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—— Abstract

Suffix sorting stands at the core of the most efficient solutions for indexed pattern matching: the
suffix tree, the suffix array, compressed indexes based on the Burrows-Wheeler transform, and so on.
In [Gagie, Manzini, Sirén, TCS 2017] this concept was extended to labeled graphs, obtaining the rich
class of Wheeler graphs. This work opened a very fruitful line of research, ultimately generating results
able to bridge the fields of compressed data structures, graph theory, and regular language theory.
In a Wheeler graph, nodes are sorted according to the alphabetic order of their incoming labels,
propagating this order through pairs of equally-labeled edges. This apparently-simple definition
makes it possible to solve on Wheeler graphs problems (including, but not limited to: compression,
subpath queries, NFA equivalence, determinization, minimization) that on general labeled graphs
are extremely hard to solve, and induces a rich structure in the class of regular languages ( Wheeler
languages) recognized by automata whose state transition is a Wheeler graph. The goal of this survey
is to provide a summary of (and intuitions behind) the results on Wheeler graphs that appeared in
the literature since their introduction, in addition to a discussion of interesting problems that are
still open in the field.
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1 Notation

We refer the reader to [52] for basics on automata theory.
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Wheeler Graphs and Wheeler Languages

1.1 Sequences

A sequence (or string) o € X* is a concatenation of characters from a finite alphabet ¥ of
size 0. Indices start from 1: «[i], with ¢ > 1 is the i-th character of the sequence. Notation
ali: j], with j > ¢, denotes «afiafi + 1] ... «[j].

1.2 Automata and Labeled Graphs

A finite (nondeterministic) automaton (NFA for brevity) is a tuple A = (Q, s, %, §, F') where
Q is a finite, non empty set of states, s is the initial state, ¢ : Q x ¥ — 2 is the transition
function, and F' C @ is the set of final states. We sometimes omit the alphabet ¥ and simply
write an NFA as a tuple A = (Q, s, 4, F'). Sometimes we shall describe the transition function
d using triples (edges), where (g, ¢, a) stands for ¢’ € d(q,a).

A semi-automaton is an automaton that does not specify the initial state nor the set of
final states. More formally, a semi-automaton is a triple A = (@, X, ), where @, X, § are
defined as above. Equivalently, one can view a semi-automaton as an edge-labeled graph
G = (Q,%,E) where E = {(¢q,¢,a) € @ x Q x 3 : ¢ € 0(q,a)}. When clear from the
context, sometimes we will drop the alphabet 3 and simply write (@, E) to denote a labeled
graph. When talking about labeled graphs, we will refer to the elements of @ as wvertices
or nodes. Due to their equivalence, in this manuscript we will treat labeled graphs and
semi-automata interchangeably. We denote with || and |@| the number of transitions and
states of a (semi-) automaton A = (Q, X, 0), and with |A] = |Q| + |0] its total size. Similarly,
|G| denotes the size of graph G = (Q, E), that is, the number |@Q| of its nodes plus the
number |E| of its edges.

As customary, we extend § to operate on strings as follows: for all ¢ € Q, a € ¥ and
o€ X

8(g,¢) =1{a},  dgaa)= |J d(v,a).

vEd(g,a)

The same definitions hold for semi-automata. Given a finite automaton A, we denote by
L(A) ={a€X*| d(s,a) N F # 0} the language accepted (or recognized) by A. We say that
two automata are equivalent if they accept the same language.

Given a NFA A = (@, s,%,0, F) and any of its states u € @, we denote with symbol
I, the set of all strings labeling paths starting from the source of A and ending in wu:
IL,={aeX* : ueis,a)}.

A finite automaton is deterministic (for brevity, DFA) if |§(¢,a)| <1 for all ¢ € @ and
a € X. In the deterministic case we consider the transition function as a (possibly partial)
function 6 : Q@ x ¥ — @ (hence, our DFA do not need to be complete). When § is not defined
on a pair (g,a) we write d(¢,a) = L.

Unless otherwise stated, we assume that every finite automaton is trimmed, that is, every
state is reachable from the initial state and can reach at least one final state. This assumption
is not restrictive: every automaton can be put in an equivalent trimmed form in linear time.

For trimmed automata the following hold:

there is at most one state without incoming edges, namely s;

every string that can be read starting from s belongs to the set of prefixes, Pref(L), of

the language L.

The languages accepted by automata form the class of regular languages and are closed
under boolean operations (union, intersection, complementation), concatenation, and the
Kleene star.
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Let A= (Q,s,d,F) be a NFA and ¢ € Q. The input language of ¢, denoted by I, is the
set of strings leaving s and entering g, that is, I, is the language recognized by the automaton
(@,s,0,{q}). We will refer to I, also as the set of strings reaching q.

Similarly, the output language of ¢, denoted by O, is the language recognized by the automaton
(Q.4,6, F).

Given a regular language, there exists a unique, up to isomorphism, state-wise minimum
DFA that recognizes such language. The states of this minimum DFA correspond to the
classes of the Myhill-Nerode equivalence relation, defined as follows.

» Definition 1 (Myhill-Nerode equivalence [48]). Let £ C 3* be a language. Given a string
a € X*, we define the right context of o as

a'L={yeX"| aye L},
and we denote by =, the Myhill-Nerode equivalence on Pref(L) defined as
a=,f = o 'L=p"L

If £ is a regular language we will denote by D, = (Q, s, 6, F') its minimum automaton,
having as set of states @ the classes [a]z of the Myhill-Nerode equivalence, s = [¢]z,
d([alz,a) =[a-alg, and F = {[a]¢ | a € L}.

It is customary to define a version the Myhill-Nerode equivalence relation on the states
of a DFA by putting into the same class states u, v whose strings in I,,, I, are Myhill-Nerode
equivalent. More formally, one can define the following relation:

» Definition 2 (Myhill-Nerode equivalence on DFA). Let D = (Q, s, 6, F') be a DFA. We denote
by =p the Myhill-Nerode equivalence on Q defined as

u=pv <= MVaeX")(0(u,a) e F < (v,a) € F).

The minimum DFA for a regular language £ can be equivalently obtained by collapsing
=p-equivalent states of any DFA D recognizing £. Hopcroft’s algorithm [41] achieves this
goal efficiently by computing =p in O(|D|log|D|) time.

1.3 Orders

We assume that there is a fixed total order < on the alphabet ¥. We extend =< to strings in
¥* co-lexicographically, that is, for a, f € X*, we have o < § if and only if either « is a suffix
of B (denoted by a - ), or there exist o/, 8',vy € ¥* and a,b € X, such that o = o/ay and
B =pbyand a <0.

If (Z, <) is a partial order, we denote by (Z, <) its corresponding strict partial order.

Given a partial order (Z, <) we say that a subset I C Z is convez if, for any z,y,z € Z with
r<y<z ifx,z€I thenyel.

2  Wheeler Graphs

Gagie, Manzini, and Sirén in [35] showed a natural way to extend the co-lexicographic order
of strings to labeled graphs. The idea is simple: let us focus on the class of labeled graphs for
which there exists a total order of the nodes that is propagated along pairs of equally-labeled
transitions, further requiring that pairs of nodes whose incoming labels differ are sorted
consistently with the underlying total order of ¥. Due to the fact (as shown next) that
these graphs generalize the celebrated Burrows-Wheeler transform [16] (BWT for short), the
authors of [35] decided to call such a class Wheeler graphs. More formally:

12:3
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» Definition 3 (Wheeler Graph). A Wheeler graph is a labeled graph G = (Q, %, E) endowed
with a binary relation < such that: (Q,<) is a linear order where all nodes with in-degree
equal to zero are smaller than nodes with in-degree strictly larger than zero, and for which
the following two Wheeler properties (sometimes also called Wheeler axioms) are satisfied.
Let (u,v',a), (v,v',b) € E:

(W1) a<b— v <

(W2) (a=bAu<vAd #V') = o <v'.

In this manuscript it will be useful to adapt the above definition to finite automata,
in order to study the class of regular languages recognized by automata whose transition
relation is a Wheeler graph.

» Definition 4 (Wheeler Automaton). A Wheeler automaton A (WNFA for brevity) is a NFA
(Q,s,0,F) endowed with a binary relation < such that: (Q,<) is a linear order having the
initial state s as minimum, s has no in-going edges, and the following two Wheeler properties
(or Wheeler azioms) are satisfied. Let p' € 6(p,a) and ¢’ € 6(q,b):

(W1) a<b—p <¢

(W2) (a=bAp<qnp #¢) = p <d.

A Wheeler DFA (WDFA) is a WNFA in which |6(q,a)| <1, for allq € Q and a € X.

An example of a WDFA is presented in Figure 1 (left). In the same figure (right) we show
a very insightful representation of Wheeler automata, called the bipartite representation: we
duplicate states in two columns following any Wheeler order of the automaton, and we draw
edges from left to right (in Figure 1, for clarity only edges labeled with ¢ are shown). In this
representation, Wheeler Axiom W1 translates to the fact that nodes are sorted by increasing
incoming letter, and Wheeler Axiom W2 to the fact that no same-letter edges cross. Most
properties, algorithms, and data structures on Wheeler graphs can be easily understood by
keeping in mind this representation.

000000
000000

Figure 1 Left: A WDFA D recognizing the language L4 = ac* Udc” f. The only order that makes
D Wheeler is s < q1 < q2 < g3 < qa < g5. Right: Bipartite representation of the Wheeler automaton
D, showing only edges labeled with ¢ for clarity. In this representation, Axiom W2 translates to the
fact that no same-letter edges cross.

Of particular interest for this survey is the class of Wheeler languages:
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» Definition 5 ([3]). A regular language is said to be Wheeler if there exists a WNFA
recognizing it.

As a matter of fact, nondeterminism is not important in Definition 5. As proved in [3]
(we will come back to this in Section 4), WDFA and WNFA have the same expressive power:
both such classes of finite automata recognize precisely the class of Wheeler languages.

The following considerations hold both for Wheeler graph and Wheeler automata, so we
state them only for the latter class of combinatorial objects.

First, we observe that the automata for which there exists a total order satisfying Axiom
W2 correspond to the class of totally-sortable Ordered Automata, studied by Shyr and
Thierrin in 1974 [53]. In that article, the authors showed that the languages recognized
by such automata are star-free; in particular, it follows that all Wheeler languages are
star-free. As discussed in this manuscript, by imposing the additional constraint on nodes
with in-degree equal to zero and the additional Axiom W1, the work [35] unveiled a restricted
class of Ordered Automata (the Wheeler automata) possessing a large number of extremely
interesting properties.

Also observe that a consequence of Wheeler Axiom (W1) is that A is input-consistent,
that is all transitions entering a given state ¢’ € Q must have the same label: if ¢’ € §(q, a)
and ¢’ € 0(p,b), then a = b. Therefore a function A : @ — 3 that labels each state with the
unique label of its incoming edges, can be introduced. For the initial state s, the only one
without incoming edges, we set A(s) = # ¢ X, stipulating that # < a, for all a € ¥. Observe
that this simplifies the definition of Wheeler automata in that, by replacing a and b with
A(p’) and A(¢’) in Definition 4, we no longer need to require that states with in-degree equal
to zero are smaller than states with in-degree strictly larger than zero. We decided to adopt
the formulation of Definitions 3 and 4 since it is closer to the one originally defined in [35].

For a fixed-sized (constant) alphabet, requiring an automaton to be input-consistent is
not computationally demanding. In fact, given an NFA A = (Q, s,d, F) we can build an
equivalent, input-consistent one just by creating, for each state ¢ € @, at most |X| copies of
q, that is, one for each different incoming label of ¢. This operation can be performed in

O(|Q] - |=]) time.

3 Compact Data Structures on Wheeler Graphs

Wheeler graphs extend the suffix array [45], the Burrows-Wheeler Transform [16] and
Ferragina and Manzini’s FM-index [34] from strings to graphs. Following [35], we now show
how to encode Wheeler graphs using a small number of bits. Consider the automaton in
Figure 1. We store the following strings:
The string LAB = adcccfcf is obtained by concatenating the labels of all edges leaving s,
the labels of all edges leaving ¢, the labels of all edges leaving ¢o, and so on. If a node
has multiple outgoing edges, the corresponding labels are sorted in alphabetic order.
The string OUT = 10010101001001 is obtained by storing in unary the outdegree of s, the
outdegree of q1, the outdegree of g2, and so on. The outdegrees are 2, 1, 1, 2, 2, 0.
The string IN = 11010010010100 is obtained by storing in unary the indegree of s, the
indegree of ¢, the indegree of g2, and so on. The indegrees are 0, 1, 2, 2, 1, 2.
The bit array FIN = 011001 remembers which states are final: s is not final, ¢ is final, g9
is final, and so on.

Let e = |§] be the number of transitions in the NFA, n = |@| be the number of nodes and
o = |X]| be the size of the alphabet. We can store LAB in elog o bits, OUT in e + n bits, IN in
e + n bits and FIN in n bits. It turns out that these sequences provide a compact encoding
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of the Wheeler graphs that extends the Burrows-Wheeler transform from strings to Wheeler
automata. Let us show how we can use these sequences to retrieve the automaton. By using
LAB and OUT, we infer that s has two outgoing edges labeled a and d, ¢; has an outgoing
edge labeled ¢, g3 has an outgoing edge labeled ¢ , g3 has two outgoing edges labeled ¢ and
f, q4 has two outgoing edges labeled ¢ and f, and ¢5 has no outgoing edges. Now we sort
the character in LAB, obtaining acccedf f. From Wheeler property (W1) and IN we infer that
s has no incoming edges, ¢; has an incoming edge labeled a, g2 has two incoming edges both
labeled ¢, g3 has two incoming edges both labeled ¢, g4 has an incoming edge labeled d, and
@5 has two incoming edges labeled f. By using the bipartite representation of Figure 1, we
can retrieve the whole set of edges. For example, consider character c. We know that there
are outgoing edges labeled ¢ from ¢1, g2, q3, q4, and we know that there are incoming edges
labeled ¢ from g2 (two edges) and g3 (two edges), so since same-letter edges cannot cross we
conclude that the edges labeled ¢ are (q1,¢2,¢), (g2, q2,¢), (g3,43,¢), (q4,gs,c¢). Lastly, we
retrieve the set of all final states by using FIN.

Not only Wheeler graphs can be encoded in a small number of bits as described above, but
they also support efficient pattern matching queries on the automaton’s paths (equivalently,
on the language recognized by the automaton). Consider the following pattern matching
problems (where we assume, without loss of generality, that every state can reach a final
state):

1. Given a € ¥*, decide whether « is accepted by the automaton A (that is, decide, whether

a € L(A)).

2. Given « € ¥*, decide whether « occurs on the paths of the automaton A (that is, decide

whether there exist v1,v2 € £* such that yiays € L(A)).

For example, in Figure 1, the string a = cccf is not accepted by the automaton, but it
occurs in the automaton (there is a path from ¢4 to g5 labeled with «).

The compressed representation of a Wheeler graph allow solving both problems efficiently.
First, as observed in [35], from the bipartite representation of a graph we can deduce path-
coherence: if we start from an interval of consecutive nodes in Wheeler order, we consider a
character ¢, and we follow all edges labeled with ¢ from those nodes, we end up in another
(possibly empty) interval of consecutive nodes. For example, if we start from {q1, ¢2,¢3, s}
and we follow all edges labeled ¢, we end up in {g2,¢3}.

This property implies that we can solve both pattern matching queries above listed in a
linear number of steps. For the first problem, we start from the interval of states {s}, and
for the second problem we start from the whole set of states . To update an interval by
following the edges labeled with ¢, we augment the compressed representation of a Wheeler
automaton with compressed data structures that support efficient rank/select queries, thus
extending the FM-index from strings to Wheeler automata. This leads to the following result:

» Theorem 6 (adapted from [35]). Let A be a Wheeler NFA with e edges on an alphabet of
size 0. Then, A can be encoded by using a data structure of elogo (14 o(1)) + O(e) bits that
supports pattern matching queries in O(mloglogo) time, where m is the length of the string
to be matched.

Wheeler graphs are therefore a very convenient class of graphs, because they support
pattern matching in linear time (for constant alphabets) within compressed space, while
on arbitrary graphs pattern matching cannot be solved in subquadratic time (assuming
that the orthogonal vector hypothesis is true) [32]. At the same time, the class of Wheeler
graphs subsumes all previous extensions of the Burrows-Wheeler transform and the FM-index,
including labeled trees [33], circular strings [46, 40] and de Bruijn graphs [14]. Wheeler
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graphs also inherit compressibility properties of the Burrows-Wheeler transform. For example,
tunneling, a method for identifying blocks that capture some redundancy of the BWT [8],
can be extended to Wheeler graphs [4].

Some more complicated pattern matching problems require more advanced data structures.

A typical example is the problem of computing matching statistics: given an automaton A,
and a string «, determine for every 1 < i < |a the longest suffix a; of a[l,4] that occurs in
A. For example, in Figure 1, if o = acefdf, we have ay = a, as = ac, az = acc, ay = ccf,
as = d, ag = df. On strings, this problem can be solved by exploiting the FM-index and
the longest common prefiz array [49]. In [19], the notion of longest common prefix array
was extended to Wheeler DFA. The idea is to consider the smallest and the largest string
reaching each state. For example, in Figure 1, the smallest string reaching ¢ is ac and the
largest string reaching gs is ... cccce (these strings can be read by starting from gs, following
edges in a backward fashion until either reaching the source s or a loop, and finally reversing
the obtained string). More generally, we proceed as follows. Let A be a Wheeler DFA with
n nodes, in which the i-th state in the Wheeler order is ¢;. We define 2n strings: ~; is the
smallest string reaching qi, 72 is the largest string reaching ¢i, v3 is the smallest string
reaching g2, 74 is the largest string reaching go, and so on. We define the array LCS[2, 2n]
such that LCS[i] is the length of the longest common suffix between v;_; and ~;. Then, it
can be shown that, for every 2 < i < 2n, either LCSJ[i] is infinite or its value is less than 2n
[19, 5]. This implies that LCS can be stored using at most O(nlogn) bits.
The LCS array of a Wheeler DFA supports computing matching statistics efficiently:

» Theorem 7 ([19]). Let A be a Wheeler DFA with n states. By storing the LCS array of A
using O(nlogn) bits, we can compute matching statistics in O(mlogn) time, where m is the
length of the string to be matched.

Storing a Wheeler DFA requires only elog o(1 + o(1)) + O(e) bits (Theorem 6), so storing
the LCS array using O(nlogn) bits may require significantly more space than storing the
automaton itself, if the alphabet and the numbers of edges are small. Similarly to the string
case, it is possible to design a sampling mechanism for the LCS array that allows better
space-time trade-offs. The key idea is to store a range minimum query data structure on the
LCS array (which only requires O(n) bits) and sample O(n/logn) entries of the LCS array
in such a way that, by solving range minimum queries, it is possible to retrieve each entry of
the LCS array in O(logn) steps. This leads to the following result.

» Theorem 8 ([26]). Let A be a Wheeler DFA with n states. By storing a data structure of
O(nloglog o) bits, we can compute matching statistics in O(mlog?®n) time, where m is the
length of the string to be matched.

4 Wheeler Languages

Given the interesting properties of Wheeler automata discussed in the previous section, a
natural language-theoretic question is: which languages are recognized by Wheeler DFA
(WDFA for brevity) and Wheeler NFA (WNFA for brevity)? In this section we consider
the class of Wheeler Languages, that is the class of languages recognized by a WNFA or,
equivalently as we shall see in Theorem 10, by a WDFA.

A first observation is that the Wheeler local conditions of Definition 4 are equivalent, on
DFA, to a more global condition expressed in terms of the sets I, of words reaching a state
g. If D is a DFA and < is a (strict) order of the alphabet, we can define a (strict) partial
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order <p on its states by stipulating, for ¢ # ¢’, that
¢<pq ©VaelVBely(a=<p)
The (in general) partial order <p indicates whether D is Wheeler in the following sense:

» Lemma 9 ([25]). Let D be an input-consistent DFA in which the initial state s has no
in-going edges. Then

D is a WDFA if and only if the order <p is total. (1)

Using the previous lemma we easily see that we can enlarge the class of WDFA to non
input-consistent automata, without changing the class of recognized languages, by defining a
WDFA as a DFA in which the initial state s has no in-going edges and the order D is total.
In the following we will freely use the new enlarged class of WDFA.

Notice that if <p is total, then we can decide whether ¢ <p ¢’ by simply checking the
relative co-lexicographical order of any two strings o € I, and 8 € I,7. An easy consequence
of this is that, if D is a WDFA and (a,)new is a co-lexicographically (strictly) monotone
sequence of words in Pref(£(D)), then for some state ¢ of D, (@, )ne, Will eventually belong
to I,. This fact helps us to locate Wheeler languages among sub-regular languages by
testing it against a very well-known class: the star-free languages. Languages in this class
can be described by regular expressions constructed from the letters of the alphabet, the
empty word, the empty set symbol, all boolean operators — including complementation — and
concatenation but no Kleene star. We can indeed prove that a Wheeler language is always
star-free. To see this we recall that a characterization of the star-free languages says that a
language L is star-free if and only if there exists n such that for all a, 5,y € ¥* it holds:

af"ye L=Ym>n afmy € L. (2)

Suppose now that a language £ is Wheeler, that is, there exists a WDFA D recognizing
L. Consider a sequence of words of the form (a8*)se.: this sequence is always monotone
(increasing or decreasing depending on whether @ < «af or o = «f). Hence, by the
Wheelerness of D, there must exist a D-state ¢ and n € N such that, for all m > n, o™
belongs to I,. Condition (2) easily follows.

As a natural next step we present below a characterization of the class of Wheeler
languages, both from the language as well as from the accepting-automata view points.

The former can be given by making an appeal to the celebrated Myhill-Nerode equivalence
=,. To this end we say that an equivalence relation = over an ordered set (A, <) is convez if
whenever a < b < c and a = ¢, we also have b = a. Consider the following “convex refinement”
=% of =¢. For all o, 8 € Pref(£) we say that a =4 § if and only if

end(a) = end(B) A (Vy € Pref(L))(min{a, B} =2 v 2 max{a, B} — v =, ),

where end(«) is the final character of & when «a # €, and € otherwise.
The following theorem shows that the convex equivalence =% plays exactly the role of
the Myhill-Nerode equivalence when referred to Wheeler Languages.

» Theorem 10 (Myhill-Nerode for Wheeler Languages [2, 3]). Given a language L C X*, the
following are equivalent:

1. L is a Wheeler language (i.e. L is recognized by a WNFA).

2. =% has finite index.
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3. L is a union of classes of a convex, input-consistent, right invariant, finite index equival-
ence relation over (Pref(L), <).
4. L is recognized by a WDFA.

As a consequence of Theorem 10 we get an elegant further characterization of Wheeler
languages by considering, again, monotone sequences. The condition expresses the fact that
they turn out being eventually trapped in a single state, this time of the minimum DFA for
the language:

» Corollary 11 ([2, 3]). A regular language L is Wheeler if and only if all monotone sequences
in (Pref(L), =) become eventually constant modulo =¢. In other words, for all sequences
(a)icw in Pref(L) such that:

R R, 0 Qg oy

(A—— — )

a; Rag =

there exists an n such that ap =, ag, for all h,k > n.

Proof Sketch: to see that the condition is sufficient we use Theorem 10 and suppose, by
contraposition, =% has an infinite number of classes. Then, there is a single =,-class which is
partitioned into an infinite number of =¢-classes and we can single out a monotone sequence
(Bi)icw (say, increasing) whose elements are pairwise non =%-equivalent words. By discarding
at most a finite number of them, we may suppose that all §; are not only =,-equivalent, but
also end with the same letter. For any ¢ € w, since 8; #% Bit+1, by definition of =%, there
must exists n; with §; < n; < Bi4+1 and n; Z, ;. But then the monotone sequence

Bir<m=<PBa<m=<...

is never trapped in a single = class.

The condition is also necessary, since a monotone sequence gets trapped in any WDFA
recognizing L, it gets a fortiori trapped in the minimum DFA D/ recognizing the language
(even if D, is not Wheeler).

Using Corollary 11 one can show that Wheeler languages are closed under a few classical
operations while other (even very simple) compositions of Wheeler languages do not maintain

Wheelerness.
» Lemma 12 ([3]). The following hold:
1. Finite and co-finite languages are Wheeler.

The intersection of two Wheeler languages is Wheeler.

Wheeler languages are not closed under union, concatenation, Kleeene star.
The union of a Wheeler language with a finite set is Wheeler.

The right-concatenation of a Wheeler language with a finite set is Wheeler.

LA ol S

We now consider the problem of characterizing Wheeler languages using automata. For
star-free languages we know that a combinatorial property of the minimum DFA — i.e. being
counter-free — characterizes membership in that class and we can give a similar result also for
the Wheeler class. However, let us first first notice that being Wheeler for a language £ does
not necessarily imply Wheelerness for its minimum DFA D,. Consider the DFA D depicted in
Figure 2. If < is the alphabetical order on ¥, since a < ab < ac and since a, ac € Iy, ,ab € I,
it follows that states q1, ¢2 are <p-incomparable. Hence D is not Wheeler, even though £(D)
is Wheeler. To see this just consider the DFA D’ obtained from D by duplicating state q;
into ¢1,, and g1, and by defining §(s, a) = g1,q, 6(s,¢) = q1,¢, and 6(¢1,4,0) = 6(¢1,¢,b) = ¢o.
In D’ the order <p is total so that D’ is a WDFA recognizing £(D).

12:9
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Figure 2 The depicted DFA D is the minimum DFA accepting the Wheeler language £(D).
However, D is not Wheeler since states g1, g2 are incomparable with respect to <p.

Hence, in order to decide whether a language £ is Wheeler we cannot simply rely on
the Wheelerness of its minimum DFA D, . Yet, a simple combinatorial property of <p,
characterizes Wheelerness. Even though there are Wheeler languages in which <p,. is not
total, in such cases < p,-incomparability must be limited to special kind of pairs. To illustrate
this consider again the minimum DFA in Figure 2, this time with respect to the following
order on the alphabet: a < ¢ < b < d < e. The following theorem tells us that the language
recognized is not Wheeler, because the two nodes ¢3, g4 are not only <p-incomparable but
are also infinitely entangled, since they are the starting point of two equally labeled cycles —
this was not so using the alphabetical order since g3 <p g4 in that case.

Intuitively speaking, £ is not Wheeler if and only if there is no finite splitting of the
states of D, that can possibly make D, Wheeler.

» Theorem 13 ([3, 11]). Let L be a regular language and let Dy be the minimum trimmed
DFA accepting L. Then, L is not Wheeler if and only if Dy contains two <p . -incomparable
nodes u # v and two equally labeled cycles, one starting from u and the other from v.

As an easy corollary of the previous theorem we see at once that if the minimum trimmed
DFA D/ accepting a regular language £ contains three equally labeled cycles starting from
three different states ¢, g2, ¢3, then £ cannot be Wheeler. Indeed, suppose w.l.o.g. that the
cycles are labeled by the word v and a1 < as < as are non empty words, different from
v, reaching g1, g2, g3, respectively. Then two out of the three among «a;, as, az must lie on
the same side of v, say a; < az <. Then a1y < asy < agy? with a1y, a1v? € I, and
ooy € Iy, showing that g1, g2 are <p,.-incomparable and £ is not Wheeler by Theorem 13.

A similar combinatorial condition on the minimum DFA will be used in the following to
find efficient algorithms for analyzing the “level of Wheelerness” of regular languages.

Finally, we consider the problem of constructing the minimum WDFA for a Wheeler
language. Consider, for any n € N, the language whose minimum (input-consistent) DFA
D,, is depicted in Figure 3. This language is finite, hence it is Wheeler — in fact, for any
order of the alphabet. However, if we consider the standard alphabetical order, D,, is
not Wheeler, because states ¢1, g2 cannot be ordered by <p, since acac < bc < bebe with
acac,bebe € Iy,, be € 1,,. However, Theorem 10 says that every Wheeler language has a
unique state-minimum WDFA, whose set of states is the set of equivalence classes of =%,
while initial and final states are defined as in the regular case. For the language in Figure 3
it can be proved that the state-minimum WDFA has a number of states which is exponential
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in the number n of states in the minimum (input-consistent) DFA D,, (see [47] for further
consideration on the relative size of minimum DFA and WDFA for the same language). We
will discuss algorithmic solutions to the problem of computing such minimum WDFA in
Section 7.4.

Figure 3 The depicted DFA is accepting a Wheeler (finite) language but the minimum Wheeler
DFA accepting the same language has size exponential in n.

4.1 The rational embedding

A different “reading” of the effect of co-lexicographic ordering on the collection of strings
accepted by a given Wheeler automaton can be given mapping strings on rational numbers
in between zero and one (see [47]). To this end it is sufficient to use characters as digits
whose positional value is decreasing right-to-left. The connection that this view will provide
is based on the fact that the co-lex ordering of strings turns out to be the (familiar) ordering
of the rationals onto which they map.

Consider the following definition:

» Definition 14 (The Rational Embedding of X*). The Rational Embedding of ¥* is
the map q : ¥* — QI0, 1) defined as follows. If o = |X|, for any o = oy ...y € X*:

Q@) =Y ai- (0 4+2)" ",
=1

The function g maps characters in digits and strings in rational numbers in [0, 1) written in
base (|| + 2), without using the smallest and the largest digit.
The mapping has the following elegant property:

a = B if and only if g(a) < g(8).
Letting Igjo,1) be the collection of non-empty convex sets of rationals in Q[0,1):
Igpy ={J CRO,1) | J#DA(Va,ce J)(Vbe Q)a<b<c=bec J)},

we can map any collection of strings reaching a given state into a convex subset of rationals
in [0,1).

» Definition 15 (The Rational Embedding of an automaton). The Rational Embedding
of A= (Q,s,0,F) is the map I : Q — Igo,1) defined as follows: for any q € Q,

I%(q) = ()} € Igpay | (Ya € I)(a(a) € J)}.

In other words, 1%(q) is the convex closure (convex hull) of {q(a) | a € I,}.

Manzini's Festschrift
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Denoting I(q) by Ii! we can restate Wheelerness as follows: for any pair of states g1, g2 € Q,
either the sup (right limit) of I¢l is smaller than the inf (left limit) of Il , or vice versa.
Moreover, many further questions relating numbers and accepted strings arise. For
example, are the inf and sup of Izs always rational numbers? How many accumulation
points can we observe by analyzing the embeddings of strings belonging to a regular language?
Are accumulation points useful in recognizing Wheelerness?
The first of the above question has been tackled in [47], where the following has been

proved:

» Theorem 16. If £L = L(D), with L Wheeler and D either minimum or Wheeler, then for
all ¢ € Q, we have that the inf and the sup of Ig} are rationals.

The above result was essentially already present in [38] where, however, no co-lexicographic
ordering of strings was (explicitly) taken into account and where a real number was considered
defined by an automaton when all its approximations are accepted by the automaton. Among
other things, Hartmanis and Stearns observe that the measure zero Cantor set! can be
defined by an automaton (see Figure 4).

Figure 4 Cantor set and the automaton accepting it. Notice that the automaton on the right is
trimmed: the underlying alphabet is ¥ = {0,1,2}.

For distinct states ¢, ¢’ € @, the presence of accumulation points reached by rationals in
It and Ig‘,, respectively, can imply non-Wheelerness of a language (consider Figure 2 above
and see Theorem 17 below). However, the mere presence of accumulation points can easily
comply with Wheelerness: Cantor set, for example, can be accepted by a Wheeler automaton
using Theorem 13 and the approach outlined here. Fixing ¥ = {0, 1,2, 3,4}, the automaton C
obtained from the one in Figure 4 replacing 0 by 1 and 2 by 3 and making both its non-starting
states final, is Wheeler and complying with Definition 14. Strictly speaking, since we are
not using the first and last digits of ¥, none of the rational embeddings of strings in £(C),
that is I9(£(C)), is an accumulation point?, however I9(L£(C)) retains most of the properties
of the classical Cantor set. More general Cantor-like sets are, for example, the rational
embeddings of reverse definite languages, that is languages £ = FUGY*, for finite F, G C ¥*,
or strictly locally testable languages, that is languages £L = F U (HX*NE*K) \ Z*WE* for
finite H, K, W, FF C ¥*.

In general, the rational embedding of a Wheeler language can have many accumulation
points — think of the trivial case of £ = ¥* — and the analysis of their position within different
Iils, can provide useful insights. Consider, for example, the following sufficient condition for
non-Wheelerness.

! The celebrated Cantor set can be seen as the set of rationals in [0, 1] written in base 3 without using
the digit 1. Is an example of perfect set (all its points are accumulation points) that is also nowhere
dense (the interior of its closure is empty).

2 Hence, I(L(C)) is not perfect.



N. Cotumaccio et al.

» Theorem 17 ([47]). If D is the minimum DFA accepting L and for distinct q,q' € Q,
x = inf(I{) = inf(I}}) or x = sup(I) = sup(I,) and
x is an accumulation point for both It! and If;,,

then L is not Wheeler.

4.2 State Complexity

The state complexity (also known as quotient complezity) of a regular language is naturally
defined as the number of states of the minimum DFA D, recognizing £. State complexity is
also used to measure the complexity of operations on regular languages: the state complexity
of an operation is a function that, starting from the state complexities of the operands,
associate the worst-case state complexity of the language resulting from the operation. For
instance, on regular languages the state complexity of the intersection of £; and Lo is mn,
where m and n are the number of states of D, and D, respectively. This can be seen using
the state-product construction for Dy, and D, and in [55] it is proved that this bound is
tight. Moreover, as proved in [15], the same complexity is met for the intersection of star-free
languages.

If we restrict to Wheeler languages, it is natural to define the Wheeler state complexity of
a Wheeler language £ as the number of states of the minimum WDFA D} recognizing £. The
following lemma shows that the convex property of a Wheeler DFA can be exploited to prove
that the Wheeler state complexity of the intersection of Wheeler languages is significantly
better than the state complexity of the intersection for regular or star-free languages.

» Lemma 18 ([30]). Let D1 and Dy be two WDFA recognizing the languages L1 and Lo
respectively. Then, the direct product D := Dy X Dy recognizing the language L := L1 N Lo is
Wheeler and, in its trimmed form, it has at most |Q1| + |Q2| — 1 states, where |Q;| is the
cardinality of the set of states of D;.

Here is an intuition for the proof of the previous lemma. The product of two DFA
Di = (Qiasia6i7Fi) is the DFA Dl X DQ = (Ql X Q27(81752)7(51 X 62,F1 X Fg), where
9 x 82((q,7),0) = (01(q,0),02(r,0)). If the D;’s are Wheeler for i = 1,2, say w.r.t. the
Wheeler orders (Q;, <;), then we can consider the colexicographic order on Q1 X Qo:

(q1,01) <cotex (q2,02) & (pP1 <2p2) V[(p1 =p2) A (@1 <1 @2)]-

It is then possible to prove that the set of reachable states R in the product D; x Dy is such
that if (q1,p1) <cotex (q2,p2) With (g1,p1), (g2, p2) € R and p; <2 ps then ¢1 <7 ¢2 holds as
well, and this allows to prove that |R| < |Q1]| + |Q2].

It is natural to ask whether there are more operations, beside intersection, preserving the
Wheeler properties. As already mentioned, Wheeler DFA do not behave well when classic
operations on DFA are concerned (booleans, concatenation, and Kleene star), so we have to
look somewhere else. DFA being special cases of semi-groups, it is there where we can find
an interesting operation, the so called cascade product of DFA’s, and prove that it gets along
well with Wheelerness. The cascade product is a generalization of the direct product, in
which the parallelism of the computation between the two DFA in the product is substituted
by a more hierarchical interaction. Indeed, the second DFA in the cascade does not only
read the input string, but also read, moving a step later, the run that the first DFA makes
on the input string. To do so, if the alphabet of the first DFA Dy = (Q1, 51,01, F1) is X, the
alphabet of the second DFA must be @1 x X. More formally, we define the cascade product
as follows.

12:13
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» Definition 19 (Cascade product). Let Dy = (Q1, s1, 01, F1 X Fy) be a DFA over the alphabet
Y and let Dy = (Q2,Q1 X 2,82, Fy) be a second DFA whose alphabet is the cartesian product
of Q1 x X. The cascade product Dy o Dy = (Q1 X Q2, (81, $2),0, F1 X F3) is the automaton
over the alphabet ¥ with transition function defined by

6(((],7“),@) = (51(Qa a)762(7a’ (Q7a)))'

Figure 5 shows an example of cascade product between two automata.

D1 D1 9 DQ
q0 a ﬂl—o\
To 1
Ds b

Figure 5 On the left the automata D1 and Ds, where the Ds-transitions are: d = (go,a),e =
(go0,b),f = (go,¢),g = (q1,¢),h = (g2, ¢). On the right, the cascade product D; o Ds.

Notice that the direct product between automata can be seen as a particular case of
the cascade product: the direct product Dy x Dy is equal to the cascade product Dy o Dj,
where D) is obtained from Dy by replacing each transition d5(r,a) = v’ with |Q1| transitions
d5(r, (g,a)) = 7', one for each q € Q1.

The cascade product plays a fundamental role in the theory of automata (or semi-groups):
the celebrated Krohn-Rhodes Decomposition Theorem ([44]) is in fact for semi-groups the
analogous of the Jordan-Holder Decomposition Theorem ([6]), allowing to decompose any
semi-group (automaton) as a cascade product of “basic” semi-groups (automata).

It is possible to prove that Wheelerness gets along very well with the cascade product.
Indeed the following generalization of Lemma 18 holds:

» Lemma 20 ([28]). If D1 = (Q1,%, s1,01) is Wheeler with respect to the orders (X, <) and
(Q1,<1) and Dy = (Q2,Q1 X X, s2,02) is Wheeler with respect to the co-lexicographic order
on the set of pairs Q1 X X and the order (Qa, <2) then Dy o Dy (restricted to accessible states)
is a WDFA with respect to (3, <) and the co-lexicographic order over Q1 X Qo (restricted to
accessible states).

Moreover, if D1 has ny states and Do has no states then the cascade product Dy o Do has
at most n1 + ny — 1 states.

In Sec 7.1 we shall see that this good behavior of the Wheeler class is not restricted to the
intersection/cascade operation, as we find a significant improvement in the determinization
of Wheeler NFA as well.
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5 Hardness and Lower Bounds

We now move to algorithmic problems on Wheeler graphs. We first discuss the computational
complexity of the natural problem of determining if a given edge labeled graph is a Wheeler
graph. The following hardness result by Gibney and Thankachan implies the computational
intractability of this problem.

» Theorem 21 ([36]). Determining if a given labeled graph G = (Q, %, E) is a Wheeler graph
is NP-complete. This holds even when restricted to the class of graphs over binary edge label
alphabets having a single source and with vertices having total degree (in-degree + out-degree)
at most five.

We describe a simple reduction that requires a source vertex with a large degree, but
demonstrates many of the same techniques used to prove the full statement of Theorem 21.
We first introduce the Betweenness Problem, proven NP-complete by Opatrny [50].

» Problem 1 (Betweenness Problem). Given an integer n and a set of triples X C {(a,b,c) |
a,b,c € {1,2,...,n}}, determine if there exists a permutation © of {1,2,...,n} such that
for every (a,b,c) € X, either n(a) < w(b) < w(c) or w(c) < w(b) < w(a)..

We call the set of triples X betweenness constraints. For example, an instance of the
Betweenness problem is (n =6, X = {(3,2,5),(1,5,2), (4,5,6),(2,6,4)}). The permutation
resulting in the ordering 1,4,5,6,2,3 would satisfy every triple in X. The permutation

resulting in the ordering 1,2, 3,4, 5,6 would violate the triples (3,2,5), (1,5,2) and (2,6,4).
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Figure 6 The labeled graph constructed from the Betweenness Problem instance (n = 6,X =
{(2,3,5),(3,5,4),(4,5,6)}). This graph is a Wheeler graph if and only if there exists a permutation
of {1,2,...,n} satisfying all betweenness constraints.

Given an instance (n,X) of the Betweenness Problem we construct a labeled graph
G =(Q,%, FE) as follows:

We create a single source vertex s.

We next create a set of n vertices, denoted v} for i € [1,n] and the labeled edges (s, v}, a)

for ¢ € [1,n].

Next, for j € [2,]X]], i € [1,n], we create the vertex set v/ and the labeled edges

X %
(07" 0],a).
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Observe that in the definition of a total vertex order < for a Wheeler graph, the vertex s
must be ordered first, followed by some ordering of v}, v3, ..., v}, immediately followed by
the same order applied to vf, v3, ..., v2. In fact, the vertices described above must have an
ordering of the form

1X]
(1

s<ubay < <vby <0y << <<l <<l T
for some permutation 7. Otherwise, there would exist some ¢’ and 4 such that vffl < v{ -t
but Uf < vg/, contradicting Wheeler graph axiom W2.

Next, we add the following betweenness constraint gadgets. We order X arbitrarily.
Iterating through X, consider (a,b,c) as the j*" betweenness constraint. We add the new
vertices w{, w%, and w% and the labeled edges (vg,w{, b), (Ug,wg, b), (vg, wg, b), (v, wg, b),
and (vY, wg, b). See Figure 6 for an example with n = 6 and three betweenness constraint
gadgets.

The key property enforced by the betweenness constraint gadget is as follows. If the j*
constraint is (a, b, ¢), then, for the total order < on the vertices to satisfy Wheeler Axiom W2,
the vertex vi must be ordered between vJ and vJ. For non-example, if vg <) < vl we must
have have wj) < w] < w} due to the edges (vi,w},b), (v],w],b), and (v}, w},b). However, we
also have the edges (v/,w?,b) and (vJ,w), b) where vJ < vl and w} < w!, violating Wheeler
axiom W2. A similar argument holds in all cases where vi is not ordered between vJ and v?.
Taking the bipartite view of the graph from Section 2, this is equivalent to the only ordering
of the vertices allowing for non-crossing dashed edges labeled 2 being one where the vi is
positioned between v and vi. See Figure 7. By drawing similar figures, one can confirm
that the only possible orderings for the vertices in which blue dashed lines do not cross are
Ug<vg<vg,w{<wg<w§ andv£<vi<vi,w§<w§<w{.

We note here that if the single source restriction is lifted, then by making each v} for
i € [1,n] a source vertex, the reduction implies NP-completeness for the case where the total
degree of each vertex is at most three.
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Figure 7 The orderings represented in the left and middle figures are the only vertex orderings
that result in no blue dashed edges crossing. The right figure shows an invalid ordering that violates
this condition.

We next discuss how the complete statement of Theorem 21 is obtained in the single source
case. An examination of Opatrny’s NP-completeness proof of the Betweenness Problem shows
that not all permutations of {1,2,...,n} have to be under consideration for NP-hardness
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of the Betweenness problem to hold. Only a subset of permutations allowing for pivoting
of elements around some central value X, along with some potential placement of some
additional elements have to be under consideration for the problem to be NP-hard. This
observation guides a reduction from Not-All-Equal SAT (NAESAT) that utilizes a tree
structure rather than a single source with degree n, which previously had allowed for all
permutations of v, ..., vl. An example of this tree structure is shown in Figure 8.

In more detail, in the Not-All-Equal Boolean Satisfiability (NAESAT) Problem, one needs
to find a satisfying Boolean assignment in which each clause has both a true literal and a
false literal. Like in Opatrny’s reduction from NAESAT to the Betweenness Problem, in the
reduction from NAESAT to Wheeler graph recognition, each variable x; is represented by
two elements (or vertices) x; and T;. Betweenness constraints force these to be in one of two
orderings z; < X < T; or T; < X < x; corresponding to either a true or false assignment
to z;. Fach clause requires one element (represented with a vertex) and two additional
betweenness constraints. After constructing the tree structure, all betweenness constraints
can be enforced in the same manner as in the reduction from the Betweenness Problem to
Wheeler graph recognition. We refer the readers to [36] for details.

Ll
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stos3 2 sy sy 2 L83 s3 s
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s s35_ 27 s s?
Ve

Figure 8 An example of the tree structure used in the reduction from NAESAT to Wheeler graph
recognition.

A natural question is whether the brute force Q(|V|!) approach of testing all permutations
of vertices is necessary. A more efficient exponential time algorithm arises from combining that
a Wheeler graph can be represented using 2(|E| + |V|) + |E| + |Z|log |E| + o(|]V| + |E| log |X])
bits (while supporting efficient graph transversal) [35] and that graph isomorphism can be
checked in 2VIVI+0() time [7]. Hence, we can enumerate all potential Wheeler graphs for
a given |V, |E|, and ¥ and check whether the resulting graph is isomorphic to the input
graph. This approach yields a 2/F/10g[Z+O(VI+IED time algorithm. Subsequent work by
Chao et al. on the Wheeler graph recognition provides an alternative approach based on a
Satisfiability Modulo Theory (SMT) solver, which experimentally outperforms the above
proposed exponential time solution [18].

Gibney and Thankachan [36] also demonstrate that the following optimization variant is
APX-hard: given a graph G = (@, X, F) find a minimum cardinality subset of edges E' C F
such that (Q, %, E'\ E’) is a Wheeler graph. Here, the objective value is taken as |E’|. This
problem is called Wheeler Graph Violation (WGV). The APX-hardness result implies that
there does not exist a polynomial-time approximation scheme (PTAS) for this problem under
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the assumption that P # NP. The proof is through a reduction from the Feedback Arc Set
Problem, that is, given a directed graph G = (V, E), determine a minimum cardinality subset
of edges E' C F such that (V, E\ E’) is a directed acyclic graph. This same reduction implies
that, under the Unique Games Conjecture, it is NP-hard to find a solution to WGV that is
within a constant factor of optimal for any constant C' > 0 [37].

Further hardness results in this vein include work by D’Agostino et al. [30] that proves
that deciding whether a language of an NFA is a Wheeler language is PSPACE-complete.
The same authors demonstrate that the problem of determining whether there exists an
alphabet order that causes a DFA to become Wheeler is NP-complete [29]. As a fine-grained
complexity result, a quadratic lower bound condition on the Strong Exponential Time
Hypothesis (SETH) for the problem of determining if a DFA recognizes a Wheeler language
is provided by Becker et al. [11], along with an algorithm having a time complexity matching
this lower bound. Section 7.3 provides more details on this last result.

6 Sorting Algorithms

As discussed in Section 5, the problems of (i) deciding whether a given NFA is a WNFA
and (ii) finding a Wheeler order for a given WNFA are NP-complete. Subsequent research,
however, has shown that this is not the end of the story: as we show next, problems (i) and
(ii) can still be solved in polynomial time for a strict superclass of the DFA, and can actually
be solved in polynomial time for all NFA by slightly changing the Wheeler order definition
(i.e. moving to preorders, a solution which preserves the ability to index the WNFA).

6.1 Sorting WDFA and 2-WNFA

Alanko et al. in [2] showed that in the deterministic case (WDFA) the recognition and sorting
problems are easy. This result is easily explained using Lemma 9 (Section 4). Intuitively,
this Lemma states that a DFA A is Wheeler if and only if, for any pair of states u # v of
A, all strings labeling paths from the source of A to u are co-lexicographically smaller than
all strings labeling paths from the source of A to v (or the other way round). If this is the
case, then one can sort the states of A according to any representative of I, for all u € Q.
In particular, one can build a spanning tree (rooted in the source) of A and sort it using
existing algorithms for sorting labeled trees (for example, [33]); if A is Wheeler, then the
resulting node order is a Wheeler order. If on the other hand, A is not Wheeler, then one can
easily check in linear time that the resulting order does not satisfy Definition 4. This yields:

» Theorem 22 ([2]). Let A be a DFA. In O(JA|) time one can:
1. Decide whether A is a Wheeler DFA, and
2. If A is a Wheeler DFA, return its (unique) Wheeler order.

Importantly, note that Lemma 9 does not hold for NFA: the nondeterministic case is, in
fact, much more complicated.

Another interesting case covered in [2] is that of acyclic WDFA, which can be sorted
online following any topological order of the edges (that is, after the i-th edge is received,
the algorithm maintains internally the Wheeler order of all the nodes incident to the ¢ edges
received so far). The algorithm is a generalization of a folklore online algorithm for building
the Burrows-Wheeler transform in an online fashion [39], and runs with O(log |.A|) delay per
edge.
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What about nondeterministic finite automata? While Gibney and Thankachan [36]
established that the problem is NP-complete in general (i.e. NFA), a closer look reveals
that every node of the labeled graph used in the reduction of [36] has at most five outgoing
transitions labeled with the same character. Let us formalize this concept:

» Definition 23 ([2]). A d-NFA is a NFA such that, for every state u and every character
a €3, it holds |0(u,a)| <d.

In other words, the work [36] established that 5-WNFA are NP-hard to recognize and sort.

Note that 1-NFA correspond to DFA (recognizable and sortable in linear time, as discussed
above), which leaves open the cases 2 < d < 4. Surprisingly, [2] showed that also the case
d = 2 admits a polynomial-time (quadratic) solution. The idea is to encode the candidate
Wheeler order as a set of |@Q|? boolean variables (each encoding the statement “u < v” for
every possible choice of u,v € @), and to enforce the Wheeler axioms of Definition 4 via
a 2-SAT formula of size O(]A|?) (solvable in time O(].4|?)). While Axioms 1-2 are easily
expressible using only 2-SAT clauses, the tricky part turns out to be the totality requirement
for the Wheeler order and, in particular, transitivity (which requires 3-SAT clauses in the
general case). The core of the reduction shown in [2] is to prove that the Wheeler axioms,
together with antisymmetry and totality of the order (also easily expressible via 2-SAT
clauses), imply transitivity on 2-NFA. As a result, transitivity does not need to be enforced
at all and a 2-SAT formula can be used to find a Wheeler order, if one exists.

2-SAT formulas can also be used to attack the sorting problem for the union of two
Wheeler automata (see [31] for details).

6.2 Sorting Arbitrary WNFA: Preorders and Relations

As it turns out, the NP-completeness of the problem of recognizing and sorting WNFA
with the Wheeler order defined in Definition 4, does not mean that such automata cannot
be indexed for pattern matching queries in polynomial time. Another closer look at the
NP-completeness reduction of Gibney and Thankachan [36] reveals that the labeled graph (in
fact, a semiautomaton with a single source) of their reduction has another peculiarity: several
distinct node pairs u # v satisfy I, = I, i.e. they are reached by exactly the same strings
from the source. Observe that such pairs of nodes can safely be merged without affecting the
strings that can be read on the graph’s paths; in particular, the answers to pattern matching
existential queries (does a given query string « label any path in the graph?) are not affected
by this transformation. One idea could therefore be to not take any decision on the relative
order of such equivalent nodes, simply deeming them as being equivalent in the order. In
other words, we may slightly change our goal: rather than looking for a strict Wheeler order,
we may look for a preorder. As shown by Alanko et al. in [3], this road is indeed the right
way to go. A particular case is the one where no equivalent states exist. In this case, Alanko
et al. [3] proved:

» Theorem 24 ([3]). Let us call reduced a semi-automaton A = (Q,%,0) such that I,, # I,
for all pairs of states u,v € Q with u # v. Then, in O(|§| - |Q|?) time we can decide if A is
Wheeler and, if so, compute a Wheeler order for it.

The algorithm behind Theorem 24 was named Forward algorithm due to the fact that it is
a partition refinement algorithm “propagating forward” (in the direction of the automaton’s
transitions) Wheeler axiom W2. At any point of the algorithm’s execution, a total order
< is maintained among the classes of the current partition of the states. The algorithm
starts by partitioning the automaton’s states into |X| classes, according to the labels of
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their incoming transitions (recall that we require input-consistency: all incoming transitions
of a given state bear the same label); classes are sorted according to the total order of
Y. This step corresponds to enforcing Wheeler Axiom W1. At this point, the algorithm
implements iteratively the following observation. Fix a given character a and a class C'. Let
moreover S (the splitter) be the smallest class (in the total order of the classes that we are
maintaining) such that C' N (S, a) # 0. Then, states in C/ = C'N§(S, a) must precede those
in C"” =C\ (S, a) in any Wheeler order for A (if A is Wheeler). Split C into C’ and C”
and record the order C' < C”. A careful implementation of this observation results in a
partition refinement algorithm — the Forward algorithm — satisfying Theorem 24.

As a matter of fact, the Forward algorithm achieves much more than what is stated in
Theorem 24: it can sort any WNFA (actually, even a strict superclass of the WNFA) with a
preorder that still allows indexing the NFA for pattern matching queries. First, it is worth
noting that the partition output by the Forward algorithm is the coarsest forward stable
partition of the NFA i.e. the coarsest partition such that, for every pair of classes S, C
and every a € 3, either CN§(S,a) = 0 or C C §(S,a) hold. Furthermore, the following
properties, shown in [3] and later studied more in detail in [9, 13], hold:

» Lemma 25 ([3]). Let = be the equivalence relation induced by the coarsest forward-stable

partition of A’s states. Let moreover A= denote the quotient automaton obtained by

collapsing states of A being =-equivalent. Then, the following properties hold:

1. Ifu=w, then I, = I,.

2. If A)= is Wheeler, then the Forward algorithm finds a Wheeler order for A,=.

3. If A is Wheeler, then A= is Wheeler.

4. The converse of property 3 does not hold: there exist non-Wheeler A such that A = is
Wheeler.

Recalling that states such that I, = I, can be safely collapsed for pattern matching
purposes, the above Lemma states that any Wheeler NFA can be indexed for pattern
matching queries in polynomial time, despite the fact that recognizing and sorting WNFA
is an NP-complete problem. This apparently counterintuitive result is made possible by
Property 4 of Lemma 25: there do exist non-Wheeler NFA A such that A ,— is Wheeler (see
[3] for a concrete example of such a NFA). In other words, the Forward algorithm cannot
decide if the input NFA A is Wheeler, but if it is it can index an equivalent (Wheeler)
automaton A,—. What’s more, there exist non-Wheeler NFA A that can still be indexed by
the Forward algorithm, because they are such that A,= is Wheeler.

Another partition-refinement strategy for propagating forward the Wheeler Axiom W2
was later independently proposed in [18], although in that work the authors did not prove
that their partition-refinement algorithm yields the coarsest forward-stable partition. In that
paper, the goal was however slightly different than that of the previously-mentioned results:
once obtained an ordered partition consistent with any Wheeler order of the input NFA, the
algorithm proposed in [18] goes on to find in worst-case exponential time a total order also
among states still belonging to the same partition’s class (for which an order has not been
established yet) by exhaustive search or by using a Satisfiability Modulo Theory (SMT) solver.
The output of this tool is therefore a Wheeler order for the original NFA A (NP-complete to
find), rather than a Wheeler order for an equivalent quotient automaton as done in [3, 9]
(computable in polynomial time). As shown in [18], this heuristic is in fact very efficient
since in practice the equivalence classes output by the first partition refinement step are
small, thus even a brute-force (or solver-based) enumeration of the remaining permutations
to be tested (those of equivalent nodes) is fast.
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The cubic complexity of the Forward algorithm was finally reduced to nearly-linear
O(|6]1og |Q]) in [9], who proved:

» Theorem 26 ([9]). Let A= (Q,%,0) be a (semi-) NFA and = be the equivalence relation
corresponding to the coarsest forward-stable partition of A’s states. Then, in O(|0]log|Q)])
time one can compute a total order among the states of A,= that is a valid Wheeler order
for A=, if A,= is Wheeler.

The idea behind the result in Theorem 26 is to use the “smallest-splitter” rule of the
classic relational coarsest partition refinement algorithm of Paige and Tarjan [51], opportunely
adapted to work with ordered partitions. Intuitively, consider a class C' that has been split
into the (totally-ordered) classes Cy < --- < Cj using some splitter class S (while in the
Forward algorithm each class is split into & = 2 sub-classes as mentioned above, the algorithm
from [9] uses a three-way split and thus k < 3; the initial class @ is an exception since it
is initially split into k = |X| + 1 classes, according to the states’ incoming labels). In the
next steps, we will choose the smallest between C; and Cj, as splitter (Paige and Tarjan’s
algorithm, instead, chooses the smallest between C7 and Cs). This choice guarantees that (i)
we can still propagate Wheeler Axiom W2, and (ii) each state ultimately belongs to at most
log |Q)| splitters, leading to the claimed linearithmic complexity.

The NP-completeness of the problem of recognizing Wheeler NFA can also be attacked
using a more general method based on arbitrary relations [20]. The key idea is that the
antisymmetry and transitivity of a Wheeler order are not required to extend the Burrows-
Wheeler transform and the FM-index to automata and so can be dropped. A “Wheeler
relation” still satisfies axioms (W1) and (W2), but there may exist states u and v for which
both u < v and v < u hold. The existence of a Wheeler relation can be checked in polynomial

time [20], and this powerful approach can be extended to arbitrary automata (see Section
7.4).

7 Algorithms on Wheeler Automata and Languages

The wonders of Wheeler automata are not limited to their language-theoretic and indexing
properties. In this section, we show that Wheeler automata and languages possess several
additional remarkable properties that imply efficient algorithms for problems which are
typically hard on arbitrary automata.

7.1 Determinization via Powerset Construction

The first such remarkable property is determinization. Consider a Wheeler NFA A =
(@, s,%,0, F). Consider moreover running the classic powerset construction algorithm on A,
yielding an equivalent DFA D. A classic result is that D has at most 2/%| states when A is
an arbitrary NFA. As shown in [2], in the Wheeler case the situation is radically different:
if A is a WNFA then D is a WDFA with at most 2|Q| — 1 — |3| states. In other words,
determinization of a WNFA maintains the Wheeler property and causes a blow-up in the
number of states by a factor of (at most) 2, rather than exponential as in the general case.
This result has several interesting implications. First of all, we deduce that WNFA and
WDFA have the same expressive power: a language £ is Wheeler if and only if it is recognized
by a WNFA, if and only if it is recognized by a WDFA. Second, hard problems on NFA such
as equivalence (do two given NFA recognize the same language?) and universality (does a
given NFA recognize ¥*7) are easy on WNFA (via determinization). Third, in polynomial
time we can compute a 2-approximation of the smallest WNFA for a Wheeler language: this
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is just the smallest WDFA for the language (computable in polynomial time from any WDFA,
as discussed in the following subsection). Note that all such problems are PSPACE-hard on
general NFA.

We give an intuition over the above result. Denote by £ the language recognized by the
input WNFA. Consider the bipartite representation of the WNFA (see Figure 1, right; even
though the figure refers to a WDFA, the following reasoning holds on WNFA as well). The
figure should make it clear that, when following all edges labeled with a given character
from states belonging to an interval (example: in the figure, consider following all edges
labeled ¢ from states ¢ ... q4), we reach another interval of states (in the figure, ¢ ... q3).
Now, powerset construction can be equivalently described as the process of creating a DFA
state corresponding to set §(s, ) C @, for every possible a € Pref(L). Since the singleton
set {s} is an interval, the above consideration implies that all sets §(s, «) are intervals (on
any Wheeler order for the WNFA). As there can be at most (|Q| + 1)|Q|/2 < |Q|? distinct
intervals on any total order of @, this already implies that powerset construction can create
at most |Q|?> DFA states (which is already a considerable improvement over the 2/9! states
of the general case). A more accurate analysis allows to reduce this bound from quadratic to
linear. The crucial property that can be proved is that, by Wheeler Axiom W2, no interval
d(s, a) can be strictly contained inside another interval d(s, 5) for «, 5 € Pref(L), except for
the cases where 0(s, ) is either a prefix or a suffix of §(s, 3) on the total order of Q). As it
turns out, a family of intervals with this property over a total order with N elements can
contain at most 2N — 1 distinct intervals [2, Lem. 2.1]. Let N, be the number of nodes with
incoming label a € ¥, and note that (by input-consistency) any interval 0(s, «) contains only
nodes whose incoming label is a[|a|]. We can therefore apply the above bound separately for
every a € X, and obtain that there are at most ) (2N, —1) = 2|Q| — |X| distinct intervals of
the form d(s, ), for @ € Pref(£). The final bound 2|Q| — 1 — || comes from the observation
that only interval (s, e) = {s} contains the source state s. To conclude, one can show that
the following order is a Wheeler order among the states of the powerset DFA: for all strings
a < B, with «, 8 € Pref(L), if 6(s,a) # (s, ) then we deem d(s, ) < (s, 3).

7.2 Linear-Time Minimization of WDFA

A classic algorithmic result in automata theory is that any DFA D can be minimized in
O(|D|log |D|) time via Hopcroft’s algorithm [41], outputting a minimum-size (i.e. minimum
number of states) DFA D’ equivalent to D. In [2], the authors considered the analogous
problem on the restricted space of Wheeler DFA:

» Problem 2. Given a WDFA D, compute the minimum-size equivalent WDFA W.

This problem can be solved by characterizing the smallest WDFA of a given Wheeler
language, either in terms of the Myhill-Nerode equivalence relation [48] (see Theorem 10) or,
equivalently, in terms a process merging states of any WDFA D recognizing it [2, 3]. The
latter characterization, which we sketch below, yields an algorithm solving Problem 2 in
O(|D|log |D|) time. Later, this time was improved by [1] to optimal O(|D|).

The authors of [2] proved the following:

» Theorem 27. Let D be a WDFA. Consider the process of merging all mazimal intervals
of states uy < -+ < ug such that (i) N(u1) = -+ = AMut) and (ii) the states uy,...,us are
Muyhill-Nerode equivalent (see Definition 2). Then, the resulting automaton W is the smallest
WDFA recognizing L(D).
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Theorem 27 can be turned into an algorithm by simply observing that the Myhill-Nerode
equivalence classes of D’s states can be computed in O(|D|log |D|) time with Hopcroft’s
algorithm, and the (unique) Wheeler order of D’s states can be computed in linear time
using the algorithms of Section 6.1. Why does this algorithm work? First, recalling the
bipartite representation of Figure 1, observe that merging an interval of states with the same
incoming letter preserves the Wheeler properties (in particular, merging such an interval
of states cannot introduce same-letter arc crossings in the bipartite representation). As a
result, the automaton W generated by this process is certainly a WNFA. Moreover, W is
equivalent to D, since we only merge Myhill-Nerode equivalent states. To show that W is
actually deterministic, consider a collapsed interval of states uy < -+ < us, and let a € 3. As
previously observed, the image §({u1,...,ux},a) = {v1,...,v:} of those states through letter
a, must also be an interval of states, all reached by letter a. Additionally, v, ..., v; must
be Myhill-Nerode equivalent, otherwise u, ..., u; would not be Myhill-Nerode equivalent.
We conclude that vq,...,v; must be collapsed into a single state of the output W by the
algorithm, which implies that W is deterministic. To prove minimality of W, let u < w < v
be states of D sorted according to its Wheeler order < (in particular, u and v are not adjacent
in the order), such that v and v are Myhill-Nerode equivalent, but they are not Myhill-Nerode
equivalent to w. Then, one can easily observe that merging u and v will violate a Wheeler
Axiom (W1 if A(u) # A(v), or W2 otherwise). It follows that, when minimizing D while
maintaining the Wheeler properties, the best we can do is to collapse maximal intervals of
states according to Theorem 27.

7.3 Recognizing Wheeler Languages

A very natural problem, considered for the first time in [3], is that of recognizing Wheeler
languages:

» Problem 3. Given a DFA D, is the language L(D) Wheeler?

The solution to Problem 3 provided in [3] is based on Corollary 11 (Section 4). Consider
a minimum DFA D = (Q, s, §, F') recognizing a language £(D). Corollary 11 states that this
language is Wheeler if and only if the image through d(s, -) of any co-lexicographically mono-
tone sequence of strings aq, as,... (that is, this sequence is either increasing or decreasing
in co-lexicographic order) belonging to Pref(L£), ultimately stabilizes in a single state of D.
In other words, there exists N € N and ¢ € @ such that, for all ¢ > N, 6(s,a;) = ¢q. This
characterization can be also understood in terms of Theorem 27: if every such sequence
stabilizes, then the sequence of states obtained by mapping Pref(£) (in co-lexicographic
order) through d(s,-) is formed by a finite number of maximal intervals containing just one
distinct state. Those intervals essentially correspond to the states of the minimum WDFA for
the language. If, on the other hand, there exists such a non-stabilizing monotone sequence,
then the sequence of states (s, Pref(£)) is formed by an infinite number of maximal intervals
containing just one distinct state, thus no WDFA for the language can exist since, by Theorem
27, we can only merge Myhill-Nerode equivalent states being adjacent in co-lexicographic
order.

Using this characterization, [3] devised a dynamic-programming polynomial-time al-
gorithm solving Problem 3. Since the smallest WDFA for a Wheeler language £ could be
exponentially larger than the smallest DFA for £ [3], the fact that Problem 3 can be solved
in polynomial time at all is not trivial. Additionally, [30] showed that Problem 3 becomes
PSPACE-complete when the input is an arbitrary NFA, rather than a DFA.
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The polynomial-time solution of [3] is based on the observation that a non-stabilizing
monotone sequence «q, as,... can be identified by searching for particular cycles in the
smallest DFA for the language. More in detail, [3] proved that such a non-stabilizing
monotone sequence exists if and only if we can identify two disjoint cycles C7 and Cs in the
smallest DFA for the language, such that there exist two nodes u, v belonging to C; and
Cy, respectively, satisfying: (i) there exists a string 7 such that §(u,vy) = u and 6(v,v) = v,
and (ii) there exist strings a, § with §(s,«) = u and (s, ) = v such that either a, § <~y or
v < a, 8 hold.

The work [3] showed that such three sequences «, 8,7 (and corresponding cycles) can
be identified via dynamic programming. The drawback of this solution was the degree of
the polynomial running time: Q(|D|*3). Later, this polynomial was reduced to Q(|D|?) by
[11], who also proved a conditional lower bound stating that, unless the Strong Exponential
Time Hypothesis [42] (SETH) fails, Problem 3 cannot be solved in strongly sub-quadratic
time. Thus, this work essentially settled the complexity of the problem. The intuition
behind this result is the following. On the upper-bound side, [11] provided a simpler cycle-
based characterization of Wheeler languages: a language £ is Wheeler if and only if its
minimum DFA D does not have two distinct states u # v such that (i) the open intervals
(in co-lexicographic order) (inf I,,,sup I,,) and (inf I, sup I,,) overlap, where inf X and sup X
denote the infimum and supremum of set X, respectively, and (ii) d(u, o) = u and 6(v,a) = v
for some string « (i.e. u and v belong to two disjoint equally-labeled cycles). Condition (i) can
be checked in O(|D|?) time simultaneously on all state pairs u,v by computing inf I,,, sup I,
for all states u using the partition-refinement algorithm of [9]. Condition (ii) can then be
verified in O(|D|?) time by checking if the square automaton D x D contains cycles involving
state pairs (u,v) satisfying condition (i). On the lower-bound side, [11] observed that one can
convert any instance of the Orthogonal Vectors (OV) problem (decide if there exist orthogonal
vectors in two sets of binary vectors) into a (minimum) DFA D of the same asymptotic size
of the OV instance having two disjoint equally-labeled cycles if and only if the original OV
instance has two orthogonal vectors. By building D in such a way that condition (i) holds on
all node pairs, one then obtains that there exist two orthogonal vectors in the OV instance if
and only if the language of D is Wheeler. By a classic reduction [54], OV cannot be solved
in strongly subquadratic time unless the Strong Exponential Time Hypothesis [42] (SETH)
fails. As a result, Wheeler languages cannot be recognized in strongly subquadratic time (in
the input DFA’s size), unless SETH fails.

7.4 Other Algorithmic Results

We conclude the section by mentioning other interesting lines of algorithmic research related
with Wheeler automata.

DFA to minimum WDFA

The following variant of Problem 2 was first considered in [2]:

» Problem 4. Given a minimum DFA D recognizing a Wheeler language, compute the
minimum-size equivalent WDFA W.

Since W can be exponentially-larger than D [3], Problem 4 cannot be solved in sub-
exponential time. The goal is then to solve the problem in time as close as possible to the
output size [WW|. Alanko et al. solved Problem 4 in near-optimal time O(|W|log |W)]) in
the particular case where D is acyclic. The idea is to process the transitions of D in any



N. Cotumaccio et al.

topological order, inserting them in W (initially empty). Whenever inserting a transition
in W, if this breaks Wheeler Axiom W2, i.e. if this transition produces a crossing in the
bipartite representation of W (see Figure 1), then a state of W is split into two states
(partitioning the incoming transitions of the state into two parts) in order to remove the
axiom violation. This operation is supported by encoding W with a dynamic data structure
essentially storing the bipartite representation of W. The log |[W| multiplicative factor in
the running time comes from the query time of this dynamic structure. Later, [30] solved
Problem 4 in the general case (i.e. D is any DFA recognizing a Wheeler language) in time
O(ID]*|W|log [W)).

Random WDFA generation

Another interesting algorithmic problem, considered in [10], is that of generating Wheeler
DFA according to a uniform distribution over all Wheeeler DFA with a given number of states,
transitions, and alphabet size. Interestingly, the paper shows that the Wheeler properties
allow solving the problem in expected linear time (in the output size) and constant working
space, provided that the transitions of the WDFA are streamed to output following the
Wheeler order of their destination states. Such a result is not known to be possible for
arbitrary DFA.

Computing the union and complementation of Wheeler languages

In [31], the authors study the problem of computing, given two Wheeler automata, a Wheeler
automaton recognizing the union of their languages, provided that the union itself is Wheeler
(as mentioned in Section 4, Wheeler languages are not closed under union). Their solution
runs in quadratic time and linear (succinct) space. An alternative solution to the problem
was later provided by [17], by providing an algorithm for completing WDFA (when such a
completion is possible at all), and then applying the classical DFA complementation/union
algorithms working on complete DFA.

Generalization to arbitrary automata

To conclude, a fruitful line of research initiated by [25, 27] and continued in [20, 13, 9, 21,
43, 5, 22, 24, 12, 23] later showed that almost all the results on Wheeler automata described
in this survey can be generalized to arbitrary automata by simply not requiring the Wheeler
order of Definition 4 to be total. As shown in [25, 27], any automaton admits a partial order
satisfying the axioms of Definition 4. Interestingly, the width p of such a partial order —
that is, the size of its largest antichain (a parameter being equal to 1 on total orders, i.e.
Wheeler automata) — parameterizes several problems on automata being hard in the general
case. Examples include: pattern matching on graphs (See Section 3) can be performed
in time proportional to p? per character in the input pattern, automata can be encoded
using O(log p) bits per edge, and the powerset construction algorithm for turning NFA into
equivalent DFA runs in time exponential in p (the width of the input NFA’s order), rather
than in the size of the input NFA (as a classical result shows).
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