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Abstract
The dictionary matching problem involves preprocessing a set of strings (patterns) into a data
structure that efficiently identifies all occurrences of these patterns within a query string (text). In
this work, we investigate a variation of this problem, termed circular dictionary matching, where the
patterns are circular, meaning their cyclic shifts are also considered valid patterns. Such patterns
naturally occur in areas such as bioinformatics and computational geometry. Based on the extended
Burrows-Wheeler Transformation (eBWT), we design a space-efficient solution for this problem.
Specifically, we show that a dictionary of d circular patterns of total length n can be indexed in
n log σ + O(n + d log n + σ log n) bits of space and support circular dictionary matching on a query
text T in O((|T | + occ) log n) time, where σ represents the size of the underlying alphabet and occ
represents the output size.
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1 Introduction

Text indexing is a fundamental problem in computer science, where we are given a long string
(the text) for preprocessing into a data structure (the index) that supports efficient substring
matching. Specifically, when a shorter string (the pattern) is provided as a query, the goal is
to find all occurrences of the pattern as a substring within the text. Data structures such
as suffix trees and suffix arrays are commonly used for this task [67, 53]. However, a major
drawback of suffix trees and suffix arrays is their significant space requirement. To address
this issue, compact and space-efficient solutions have been developed [28, 41, 62]. Among
these, FM-index [28], Compressed Suffix Arrays [41], and Compressed Suffix Trees [62] are
particularly notable due to their historical significance. We refer to [57] for a comprehensive
survey on this topic.

Dictionary matching is an orthogonal problem to text indexing. Here, we are given
a set of patterns (the dictionary) and our aim is to design a data structure capable of
finding all occurrences of these patterns as substrings within a query text. Solutions to this
problem have applications in areas such as intrusion detection and bioinformatics, where
they are used to identify known DNA or protein sequences in genomic data. The classic
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11:2 Circular Dictionary Matching Using Extended BWT

solution to this problem is the Aho-Corasick automaton [1], which efficiently matches multiple
patterns simultaneously. However, as before, this data structure also suffers from a high space
requirement. To address this issue, compact and space-efficient solutions have been proposed.
The current best succinct-space result is due to Belazzougui [10], where an xBWT-like
technique [27] is applied for the succinct encoding of the Aho-Corasick automaton. We
refer the reader to [55, 59, 16] for follow-up work in this direction, including an entropy-
compressed solution [45]. For an an alternative solution based on sparse suffix trees, see [42].
A wide range of variations on this problem have been studied, including dynamic dictionary
matching [3, 18, 46, 26, 65], online dictionary matching [35, 51, 6], dictionary matching in
streaming model [36, 34, 37], dictionary matching with errors or gaps [5, 4, 24, 44, 47], internal
dictionary matching [19], dictionary matching under parameterized or order-preserving
models [52, 32, 33], 2D dictionary matching [2, 58], etc.

In this work, we investigate another variant of dictionary matching, termed circular
dictionary matching [48]. Here the patterns in the given dictionary are circular, meaning
their cyclic shifts are also considered valid patterns. For example, the set of cyclic shifts of
abcd is {abcd, bcda, cdab, dabc}, whereas that of abab is {abab, baba}. Note that circular
patterns arise naturally in applications in bioinformatics and computational geometry. For
instance, the genomes of many viruses, such as the herpes simplex virus (HSV-1), exist as
circular strings [64]. In computational geometry, polygons are often represented by listing
the coordinates of their vertices in clockwise order. The problem of matching a circular
pattern, or a collection of circular patterns, in a given text has been extensively studied from
an algorithmic perspective [23, 22, 20, 7, 49, 9, 40, 21]. Our objective is to design a solution
for the data-structural version of this problem.

▶ Problem 1 (Circular Dictionary Matching [48]). Given a set of d circular patterns D =
{P1, P2, . . . , Pd} of total length n on an alphabet Σ = [σ], design a data structure (called an
index) that supports the following query efficiently:

Input: A text T over Σ
Output: All occurrences of all circular patterns in T . Specifically, every substring of T

that corresponds to a cyclic shift of any pattern in D; a substring can be denoted by the
starting and ending position in the text. We use occ to denote the output size.

Problem 1 is equivalent to standard dictionary matching on an expanded dictionary D′,
which includes all circular patterns in D along with their cyclic shifts. Therefore, one approach
is to index D′, which is clearly inefficient, as the sum of the sizes of all patterns in D′ can be
quadratic to that of D in the worst case. To that end, we presented a succinct space index of
space n log σ + O(n + d log n + σ log n) bits and query complexity O(|T | log2 n + occ log n) in
our earlier work [48], which we improve upon in this paper.

▶ Theorem 2. For the circular dictionary matching problem, there exists an index requiring
space n log σ + O(n + d log n + σ log n) bits and query time O((|T | + occ) log n). Here n

denotes the total length of circular patterns in the dictionary D, d = |D|, σ denotes the size
of the alphabet set, T denotes the text (and |T | denotes its length) that comes as a query,
and occ denotes the output size.

Our new solution is based on a structure similar to the FM-index [28], which is built from
the extended Burrows-Wheeler Transformation (eBWT) [54], an extension of the traditional
Burrows-Wheeler Transformation (BWT) [15] that works over multiple strings [8, 13, 14,
17, 60]. We remark that the application of the eBWT to the space-efficient indexing of
circular patterns is not new. For example, in recent work, Boucher et al. [14] showed how to
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construct an eBWT-based index for a collection of strings with full cyclic pattern matching
functionality in compressed space. This problem is distinct from the one we address in this
work; nonetheless, the techniques employed in this paper are closely similar to those in their
work.

▶ Remark. In work parallel to ours, Cotumaccio [25] independently achieved an index with
similar space-time complexity; specifically n log σ(1 + o(1)) + O(n + d log n) bits of space and
O((|T | + occ) log n) query time.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , σ − 1} denote the underlying alphabet. For a string S[1 . . s], we use |S|
to denote its length, S[i . . j] to denote its substring S[i]◦S[i+1]◦ · · · ◦S[j] when i ≤ j and an
empty string when i > j, where ◦ denotes concatenation. In addition, S[i . . j) = S[i . . j − 1]
and S(i . . j] = S[i + 1 . . j]. For an integer k ≥ 0, Sk denotes an empty string if k = 0, and
S ◦ Sk−1 otherwise, while S∞ denotes the concatenation of infinite copies of S. The root of
a string S, root(S) is defined as the shortest string R, such that S = Rk for some integer
k; we call S primitive if S = root(S). For example, a, ab, ababa are primitive, whereas
abab = (ab)2 is not. The result below follows from Fine and Wilf’s theorem [29] (also see
Theorem 1 in [12]).

▶ Lemma 3. Let X and Y be two distinct primitive strings. Then, the length of the longest
common prefix of their infinite repetitions, X∞ and Y ∞, is at most |X| + |Y | − gcd(|X|, |Y |),
where gcd(·, ·) denotes the greatest common divisor. This implies that although X∞ and Y ∞

are infinite in length, their lexicographic order can be established by comparing a bounded
number of characters.

Rank and Select Queries. For a character α ∈ Σ, rankS(i, α) denotes the number of
occurrences of α in S[1 . . i], selectS(j, α) denotes the location of j-th occurrence of α in S,
and partialRankS(i) = rankS(i, S[i]). There exist different space-time trade-offs for supporting
these operations. For example, a wavelet tree structure of space s log σ + o(s) + O(σ log s)
bits can support all three operations in O(log σ) time [39]. See [11, 38] for faster alternatives.

For our purpose, we use an s log σ+O(s+σ log s)-bit structure, which requires O(log log s)
time for rank and only O(1) time for others. The idea is to use the following result (indexible
dictionaries) by Raman et al. [61]: a binary string B[1 . . s] with f number of 1s can be
represented in f log(s/f)+O(f) bits and support rankB(·, ·) in O(log log s) time, selectB(j, 1)
and partialRankB(i) in O(1) time, where partialRankB(i) = rankB(i, B[i]) if B[i] = 1 and is an
arbitrary number otherwise. Therefore, for each α ∈ Σ, we maintain the following bit vectors
as indexible dictionaries: Bα[1 . . s], where Bα[i] = 1 iff S[i] = α. Let fα be the number of
occurrences of α in S. Then the total space is

∑
α∈Σ fα log(s/fα) + O(fα) = s log σ + O(s)

bits. To enable the operations on S, we employ the following connections: rankS(i, α) =
rankBα(i, 1), selectS(j, α) = selectBα(j, 1), and partialRankS(i) = partialRankBS[i]

(i).

Range Minimum Queries (RMQ). Let A be an array of numbers, we can design an
2|A| + o(|A|) bit structure that supports the following query [30] in constant time: input is a
range [a, b] and output is position t ∈ [a, b], such that A[t] is the smallest element in A[a, b].
For answering RMQ, we do not need to explicitly store A.

Manzini’s Festschrift
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Tree Topology. The topology of an ordinal tree can be encoded in linear number of bits
and support various tree operations in O(1) time [63, 56]. The ones relevant to us are finding
the parent of a node, the range of leaves (i.e., the first and last leaves) in the subtree of a
node, and the lowest common ancestor (LCA) of two nodes. Here a node is referred to by its
pre-order rank.

3 Extended Burrows-Wheeler Transformation and Related Structures

In this section, we formally define the extended BWT, along with data structures analogous
to suffix trees and suffix arrays for circular strings, which we refer to as the extended suffix
tree and extended suffix array. The definition of extended BWT is first proposed by Mantaci
et al. [54]. For related concepts, different terminologies have been used in prior work; for
example, the extended suffix array was referred to as the circular suffix array in [48, 43],
and as the generalized conjugate array in recent work by Boucher et al. [14]. However, it
is straightforward to observe that these structures are equivalent. As we will show, the
succinct encoding of the extended suffix array follows naturally from the original ideas of
the FM-index. However, the definition of the extended suffix tree, or the use of it to solve
pattern matching problems, seem to be new. In the following, we will follow the terminologies
in [48, 43] to define the extended BWT, as they align more naturally in defining (more
importantly compressing) the extended suffix tree than those in the original paper [54]. Also,
we remark that encoding certain components of the extended suffix tree requires non-trivial
modifications of known results.

Let Q = {Q1, Q2, Q3, . . . , Qr} be a given set of r primitive strings, where Qi = Qi[1 . . qi]
and m =

∑r
i=1 qi. We call Qi,k = Qi[k . . qi] ◦ Qi[1 . . k) the k-th cyclic shift of Qi, where

k ∈ [1, qi]. Without loss of generality, we make an important assumption that no string in Q
is a cyclic shift of another.1 Next, we define the following sets:

eSUFFIXES(Qi) = {Q∞
i,k | k ∈ [1, qi]} and eSUFFIXES(Q) =

r⋃
i=1

eSUFFIXES(Qi)

Note that eSUFFIXES(Q) is a collection of m strings, which are infinite in length, but
pairwise distinct; therefore, their lexicographic order is well-defined. Moreover, by Fine and
Wilf’s theorem (see Lemma 3), the length of the longest common prefix between any two
strings in eSUFFIXES(Q) is at most 2m.

The Extended Suffix Tree (denoted by eST) is a compacted trie of all strings in
eSUFFIXES(Q). It consists of m leaves, say ℓ1, ℓ2, . . . , ℓm in the left-to-right order, which
are enumerated according to the lexicographic order of the infinite strings in eSUFFIXES(Q).
The number of internal nodes is at most m − 1. For any node u, str(u) denotes the
concatenation of edge labels on the path from the root to u and strlen(u) denotes the length
of str(u). Note that strlen(·) < 2m for all internal nodes from Lemma 3. However, each
edge connecting to a leaf has a label with an infinite length. This is unlike the standard
suffix tree. Yet, the tree topology is well-defined, because the lexicographic order of strings
in eSUFFIXES(Q) is well defined2. We remark that the idea of having leaf edges with

1 As we will see, our goal is to efficiently represent all cyclic shifts of strings in the collection. If two
strings are cyclic shifts of each other, they share the same set of shifts. Therefore, it’s sufficient to store
only one representative from each group of cyclically equivalent strings.

2 Note that this remains true even when each infinite string in eSUFFIXES(Q) is treated as a finite string
by considering only its first 2m characters.
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unspecified lengths is not new; e.g., see Ukkonen’s suffix tree construction algorithm [66].
The suffix range of a string S is the maximal range [sp, ep] where S is a prefix of str(ℓj) for
all j ∈ [sp, ep], and is NIL if no such j exists. The range of leaves of a node u is the suffix
range of the string str(u).

The Extended Suffix Array eSA[1 . . m] is an array of pairs such that eSA[j] = (i, k),
where str(ℓj) = Q∞

i,k, and the Extended BWT eBWT[1 . . m] is a string, where eBWT[j] is
the last character of Qi,k. We remark that the terminology used in the original definition
of eBWT in [54] is slightly different (i.e., omega order), but there is no technical difference.
Note that eST and eSA take O(m log m) bits, whereas eBWT takes only m log σ bits.

As an example, consider the set Q = {Q1, Q2, Q3, Q4}, where Q1 = aab, Q2 = ab, Q3 =
abb and Q4 = b. Then eST consists of 9 leaves, such that
1. str(ℓ1) = Q∞

1,1 = aabaab . . .

2. str(ℓ2) = Q∞
1,2 = abaaba . . .

3. str(ℓ3) = Q∞
2,1 = ababab . . .

4. str(ℓ4) = Q∞
3,1 = abbabb . . .

5. str(ℓ5) = Q∞
1,3 = baabaa . . .

6. str(ℓ6) = Q∞
2,2 = bababa . . .

7. str(ℓ7) = Q∞
3,3 = babbab . . .

8. str(ℓ8) = Q∞
3,2 = bbabba . . .

9. str(ℓ9) = Q∞
4,1 = bbbbbb . . .

The corresponding eSA[1 . . 9] is (1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2), (3, 3), (3, 2), (4, 1)
and eBWT[1 . . 9] is babbaabab.

3.1 Succinct Representation of eSA
We maintain eBWT in m log σ + O(m + σ log m) bits to support rank, select and partialRank
operations efficiently as described in Section 2. Similar to the FM-index, we now implement
LF mapping and backward search [28].

Last-to-Front (LF) Mapping. Define eLF(j) = j′, where deleting the first character of
str(ℓj′) gives str(ℓj). The function eLF(j) can also be described in terms of eBWT as
eLF(j) = count(eBWT[j]) + partialRankeBWT(j). For any character α ∈ Σ, count(α) = |{i ∈
[1, m] | eBWT[i] < α}|. For all α ∈ Σ, this information can be stored explicitly in O(σ log m)
bits, and the partialRank operation takes only O(1) time. Therefore, the overall time for eLF
operation is constant.

Backward Search. Given the suffix range [sp, ep] of a string S, we can compute the suffix
range [sp′, ep′] of α ◦ S for any α ∈ Σ in O(log log m) time as follows. First compute the
following

sp′ = count(α) + rankeBWT(sp − 1, α) + 1

ep′ = count(α) + rankeBWT(ep, α)

If sp′ ≤ ep′, then return [sp′, ep′] as the suffix range of α ◦ S. Otherwise, conclude that the
suffix range of α ◦ S does not exist. The time complexity O(log log m) comes from the time
for rank operations.

To encode eSA, we replace it with a sparse eSA, where we store eSA values only at
some sampled positions. Specifically, we store an entry (i, k) iff k mod ∆ = 1, where ∆ be
a parameter. This reduces the number of values stored to O(d + m/∆), where d is the

Manzini’s Festschrift



11:6 Circular Dictionary Matching Using Extended BWT

number of indexed patterns; space is O(log m) bits per value. Suppose eSA[j] = (i, k), then
eSA[eLF[j]] = (i, k − 1), eSA[eLF[eLF[j]]] = (i, k − 2), etc., which means we can decode
eSA[j] (if not explicitly stored) by iteratively applying eLF (say h times) until we arrive at
a positions where eSA[·] = (i, k′) is stored. We then obtain eSA[j] = (i, k′ + h). The time
complexity is O(h) and h < ∆. By fixing ∆ = ⌈log m⌉, we obtain the following result.

▶ Lemma 4. There exists an m log σ + O(m + d log m + σ log m)-bit data structure that
returns eSA[j] for any given j in time O(log m).

3.2 Succinct Representation of eST
We encode and maintain the topology of eST in O(m) bits for supporting the relevant
tree operations in O(1) time. To encode the values of strlen(·), we modify the techniques
introduced by Sadakane [62].

For all i ∈ [1, r], define ePLCPi[1 . . qi], where ePLCPi[k] is the length of the longest
common prefix of Q∞

i,k and the string in the set eSUFFIXES(Q) that comes next in the
lexicographic order (say Q∞

i′,k′). Note that longest common prefix of Q∞
i,(k+1) mod qi

and
Q∞

i′,(k′+1) mod qi′
shares at least ePLCPi[k] − 1 characters. So, ePLCPi[(k + 1) mod qi] ≥

ePLCPi[k] − 1. By adding k on both sides and rearranging, we have

ePLCPi[k mod qi] + k ≤ ePLCPi[(k + 1) mod qi] + (k + 1)

Letting fi(k) = ePLCPi[k mod qi] + k, we have

fi(1) ≤ fi(2) ≤ · · · ≤ fi(|Qi|) ≤ fi(|Qi| + 1) = fi(1) + |Qi|

This means fi(k) : k ∈ [1, qi] is non-decreasing and its range is [fi(1), fi(1) + |Qi|]. We
store fi(1) explicitly in O(log m) bits and use unary encoding for the rest. Specifically, for
each i we store a binary string Bi = 10fi(2)−fi(1)10fi(3)−fi(2)10fi(4)−fi(3) . . . with O(1) time
rank/select supported [61]. To find fi(k), we simply count the number of 0s before k-th 1
and add fi(1). Subtracting k from this value gives ePLCPi[k]. Space required for a fixed i is
O(|Bi| + log m), where |Bi| = O(qi). Therefore, space over all i’s is O(m + d log m) bits.

We now present the last component for encoding strlen(·) values. Define array LCPe[1 . . m)
as follows. Suppose eSA[j] = (i, k), then LCPe[j] = ePLCPi[k]. We do not store LCPe
explicitly, but an RMQ structure over it in 2m + o(m) bits. To compute strlen(u), find [a, b],
the range of in the subtree of u and the position t ∈ [a, b) corresponding to the minimum in
LCPe[a, b) using an RMQ. Then obtain eSA[t] = (i′, k′) and strlen(u) = ePLCPi′

[k′]. The
time complexity (asymptotically) is equal to that of an eSA query.

▶ Lemma 5. By associating an O(m + d log m) bit structure with eSA, we can find strlen(·)
of any given node in time O(log m).

This concludes our discussion of the main data structure. In the following section, we
demonstrate how it can be used to solve the circular dictionary matching problem.

4 A Succinct Index for Circular Dictionary Matching

Traditional “non-circular” dictionary matching can be solved efficiently with a generalized
suffix tree of the patterns, by successively finding the locus of each suffix of the query text
T within the suffix tree, and then reporting the patterns that appear as the prefix of the
corresponding suffix. For circular patterns, we show that this can be done analogously
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with the extended suffix tree. Yet, there are some technical challenges. First, as patterns
of different lengths can be represented by the same leaf, we need some care to verify if a
pattern actually appears in a certain text position. Another, more difficult, challenge is to
obtain the loci of the suffixes; a direct adaptation of the “non-circular” dictionary matching
approach cannot bound the running time as desired. In the following, we will explain how
such challenges can be solved.

Given a set of d circular patterns to index. We first make a critical step of replacing
each pattern with its lexicographically smallest cyclic shift. Denote the resulting set by
D = {P1, P2, . . . , Pd}. We then collect the roots of all Pi’s and call it Q = {Q1, Q2, . . . , Qr}.
The first step ensures that Q is invariant of the cyclic shifts of Pi’s. Let n =

∑
i |Pi| and

m =
∑

i |Qi|. Note that r ≤ d and m ≤ n.

4.1 The Data Structure
We construct and maintain the structures in Lemma 4 and Lemma 5 over the strings in Q.
Additional components are below.
1. We encode each pattern Pi ∈ D as a pair (i′, |Pi|), where Qi′ is the root of Pi, equivalently

Pi = Q
|Pi|/|Qi′ |
i′ . For each Qi′ ∈ Q, we maintain a list LISTi′ of patterns (in encoded

form) with Qi′ being their root. Each list is sorted in the ascending order of the pattern
lengths. Total space is O(d log n) bits. Therefore, given any (i′, τ), we can list all patterns
with root Qi′ and length ≤ τ in optimal time.

2. We want to support the query REPORT([a, b], τ), which reports all patterns Pi = (i′, |Pi|)
(i.e., in encoded form), where |Pi| ≤ τ and eSA[j] = (i′, ·) for some j ∈ [a, b]. Define an
array Length[1, m], where Length[j] is the length of the shortest pattern in LISTi′ , where
eSA[j] = (i′, ·). We do not store this array, but an RMQ structure over it in 2m + o(m)
bits. With that, we support the query using the following standard procedure.

When a = b, we decode i′, where eSA[a] = (i′, ·) and obtain the output from LISTi′ .
When a ̸= b, we find the position t ∈ [a, b] of the minimum element in Length[a, b]
using RMQ, and then make the query REPORT([t, t], τ). If it returns NIL (i.e., output
is empty), we conclude that REPORT([a, b], τ) is also NIL. Otherwise, we continue
our search for more answers in the remaining parts of the array, specifically in [a, t)
and (t, b] using queries REPORT([a, t), τ) and REPORT((t, b], τ), recursively.

Let g be the output size. Then it can be observed that the original query is split into
O(1 + g) subqueries. Therefore, the time complexity is O((1 + g) log m).

3. We mark a node u in eST if it is the highest node (i.e., closest to root) for some i ∈ [1, d],
such that Pi or a cyclic shift of it is a prefix of str(u). With each node, we associate
a bit, indicating if it is marked or not. Next, we want to support the following query:
given an arbitrary node u, list its marked ancestors. One could easily accomplish this by
first finding all of its ancestors (via finding parent nodes iteratively, starting u) and then
extracting those that are marked. But the time taken could be Θ(m) in the worst case. To
bound the time in terms of the number of marked ancestors, we store the lowest marked
ancestor (LMA) of the following sampled nodes explicitly: LCA(ℓt log m, ℓ(t+1) log m) for
all t ∈ [1, m/ log m). This scheme requires O(m) extra bits and guarantees that any path
towards the root with log m nodes contains a sampled node. Therefore, to list all the
marked ancestors of u, we traverse the path from u to root as before with the difference
that when we are at a sampled node, we jump to its LMA (i.e., skip all nodes in between)
and continue. All marked ancestors will be visited and the total number of nodes visited
(and total time) is bounded by O(log m) times the number of marked ancestors.

Total space is m log σ + O(m + d log n + σ log m) ⊆ n log σ + O(n + d log n + σ log n) bits.

Manzini’s Festschrift



11:8 Circular Dictionary Matching Using Extended BWT

4.2 Query Algorithm
We report all (x, i), where x ∈ [1, |T |] and (a cyclic shift of ) Pi ∈ D occurs at position x

in T , using the following steps.
1. Find the maximum Lx, such that there exists a node ux where T [x . . x + Lx) is a prefix of

str(ux) and ux is the highest such node. Also, let [spx, epx] be the range of leaves of ux.
2. Report (x, i), if a cyclic shift of Pi ∈ D is a prefix of str(ux) and its length is ≤ Lx.

Note that the first step corresponds to finding the loci of T [x..] in the extended suffix
tree, for each x. For traditional suffix tree approach, we find the loci in ascending order of x.
Here, we do so in the opposite manner, in descending order of x. Intuitively, this change
allows us to replace the “downward” traversal of tree edges in the extended suffix tree to
“upward” traversals, where the latter can be implemented more efficiently with our auxiliary
data structures. We now show how to implement these two steps efficiently.

4.2.1 Details of Step 1
Initialize x= |T |, Lx+1 =0, and fix [spx+1, epx+1]=[1, m]. Then we compute (Lx, ux, spx, epx)
in the descending order of x using backward search as follows. We have two cases.
1. If T [x] has an occurrence in eBWT[spx+1, epx+1], then find the smallest number a and

the largest number b in [spx+1, epx+1], such that eBWT[a] = eBWT[b] = T [x]. Then
obtain spx = eLF[a], epx = eLF[b], ux = LCA(ℓspx

, ℓepx
) and Lx = 1 + Lx+1. The time

complexity in this case is O(log log m).
2. If T [x] has no occurrence in eBWT[spx+1, epx+1], then we find the lowest ancestor of ux+1,

say w, such that T [x] has an occurrence in eBWT[z, z′], where [z, z′] is the range of
leaves below w. Then find the smallest number a and the largest number b in [z, z′],
such that eBWT[a] = eBWT[b] = T [x]. Then obtain spx = eLF[a], epx = eLF[b], ux =
LCA(ℓspx

, ℓepx
) and Lx = strlen(ux). To find w, we perform a linear search on the path

from ux+1 to root until we find a node satisfying the required condition. This requires
O(h) rank queries, where h = O(1 + Lx+1 − Lx) is the number of nodes on the path
from ux+1 to w. Therefore, the time for a particular value of x is O(h log log m + log m).
When considering all values of x, we obtain the following total time complexity.3

|T |∑
x=1

((Lx+1 −Lx) log log m+log m) = (L|T |+1 −L1) log log m+ |T | log m = O(|T | log m).

In summary, the time for step 1 for all values of x combined is O(|T | log m).

4.2.2 Details of Step 2
Find u0

x = ux, u1
x, u2

x, . . . , uf
x, where uh

x is the lowest marked ancestor of uh−1
x for all h ∈ [1, f ]

and f is the number of marked ancestors of ux. Let [sph, eph] be the range of leaves in the
subtree of uh

x. We make the following queries and collect their answers.
REPORT([sp0, ep0], Lx), which returns the Pi’s corresponding to (x, i) as the final output,
where the leaves corresponding to them are below u0

x.

3 An alternative way to find w is to perform a binary search along the path from ux+1 to the root. This
method requires a logarithmic number of rank queries and takes O(log m log log m) time for a particular
value of x. However, it results in a higher overall time complexity compared to what we described above.
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For h ∈ [1, f ], we perform the following two queries: REPORT([sph, sph−1), strlen(uh
x))

and REPORT((eph−1, eph], strlen(uh
x)), which return the Pi’s corresponding to (x, i) as

the final output, where the leaves corresponding to them are below uh
x, but not below

uh−1
x (this avoids reporting the same answer multiple times). For a fixed x, the output

size is at least f from the definition of marked nodes.
The total time of Step 2 is O((|T | + occ) log m), which thereby establishes the overall time
complexity. This completes the proof of Theorem 2.

5 Discussion and Open Problems

We present a succinct index for the circular dictionary matching problem that supports
queries efficiently in O((|T | + occ) log n) time. In our earlier work [48], we achieved a similar
result under the assumption that all patterns are approximately the same length (i.e., Θ(n/d)).
There, this assumption was necessary for the efficient encoding of strlen(·) values of nodes in
a suffix tree-like structure. Although we later managed to remove this restriction, it came
at the cost of a higher query time of O((|T | log n + occ) log n). The improved result in this
paper builds on a novel use of the eBWT, combined with a careful adaptation of Sadakane’s
technique for encoding strlen(·) values of nodes in the eST, as described in section 3.2.

We conclude with a list of problems that remain open for future research.
1. In contrast to the best known succinct solution for the standard dictionary matching

problem [10], which achieves a query time of O(|T | + occ), our solution has a query
complexity of O((|T | + occ) log n) in the circular setting. Even the recent alternative
solution by Cotumaccio [25] has the same query time. This raises an important and
natural question: Can the query time be further improved while maintaining the same
space bound? Although this does not seem immediate, we remark that a trade-off allowing
faster query time might be possible by adapting techniques from [41]; for example, using
O(n log σ) bits of space and achieving O((|T | + occ)(logϵ

σ n + log log n)) query time, where
ϵ > 0 is an arbitrarily small constant.

2. Another important question is the efficient construction of our data structure. While
the construction of the extended Burrows-Wheeler Transform is already a well-studied
problem [8, 13] (also see [43]), the remaining challenge lies in designing the construction
of the additional structures. While linear-space construction algorithms that require
near-linear time appear achievable, achieving space efficiency (i.e., using small working
space) and optimizing the polylogarithmic factors in time can be challenging. Additionally,
introducing engineering solutions, possibly through heuristics, could lead to a practical
approach, which would benefit from experimental analysis.

3. A repetition-aware index for circular dictionary matching would be desirable. While
it is relatively straightforward to reduce the space of the extended Burrows-Wheeler
Transform by applying run-length compression [14], encoding the remaining components
(specifically, the RMQ structures in Section 4.1) in a repetition-aware manner remains
challenging. Addressing this may require a careful adaptation of the techniques from [31]
or from very recent work in [50].
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