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—— Abstract

The Wavelet Tree data structure introduced in Grossi, Gupta, and Vitter [11] is a space-efficient
technique for rank and select queries that generalizes from binary symbols to an arbitrary multisymbol

alphabet. Over the last two decades, it has become a pivotal tool in modern full-text indexing
and data compression because of its properties and capabilities in compressing and indexing data,
with many applications to information retrieval, genome analysis, data mining, and web search. In
this paper, we survey the fascinating history and impact of Wavelet Trees; no doubt many more
developments are yet to come. Our survey borrows some content from the authors’ earlier works.

This paper is divided into two parts: The first part gives a brief history of Wavelet Trees,
including its varieties and practical implementations, which appears in the Festschrift dedicated to
Roberto Grossi [4]; the second part (this one) deals with Wavelet Tree-based text indexing and is
included in the Festschrift dedicated to Giovanni Manzini.
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1 Introduction

The field of compressed full-text indexing [24] involves the design of data structures (aka,
indexes) that support fast substring matching using small amounts of space. For a text
string T[1,n] over an arbitrary alphabet X of size o and a pattern P[1,m], the goal of text
indexing is to preprocess 7T using succinct space so that queries like the following can be
quickly answered: (1) count the number occ of occurrences of P in T; (2) locate the occ
positions in 7 where P occurs; and (3) starting at text position start, extract the length-¢
substring T [start, start + ¢ — 1].

A main goal is to create an index whose size is roughly equal to the size of the text
in compressed format, with search performance comparable to the well-known indexes on
uncompressed text, such as suffix trees and suffix arrays. Some compressed data structures
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are in addition self-indezes in that the data structure encapsulates the original text and,
thus, can quickly recreate any portion of it. As a result, the original text is not needed, it
can be discarded and replaced by only the (self-)index.

Most compressed indexing techniques developed in the last two decades make use of the
powerful Wavelet Tree data structure, developed by Grossi, Gupta, and Vitter [11], with
many applications to information retrieval, genome analysis, data mining, and web search.
The Wavelet Tree supports fast rank and select queries on any string from an arbitrary
alphabet. As such, it provides a space-efficient extension of the space-efficient rank-select
data structures for binary sequences [26, 24] to the case of general alphabets of arbitrary size.

A Wavelet Tree represents any string from a general multisymbol alphabet as a hierarchical
set of binary strings. It has the following key property for purposes of compression: If each
such binary string is encoded according to its information-theoretic minimum size, then the
original string is compressed to its information-theoretic minimum size.

In this paper we discuss how Wavelet Trees can be used to construct an efficient self-
index for text 7 using space related to the higher-order entropy of 7. The two main data
structures to which Wavelet Trees are applied for that purpose are the compressed suffix
array (CSA) [12, 28, 11] and the FM-index [6, 7].

2 Preliminaries

We refer the reader to PART I, which is included in the Festschrift dedicated to Roberto
Grossi [4], for the notation used in this paper, the history and background of the ubiquitous
Wavelet Tree, and the key definitions of Oth order entropy and higher-order entropy.

The suffix array SA gives the positions of all the suffixes of 7 in lexicographical order.
We use SA[0,n — 1] to denote the suffix array (SA) of 7. We use SA'[0,n — 1] to denote
the inverse suffix array, where SA™! is a permutation of suffixes of 7 in lexicographical order,
such that SA™'[SA[i]] = i. Table 1 provides a running example.

The key notion of neighbor function ¥ [12, 28] is illustrated in Table 1 and formally
defined as follows: Given a suffix s of 7 and its index 4 in the suffix array (i.e., s =
(T[SA[i]], T[SA[i]+1 mod n],...)), let s’ be the suffix (a.k.a. neighbour) formed by removing
the first symbol of s. The value of the neighbor function ¥[i] is the index i’ of s’ in the suffix
array. More formally,

(i) = SAT(SA[i] + 1) mod n].

Let us designate by 7 (as in PART I) the substring of 7 associated with an individual
context x of k symbols. Wavelet Trees are a natural and elegant way to compress each
substring 7 so that the code length per symbol is the Oth-order entropy of 7. It thus
follows by Definition 3 in PART I of kth-order entropy that the cumulative encoding of all
the substrings 7y achieves kth-order entropy of the full string 7. We elaborate on this key
idea in Section 4.

3 Text Indexing

The two main paradigms used for modern text indexing are compressed suffix arrays (CSA) [12,
28, 11] and FM-index [6, 7]. We use the notation 7 = 7[0,n — 1] to denote a text of n
symbols drawn from an alphabet 3 of size 0. Both the CSA and FM-Index make use of the
suffix array concept.
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Table 1 For text 7 = tcaaaatatatgcaacatatagtattagattgtat# shown in the first column, the
subsequent columns show the suffix array SA, the inverse suffix array, the neighbor function ¥, and
the LF function of the BWT. The second-to-last column shows the suffixes in sorted order; each
suffix starts at the symbol under F (first) and ends at the symbol L (last). The string of symbols
under L is the BWT of 7. The last column B is the bit array for the root node of the Wavelet Tree
of L; symbols #, a, and ¢ (for the left subtree) are designated by a 0, and symbols g and t (for the
right subtree) are designated by a 1. The Wavelet Tree of L is pictured in Figure 1.

i|T[]SA|[SA™ | ¥ [LF|F Ll B

0 t 35 31 | 31 23 | #t ¢ a ...a t] 1

1 ¢ 2 16 2 16 |a a a a ...t ¢c| O

2 a 3 1 4 l1|laaat ...ca|]0

3 a 13 2 5 17| a aca ...g c| O

4 a 4 4] 11 2|laat a ...a a0

5 a 14 11 | 18 3]lacat ...calO

6 t 26 28 | 19 24 agat ...t t| 1

7 a 20 12 | 22 25 |a gt a ...a t] 1

8 t 33 29 | 23 26 |at #t ...g t] 1

9 a 18 13 | 25 27 |a t a g ...a t| 1
10 t 16 32 | 27 18| at at ...a c| O
11 g 5 20 | 28 4]at at ...aal0
12 ¢ 7 17 | 29 28 a t at ...a t] 1
13 a 9 3| 32 29| at gc ...a t] 1
14 a 23 5| 34 30|at t a...gt] 1
15 ¢ 28 18 | 35 19 |at t g ...ag| 1l
16 a 1 10 1 31| c a aa ...#t| 1
17 t 12 27 200 c a ac ...t g| 1
18 a 15 9] 10 5|c at a ...a a| 0
19 t 27 25 | 15 6|lgatt ...t al 0
20 a 11 7|17 32| g caa ...at| 1l
21 g 31 22 | 26 33|gt at ...t t]| 1
22 t 21 30 | 30 7|lgt at ...t a|] 0
23 a 34 14 0 8|t #t ¢ ...t a| O
24 t 25 34 6 34|t a g a ...at]| 1
25 t 19 24 7 9|t a gt ...t a| 0
26 a 32 6 8 21 |t a t # ...t g| 1
27 g 17 19 9 10|t at a ...c a| 0O
28 a 6 15 | 12 11|t at a ...a a| 0
29 t 8 35 | 13 12|t at g ...t al 0
30 t 22 33 | 14 22|t at t ...a g| 1
31 g 0 21 | 16 0|t c aa ...t # 0
32 t 10 26 | 20 13|t gca ...t al 0
33 a 30 8| 21 3B |t gt a..at] 1l
34 t 24 23 | 24 4/t t ag ...t a|] 0
35 | # 29 0] 33 15/t t gt ...g a|] O

3.1 Compressed Suffix Array (CSA)

The CSA represents the text string 7 by encoding the neighbor function ¥ [12, 28]. The
sequence of W values suffices to recreate the original text 7, using some supporting data
structures. For example, if we know the symbol that appears at the beginning of the ith
suffix in lexicographic order, we can easily determine the neighboring symbol in the text (at
position SA[i] 4+ 1 in the text) by computing j = ¥(i). For each w € %, if we keep the count
of the number of symbols in 7 smaller than or equal to w in lexicographic order, then the
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desired symbol is simply the first symbol in lexicographic order whose count is > j. We
can then continue taking steps forward from one neighbor to the next to recover additional
symbols.

To encode ¥, we conceptually partition ¥ into context lists according to each symbol
w € X. The context w of ¥(7) is defined as the symbol T [SA[:]] that begins the suffix starting
in position SA[i]. We denote a j-context as a length-j string. Suppose we have two suffixes
at indices 7 and ¢’ (where ¢ < i) in the suffix array that both start with the same symbol
(context) w. Then if we remove the first symbol w from each suffix, the two suffixes that
remain must maintain the same relative ordering in the suffix array:

» Property 1. The neighbor function U is a piecewise increasing sequence.

We show the neighbor function W for text 7 = tcaaaatatatgcaacatatagtattagattgtat#
(see Table 1). The suffixes starting with the symbol a span indices [1,15] of the suffix array,
and their ¥ values form an increasing sequence (2, 4, 5 ,11, 18, 19, 22, 23, 25, 27, 28, 29,
32, 34, 35), which we call a’s context list. For a given k (to be specified later), we further
partition each w’s context list into sublists (w,x) according to k-context x € X*. Here
k-context x of ¥ denotes the k-symbol prefix of the suffix starting at position SA[¥(7)] and its
preceding symbol is SA[i]. For the text 7 shown in Table 1, the symbol SA[0] = # precedes
the 3-context tca of the suffix starting at SA[¥(0)] = SA[31]. As another example, the
2-context at associated with indices [8, 15] further decomposes a’s context list into the sublist
(23,25,27,28,29,32,34,35). The entries in each sublist also form an increasing sequence.

The next property is key for efficient coding of the neighbor function ¥:

» Property 2. For any k-context x € X, all the entries in sublists (w,x) for all nonempty
contexts w € X3 form an index range of contiguous values in the suffix array SA. Moreover,
all k-contexts X' that precede x in lexicographic order create an index range immediately prior
to the index range of x in the suffix array.

For coding purposes, this property allows us to normalize each entry ¥(i) in each sublist
(w,x) from 1 to total(x), where total(x) is the number of suffixes whose first k + 1 symbols
are of the form yx for any y € ¥. For example in Table 1, for x = t, the union of the sublists
(w,x) for all w is the contiguous range [23, 35] of 13 values.

In Section 4 we will see how the ability of Wavelet Trees to encode individual sublists
with Oth-order entropy results in an cumulative higher-order compression for the full text 7.

3.2 FM-Index

The FM-index involves accessing the Burrows-Wheeler transform (BWT [1]), which appears
as the L column in the example in Table 1. Adjacent entries in the L column tend to share
similar statistics regarding which symbols follow because the symbols that follow them in
the text are adjacent in lexicographic order. As an example, L[8, 15] is the substring of L
formed by all symbols of 7 that precede the 2-context at, as you can observe in Table 1.

The close relation between the CSA and BWT follows from the fact that the neighbor
function ¥ is the inverse of the so-called LF function of the BWT (which maps the index
of a symbol in the L column to the index where it appears when rotated forward in the F
column). In other words, ¥(i) = j iff LF(j) = i, as can be seen from Table 1.

Building LF is straightforward for symbols that occur only once, as it is the case of # in
our running example of Table 1. But computing LF efficiently is no longer trivial regarding
recurring symbols. Nonetheless, it can be solved in optimal O(n) time thanks to a clever
algorithm that uses an auxiliary vector C of size o and is shown in Algorithm 1. For the
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Algorithm 1 Constructing the LF-mapping from column L.

1: fori=0,1,...,n—1do
2 ClLfi)+

3: temp =0, sum = 0;

4: fori=0,1,...,0 do

5. temp = Cl[i];

6:  Cli] = sum;

7 sum += temp;

8 fori=0,1,...,n—1do
9:  LF[i] = C[L[i]];

10:  C[L[i]]++;

sake of description, we assume that array C is indexed by a symbol rather than by an
integer. The first for-loop in Algorithm 1 computes, for each symbol ¢, the number n,
of its occurrences in L, and thus it sets C[c¢] = n.. Then, the second for-loop turns these
s<cNz. We notice that C|c]
gives the first position in F' where the symbol ¢ occurs. Therefore, before the last for-loop

symbol-wise occurrences into a cumulative sum, namely C|c] = >

starts, C'[c] is the landing position in F' of the first ¢ in L (we thus know the LF-mapping for
the first occurrence of every alphabet symbol). Finally, the last for-loop scans the column L,

and whenever it encounters the symbol L[i] = ¢, it sets LF[i] = C|c] and then increments C|c|.

So the algorithm maintains the invariant that LF[i] = __
of ¢ in L have been processed. The time complexity of such computation is O(n).

Like the neighbor function ¥ in the CSA, the BWT transform suffices to recreate the
original text 7. To do so, it uses a backward scan supported by the LF-mapping in O(n)
time and space. The algorithm starts from the last symbol of T, which occurs at L[0]; and
then it proceeds by moving one symbol at a time to the left in 7, deploying the properties
of the LF-mapping: if we know the symbol in the F' column at index ¢, then the preceding
symbol in the text is the symbol in the L column on the same row ¢. Given this observation,
the backward reconstruction of 7 first maps the current symbol occurring in L, say L[i], to
its corresponding copy in F', hence j = LF'[i]; and then takes the symbol L[j] that is ensured
by the properties of the cyclic rotations of the rows of the BWT to precede F[j] = L[i] in T
(see above). This double step, which returns the algorithmic focus on L, allows to move one
symbol leftward in 7. Hence, repeating this for n steps, we can reconstruct the original input
string 7 in O(n) time. As far as the construction of the BWT is concerned, we mention
that it can be done by building the suffix array data structure via a plethora of time and
space-efficient algorithms that now abound in the literature (see e.g. [17, 16, 22]) or directly
via several elegant approaches (see e.g. [14, 25, 18, 23]).

ng + k, after that k occurrences

But how useful is it to permute 7 via the BW-Transform? If we read the first column F
of Table 1, we notice a sequence of possibly long runs of equal symbols. It is clear that by
compressing that sequence with a simple RLE-compressor (namely, the one that substitutes
each run of equal symbols 2" with a pair (x,h)) we would get a high compression ratio. But
F does not allow us to return to the original string 7 because all strings consisting of 15 a,
3¢, 4 g, and 13 t symbols would obtain the same F. It can be proved [1] that the only
column allowing to return to 7, for all possible T, is properly L. That column could be
highly compressible because it satisfies the so-called locally homogeneous property, namely,
that substrings of L consist of a few distinct symbols. The reason comes from the fact that if
we take a string (context) of length & (as in the Definition 3 in PART I of kth-order entropy),
say x € X*. the ny, symbols 7, immediately preceding each occurrence of x in 7 occur
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contiguously in L. The nice issue here is that many real sources (they are called Markovian)
do exist that generate data sequences, other than texts, that can be turned to be locally
homogeneous via the Burrows-Wheeler Transform and thus can be highly compressed by
simpler compressors.

This basic principle is deployed by the design of the well-known bzip tool (now! arrived
to version 3), whose algorithmic pipeline we briefly sketch: Let us for a moment focus on two
simple algorithms, namely, the Move-To-Front (shortly, MTF) and the Run-Length Encoding
(shortly RLE, mentioned above). The former maps symbols into integers, and the latter
maps runs of equal symbols into pairs. We observe that RLE is a compressor indeed, because
the output sequence may be reduced in length in the presence of long runs of equal symbols;
while MTF is a transform that can be turned into a compressor by encoding the integers via
proper variable-length encoders. In general, the compression performance of those algorithms
is very poor; while BWT turns them magically to be very effective if combined together:
first apply MTF on L, then input the result on RLE, and finally encode its output with a
statistical coder like Huffman or arithmetic coding. That’s it2.

Manzini [21] showed that this, and other pipelines based upon the BWT, can represent
a text string 7 of n symbols using space proportional to n times its kth-order empirical
entropy H(T), with guarantees stronger than the ones ensured by Lempel-Ziv-based com-
pressors (such as gzip). Later analysis using Wavelet Trees reduced the constant factor in
front of the nHy(7) term to 1 [11, 8]. Manzini’s result generated increased interest in the
BWT transform, whose impact on data compression, and not just compressed text indexing,
was highlighted by [5] as a sort of compression booster.

4 Compression and Boosting to Higher-Order Entropy

The original motivation for Wavelet Trees was to extend the RRR method [26] from binary
sequences to sequences composed of symbols from general alphabets in order to achieve
Oth-order entropy. That capability is important because if a text 7’s ¥ neighbor function
values [12, 11, 27] (in the case of compressed suffix arrays) and the BWT transform (L
column) [7, 24] (in the case of the FM-index) are decomposed into substrings based upon 7’s
contexts of length k, then we can use a Wavelet Tree to compress each of those substrings to
its Oth-order entropy (plus lower-order terms). The key point is that the resulting cumulative
encoding will achieve a compression equal to the kth-order entropy of 7 (plus lower-order
terms).

This notion of achieving a high-order entropy based upon individual encodings of Oth-
order entropy (later called “boosting” in [3, 5]) is inherent in Definition 3 in PART I of
kth-order entropy, in which nH(7) is expressed as a sum over all k-contexts x of the terms
nyHo(Tx). Grossi, Gupta, and Vitter used Wavelet Trees to provide the first demonstration
of the asymptotically optimal space bound ~ nH(T) (i.e., with leading coefficient 1) for
compressed suffix arrays and for the Burrows-Wheeler transform [11].

In order to better illustrate this powerful idea, let us consider a generic 0-order statistical
compressor Cy whose performance, in bits per symbol, over a string s is bounded by Ho(s) +
f(|s|). We notice that the function f(|s|) = 2/(|s|) is the one achieved by arithmetic coding
and it is f(|s|) = 1 for Huffman coding. In order to turn Cy into an effective kth-order
compressor Cg, for a fixed k£ > 0, we can compute the Burrows-Wheeler Transform of the

! See https://en.wikipedia.org/wiki/Bzip2 and https://github.com/kspalaiologos/bzip3
2 For a scholarly discussion of the BWT and the FM-index, the reader is directed to the book [2].
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input string 7, take all possible length-k substrings x of 7, and then partition the column L
into the substrings 7, (each one formed by the last symbols of the rows prefixed by x).
Therefore, the final step is just to compress each T, by Cp, and concatenate the output bit
sequences by alphabetically increasing x.

As far as the compression performance in bits per symbol is concerned, we easily derive that
it can be bounded as (1/n) X, ¢ . 75l (Ho(T0) + F(Tel)) = Ha(T)+ X [T (F(To)/m)
bits, where we have applied Definition 3 in PART I of H(7T) to the summation of the Ho (7).
Now, if Cy is the arithmetic coder, the previous bound is Hy(7T) 4+ O(c*/n) bits, since
f(s) =2/|s|. In [5] the authors showed other stronger upper bounds to the performance of
Ci and, more importantly, that one actually does not need to fix k£ in advance, since there
is a so-called Compression Booster that identifies in optimal linear time a partition of L
that achieves a compression ratio that is at least as good as the one obtained by Cg, up to
an additive lower-order term for any possible k in the allowable range. The algorithm is a
surprisingly simple and elegant greedy-based algorithm; we refer the interested reader to
that paper.

4.1 Using a Single Wavelet Tree with Implicit Partitions of Context

In the previous section, we decomposed the string being compressed (such as the neighbour
sequence ¥ of the CSA or the L column in the FM Index) into contexts. Each individual
context 7, was then encoded to its Oth-order entropy, and by Definition 3 in PART I of
kth-order entropy, the sum of the resulting individual n, Ho(Tx) terms resulted in a total of
nH(T) bits (the boosting effect). In some cases, the results hold for all k in the allowed
range k < alog, n for some constant 0 < a < 1.
Foschini et al. [9] showed how order kth-order entropy can be achieved by using a single
Wavelet Tree without explicit partitioning into k-contexts. Intuitively, there are two reasons:
One reason is that the individual Wavelet Trees that would be constructed for each
context can be found within the single Wavelet Tree constructed on the entire BWT
string L, as illustrated in Figure 1.
The other reason follows from using a method like run-length encoding (RLE) or gap
encoding (Gap) (in conjunction with a prefix coder such as the 7 or § code to encode the
lengths) in order to encode the bit arrays of the nodes of the single Wavelet Tree. On the
plus side, there is thus no need for data structures to keep track of the statistics of many
individual contexts. On the negative side, the coding method RLE or Gap does not know
the k-context boundaries. However, Foschini et al. [9] showed that RLE can adapt to the
statistics for each k-context it encounters, and the positives make up for the negatives. By
superimposing hypothetical k-context boundaries on the string for purposes of analysis,
the resulting RLE implicitly encodes each k-context in roughly twice Oth-order space, and
by Definition 3 in PART I of kth-order entropy, the resulting overall encoding achieves
2n My (Tx) bits leading space term. In effect, it achieves implicit boosting.

In implicit boosting, there is no need to specify k in advance; the compression results hold
for all k in the allowed range k < alog, n, 0 < o < 1. Foschini et al. [9] used RLE encoding
with v encoding, but other coding methods could be used, possibly switching dynamically
among several methods (along with the bits that indicate the choices made) [3, 13, 15].

Gog et al. [10] compress the BWT by using the RRR method [26] to encode the Wavelet
Trees of fixed-size blocks of the BWT rather than using partitions based upon higher-order
contexts; they showed that the resulting compression achieves the nHy(T) leading space
term. Mékinnen and Navarro [19, 20] showed the surprising result that RRR [26] applied
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tcacaattttcatttgtgaattaatagaaag#ataa
1000001111 01111110011001010001001O00
cacaaca@aaaaaaaaasaaa ttttttttgtogtttggt
1010010000000000000O0 11111111010111001
Laa@aaaaaaaadaaa e gogsg ttttttttottt t
1111111111110111((
R
F taaaaadaadaaaaaadaa
t tcattteg t agaaag
1 00 1 1 1 1 1 0 1 0 0 0 1
u/ \gt d/ \(‘%1
ca t t ttEtoE aaaa t g s
1 0 11 1 1 1 0 T 1.0 0
oo\ Y\ 5 N\
a T g ttttt gg t

Figure 1 The top row shows a single Wavelet Tree for the BWT L of 7 as in Table 1, and the

bottom row shows separate Wavelet Trees for each of the context blocks ttcatttg, highlighted as
overlined letters, and tagaaag, highlighted as underlined letters, of L corresponding to 2-contexts
at and ta, respectively.

to a single Wavelet Tree of the entire BWT sequence or ¥ sequence (i.e., without any
partitioning) also achieves the n Hy (7 ) bits leading space term, for a similar reason as in [9]
described above; careful analysis in [19, 20] showed that the sublocks formed by [26] within
each Wavelet Tree node implicitly encode each kth-order context in Oth-order entropy space
plus lower-order terms. Grossi, Vitter, and Xu [13] present interesting experiments on the
practical performance of these approaches.
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