression Conference, DCC 2024, Snowbird, UT, USA, March 19-22, 2024,
pages 143–152. IEEE, 2024. doi:10.1109/DCC58796.2024.00022.

61 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct Indexable Dictionaries
with Applications to Encoding k-ary Trees, Prefix Sums and Multisets. ACM Trans. Algorithms,
3(4):43, 2007. doi:10.1145/1290672.1290680.

62 Kunihiko Sadakane. Compressed Suffix Trees with Full Functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

63 Kunihiko Sadakane and Gonzalo Navarro. Fully-Functional Succinct Trees. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 134–149. SIAM, 2010. doi:
10.1137/1.9781611973075.13.

64 Blair L Strang and Nigel D Stow. Circularization of the Herpes Simplex Virus Type 1 Genome
upon Lytic Infection. Journal of Virology, 79(19):12487–12494, 2005.

65 Kazuya Tsuruta, Dominik Köppl, Shunsuke Kanda, Yuto Nakashima, Shunsuke Inenaga, Hideo
Bannai, and Masayuki Takeda. c-trie++: A Dynamic Trie tailored for Fast Prefix Searches.
Inf. Comput., 285(Part):104794, 2022. doi:10.1016/J.IC.2021.104794.

66 Esko Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

67 Peter Weiner. Linear Pattern Matching Algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973. doi:
10.1109/SWAT.1973.13.

https://doi.org/10.1007/978-3-030-00479-8_26
https://doi.org/10.1109/DCC58796.2024.00022
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/S00224-006-1198-X
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1016/J.IC.2021.104794
https://doi.org/10.1007/BF01206331
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	2 Preliminaries
	3 Extended Burrows-Wheeler Transformation and Related Structures
	3.1 Succinct Representation of eSA
	3.2 Succinct Representation of eST

	4 A Succinct Index for Circular Dictionary Matching
	4.1 The Data Structure
	4.2 Query Algorithm
	4.2.1 Details of Step 1
	4.2.2 Details of Step 2

	5 Discussion and Open Problems

