
Algorithms for Computing Very Large BWTs:
a Short Survey
Diego Díaz-Domínguez #

Department of Computer Science, University of Helsinki, Finland

Lavinia Egidi #

Computer Science Institute, DiSIT, University of Eastern Piedmont, Vercelli, Italy

Veronica Guerrini #

Department of Computer Science, University of Pisa, Italy

Felipe A. Louza #

Faculty of Electrical Engineering, Federal University of Uberlândia, Brazil

Giovanna Rosone1 #

Department of Computer Science, University of Pisa, Italy

Abstract
The Burrows-Wheeler Transform (BWT) is a fundamental string transformation that, although
initially introduced for data compression, has been extensively utilized across various domains,
including text indexing and pattern matching within large datasets. Although the BWT construction
is linear, the constants make the task impractical for large datasets, and as highlighted by Ferragina
et al. [26], “to use it, one must first build it!”. Thus, the construction of the BWT remains a
significant challenge. For these reasons, during the past three decades there has been a succession
of new algorithms for its construction using techniques that work in external memory or that
use text compression. In this survey, we revise some of the most important advancements and
tools presented in the past years for computing large BWTs exploiting external memory or text
compression approaches without using additional information about the data.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Burrows-Wheeler transform, Extended Burrows-Wheeler transform, external
memory, text compression, longest common prefix

Digital Object Identifier 10.4230/OASIcs.Manzini.2025.7

Funding Diego Díaz-Domínguez: Supported by the European Union’s Horizon Europe research and
innovation programme under grant agreement No 101060011.
Veronica Guerrini: Supported by the Next Generation EU PNRR MUR M4 C2 Inv 1.5 project
ECS00000017 – “THE – Tuscany Health Ecosystem” – Spoke 6 “Precision medicine & personalized
healthcare” CUP I53C22000780001.
Felipe A. Louza: Supported by Brazilian agencies CNPq (grants 408314/2023-0 and 311128/2025-4)
and FAPEMIG (grant APQ-01217-22).
Giovanna Rosone: Partially supported by the Next Generation EU PNRR MUR M4 C2 Inv 1.5
project ECS00000017 – “THE – Tuscany Health Ecosystem” – Spoke 6 “Precision medicine &
personalized healthcare” CUP I53C22000780001, by the MUR PRIN 2022YRB97K PINC and by
project “Hub multidisciplinare e interregionale di ricerca e sperimentazione clinica per il contrasto
alle pandemie e all’antibioticoresistenza (PAN-HUB)” funded by the Italian Ministry of Health (POS
2014–2020, project ID: T4-AN-07, CUP: I53C22001300001).

1 corresponding author

© Diego Díaz-Domínguez, Lavinia Egidi, Veronica Guerrini, Felipe A. Louza, and Giovanna Rosone;
licensed under Creative Commons License CC-BY 4.0

The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini’s 60th Birthday.
Editors: Paolo Ferragina, Travis Gagie, and Gonzalo Navarro; Article No. 7; pp. 7:1–7:28

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.diaz@helsinki.fi
https://orcid.org/0000-0002-9071-0254
mailto:lavinia.egidi@uniupo.it
https://orcid.org/0000-0002-9745-0942
mailto:veronica.guerrini@unipi.it
https://orcid.org/0000-0001-8888-9243
mailto:louza@ufu.br
https://orcid.org/0000-0003-2931-1470
mailto:giovanna.rosone@unipi.it
https://orcid.org/0000-0001-5075-1214
https://doi.org/10.4230/OASIcs.Manzini.2025.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de

7:2 Algorithms for Computing Very Large BWTs: A Short Survey

1 Introduction

The term “big data” has become widely used, encompassing a variety of data types. Genomic
data is one of the most prominent forms of big data, due to its size, complexity, and
impact [65]. The advancements in high-throughput sequencing technologies have resulted in
an unprecedented expansion of genomic databases, which are expected to soon reach sizes
of hundreds of terabytes. The scale and complexity of these datasets present significant
challenges in terms of data storage, access, and processing.

One of the primary tasks when working with such large datasets is the construction of
efficient indexes, which facilitate fast data retrieval and enable a variety of applications in
genomics research. Until the early 2000s, the standard solutions for this task were the suffix
array or the suffix tree. However, these approaches quickly become intractable as the text
grows. Ferragina and Manzini solved this limitation with their FM-index [27], a succinct
self-index2 with suffix array functionality. Then, Lam et al. [41] noticed that the FM-index
is efficient in performing pattern matching of short sequences with few mismatches over
large genomes. This functionality led to the creation of popular bioinformatic tools such as
bwa [46] and bowtie [42] based on the FM-index, and since then its use has been extended
to other applications such as de novo assembly [62], variant detection [43, 60] and sequence
compression [35, 61, 33, 31].

The main component of the FM-index is the Burrows-Wheeler transform [12], a string
transformation introduced in the Data Compression field by Michael Burrows and David
Wheeler in 1994. It is a reversible transformation that rearranges the symbols of a string w

over an alphabet Σ, possibly increasing the runs of identical symbols. This structure enables
compressing the original string using simple algorithms, such as Run-Length Encoding (RLE)
followed by Move-to-Front (MTF) and Huffman coding (as employed in bzip2 compressor),
see [1] for further details.

Since the sequencing process generates a collection of sequences, each representing a read,
it introduced challenges in how to represent, process, and analyze these sequence collections.
Applying the BWT to each sequence individually could not capture the features among the
different sequences, and hence, there emerged a necessity to extend the BWT to sets of strings.
Moreover, the need to analyze multiple genomes together has recently emerged to study the
complete genetic diversity within populations [18]. Here, we consider the extension of the
Burrows-Wheeler transform to a string collection, in which a distinct end-marker symbol is
appended to each string (see [14, 15] for a survey about the different BWT variants). When
an end-marker symbol is appended to each string, there are no strings in the collection that
are prefixed by other strings. Such a transform applied to a string collection is also known in
the literature as multi-string BWT3 [23, 8]. Over the years, a multitude of strategies and
tools have been introduced to build the BWT and the multi-string BWT, whose efficiency
may be dictated by particular needs (e.g. input alphabet, redundant data, available resources,
knowledge of a reference string).

In-memory algorithms to compute standard single-string BWTs are linear but do not
scale to large inputs with multiple strings as, in those cases, they might not be able to fit
everything in RAM (e.g., SAIS [56] and its BWT variant [57]). A possible solution is to
keep large portions of data on disk and bring them back to RAM and caches whenever the
BWT algorithm requires it. This strategy reduces the space usage in fast memory levels

2 A data structure that encodes a text and an index for it in space proportional to the text size
3 In [15], the same transform is called Multidollar-EBWT.

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:3

considerably, but comes with a cost: While accessing caches requires nanoseconds in most
modern computer architectures, accessing data from disks (aka I/O) requires milliseconds.
This difference is the so-called I/O bottleneck, which amounts to a factor of 105−6 [34, 25],
and makes it necessary to adapt in-memory algorithms to minimize I/Os. An alternative
solution is to keep the data in compressed form to fit more information in less space. This
technique reduces the number of I/Os but requires extra time to compress and decompress.
In addition, it is necessary to adapt the algorithm to make it compression-aware. In practice,
disk-based and compression-aware algorithms are not incompatible and are often combined
in the literature.

In this survey, we explore BWT construction algorithms that address the scalability
problem by using techniques that work in external memory or by exploiting text compression
approaches. We have selected some of the most representative algorithms from these two
categories. Those that work in external memory (Section 3) must address the challenge of
making the best possible use of the available RAM, minimizing and optimizing operations
on external memory, avoiding random disk accesses. Optimal I/O volume when working
with a set of strings of total size N is O(N) bytes which is never achieved to the best of
our knowledge. The ordering of suffixes necessary to compute BWTs and suffix arrays is in
general carried out with bucket sort algorithms that write data to disk in sequential order,
and it is often implemented in a virtual way, ordering indices instead of the actual structures.
Some of the algorithms approach the problem by computing partial BWTs, which could be
either BWTs of substrings or BWTs of subcollections or BWTs of suffixes of fixed lengths or
up to fixed lengths.

We first present bwt-disk [26] (Section 3.1), an external memory approach that works on
a single input string. We then present BCR and BCRext [5] (Section 3.2), (semi-)external
algorithms, which, although not competitive for collections of long strings stand out due to
their simplicity, making them a good choice for sets of strings over any alphabet with limited
lengths and for building BWTs with a reduced, possibly minimum, number of runs [13, 15].
In Section 3.3, we present eGSA [49], which works best with an amount of RAM significantly
larger than the input size and it is extremely efficient, but requires a comparatively large
amount of disk space, even though it has good I/O costs. In Section 3.4, we present eGap [23],
which slightly improves on the I/O costs of eGSA and is faster when less RAM is available,
also thanks to a specific heuristic. Finally, in Section 3.5, we present BWT+LCP [8], which
has the same asymptotic complexity as eGap with no heuristic and fixed size alphabet.

In Section 4, we consider algorithms of the second class that leverage compression
techniques that exploit the high repetitiveness of the input. This way more of the input fits
in memory as close as possible to the CPU for faster processing, and repetitions in the input
are eliminated. The risk, though, is introducing a significant overhead when strings must be
decompressed for access. The art in designing these algorithms is finding compression schemes
whose structure actually enhances the BWT computation process instead of hindering it.

We present in Section 4.1 Big-BWT [11], which takes as input a single string and performs
a pre-processing step that encodes the input building a dictionary and a parse (prefix-free
parsing). This strategy for building the BWT works well when the dictionary and the
parse generated are much smaller than the input string. Finally, in Section 4.2, we present
grlBWT [22], which joins the two worlds as an algorithm that uses both external memory and
compression techniques. It maintains data in compressed form throughout the computation
to reduce space usage and repetitions.

Manzini’s Festschrift

7:4 Algorithms for Computing Very Large BWTs: A Short Survey

2 Preliminaries

Let Σ be a finite ordered alphabet of size σ. A string S = S[1..n] over Σ of length |S| = n is a
sequence of n characters (or symbols) from Σ, where S[i] denotes the ith character of S, and
S[i..j] denotes the substring S[i] · · · S[j], for i ≤ j. By convention S[i..j] = ϵ if i > j, where
ϵ is the empty string. Any substring of S of the form S[1..i], 1 ≤ i ≤ n, is called prefix, and
any substring of the form S[i..n], 1 ≤ i ≤ n, is called suffix. Let S be a string of length n − 1
over Σ and $ be a special character, which is not in Σ and is lexicographically smaller than
any other character in Σ. Throughout this paper, we consider S with the special character
(referred to as end-marker) appended to it, such that S[n] = $.

For any two strings S and T , we define the lexicographic order S ≺ T if S is a proper
prefix of T , or if there exists an index 1 ≤ i ≤ min{|S|, |T |} such that S[i] < T [i] and for all
j < i, S[j] = T [j].

We consider S be a collection of k strings, S = {S1, . . . , Sk}, where Sj [1..nj − 1] is a
string over Σ and Sj [nj] is the end-marker $j , for any j. The total number of characters in S
is N =

∑k
j=1 nj . By definition, the end-markers $j are not appearing elsewhere in S1, . . . , Sk

and are smaller than any other character in S1, . . . , Sk. In addition, we assume that the
end-markers $j are sorted according to the input strings4, i.e. $i < $j , if i < j.

We use the disk model of computation, which has two levels: a small but fast memory of
M bits (i.e., RAM) and a slow but unbounded memory (i.e., disk). Given an input of size n,
a procedure runs in RAM using words of Ω(log n) bits that can be manipulated in constant
time. Additionally, the procedure can transfer B bits between memories (I/O operation).
We express the space complexity in bits and the I/O cost as the number of data transfers.
Additionally, we express the logarithms of base two as log.

Suffix array and LCP. Let S be a string of length n−1 over Σ and S[n] = $. The suffix array
sa of S [50] stores the permutation of {1, . . . , n} listing the starting positions of the suffixes
of S in increasing lexicographic order, i.e., S[sa[i]..n] ≺ S[sa[i + 1]..n], for all 1 ≤ i < n.

The generalized suffix array (GSA) of the collection S = {S1, S2, . . . , Sk} is the array
of N pairs of integers (t, j), corresponding to the lexicographically sorted suffixes Sj [t, nj],
where 1 ≤ t ≤ nj and 1 ≤ j ≤ k.

The longest common prefix array lcp stores the length of the longest common prefix (LCP)
between lexicographically consecutive suffixes, i.e., lcp[i] = LCP(S[sa[i − 1]..n], S[sa[i]..n]),
for all 1 < i ≤ n, and lcp[1] = 0 for convenience.

Burrows-Wheeler Transform (BWT) and Multi-string BWT. The Burrows-Wheeler
Transform (BWT) [12] is a reversible text transformation that given as input a string S

produces a permutation of its characters: the output string bwt is obtained by concatenating
the characters that circularly precede the lexicographically sorted suffixes of S, i.e.

bwt[i] =
{

S[sa[i] − 1] if sa[i] > 1,

S[n] if sa[i] = 1.

The reversibility of the BWT is guaranteed by the following two properties [12]. Let F

be the string formed by lexicographically sorting the characters of S,
for all i = 1 . . . n, the character F [i] circularly follows the character bwt[i] in the string S;

4 In order not to increase the alphabet size, typically tools use the same character in the BWT output
string, such as $, to represent all distinct end-markers. Each end-marker’s index can be stored separately.

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:5

for each c ∈ Σ, the kth occurrence of c in bwt corresponds to the kth occurrence of c in F .
In particular, if bwt[i] = c, then the position j in F corresponding to that c-occurrence
is given by C[bwt[i]] + rank(bwt[i], i), where C[c] is the total number of characters in S

that are smaller than c and rank(c, i) is the number of occurrences of character c in the
substring bwt[1..i].

The function described above that maps character occurrences from bwt to F is known as
LF-mapping [27]. The LF-mapping yields a permutation of the positions 1, 2, . . . , n which
forms a single cycle over all positions.

▶ Example 1. Given the string S = CATGATGATA$ of length 11, the BWT output
string is bwt = ATGGC$TTAAA. The LF-mapping yields the following permutation(

1 2 3 4 5 6 7 8 9 10 11
2 9 7 8 6 1 10 11 3 4 5

)
.

Historically, the BWT was extended to a collection of strings by Mantaci et al. [51]
(EBWT), where cyclic rotations of the input strings are sorted5 without appending any
end-marker to the input strings. Here, we consider the generalization that append to each
input string in the collection a different end-marker and computes the transformed string by
lexicographically sorting the suffixes of the input strings, as done for instance by [5, 24, 22].
Therefore, we define the BWT extended to a collection of strings bwt(S), multi-string BWT,
as a permutation of the N characters in S1, . . . , Sk obtained by concatenating the characters
circularly preceding the lexicographically sorted suffixes of S1, . . . , Sk.

Since each Sj is terminated by an end-marker symbol, the bwt(S) can be defined in terms
of the generalized suffix array (GSA). In particular, gsa[q] = (t, j) if the q-th smallest suffix
of the strings in S is Sj [t, nj]. So, for i = 1, . . . , N ,

bwt(S)[i] =
{

Sj [(t − 1)] if gsa[i] = (t, j) with t > 1 ,

$j if gsa[i] = (t, j) with t = 1 .
(1)

Equivalently, one can define bwt(S) in terms of suffix array sa1···k of the concatenated
string S1 · · · Sn (see [23, 24], where it is denoted bwt1···k) i.e.

bwt(S)[i] =
{

Sj [sa1···k[i] −
∑j−1

h=1 nh − 1] if
∑j−1

h=1 nh + 1 < sa1···k[i] ≤
∑j

h=1 nh ,

Sj [nj] if sa1···k[i] =
∑j−1

h=1 nh + 1 .
(2)

Note that both definitions in Equations (1) and (2), as well as the EBWT, are such that
each input string cycles on itself. In fact, the two definitions above are equivalent, but we
chose to present both of them because they imply different constructions. In presenting each
algorithm we will refer to the definition that inspired the algorithm’s strategy.

Finally, the multi-string BWT is reversible by definition: one can reconstruct the collection
with the strings sorted according to their original order given the fact that the end-markers
in bwt(S) are distinct [5, 6]. In addition, differently from the BWT applied to a single string,
the LF-mapping associated with the multi-string BWT defines a permutation of the positions
1 through N that can be decomposed into k cycles, one for each string in the collection.

5 In this case, one needs to use the ω-order defined in [51].

Manzini’s Festschrift

7:6 Algorithms for Computing Very Large BWTs: A Short Survey

▶ Example 2. Let S be the collection {AGCGT$1, TCAAC$2, CGCAA$3}. The
multi-string BWT according to Equations (1) and (2) is given by bwt(S) =
TCAACCA$1AGT$3GCACG$2. The LF-mapping yields the following permutation(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
17 9 4 5 10 11 6 1 7 14 18 3 15 12 8 13 16 2

)
,

which can be decomposed into 3 disjoint cycles: (1 17 16 13 15 8) (2 9 7 6 11 18) (3 4 5 10 14 12).

Induced suffix sorting (ISS). Induced suffix sorting (ISS) [40, 37, 56] is a recursive technique
that deduces the lexicographical order of suffixes in S starting from a subset of partially
sorted suffixes. One of the most popular variants of this idea is SAIS [56], a linear-time
algorithm to calculate the suffix array [56, 48, 55, 47] and the BWT [57, 3, 9, 22].

Each recursive level i of SAIS receives a string Si[1..ni] (Si = S and Σi = Σ when
i = 1) and returns the suffix array sai of Si. The algorithm classifies the positions of
Si into two types: L-type or S-type. A character Si[j] is L-type if Si[j] > Si[j + 1] or if
Si[j] = Si[j + 1] and Si[j + 1] is L-type. On the other hand, Si[j] is S-type if Si[j] < Si[i + 1]
or if Si[i] = Si[j + 1] and Si[i + 1] is S-type. By definition, S[n] = $ is S-type. Furthermore,
Si[j] is LMS-type (leftmost S-type) if Si[j] is S-type and Si[j − 1] is L-type. A substring
Si[j..j′] is an LMS substring if Si[j] and Si[j′] are LMS-type.

Every suffix Si[j..n] whose starting position Si[j] is LMS-type is also a local minimum
S[j − 1..n] ≻ Si[j..n] ≺ Si[j + 1..n]. SAIS exploits this fact and performs three linear-time
scans of Si to induce from Si[j] a partial sort of the suffixes starting within Si[j′..j − 1],
Si[j′] being the preceding LMS-type symbol. In this survey, this process is called ISS pass.

For any position j′ ∈ [1..n], let nextLMS(j′) > j′ be the smallest integer such that
Si[nextLMS(j′)] is of LMS type, or nextLMS(j′) = ni if j′ = ni or there are no LMS-type
positions after j′. Additionally, let T be the set of strings over Σi that label the sequences
Si[j′..nextLMS(j′)]. For two strings X[1..nx], Y [1..ny] ∈ T , their LMS order ≺LMS is

X ≺LMS Y ⇐⇒


ny < nx and X[1..ny] = Y ,

or
X ≺ Y.

(3)

Let OX ⊂ [1..n] be the set of integers such that each j ∈ OX corresponds to some
Si[j..nextLMS(j)] = X. The relation X ≺LMS Y implies that for any pair j ∈ OX and
j′ ∈ OY , it holds Si[j..ni] ≺ Si[j′..ni]. The ISS pass places the suffixes of Si starting at
positions in OX contiguously in the rth range sa[sX ..eX] of sa, where r is the ≺LMS rank of
X among the elements of S. Thus, the suffixes in sai[sX ..eX] are lexicographically smaller
than the suffixes in sai[sY ..eY] if X ≺LMS Y . However, this sorting is partial because the
relative order of the elements within sai[sX ..eX] and sai[sY ..eY] is still unknown.

SAIS now replaces the LMS substrings in Si by their ≺LMS ranks to create a new string
Si+1[1..ni+1], with ni+1 ≤ ni/2, which passes as input to the next recursive level i + 1 to
calculate sai+1. When the algorithm returns to level i from level i + 1, it performs another
ISS pass. However, this time it uses the information in sai+1 as the starting point for the
induction, and thus the output of the pass becomes sai. If i > 1, SAIS returns sai to the
previous level sai−1, otherwise it finishes.

Each new Si+1 is at most half the size of Si. Consequently, the total cost of the algorithm
is O(n) time and O(n log n) bits of working space. SAIS can also be easily adapted to
compute the generalized suffix array gsa of a string collection S [48].

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:7

Karp-Rabin fingerprint. The Karp-Rabin (KR) fingerprints method [38] is a rolling hash
technique that associates strings with integers. The KR fingerprints for all the substrings of
length w of a string S of length n can be computed in O(n) time.

Run-length encoding. A run in a string S is a maximal substring consisting of repetitions
of only one character, i.e. ce for some c ∈ Σ and e ≥ 1. The run-length encoding (RLE) of a
string S encodes any run ce in S by a pair (c, e).

Grammar compression. This technique consists of computing a small context-free grammar
that generates only the string S[1..n] [39, 16]. A grammar G = (Σ, V, R, I) is a tuple where
Σ is the alphabet of S, V is a set of nonterminal symbols, R is a relation V × (Σ ∪ V)∗

describing the set of rewriting rules, and I ∈ V is the start symbol. Each nonterminal
b ∈ V has a replacement X[1..x] ∈ (Σ ∪ V)∗ encoded by a rule b → X[1..x] ∈ R. Given
two strings wa = A[1..q]·b·B[1..b], wb = A[1..a]·X[1..x]·B[1..b] ∈ (Σ ∪ V)∗, wb rewrites wa

(denoted wa ⇒ wb) if b → X[1..x] exists in R. The expansion exp(b) ∈ Σ∗ of b ∈ V is the
string resulting from successive rewrites w1 ⇒ w2 ⇒ . . . ⇒ wk with w1 = b and wk = exp(b).
Expanding the start symbol I produces exp(I) = S[1..n]. Grammar compression algorithms
create one rewriting rule b → X[1..x] for every nonterminal b ∈ V , so there is one possible
sequence of rewrites that starts in b and ends in exp(b).

3 Disk-based strategies

When the data to be indexed exceeds the capacity of internal memory, external-memory
algorithms become necessary to handle inputs efficiently. These algorithms are specifically
designed to minimize random access and optimize disk I/O operations, as accessing external
storage is significantly slower than accessing RAM. They typically rely on techniques such
as sequential scans, buffering, and external sorting to process data in manageable chunks
while reducing disk seek times. Efficient external-memory algorithms are crucial for indexing
massive datasets where internal-memory approaches would be impractical due to space
constraints.

3.1 bwt-disk [Ferragina et al., 2012]
The algorithm bwt-disk6 [26] is an external memory algorithm that constructs the BWT for
a (single) input string S of length n, without first building the suffix array for the complete
string. It operates using only M words of RAM and n bits of disk space, in addition to the
disk space needed to store the input and the output. Moreover, all data on disk is accessed
exclusively through sequential scans.

The algorithm partitions the input string S[1..n] into consecutive blocks of length m =
Θ(M), such that S = S⌈n/m⌉S⌈n/m⌉−1 . . . S2S1. Each block Si represents a substring of S

with length m, except possibly the last substring S⌈n/m⌉, which may be shorter if n is not a
multiple of m. The bwt(S) is computed through ⌈n/m⌉ passes, one for each block, which are
processed backwards, from S1 to S⌈n/m⌉. The key idea is that, during each pass h + 1, only
the characters of Sh+1 need to be inserted into bwt(Sh . . . S2S1) to obtain bwt(Sh+1 . . . S2S1),
and the relative order of suffixes from Sh . . . S2S1 remains unchanged.

6 An implementation is available at https://people.unipmn.it/manzini/bwtdisk/

Manzini’s Festschrift

https://people.unipmn.it/manzini/bwtdisk/

7:8 Algorithms for Computing Very Large BWTs: A Short Survey

In Example 1, suppose S = CATGATGATA$ is partitioned into blocks of length m = 4.
Then, we have S1 = ATA$, S2 = GATG and S3 = CAT . Initially, bwt(S1) = AT$A is
computed in internal memory, and bwt(S2S1) will be obtained by sequentially inserting each
character of S2 into bwt(S1).

For each pass h + 1 (for h = 1, 2, . . . , ⌈n/m⌉ − 1), the algorithm loads from disk Sh+1Sh

into a string buffer s[1..2m]. Also, an auxiliary bit array, called gt, is assumed to be stored on
disk, indicating whether each suffix in Sh . . . S2S1 is greater than the suffix Sh . . . S2S1 itself.
The part of gt referring to the suffixes starting in Sh is loaded to the bit array gth[1..m] in
internal memory.

Continuing from Example 1, at pass h + 1 = 2, we have the string buffer s = S2S1 =
GATGATA$ and gt1 = [0, 1, 0, 0].

Then, the pass h + 1 proceeds through the following four steps.
In Step 1, the suffix array sa[1..m] containing the lexicographic ordering of the suffixes

of S[1..n] starting in block Sh+1 (extending up to the last character S[n]) is computed in
internal memory, without accessing any character of Sh−1 . . . S2S1 on disk. To do that, the
suffixes are compared using their prefixes stored in s[1..2m], whenever the comparison of
two suffixes exceeds position s[m + 1], the algorithm uses the corresponding value in gth to
determine their relative order. For example, given two suffixes starting at positions i and j

of Sh+1, with i < j, if s[i..m] is lexicographically smaller (or greater) than s[j..j + m − i],
then the suffix starting at i is smaller (or greater) than the suffix starting at j. Otherwise, if
s[i..m] = s[j..j + m − i], their relative order is determined by the corresponding bit stored in
gth[j − i + 1].

In Example 1, at pass h + 1 = 2, the resulting suffix array for S2, sa = [2, 4, 1, 3],
is computed using only the string buffer. Therefore, the suffix ordering in S2S1 is:
ATGS1, GS1, GATGS1, TGS1.

In Step 2, the array bwtint[1..m] is computed given sa[1..m]. For each i = 1, . . . , m, the
value of bwtint[i] is set to Sh+1[sa[i] − 1] if sa[i] ̸= 1; otherwise, bwtint[i] is assigned the
special character #, which does not appear in S. Note that bwtint[1..m] is not the actual
BWT of the substring Sh+1, as the suffixes of Sh+1 extend up to the last character S[n] and
their relative order may differ.

Continuing from Example 1, at pass h + 1 = 2, bwtint = GT #A is computed from sa[1..4]
and S2 = GATG.

In Step 3, the algorithm computes a counter array, gap[1..m], which gives in gap[j] how
many suffixes of Sh . . . S2S1 lie lexicographically between the suffixes in positions sa[j − 1]
and sa[j] from the current block Sh+1. This counter array is computed in O(n) time with a
single scan over Sh . . . S2S1 using n extra bits of gt and an o(m)-bit data structure supporting
constant time rank queries over bwtint. At Step 3, the algorithm also computes the content
of gth+1 for the next pass as a by-product of the computation of gap.

Again, in Example 1, at pass h + 1 = 2, we have gap = [3, 0, 0, 1], since three suffixes
from S1 (namely $, A$, and ATA$) are smaller than the first suffix of S2, and the suffix
TA$ from S1 is smaller than only the last suffix of S2.

Finally, in Step 4, the algorithm merges bwt(Sh . . . S2S1) with bwtint to create for the
next pass bwt(Sh+1Sh . . . S2S1). To do that I/O-efficiently, the algorithm uses the counter
array gap, such that, for i = 1, . . . , m, gap[i] characters from bwt(Sh . . . S2S1) are copied to
bwt(Sh+1Sh . . . S2S1) followed by the value bwtint[i + 1]. Whenever a character $ or # is
retrieved from bwt(Sh . . . S2S1) during this process, it is replaced by the last symbol Sh+1[m]
in bwt(Sh+1Sh . . . S2S1).

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:9

In Example 1, at the end of pass h+1 = 2, gap[1] = 3, then the first three values of bwt(S1)
are retrieved (namely AT$) and copied to bwt(S2S1) as ATG directly to disk. Then, the
value in bwtint (namely G) is copied to bwt(S2S1), together with the next two values in bwtint
(namely T and #) as gap[2] = 0 and gap[3] = 0, resulting in ATGGT#. Finally, gap[4] = 1
and the last value from bwt(S1) (namely A) is copied to bwt(S2S1) and the last value from
bwtint (namely A) is copied as well, yielding the final result: bwt(S2S1) = ATGGT#AA.

Theoretical costs. The running time of bwt-disk is O(n2/M), for a (single) string S[1..n],
from a constant alphabet, using M⌈log n⌉ bits of RAM. The algorithm executes O(n/M)
passes over Θ(n) bits of disk data, using n bits of disk working space. The total number of
I/Os is O(n2/(MB log n)).

3.2 BCR and BCRext [Bauer et al., 2013]
In this section we describe the core of a strategy for constructing the BWT of a string
collection S = {S1, . . . , Sk} according to the definition in Equation (1), which considers the
strings in a circular way so that the symbol preceding the suffix Sj [1..nj] is the end-marker of
the string Sj (i.e., $j). The heart of this strategy is common to two algorithms, named BCR
and BCRext, introduced in [5] and part of the BEETL library7. BCR works in (semi-)external
memory, whereas BCRext works in external memory.

The common strategy does not require linearizing the strings in S by concatenating them
and does not require explicitly computing the GSA. Rather, it builds the BWT incrementally
in m steps, where m is the length of the longest string in S (including the end-markers)
by exploiting the basic properties of the BWT and the LF-mapping. The basic idea is to
left-align (or, equivalently, right-align) all the strings in S and, by scanning all the strings in
S right-to-left at the same time, to incrementally construct the partial BWT of suffixes of S
with length at most h + 1 ≤ m, with h = 0, . . . , m − 1.

For simplicity, in this description, we assume that all the strings have the same length
m and they are right-aligned. So, at each iteration only suffixes of the same length are
considered. Both algorithms build the bwt(S) in m steps. At each step h = 0, . . . , m − 1,
they build a partial BWT, denoted bwth(S), containing the BWT of suffixes in S of length
up to h + 1.

Since we consider distinct end-markers and $i < $j if i < j, then it is easy to verify that
bwt0(S) is obtained by concatenating the last symbol of each string Sj in the same order as
the strings appear in the collection: bwt0(S) = S1[n1 − 1]S2[n2 − 1] . . . Sk[nk − 1].

For each step h = 1, . . . , m − 2, both algorithms simulate the insertion of all suffixes of
length h + 1 in the list of sorted suffixes, i.e., insert all symbols (circularly) preceding the
suffixes of length h + 1 at the correct positions into bwth−1(S) in order to obtain bwth(S).

In the last step h = m − 1, the k end-markers are inserted at the correct positions into
bwtm−2(S) and bwtm−1(S) = bwt(S) is obtained.

At the iteration h > 0, let pj−1 be the position of the symbol c = Sj [nj − h] in
bwth−1(S). To insert the symbol Sj [nj − h − 1] preceding the suffix Sj [nj − h, nj] in
bwth−1(S), we compute the position pj using the LF-mapping (we omit details for space
reasons): pj = C[c] + rank(c, pj−1), where C[c] is the number of symbols lexicographically
smaller than c in bwth−1(S), rank(c, pj−1) is the function that returns the number of
occurrences of c in the prefix bwth−1(S)[1, pj−1].

7 https://github.com/BEETL/BEETL

Manzini’s Festschrift

https://github.com/BEETL/BEETL

7:10 Algorithms for Computing Very Large BWTs: A Short Survey

By using Example 2, the base case of BCR/BCRext consists in concatenating all symbols
preceding the suffixes $1, $2, $3 obtaining bwt0(S) = TCA (because the partial sorted suffixes
is: [$1, $2, $3] since $1 < $2 < $3). Then, they simulate the insertion of the T$1, C$2, A$3
suffixes into the partial sorted suffix list by inserting the symbols G, A, A preceding the
T$1, C$2, A$3 respectively suffixes into bwt0, resulting in bwt1 = TCAAAG. The process
continues by simulating the insertion of the suffixes GT $1, AC$2, AA$3 into the sorted suffix
list, then inserting the symbols C, A, C preceding the GT$1, AC$2, AA$3 suffixes in order
to obtain bwt2(S). And so on. In the last step, they simulate the inserting of the suffixes
AGCGT$1, TCAAC$2, CGCAA$3 and insert the symbols $1, $2, $3 in the partial BWT
bwtm−1(S) = bwt(S).

If the strings have different lengths, an end-marker is inserted when the longest suffix of
a string in S is reached, and then no further symbols of that string will be inserted in the
following iterations.

Note that, in practice, neither algorithm needs to explicitly append end-marker symbols to
the strings, since they will only be inserted last and the symbols concatenated in bwt0 follow
the input order. Moreover, to avoid exponential growth of the alphabet, both algorithms
write the same end-marker symbol in the BWT output string, but they can store and output
the index associated with each end-marker in a separate file. This is particularly important
for decoding. An interested reader can refer to [5, 6].

In order to reduce the I/O operations, both algorithms split each partial BWT bwth−1(S)
in σ +1 files Bh−1(t), where Bh−1(0) contains the symbols preceding the suffixes consisting of
only the end-marker symbols and Bh−1(t) contains the symbols preceding the lexicographically
sorted suffixes of S of length at most h − 1 and starting with ct ∈ Σ.

The difference between the two algorithms lies in the data structures they employ, and
therefore in the strategy they adopt to insert symbols incrementally.

In fact, BCR needs a data structure to keep track of each symbol to be inserted, the index
of the sequence to which it belongs, and the position where each symbol was inserted in the
previous iteration. Once the positions at which the new symbols are to be inserted have
been updated, BCR needs to sort this information so that, at iteration h, it can insert the
symbols into each of the Bh−1 files sequentially.

BCRext computes and updates the positions where new symbols are to be inserted in a
similar way to BCR, but it keeps this information in auxiliary files and the strings themselves
are sorted externally by using the least-significant-digit radix sort. So it uses a negligible
workspace. At the start of iteration h, the suffixes of length h − 1 of S are assumed to be
ordered, this ordering being partitioned into external files Fh−1(1), . . . , Fh−1(σ) according to
the first symbols of the suffixes of length h − 1. Files Ph−1(1), . . . , Ph−1(σ) are such that
Ph−1(s) contains the positions of the suffixes in Bh−1(s), ordered the same way.

In [20], the authors show that BCR can be augmented in order to compute the LCP array
and the generalized suffix array.

Moreover, in both algorithms the collection S is considered ordered by using the input
order, but one can modify them so that one can use a different ordering for the strings in S
to reduce the number of runs in the output of the BWT (see [19, 44, 6, 13, 14]).

Theoretical costs. BCR is performed in O((k +σ2) log N) bits of memory, with a worst-case
time complexity of O(m(N + sort(k))), where sort(k) is the time taken to sort k integers
and O(Nm log(σ)) I/O (bits). Whereas BCRext uses O(σ2 log(N)) bits of memory, with a
worst-case time complexity of O(kN) and O(Nm log(σ) + N log(N)) I/O (bits).

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:11

3.3 eGSA [Louza et al., 2017]

The algorithm eGSA8 [49] works in external memory and computes the (generalized) BWT
for a string collection S = {S1, . . . , Sk} of total length N according to the definition in
Equation (1), with each string Sj ∈ S having the same end-marker $ for computational
efficiency. The algorithm works in two phases, as follows.

Phase 1. The collection S is partitioned into sub-collections S1, S2, . . . , Sm based on the
available memory, such that each Sx has size less than ⌊M/4⌋, where M denotes the number
of available words in RAM. For each sub-collection Sx, the arrays gsax and lcpx are computed
in internal memory and stored to disk. The authors used gSACA-K [48] combined with
Φ-algorithm [36]. Together, these algorithms run in linear. As each value gsax[i] = (t, j)
and lcpx[i] are written to disk, the corresponding bwtx(Sx)[i] and a substring of length p

of the suffix Sj [t, nj], denoted as prex[i], are computed and written to disk. In particular,
prex[i] gives a prefix of Sj [t, nj] when combined with previous values and it is used to reduce
external memory accesses in Phase 2.

In Example 2, suppose the input collection S is partitioned into two sub-collections
S1 = {AGCGT$1, TCAAC$2} and S2 = {CGCAA$3}, with prefix size p = 2. First,
gsa1 = [(1, 5), (2, 5), (2, 2), (2, 3), (1, 0), (2, 4), (2, 1), (1, 2), (1, 1), (1, 3), (1, 4), (2, 0)] and lcp1 =
[0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1] are computed in internal memory. While each pair gsa1[i] and
lcp1[i] is written to disk, the corresponding values in bwt1(S1) = TCCA$ATGACG$ and
pre1 = [$$, $$, AA, AC, AG, C$, CA, CG, GC, GT, T$, TC] are obtained and stored on disk
as well. Next, gsa2 = [(3, 5), (3, 4), (3, 3), (3, 2), (3, 0), (3, 1)] and lcp2 = [0, 0, 1, 0, 1, 0]
are computed in internal memory, and the values of bwt2(S2) = AACG$C and pre2 =
[$$, A$, A$, CA, GC, GC] are obtained and stored on disk in the same way.

Phase 2. The computed arrays of S1, S2, . . . , Sm are merged with the help of a binary
heap and internal memory buffers designed to reduce string comparisons on the disk. Let
gesax = ⟨gsax, lcpx, bwtx, prex⟩ be the computed arrays of Sx. Each gesax is split into
rx blocks of b elements, except possibly the last block, ensuring that one block of each
gesa1, gesa2, . . . , gesam can simultaneously fit internal memory. Initially, the first block of
each Sx is loaded from disk to a buffer Bx[1, b]. The heading element of each Bx is inserted
into a binary min-heap H. For i = 1, 2, . . . , N , the smallest suffix, say from Bx, is removed
from H, and the value of bwt(S)[i] is written to an output buffer O of size d. Whenever O

is full, it is written to the disk. Then, the next element from the same block buffer Bx is
inserted to the heap. Whenever a buffer Bx is empty, the next corresponding block in gesax

is loaded from disk to Bx.
In Example 2, considering the block size b = 3, we have the following initial

blocks in the buffers B1 = [⟨(1, 5), 0, T, $$⟩, ⟨(2, 5), 0, C, $$⟩, ⟨(2, 2), 0, C, AA⟩] and B2 =
[⟨(3, 5), 0, A, $$⟩, ⟨(3, 4), 0, A, A$⟩, ⟨(3, 3), 1, C, A$⟩]. We assume there is enough internal
memory to hold B1 and B2 simultaneously. The heading elements ⟨(1, 5), 0, T, $$⟩ and
⟨(3, 5), 0, A, $$⟩ are inserted into the heap H.

Note, however, that each heap comparison during Phase 2 may require accessing strings
in disk randomly. To reduce disk accesses, the following strategies are presented.

8 An implementation is available at https://github.com/felipelouza/egsa

Manzini’s Festschrift

https://github.com/felipelouza/egsa

7:12 Algorithms for Computing Very Large BWTs: A Short Survey

For each sub-collection Sx a string buffer W x of maximum size s is used to store a prefix
of the heading suffix from Bx in internal memory. Therefore, whenever a suffix from Sx,
say gesax[i] with gsax[i] = (t, j), is inserted into H, if lcp[i] = 0 then W x = prex[1, p] · #,
otherwise, W x = W x[1, hi] · prex[1, p] · #, where hi = min(lcpx[i], hi−1 + p) and # is an
end-of-buffer marker. In this way, a starting portion of Sj [t, nj] is already loaded into W x

when it is compared with other suffixes in H. If # is reached, Sj is accessed in disk. Also, if
hi + p > s the prefix is truncated and the next substrings are accessed from disk.

Continuing from Example 2, when the elements compared in H are ⟨(2, 2), 0, C, AA⟩ from
B1 and ⟨(3, 4), 0, A, A$⟩ from B2, their string buffers W 1 = AA# and W 2 = A$# provide
enough information to decide that the smallest suffix comes from B2 (without accessing
the disk) and bwt(S)[i] = A is added to the output buffer O. The next element from B2,
⟨(3, 3), 1, C, A$⟩, is inserted into the heap H. The prefix W 2 is updated by considering that
the current element from B2 shared one symbol in common with the previous one, resulting
in W 2 = AA$#.

Another strategy is the usage of the LCP between nodes in H to avoid string comparisons
in heap insertions. Let X from Bx be the root of H and nodes Y and Z its children, if the
LCP between X and the next element from Bx is larger than the LCP between X and Y ,
and the LCP between X and Z, the next smallest value of H comes from buffer Bx. Also, if
the LCP between X and the next element from Bx is smaller or equal to the LCP between
X and Y , the comparison between their corresponding suffixes can start from the minimum
LCP value. The LCP values in H are updated as nodes are swapped and can be used to
speed up suffix comparisons as well.

In Example 2, again when the elements ⟨(2, 2), 0, C, AA⟩ from B1 and ⟨(3, 4), 0, A, A$⟩
from B2 are compared in H, the LCP between the corresponding nodes in H is computed
and stored. Subsequently, the node representing B2 is removed from H, and the element
⟨(3, 3), 1, C, A$⟩ is inserted. Since the LCP between the new element from B2 and the
previous one is equal to 1 and the LCP between the corresponding nodes in H is also equal
to 1, the next comparison in H between the elements from B1 and B2 may start from the
second symbol of W 1 and W 2. In particular, this suffix comparison will require accessing
the disk, as W 1 is a prefix of W 2.

Finally, eGSA also induces suffixes as each gesax[i] is removed from H, with gsax[i] = (t, j).
Whenever bwtx[i] > Sj [t] the suffix Sj [t − 1, nj] will be induced. To do that, the value x is
inserted into a (queue) induced buffer Ic, with Sj [t − 1] = bwtx[i] = c. Each induced buffer
Ic, with c ∈ Σ, is written to disk as it gets full. Then, when the first suffix starting with c is
the smallest value in H, the induced values in disk and in Ic are used to decide which heading
element of the blocks is the smallest in H and send it to the output buffer, with no string
comparison. As these values are sent to O the corresponding nodes in H are consumed.

In Example 2, when the element ⟨(1, 5), 0, T, $$⟩ from B1 is the smallest in H, the suffix
S1[4, 5] = T$ will be induced. To do that, x = 1 is inserted into the induced buffer IT .
Then, when the first suffix starting with T becomes the smallest in H, the heading element
⟨(1, 4), 0, G, T$⟩ from B1 is send directly to the output buffer, without string comparison.

Theoretical costs. The running time of eGSA is O((N log N/M)maxlcp), where maxlcp is
length of the longest common prefix between suffixes of the input strings. The total number
of I/Os is O((N log N/M) max |Si|), where max |Si| is the length of the longest string in the
collection.

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:13

3.4 eGap [Egidi et al., 2019]
The algorithm eGap9 [23] is an external memory algorithm for the computation of the BWT
of a collection of strings S = {S1, . . . , Sk}, with Si ≠ Sj for i ̸= j. The algorithm works in
two phases, first using the available RAM to compute in memory the BWTs of subcollections
of S, and then merging the results into the final BWT.

Phase 1. eGap uses the optimal linear time algorithm gSACA-K [48] for the first phase; the
size of the subcollections is determined based on the available memory, taken in input. The
gSACA-K algorithm is used to compute the suffix array for subcollections, from which, by
Equation (2), the multi-string bwt(S) is obtained.

Phase 2. The second phase is based on the gap algorithm [24], in turn derived from an
earlier algorithm by Holt and McMillan [32]. The ideas from gap are used to merge the
BWTs of the subcollections.

For simplicity of exposition, we describe here the algorithm when merging single-string
BWTs, but the same algorithm can merge multi-string BWTs. The latter is important
because it allows to adopt a multi-stage strategy in which the BWTs computed in Phase 1
are merged in successive rounds.

The merging phase does not need to access the original strings but requires only their
BWTs bwtS1 , . . . , bwtSk

. It works iteratively sorting the bwtSλ
symbols according to prefixes

of increasing lengths of their contexts: after iteration h, they are sorted according to the
length-h prefixes of their contexts. The original BWTs are not explicitly sorted during the
iterations, but the algorithm produces a recipe for performing the merge: the final iteration
yields a length n, k valued vector Z such that Z[i] = λ iff the i-th entry of bwt(S) is from
bwtSλ

(i = 1, · · · , N ; λ = 1, · · · , k).
More formally, let Z(h) be the approximation of array Z after iteration h, with Z(0) =

1n12n2 . . . knk . Then the following property holds:

Property Z. For λ1, λ2 ∈ {1, . . . , k}, λ1 < λ2, and i = 1, . . . , nλ1 and j = 1, . . . , nλ2 the i-th
λ1 precedes the j-th λ2 in Z(h) iff Sλ1 [saλ1 [i], saλ1 [i]+h−1] ⪯ Sλ2 [saλ2 [j], saλ2 [j]+h−1]. ◀

For instance, assume that we are merging the three BWTs of the strings of Example
2. The BWTs are bwtS1 = T$1GACG, bwtS1 = CCAAT$2 and bwtS3 = AACG$3C. Then,
Z(2) = [1, 2, 3, 3, 2, 3, 2, 1, 2, 2, 3, 1, 3, 1, 3, 1, 1, 2] which corresponds to a partially merged bwt
TCAACCA$1ATGG$3ACCG$2, where the suffixes are ordered only by their length two
prefixes. For instance, the twelfth and thirteenth character are G$3 as opposed to $3G in
the final bwt(S) since their suffixes both start by CG and G comes from bwtS2 whereas $3 is
from bwtS3 .

Array Z(h) is obtained through a sequential scan of Z(h−1) together with bwtS1 , . . . , bwtSk
.

The array Z(h) is partitioned into σ buckets, one for each character of the alphabet. This is
achieved through the array C[1, σ], where C[c]10 is defined as the number of occurrences of
characters smaller than c in bwt(S). Therefore C[c] marks the beginning of the c-bucket in
Z(h), whose first entry is Z(h)[C[c]]. When scanning Z(h−1), if Z(h−1)[i] is λ, the algorithm
looks at the next character in bwtSλ

: if it is c, then it stores λ in the next free position of

9 An implementation is available at https://github.com/felipelouza/egap/
10 In [23] the array C is denoted F .

Manzini’s Festschrift

https://github.com/felipelouza/egap/

7:14 Algorithms for Computing Very Large BWTs: A Short Survey

bucket c in Z(h). So, continuing the example above, the character C bucket of Z(3) will be
22331. Notice that now the twelfth character will be $3 since its suffix is prefixed by CGC

and the thirteenth character will be G, since its suffix starts with CGT .
From Property Z, it follows that Z(h) can be logically partitioned in blocks corresponding

to sets of bwt(S) symbols whose contexts share the same length-h prefixes. An additional bit
array B keeps track of these blocks: B[i] ̸= 0 iff a new block starts at Z(h)[i]. When all entries
of array B are non zero, Z(h) will not change in subsequent iterations and it is the required
array Z. In our example, at the last iteration Z = [1, 2, 3, 3, 3, 2, 2, 1, 2, 3, 2, 3, 1, 3, 1, 1, 1, 2].

Then, a sequential scan of Z and bwtS1 , . . . , bwtSk
allows to write the characters of bwt(S)

in sequential order. Back to our example: bwt(S)[0] is the first from bwtSZ[0] = bwtS1 ,
so it’s T ; the second is the first from bwtSZ[1] = bwtS2 (it’s C); then we have an A from
bwtSZ[2] = bwtS3 ; and then the second character from bwtS3 (again an A) since Z[3] = 3.

The k input BWTs are read from disk and never moved to memory.
Phase 2 of eGap actually only uses two copies of array Z to store Z(h) for all values of h:

namely, Zold and Znew, whose roles are swapped at each iteration. They can be maintained
in external memory, since access to each bucket of Zold and Znew is sequential.

In [24, Lemma 5], it is proven that if B[i] is set to 1 at iteration h, then Z(g)[i] will not
change any more at any iteration g ≥ h + 2. Since the roles of Zold and Znew are swapped,
starting at iteration g, processing Zold[i] to compute Znew[i] will be useless. So we define an
array Bx to keep track of entries that will not change again: if at iteration h the algorithm
finds that B[i] = 1, then Bx[i] will be set to 1 as well. Any sequence of 1s in Bx defines
an irrelevant range that can be skipped in the subsequent processing. So, at each iteration,
irrelevant ranges are sequentially read from file to skip them, and new irrelevant ranges are
sequentially written to file. Since maintaining and skipping ranges has a cost, only ranges of
a significant size (according to a configurable parameter) are considered.

Computing the LCP. The eGap algorithm can also compute the LCP of the input collection.
This is done in two steps: during Phase 2, if at iteration h, B[i] = 1 and Bx[i] = 0, a pair
⟨i, h − 2⟩ is written to file Fh−2 to record that lcp1···k[i] = h − 2 (then Bx[i] is set to 1).
Notice that in file Fh−2 all entries are ordered according to their first components. In an
additional third phase of the algorithm, the entries from all temporary files Fh are merged
using a standard external memory multiway merge.

Theoretical costs. We analyze costs assuming a fixed size alphabet. Phase 1 of the algorithm
runs in total time O(N), splitting the input into subcollections of size ≈ M/9, if M is the
available RAM.

Without skipping the irrelevant ranges, Phase 2 would require maxlcp (the maximum
LCP value) sequential scans of O(N) items. By skipping irrelevant ranges, the overall
amount of data directly read/written by the algorithm is O(N avelcp) items where avelcp is
the arithmetic average of the entries in the LCP array. On the other hand, skipping irrelevant
ranges causes an overhead in terms of blocks; so the overall cost of Phase 2 can be bound
above by O(N maxlcp) sequential I/Os.

RAM usage is flexible. In Phase 1, the larger the memory used, the fatser the algorithm.
Phase 2 uses a negligible amount of RAM, but also a semi-external version that uses O(N)
bytes of RAM was implemented.

The overall cost of Phase 3, to sort the LCP entries, is O(N logK maxlcp) sequential I/Os,
since it requires O(⌈logK maxlcp⌉) rounds (where K is a configurable parameter), each one
merging K LCP files by sequentially reading and writing O(N) bytes of data.

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:15

3.5 BWT+LCP [Bonizzoni et al., 2021]

The BWT+LCP algorithm [8], implemented in a prototype called bwt-lcp-em11, has similar-
ities with BCR/BCRext [5] (Section 3.2) and uses ideas from [32], but proposes a different
strategy.

The paper [8] uses a specific definition of suffixes that, contrary to the definition adopted
in this survey, does not include the end-marker when counting the length of a suffix. So
a suffix can have length 0 and in this case it is not the empty string but it consists of the
end-marker. We chose here to use a notation that agrees with this choice, for the sake of the
reader who wants to delve into the details of [8]. To avoid confusion, in the following we will
call these suffixes no$-suffixes.

The algorithm works in two distinct phases.
It first computes partial multi-string BWTs, and then merges the BWTs to the final

BWT, making largely use of external memory.
The partial BWT12 bwt=j only takes into account no$-suffixes of length j. Notice the

difference from the partial BWTs bwtj of BCR (Section 3.2) that are relative to all suffixes
of lengths up to j. Also notice the difference from eGap (Section 3.4) where the partial BWTs
computed in the first phase are complete BWTs of subcollections.

Phase 1. The partial BWTs are computed with the support of positional representations of
the input strings: these are arrays Ti such that element Ti[j] is the i-th character from the
end of string Sj , without the end-marker $. The end-marker is added as a first character to
each string. So T0 contains all last characters of the strings.

The first partial BWT bwt=0 contains the concatenation of the last characters of each
string, since it is the BWT of length 0 no$-suffixes (i.e. suffixes consisting only of the
end-markers), and so is identical to T0.

To produce bwt=j from bwt=j−1, for each j = 1, · · · , ℓ (where ℓ is the maximum length
of the strings), a radix sort is used, ordering the strings from the rightmost character. In
this phase array Tj must be kept in main memory since it is accessed in random order. The
sorting is implemented using arrays Ni (i = 1, · · · , ℓ). At the beginning of the j-th iteration,
Nj [i] = h if bwt=j+1[i] must be read from string Sh. As Nj is scanned, characters from the
required strings are read: if character c is read from string Sh, it is appended to bwt=j which
is under construction and h is appended to the bucket for character c. The concatenation
of all buckets, ordered according to the alphabetical ordering of the characters, is the new
Nj+1. The array N0 is trivially initialized as N0 = 12 · · · k.

Let’s consider again the strings of Example 2. To show how Phase 1 works, let’s see
how bwt=4 is obtained from N3 = 231 and T4. Notice that T4 = ATC since it contains the
5th character from the end of each string, not counting the end marker. According to N3,
the first character must be read from string 2, so the first character of bwt=4 is T . At the
same time, the first index in the T bucket is 2. The second character must come from S3
(it is C, and bucket C gets a 3), and the third from S1 (it is an A and bucket A gets a 1).
So bwt=4 = TCA and N4 = 132, as the concatenation of the buckets for A, C and T in
alphabetical order.

11 https://github.com/AlgoLab/bwt-lcp-em
12 In [8] the partial BWTs are denoted bwtj , and the maximum length is k. We use here the “=” in bwt=j

to explicitly distinguish these partial BWTs from the partial BWTs bwtj computed in BCR.

Manzini’s Festschrift

https://github .com /AlgoLab /bwt -lcp -em

7:16 Algorithms for Computing Very Large BWTs: A Short Survey

Phase 2. When all partial BWTs bwt=j have been built, they are merged to the final BWT.
Notice that the ordering of each partial BWT will be preserved in the merge, since length-j
no$-suffixes are already correctly ordered relative to each other.

The merge is first carried out virtually building an array I that describes how the merge
must be carried out. Specifically I[j] = h if the j-th element of the final BWT is the character
preceding a length-h suffix. Therefore, to construct the output BWT, element j will be taken
from bwt=h.

To build I, the no$-suffixes of different lengths must be ordered. I is approximated in
successive iterations, and the no$-suffixes are ordered starting from their last characters and
using a radix sort algorithm.

Precisely, at iteration j, an approximation Ij is computed from Ij−1. The initial I0
trivially proposes to concatenate all the partial BWTs in increasing order of the suffix lengths,
that is I0 = 0|bwt=0|1|bwt=1| · · · ℓ|bwt=ℓ|.

Then, at iteration j, Ij is scanned sequentially, and for each i, if Ij [i] = h then the next
character c is read from bwt=h. If it is not the end-marker, the length h + 1 is appended to
the c-bucket. The $-bucket is fixed as a sequence of 0s, since the suffixes starting with the
end-markers are no$-suffixes of length 0. Then Ij+1 is the concatenation of all buckets, in
alphabetical order of the characters.

Let us see this in our running example: the partial bwts are: bwt=0 = TCA, bwt=1 =
AAG, bwt=2 = CAC, bwt=3 = CGG, bwt=4 = TCA and bwt=5 = $1$3$2. Scanning
I0 = 031323334353, since I0[0] = 0, the first character is from bwt=0 = TCA. Then the
character is T , and so bucket T gets as first index I0[0] + 1 = 1. The second character
is again from bwt=0, since I0[1] = 0; it is a C and thus bucket C gets as first index
I0[1] + 1 = 1. All buckets are filled continuing in this fashion, except that when an end
marker is encountered, it is disregarded: so, for instance, nothing is done for I0[15] = 5, since
the first character of bwt=5 is $1. Finally, the concatenation of all buckets in alphabetical
order yields I1 = [0, 0, 0, 1, 2, 2, 3, 5, 1, 3, 3, 4, 5, 2, 4, 4, 1, 5]

From the final I, bwt(S) is computed as it is done in eGap using the ar-
ray Z, except that here the partial bwts bwt=j are used. In our example, I =
[0, 0, 0, 1, 2, 3, 2, 5, 1, 3, 4, 5, 3, 4, 4, 2, 1, 5]. The first three characters of bwt(S) are TCA

from bwt=0, since I starts with three 0s. Then we have an A which is the first character of
bwt=1, since I[3] = 1, and so on.

Computing the LCP. As implied by the name, the BWT+LCP algorithm [8] can also
compute the LCP array of the input sequence collection. This is done during the second
phase: as the array I is computed, at each iteration, the algorithm keeps track of the
longest prefixes locally encountered at each location, by inspecting the corresponding BWT
characters.

Theoretical costs. For a fixed size alphabet, the algorithm runs in O(Nmaxlcp) time, where
maxlcp is the maximum LCP value, when the alphabet is constant and memory addresses
can be stored in a single memory word. It uses O(k + M + log maxlcp) main memory (where
M is the maximum length of the input strings) and requires O(Nmaxlcp) I/Os.

4 Strategies exploiting compressibility

Another way to scale the computation of large BWTs is to apply a lightweight compression
scheme on top of the text to produce a small data representation from which we derive the
BWT. This strategy has several advantages: (i) the compressed representation fits smaller

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:17

memories that are closer to the CPU, so the transmission of data is more efficient. We
need fewer bits of satellite information on top of the text (i.e., less RAM and disk usage),
and (ii) the deduplication of strings via compression avoids redundant BWT computations.
Overall, if we use the correct tools, this approach reduces both time and space. However, it
also has some pitfalls. A greedy compression scheme (like Lempel-Ziv or RePair) greatly
reduces space usage, but also imposes considerable overhead, overcoming the whole purpose
of compressing. Moreover, the compact data representation we produce must follow some
structure that facilitates the computation of the BWT, otherwise decompressing the strings
every time we require to operate over them makes things more inefficient.

In this section, we present algorithms that exploit the repetitiveness of the text to compute
the BWT.

4.1 Big-BWT [Boucher et al., 2019]
Boucher et al. [11] introduced a pre-processing technique, called prefix-free parsing, to
compute the BWT for a (single) highly repetitive input string S of length n in O(n) time.
The rationale behind this technique is to apply a simple compression scheme as to exploit
the string repetitiveness, and then to compute the BWT from the encoded string. The
pre-processing step generates a dictionary and a parse of the input string, and it is effective
if both the dictionary and the parse together are much smaller than the original input
string. In this case, indeed, the BWT computation executed in internal memory is more
resource-efficient. The Big-BWT tool13 implements this technique.

Experiments showed that the size of the parse is typically the most demanding component
for very large and repetitive inputs. Thus, in order to reduce the memory requirements,
recursive prefix-free parsing has been recently introduced in [58], where the prefix-free parse
is applied to the parse generated by prefix-free parsing the input string.

In the following we outline the key phases of the BWT computation via prefix-free parsing
and highlight the properties of this technique.

Parsing phase. The main idea of the parsing phase is to divide the input string S into
overlapping phrases of variable length that will constitute the dictionary. More precisely,
the string considered is #S$w, where S is the input string of length n over Σ, # and $ are
end-markers, and w ≥ 1 is a fixed parameter.

In order to parse #S$w, let E ⊆ Σw be a set of strings of fixed length w over Σ (called
trigger strings) augmented with # and $w. The dictionary D comprises all the strings d

such that (i) d is a substring of #S$w, (ii) exactly one prefix of d is in E, (iii) exactly
one suffix of d is in E, (iv) no other substring of d is in E. The sequence of dictionary
phrase occurrences that form #S$w is the parse P, in which each phrase occurrence is
encoded by a meta-character given by the lexicographic rank of that phrase in D. Then,
PFP(S) = (D, P), where D is lexicographically sorted and P is composed of characters that
correspond to positions in D. For instance, let S be the string in Example 1, w = 2, and
trigger strings given by AT , # and $2. Then, D = {#CAT, ATA$$, ATGAT}. The parse of
#S$2 is #CAT ATGAT ATGAT ATA$$, which results in P = [0, 2, 2, 1], when using the
lexicographic rank to identify phrases in D.

In Big-BWT [11], D is iteratively built through a one-pass over #S$w using a Karp-Rabin
hash function and a parameter p. The trigger strings are implicitly found by passing a sliding
window of length w: wherever the KR fingerprint of the content of the current window is 0

13 https://gitlab.com/manzai/Big-BWT

Manzini’s Festschrift

https://gitlab.com/manzai/Big-BWT

7:18 Algorithms for Computing Very Large BWTs: A Short Survey

modulo p, a trigger string is found. Then, the current phrase terminates at the end of the
window, and it is added to the dictionary (recording also the phrase frequency), and then,
the next phrase starts at the beginning of the current window. Thus, the input string is
decomposed into overlapping variable-length phrases, each starting and ending with a trigger
string of length w. After sorting the dictionary D, the final parse P is generated.

The main property of the prefix-free parsing procedure is that none of the suffixes of
length greater than w of the phrases in D is a prefix of any other [11, Lemma 1]. This is a
property fundamental for the next phase when building the BWT of S.

Building the BWT of the input string. To construct the BWT of S, we follow the definition
that involves appending the end-marker $ to S and then lexicographically sorting its suffixes.

Any suffix of S$ corresponds to a unique suffix of #S$w of length greater than w, i.e.,
the suffix y$ of S$ is mapped to the suffix y$w of #S$w, if y is not empty, otherwise $ is
mapped to #S$w. Then, the permutation that lexicographically sorts the suffixes of #S$w

of length greater than w, also lexicographically sorts the corresponding suffixes of S$ [11,
Lemma 5].

Moreover, any suffix x of #S$w has exactly one prefix s that is a phrase suffix, i.e., s is a
suffix of a phrase in the dictionary D, [11, Lemma 3]. This implies that the order among
phrase suffixes can be carried over to the suffixes of #S$w. Indeed, given two suffixes x and
x′ of #S$w (of length greater than w) and their unique corresponding prefixes s and s′ that
are phrase suffixes, s ≺ s′ implies x ≺ x′. However, if s = s′, some information about D and
P must be taken into account.

More precisely, one can think of constructing the BWT string in two-passes according to
the list of lexicographically sorted suffixes (of length greater than w) of phrases in D, where
each suffix is considered a number of times equal to its phrase frequency. In a first pass, one
builds the sequence of characters preceding any suffix s of D that is either a proper suffix of
only one phrase dictionary d ∈ D or is an element of D that occurs once in P . Both cases have
no ambiguity, since the preceding character is uniquely determined. In a second pass, one
deals with the sequence of characters preceding suffixes that are either elements of D occurring
more than once in P or proper suffixes of different dictionary phrases. In this second instance,
one needs the list of lexicographically sorted suffixes of P to put characters in sequence
according to their correct order [11, Lemma 7]. Considering the string S of Example 1 and the
PFP(S) defined above, the list of lexicographically sorted suffixes of D of length greater than
w = 2 is {#CAT (1), A$$(1), ATA$$(1), ATGAT (2), CAT (1), GAT (2), TA$$(1), TGAT (2)},
where for each suffix, its phrase frequency is reported within brackets. Then, in the first
pass, the sequence of characters of bwt(S) built is ATG − −$TTAAA, where dashes left at
positions 4 and 5 correspond to {C, G}, which are the characters in S preceding the two
occurrences of the phrase dictionary ATGAT . Finally, the bwt(S) = ATGGC$TTAAA is
completed considering the lexicographic order of the suffixes of P = [0, 2, 2, 1] starting with
2, which is the meta-character corresponding to ATGAT .

In Big-BWT, the BWT of P is performed in linear time using the suffix array construction
algorithm SACA-K [54]. However, instead of the string BWT(P), it stores an inverted list
that associates to each dictionary phrase d the list of positions in the BWT(P) where d occurs.
The inverted list is a format more suitable for the next step, which consists in lexicographically
sorting the suffixes in D, and then by scanning them, placing the corresponding characters
in the BWT string. The sorting of the phrase suffixes is accomplished by applying the
gSACA-K [48] algorithm.

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:19

Theoretical costs. The BWT computation for an input string S of length n uses O(|D|+|P|)
space, where PFP(S) = (D, P), |D| is the sum of the length of the dictionary phrases, and
|P| the number of elements in P, and it takes O(n) time when working in internal memory.

4.2 grlBWT [Díaz-Domínguez and Navarro, 2023]
Díaz-Domínguez and Navarro presented in [22] an external memory approach that computes
the BWT of a collection S = {S1, S2, . . . , Sk} of k strings and N symbols according to
Equation (1). Their method, called grlBWT14, builds on SAIS (Section 2) but maintains
data in compressed form to reduce RAM usage and redundant calculations. We refer the
reader to Section 2 for the notation used in this section.

Each recursive level i of grlBWT receives a collection Si and returns the BWT Li of
Si as defined in Equation (1). To do so, it computes the set F of strings labelling the
LMS substrings of Si and uses this set to fill in a preliminary BWT pr(Li). The output is
preliminary because it has some incomplete areas that could not be inferred from F . The
algorithm then produces a grammar Gi that generates strings in F to finish pr(Li) later.
Subsequently, grlBWT replaces the LMS substrings of Si by their corresponding nonterminals
in Gi to create another collection Si+1 that passes as input to the recursive level i + 1. The
base case of the recursion is when all strings in Si have length one, in which case the BWT
is the input itself. When grlBWT returns to level i, it combines the information from Gi and
Li+1 to fill the incomplete areas of pr(Li) and thus produce Li.

In practice, grlBWT is an iterative method with two phases, the parsing phase and the
induction phase. The former simulates the descend of the recursive levels and the second
simulates the ascend.

Parsing phase. During each parsing round i, grlBWT parses Si to compute F and then
applies ISS over F to simulate the partially sorted gsai of Si that SAIS obtains in an
ISS pass. Recall from Section 2 that the ISS pass partitions gsai such that each block
gsai[sX ..eX] contains the suffixes Su[j..nu] of Si prefixed by the same X = Su[j..nextLMS(j)].
The algorithm builds pr(Li) using this partition and the fact that each equal-symbol run
Li[sX ..eX] = (c, eX − sX + 1) does not need further processing of gsai[sX ..eX].

The parsing round i starts by calculating F along with an array W [1..|F|] that stores in
W [u] the number of times Fu ∈ F appears as an LMS substring in Si. Subsequently, grlBWT
runs ISS over F to obtain an array Ai where the suffixes of F are arranged in ≺LMS order
(Equation (3)), breaking ties for equal suffixes arbitrarily. Let Ai[q] = (j, u) be the q-th
smallest suffix Fu[j..nu] of F in ≺LMS order. The algorithm scans Ai from left to right to
visit every block Ai[yX ..zX] of suffixes in F with length > 1 labelled X = Fu[j..nu] and uses
the information in W to compute the pair (sX , eX) for the block gsai[sX ..eX] storing the
suffixes in Si labelled X = Su′ [j′..nextLMS(j′)] = Fu[j..nu], with Su′ ∈ Si. The algorithm
skips each suffix X = Fu[j..nu] of length one because it overlaps in Si the first symbol of
some Fu′ ̸= Fu ∈ F . When grlBWT reaches Ai[yX ..zX], it visits the symbol Fu[j − 1] that
precedes X = Fu[j..nu] in each Ai[q] = (j, u), with q ∈ [yX ..zX]. If X is always a proper
suffix in F and is preceded by the same symbol c, grlBWT appends a run (c, ℓ = eX − sX + 1)
to pr(Li). If X is a proper suffix, but is preceded by different symbols, then it appends an
incomplete block (#, ℓ) instead, where # /∈ Σi is a special symbol. The third option is that
X matches a full string Fu[1..nu] ∈ F . In that case, grlBWT appends (∗, ℓ) to pr(Li), where
∗ /∈ Σi is another special symbol that indicates another type of incomplete block.

14 An implementation is available at https://github.com/ddiazdom/grlBWT

Manzini’s Festschrift

https://github.com/ddiazdom/grlBWT

7:20 Algorithms for Computing Very Large BWTs: A Short Survey

The next step is to build a grammar Gi = (Σi, V, R, I) (Section 2) that generates the
set P of different strings X producing incomplete blocks in pr(Li). Thus, for a phrase
X[1..x] ∈ P, grlBWT creates the rule b → X[1..x], where b is the ≺LMS order of X in
P. In addition, it replaces X[1..x] on the right-hand side with b → X[j1 − 1]b1, where b1
is the ≺LMS order of the longest suffix X[j1..x] which is also a phrase in P. Recursively,
b1 → X[j2 − 1]b2 stores the second longest suffix X[j2..x] that also occurs in P. This
structure repeats o times to cover the o proper suffixes of X in P, and the last two symbols
X[x − 1..x] form the rule bo+1 → X[x − 1]ϵ, where ϵ /∈ Σi denotes the empty symbol.
Let expseq(b) be the sequence of pairs (c1, b1), (c2, b2), . . . , (co, bo), (co+1, ϵ) in the recursive
rewrites b ⇒ c1b1 ⇒ c1·c2b2 ⇒ · · · c1c2co+1 of exp(b). Notice that every (cu, bu) encodes the
nonterminal bu ∈ V expanding to the u-th suffix X[ju..x] ∈ P of X (from left to right) and
the symbol cu = X[ju − 1] ∈ Σi that precedes it. Additionally, (co+1, ϵ) stores the rightmost
symbol co+1 = X[x − 1] of X that does not overlap the following LMS substring in Si.

To depict the steps of the first parsing round, let us consider again the collection
S = {AGCGT$1, TCAAC$2, CGCAA$3} of Example 2. The underlined sybmols are LMS-
type positions. After computing the LMS-substrings from S1 = S, the method obtains the
set of phrases F = {AGC, CGT$1, TCA, AAC$2, CGCAA$3} and the corresponding array
W [1..5] = 1, 1, 1, 1, 1 with their frequencies in S1. Then, it uses ISS to compute A1 and
pr(L1) from F to produce:

A1 = 4 4 6 5 4 1 2 1 3 3 3 4 4 2 2 2 3 1
2 4 5 5 5 4 4 1 4 5 3 4 1 5 1 2 2 3

a
pr(L1) = # # # A C * A * A G T * * C A C G *

$ 1 $ 2 $ 3 A
$ 3

A
A

$ 3
A

A
C

$ 2
A

C
$ 2

A
G

C

C
$ 2

C
A

A
$ 3

C
A

C
G

C
A

A
$ 3

C
G

T
$ 1

G
C

A
A

$ 3
G

C

G
T

$ 1
T

$ 1
T

C
A

Recall that A1[q] = (j, u) refers to the j-th suffix of the phrase u in F (from left to right).
The partition of A1 according to the suffixes of F becomes A1[1..3], A1[4], A1[5], . . . , A1[18].
After block A1[1..3], all the blocks have length one because their corresponding suffixes (in
grey above) are unique in F . Also note that the method regards $1 = $2 = $3 = $ as the same
symbol. In pr(L1), the first block pr(L1)[1..3] = (#, 3) is incomplete because the method
cannot infer the relative order of the occurrences of $ in S1 from A1 and F . Moreover, the
blocks pr(L1)[6], pr(L1)[8], pr(L1)[12], pr(L1)[13], and pr(L1)[18] are also incomplete (with
symbol ∗) because their corresponding suffixes match full phrases of F . The next step is
to construct the grammar G1 from the the strings that produce incomplete blocks in pr(Li)
(i.e., P). The original rules are R = {1 → $, 2 → AAC$2, 3 → AGC, 4 → CGCAA$3, 5 →
CGT $1, 6 → TCA}. However, the method only keeps in the right-hand sides of R the proper
suffixes associated with incomplete blocks, so the rules become R = {1 → $ϵ, 2 → C1,
3 → Gϵ, 4 → A1, 5 → T 1, 6 → Cϵ}, with ϵ being the null symbol. Finally, the parsing round
stores pr(L)1 and G1, computes the new collection S2 = {35, 62, 4} and continues to the next
parsing round.

Induction phase. Every iteration i induces the order of symbols in the incomplete blocks of
pr(Li) using Gi and Li+1. The block pr(Li)[sX ..eX] = (∗, ℓ) is associated with a string X ∈ P
that only labels LMS substrings of Si, and if pr(Li)[sX ..eX] is the b-th incomplete run of

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:21

pr(Li), then b ∈ Σi+1 is the nonterminal assigned to X in Gi. Consider the partition of Li+1

according to their buckets in the fully sorted version of gsai. Each block Li+1[sb..eb] stores the
symbols that precede the suffixes in Si+1 prefixed by b (i.e., those in gsai+1[sb..eb]). There is
a map from gsai+1[sb..eb] to the range gsai[sX ..eX] with the suffixes Su[j..nu] of Si prefixed
by Su[j..nextLMS(j)] = X. Consequently, filling in pr(Li)[sX ..eX] reduces to scanning
Li+1[sb..eb] from left to right, and for each Li+1[q] in Li+1[sb..eb], run expseq(Li+1[q]) =
(c1, b1), (c2, b2), . . . , (co+1, ϵ) and append co+1 to pr(Li)[sX ..eX].

On the other hand, each pr(Li)[sY ..eY] = (#, ℓ) is associated with a string Y ∈ P that
occurs as a proper suffix in different LMS substrings of Si, say X[1..x] and X ′[1..x′], and is
preceded by different symbols. That is, Y = X[j..x] = X ′[j′..x′] and X[j−1] ̸= X ′[j′−1] ∈ Σi.
If Y has ≺LMS order bu in P , then pr(Li)[sY ..eY] is the bu-th incomplete run of pr(Li) and
ℓ is the number of times Y occurs as a suffix in the LMS substring of Si.

The encoding of Gi is convenient to fill pr(Li)[sY ..eY] = (#, ℓ) because expseq(Li+1[q]) =
(c1, b1), (c2, b2), . . . , (co+1, ϵ) tells that c1 ∈ Σi goes to the incomplete run number b1,
c2 ∈ Σi goes to the incomplete run number b2, and so on. Thus, a symbol cu associ-
ated with bu in expseq(Li+1[q]) goes to Li+1[sY ..eY] after the symbols associated with bu in
expseq(Li+1[1]), expseq(Li+1[2]), . . . expseq(Li+1[q − 1]). In other words, it is possible to fill
all incomplete blocks (#, ℓ) of pr(Li) in one linear decompression of Li+1. Another important
observation is that a run Li+1[q..q′] = (b, ℓ′) produces ℓ′ copies of expseq(b). Thus, grlBWT
calls expseq(b) once and copies the content ℓ′ times in each incomplete block in expseq(b).

The induction round i works as follows: Create an array P with m buckets, where m is
the number of incomplete blocks of pr(Li) labelled #. Then, scan Li+1 from left to right and,
for each run (b, ℓ′) in Li+1, execute expseq(b) = (c1, b1), (c2, b2), . . . , (co+1, ϵ) and append ℓ′

copies of every symbol cu in the bucket bu of P . In addition, replace (b, ℓ′) by (co+1, ℓ′) in
Li+1. Next, perform a sorted merge of P , Li+1, and pr(Li) (observe that the three arrays
over the alphabet Σi ∪ {∗, #}), replacing each (#, ℓ) of pr(Li) with the next ℓ symbols of P ,
and each (∗, ℓ) with the next ℓ symbols of Li+1.

Let us complete the preliminary BWT pr(L1) of the parsing round 1 from our current
example using the multi-string BWT L2 = 65234 and the grammar G1. The rules of this
grammar are R = {1 → $ϵ, 2 → C1, 3 → Gϵ, 4 → A1, 5 → T1, 6 → Cϵ}. Observe that
the alphabet of L2 is a subset of the symbols on the left-hand side of R. The method
first creates the array P with one bucket as pr(Li) contains one block labelled (#, 3).
The length of P is three because the cumulative length of the blocks in pr(L1) labelled
is three. The method scans L2 from left to right to compute expseq on the symbol
of each run, and uses the output to fill the buckets of P . The combined information of
expseq(5) = T 1 ⇒ T $ϵ, expseq(2) = C1 ⇒ C$1 and expseq(4) = A1 ⇒ A$ϵ yields P = TCA.
In turn, this information updates pr(L1) to pr(L1) = TCAAC ∗ A ∗ AGT ∗ ∗CACG∗, where
the underlined symbols represent the replacement of (#, 3) by P . Note that expseq(6) and
expseq(3) do not produce symbols for P because their suffixes do not produce incomplete
blocks (#, ℓ). The method also updates each L2[j] with the rightmost symbol in expseq(L2[j])
that belongs to Σ = {$, A, C, G, T}, so L2 becomes C$$G$. Finally, the method merges L2

and pr(L1) to produce the final multi-string BWT L1 = TCAACCAAGTGCACG$ of S
in Example 2. In this case, the underlined symbols originally belonged to L2.

Theoretical costs. Under the RAM model, grlBWT runs in O(N + k log nmax) time and
uses O((N + k log nmax) log N) bits of working memory, where nmax is the longest string
in Si. However, this cost is reached only with adversarial inputs, with practical scenarios
(e.g., nmax = O(N/k)) running in O(N) time. On the other hand, grlBWT is a semi-external

Manzini’s Festschrift

7:22 Algorithms for Computing Very Large BWTs: A Short Survey

approach that keeps Si, pr(Li), and Li on disk and accesses them linearly, thus requiring
O((N log N)/B) I/Os. On the other hand, the RAM usage depends on the size of F . This
set is small when S is repetitive, but there is no known theoretical bound for its size.

5 Future directions

There are several promising directions for future research. First, the efficient computation of
auxiliary components in BWT-based compressed self indexes. Examples of such components
are the 2r suffix array samples of the r-index [28], the samples of the subsampled r-index [17],
or the LCP array samples of thresholds [2]. An important challenge in these examples is how
to compute the data structures without building full versions of sa and lcp.

From a systems perspective, the design of disk-based algorithms optimized for Solid State
Drives (SSDs) could lead to significant speedups, taking advantage of SSD-specific features
such as high random access speeds and internal parallelism. Moreover, the acceleration of
BWT construction via GPU architectures could offer significant performance improvements
for massive datasets (see, for instance, the BWT-based compressor libbsc15 that uses
NVIDIA GPU acceleration).

On the algorithmic side, the Prefix-Free Parsing (PFP) strategy should be further explored
and adapted for the case of string collections. To our knowledge, the only PFP variant that
works on collections is PFP-eBWT [10] that computes the extended BWT (EBWT) by Mantaci
et al. [51]. On the other hand, designing new lightweight schemes for text compression that
are compatible with the construction of the BWT could enhance the scalability for massive
datasets. This idea is particularly relevant for grlBWT, where the compression of the input
is the main bottleneck. Recently, Díaz-Domínguez et al. [21] proposed a parallel grammar
algorithm that handles terabytes of data efficiently, and whose scheme shares some similarities
with grlBWT. Adapting this technique could achieve considerable reductions in space and
time.

Finally, there is growing interest in designing indexing16 data structures to encode BWTs
with large alphabets (see [29, 4, 64] and references therein). The standard solution to this
problem is the wavelet tree [30], which represents the BWT as a binary tree of height O(log σ)
and with σ leaves, σ being the BWT’s alphabet size. However, when σ is large, the O(log σ)
factor that results from navigating the tree becomes a considerable overhead. Furthermore,
the O(σw) bits required to store the tree also make the wavelet tree impractical in this
scenario. In this regard, Nishimoto et al. recently proposed a data structure [53] that
encodes the BWT in O(r log n) bits and reduces the O(log σ) penalty to O(1) regardless of
the alphabet. However, this solution is space-efficient only if r ≪ n, which occurs when
the text encoded by the BWT is highly repetitive. In practical scenarios where repetitive
collections also have some noise, this solution grows rapidly in size [7].

6 Final Remarks

In this short survey, we highlight key algorithms for computing large BWTs by leveraging
external memory or text compression techniques with no additional information about the
data. It appears as a first step towards a more in-depth comparison of the corresponding
tools, potentially including experimental results to highlight the differences among them.

15 https://github.com/IlyaGrebnov/libbsc
16 A representation encoding the BWT and that supports LF-mapping and backward search queries

https://github.com/IlyaGrebnov/libbsc

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:23

Table 1 Theoretical complexities of algorithms. For Big-BWT,we assume that the data structures
fit into internal memory. We consider an (single) input string of length n for Big-BWT and bwt-disk,
and a collection S of k strings with total length N for the other algorithms. Let σ be the alphabet
size, m the length of the longest string in S, maxlcp the maximum LCP value, M the number of
words available in RAM, and B the number of consecutive words on the disk.

Algorithm Time Complexity Memory Usage I/O Complexity
Big-BWT [11] O(n) O(|D| + |P|) -
bwt-disk [26] O(n2/M) M words O(n2/(MB log n))
BCR [5] O(m(N + sort(k))) O(k + σ2) words O(Nm log σ)
BCRext [5] O(kN) O(σ2) words O(Nm log σ + N log N)
eGSA [49] O((N log N/M) · maxlcp) M words O((N log N/M) · m)
eGap [23] O(N · maxlcp) M words O(N · maxlcp)
BWT+LCP [8] O(N · maxlcp) O(k + m + log maxlcp) O(N · maxlcp)
grlBWT [22] O(N + k log m) O((N + k log m) log N) bits O((N log N)/B)

However, a direct comparison may not be entirely fair, given the differences in the intended
use cases of the tools. Some are designed for a single string, others for string collections, and
some work in external memory (semi- or fully), while others in internal memory. Additionally,
some tools are prototypes, whereas others are engineered solutions. Table 1 summarizes the
complexities of the algorithms at the basis of these tools.

In particular, bwt-disk was the first tool for constructing the BWT for a single string
in external memory, without the need to first compute the suffix array. It optimizes disk
access by using only sequential scans, which enables it to fully leverage modern caching
systems. Additionally, bwt-disk stores all input, output, and intermediate files in compressed
form, which allows it to use less total disk space than the uncompressed input for real-world
datasets.

Specifically, BCR/BCRext was developed to build the BWT for huge collections of short
strings over any alphabet. The experimental results in [5] showed that BCR is capable
of computing the BWT for 1 billion strings, each 100 characters long (approximately 93
GB of data), using only 13 GB of RAM, while BCRext requires a negligible amount of
RAM. Moreover, BCR can output auxiliary data structures (such as the Document Array,
Generalized Suffix Array and Longest Common Prefix).

eGSA was the first external memory algorithm for constructing the generalized suffix
arrays. It can also output the BWT for collections of strings with different sizes. The
experimental results in [49] showed that eGSA tool can index up to 24 GB of data using
only 2GB of RAM. One disadvantage of the eGSA is the large amount of disk working space.
Also, it is observed in [49] that eGSA ’s running time degrades when the RAM is restricted
to the input size.

eGap is very flexible about the use of RAM. The first phase adapts to the available
memory, but also the second one has been implemented in an alternative semi-external
version. Moreover, the algorithm can output additional information (such as the Document
Array) to solve in a single sequential scan of the inputs three well known problems on
collections of sequences: maximal repeats, all pairs suffix-prefix overlaps and succinct de
Bruijn graphs.

BWT+LCP splits the problem of computing BWTs and LCPs into subproblems in a
different way from other proposals, as we explained in Section 3.5, and it shows good
performance in experiments.

In the context of tools that employ compression techniques, Big-BWT has been demon-
strated to reduce the workspace when computing the BWT of highly repetitive inputs. The
experiments in [11] showed that the prefix-free parsing procedure implemented in Big-BWT

Manzini’s Festschrift

7:24 Algorithms for Computing Very Large BWTs: A Short Survey

allows to produce a dictionary D and a parse P that are considerably smaller than the input
and can fit in internal memory, even in cases where the input is of considerable size. For
example, on a dataset of 10, 000 Salmonella genomes, the dictionary and the parse together
took only about 7 GB, compared to the 50 GB of uncompressed input.

The current implementation of grlBWT can handle high volumes of repetitive data
efficiently. In experiments in [22], the tool could process 400 human genomes (1.2 TB) in 41
hours, with a memory peak of 183 GB. The performance decreased in non-repetitive data (i.e.,
collections of DNA sequencing reads), although it remained one of the most efficient methods.
In all inputs, the main bottleneck was text compression during the parsing phase, which took
more than 90% of the running time. Currently, grlBWT only outputs the multi-string BWT.
The construction of other data structures such as lcp or sa is not yet supported.

A comparison with almost all disk-based methods is available in [23]. More comparisons
can be found in the original papers, such as in [22].

Nevertheless, there are a number of other tools in the literature, some of which are
optimized to work in internal memory and/or on specific alphabet (such as, for instance, the
DNA alphabet). For example, the recent ropebwt3 [45] constructs the BWT of large DNA
sequence sets and enables efficient searching via the FM-index. It builds on the result reported
in [26], which has seen multiple implementations [63, 59]. It uses libsais17 to construct a
partial multi-string BWT from a sequence subset, and then merges it into an existing BWT.
The tool ropebwt318 is particularly optimized for highly redundant data, such as pangenomes
or high-coverage sequencing reads. It encodes the BWT using run-length encoding and a
dynamic B+-tree (see also [44]). Another recent proposal [52] (called CMS-BWT19) introduces
a method that takes as input a string collection S = {S1, S2, . . . , Sk} and a reference string
R, and computes the BWT of the (single) concatenated string S1$S2$ · · · Sk$ by exploiting
the high repetitiveness of data through the compressed matching statistics introduced in [47].

References
1 Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows–Wheeler transform: data

compression, suffix arrays, and pattern matching. Springer, Boston, MA, 2008.
2 Hideo Bannai, Travis Gagie, et al. Refining the r-index. Theoretical Computer Science,

812:96–108, 2020. doi:10.1016/J.TCS.2019.08.005.
3 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piątkowski. Constructing the

Bijective and the Extended Burrows–Wheeler Transform in Linear Time. In Proc. 32nd
Annual Symposium on Combinatorial Pattern Matching (CPM), pages 7:1–7:16, 2021. doi:
10.4230/LIPIcs.CPM.2021.7.

4 Jérémy Barbay, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Alphabet partitioning for
compressed rank/select and applications. In Proc. 21st International Symposium on Algorithms
and Computation (ISAAC), pages 315–326, 2010. doi:10.1007/978-3-642-17514-5_27.

5 Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight algorithms for construct-
ing and inverting the BWT of string collections. Theoretical Computer Science, 483(0):134–148,
2013. doi:10.1016/j.tcs.2012.02.002.

6 Gianmarco Bertola, Anthony J. Cox, Veronica Guerrini, and Giovanna Rosone. A Class of
Heuristics for Reducing the Number of BWT-Runs in the String Ordering Problem. In Proc.
35th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 7:1–7:15, 2024.
doi:10.4230/LIPIcs.CPM.2024.7.

17 Source code: https://github.com/IlyaGrebnov/libsais
18 https://github.com/lh3/ropebwt3
19 https://github.com/fmasillo/CMS-BWT

https://doi.org/10.1016/J.TCS.2019.08.005
https://doi.org/10.4230/LIPIcs.CPM.2021.7
https://doi.org/10.4230/LIPIcs.CPM.2021.7
https://doi.org/10.1007/978-3-642-17514-5_27
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.4230/LIPIcs.CPM.2024.7
https://github.com/IlyaGrebnov/libsais
https://github.com/lh3/ropebwt3
https://github.com/fmasillo/CMS-BWT

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:25

7 Nico Bertram, Johannes Fischer, and Lukas Nalbach. Move-r: optimizing the r-index. In
Proc. 22nd International Symposium on Experimental Algorithms (SEA), pages 1:1–1:19, 2024.
doi:10.4230/LIPICS.SEA.2024.1.

8 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.
Computing the multi-string BWT and LCP array in external memory. Theoretical Computer
Science, 862:42–58, 2021. doi:10.1016/j.tcs.2020.11.041.

9 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. Computing the original eBWT faster, simpler, and with less memory. In Proc.
28th International Symposium on String Processing and Information Retrieval (SPIRE), pages
129–142, 2021. doi:10.1007/978-3-030-86692-1_11.

10 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. Computing the original eBWT faster, simpler, and with less memory. In Proceedings
of 28th International Symposium in String Processing and Information Retrieval SPIRE 2021,
volume 12944 of Lecture Notes in Computer Science, pages 129–142, 2021. doi:10.1007/
978-3-030-86692-1_11.

11 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and
Taher Mun. Prefix-free parsing for building big BWTs. Algorithms for Molecular Biology,
14(1):13:1–13:15, 2019. doi:10.1186/S13015-019-0148-5.

12 Michael Burrows and David J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

13 Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone. Computing the
optimal BWT of very large string collections. In Proc. 33rd Data Compression Conference
(DCC), pages 71–80, 2023. doi:10.1109/DCC55655.2023.00015.

14 Davide Cenzato and Zsuzsanna Lipták. A survey of BWT variants for string collections.
Bioinformatics, 40(7):btae333, 2024. doi:10.1093/bioinformatics/btae333.

15 Davide Cenzato, Zsuzsanna Lipták, Nadia Pisanti, Giovanna Rosone, and Marinella Sciortino.
BWT for string collections. submitted to Festschrift’s honoree Giovanni Manzini.

16 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005. doi:10.1109/TIT.2005.850116.

17 Dustin Cobas, Travis Gagie, and Gonzalo Navarro. A fast and small subsampled r-index. In
Proc. 32nd Annual Symposium on Combinatorial Pattern Matching (CPM), page article 13,
2021.

18 The Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Briefings in Bioinformatics, 19(1):118–135, 2016. doi:10.1093/bib/bbw089.

19 Anthony J. Cox, Markus J. Bauer, Tobias Jakobi, and Giovanna Rosone. Large-scale compres-
sion of genomic sequence databases with the Burrows–Wheeler transform. Bioinformatics,
28(11):1415–1419, 2012. doi:10.1093/bioinformatics/bts173.

20 Anthony J. Cox, Fabio Garofalo, Giovanna Rosone, and Marinella Sciortino. Lightweight LCP
construction for very large collections of strings. Journal of Discrete Algorithms, 37:17–33,
2016. doi:10.1016/J.JDA.2016.03.003.

21 Diego Diaz-Dominguez. Efficient terabyte-scale text compression via stable local consistency
and parallel grammar processing. arXiv preprint arXiv:2411.12439, 2024. to appear in Proc.
23rd Symposioum on Experimental Algorithms (SEA 2025).

22 Diego Díaz-Domínguez and Gonzalo Navarro. Efficient construction of the BWT for repetitive
text using string compression. Information and Computation, 294:105088, 2023. doi:10.1016/
j.ic.2023.105088.

23 Lavinia Egidi, Felipe A. Louza, Giovanni Manzini, and Guilherme P. Telles. External memory
BWT and LCP computation for sequence collections with applications. Algorithms for
Molecular Biology, 14(1):6:1–6:15, 2019. doi:10.1186/S13015-019-0140-0.

24 Lavinia Egidi and Giovanni Manzini. Lightweight merging of compressed indices based on BWT
variants. Theoretical Computer Science, 812:214–229, 2020. doi:10.1016/j.tcs.2019.11.001.

Manzini’s Festschrift

https://doi.org/10.4230/LIPICS.SEA.2024.1
https://doi.org/10.1016/j.tcs.2020.11.041
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1186/S13015-019-0148-5
https://doi.org/10.1109/DCC55655.2023.00015
https://doi.org/10.1093/bioinformatics/btae333
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1016/J.JDA.2016.03.003
https://doi.org/10.1016/j.ic.2023.105088
https://doi.org/10.1016/j.ic.2023.105088
https://doi.org/10.1186/S13015-019-0140-0
https://doi.org/10.1016/j.tcs.2019.11.001

7:26 Algorithms for Computing Very Large BWTs: A Short Survey

25 Paolo Ferragina. Pearls of Algorithm Engineering. Cambridge University Press, 2023.
26 Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight data indexing and

compression in external memory. Algorithmica, 63(3):707–730, 2012. doi:10.1007/
S00453-011-9535-0.

27 Paolo Ferragina and Giovanni Manzini. An experimental study of a compressed index.
Information Sciences, 135(1):13–28, 2001. doi:10.1016/S0020-0255(01)00098-6.

28 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in bwt-runs bounded space. Journal of the ACM (JACM), 67(1):1–54, 2020.
doi:10.1145/3375890.

29 Alexander Golynski. Rank/select operations on large alphabets: a tool for text. In Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), volume 122, page 368, 2006.

30 Roberto Grossi, Ankur Gupta, Jeffrey Scott Vitter, et al. High-order entropy-compressed
text indexes. In Proc. 14th annual ACM-SIAM symposium on Discrete algorithms (SODA),
volume 3, pages 841–850, 2003.

31 Veronica Guerrini, Felipe A. Louza, and Giovanna Rosone. Parallel lossy compression for large
FASTQ files. In 16th International Joint Conference on Biomedical Engineering Systems and
Technologies (BIOSTEC), pages 97–120, 2023. doi:10.1007/978-3-031-38854-5_6.

32 James Holt and Leonard McMillan. Merging of multi-string BWTs with applications. Bioin-
formatics, 30(24):3524–3531, 2014. doi:10.1093/bioinformatics/btu584.

33 Hongwei Huo, Pengfei Liu, Chenhui Wang, Hongbo Jiang, and Jeffrey Scott Vitter. CIndex:
compressed indexes for fast retrieval of FASTQ files. Bioinformatics, 38(2):335–343, 2021.
doi:10.1093/bioinformatics/btab655.

34 Bruce Jacob, David Wang, and Spencer Ng. Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

35 Lilian Janin, Giovanna Rosone, and Anthony J. Cox. Adaptive reference-free compression of
sequence quality scores. Bioinformatics, 30(1):24–30, 2014. doi:10.1093/bioinformatics/
btt257.

36 Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted longest-common-prefix
array. In Proc. 20th Annual Symposium on Combinatorial Pattern Matching (CPM), pages
181–192, 2009. doi:10.1007/978-3-642-02441-2_17.

37 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM (JACM), 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

38 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.0249.

39 John C. Kieffer and En Hui Yang. Grammar–based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000. doi:10.1109/
18.841160.

40 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2-4):143–156, 2005. doi:10.1016/j.jda.2004.08.002.

41 Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, Chi-Kwong Wong, and Siu-Ming Yiu.
Compressed indexing and local alignment of DNA. Bioinformatics, 24(6):791–797, 2008.
doi:10.1093/bioinformatics/btn032.

42 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome biology, 10:1–10,
2009. doi:10.1186/gb-2009-10-3-r25.

43 Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics, 28(14):1838–1844, 2012. doi:10.1093/bioinformatics/bts280.

44 Heng Li. Fast construction of FM-index for long sequence reads. Bioinformatics, 30(22):3274–
3275, 2014. doi:10.1093/bioinformatics/btu541.

45 Heng Li. BWT construction and search at the terabase scale. Bioinformatics, 40(12):btae717,
2024. doi:10.1093/bioinformatics/btae717.

https://doi.org/10.1007/S00453-011-9535-0
https://doi.org/10.1007/S00453-011-9535-0
https://doi.org/10.1016/S0020-0255(01)00098-6
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-031-38854-5_6
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1093/bioinformatics/btab655
https://doi.org/10.1093/bioinformatics/btt257
https://doi.org/10.1093/bioinformatics/btt257
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/18.841160
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1093/bioinformatics/btn032
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btae717

D. Díaz-Domínguez, L. Egidi, V. Guerrini, F. A. Louza, and G. Rosone 7:27

46 Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics, 26(5):589–595, 2010. doi:10.1093/bioinformatics/btp698.

47 Zsuzsanna Lipták, Francesco Masillo, and Simon J Puglisi. Suffix sorting via matching statistics.
Algorithms for Molecular Biology, 19(1):11, 2024. doi:10.1186/s13015-023-00245-z.

48 Felipe A. Louza, Simon Gog, and Guilherme P. Telles. Inducing enhanced suffix arrays for string
collections. Theoretical Computer Science, 678:22–39, 2017. doi:10.1016/J.TCS.2017.03.039.

49 Felipe A. Louza, Guilherme P. Telles, Steve Hoffmann, and Cristina Dutra de Aguiar Ciferri.
Generalized enhanced suffix array construction in external memory. Algorithms for Molecular
Biology, 12(1):26:1–26:16, 2017. doi:10.1186/S13015-017-0117-9.

50 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal of Computation., 22(5):935–948, 1993. doi:10.1137/0222058.

51 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the Burrows–Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.
doi:10.1016/j.tcs.2007.07.014.

52 Francesco Masillo. Matching Statistics Speed up BWT Construction. In Proc. 31st Annual
European Symposium on Algorithms (ESA 2023), pages 83:1–83:15, 2023. doi:10.4230/
LIPIcs.ESA.2023.83.

53 Takaaki Nishimoto and Yasuo Tabei. Optimal-Time Queries on BWT-Runs Compressed
Indexes. In Proc. 48th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 198, pages 101:1–101:15, 2021. doi:10.4230/LIPICS.ICALP.2021.101.

54 Ge Nong. Practical linear-time o(1)-workspace suffix sorting for constant alphabets. ACM
Transactions on Information Systems, 31(3):15:1–15:15, 2013. doi:10.1145/2493175.2493180.

55 Ge Nong, Wai Hong Chan, Sheng Qing Hu, and Yi Wu. Induced sorting suffixes in external
memory. ACM Transactions on Information Systems (TOIS), 33(3):1–15, 2015. doi:10.1145/
2699665.

56 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers, 60(10):1471–1484, 2011. doi:10.1109/
TC.2010.188.

57 Daisuke Okanohara and Kunihiko Sadakane. A linear-time Burrows–Wheeler transform using
induced sorting. In Proc. 16th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 90–101, 2009. doi:10.1007/978-3-642-03784-9_9.

58 Marco Oliva, Travis Gagie, and Christina Boucher. Recursive prefix-free parsing for building
big bwts. In 2023 Data Compression Conference (DCC), pages 62–70, 2023. doi:10.1109/
DCC55655.2023.00014.

59 Marco Oliva, Massimiliano Rossi, Jouni Sirén, Giovanni Manzini, Tamer Kahveci, Travis
Gagie, and Christina Boucher. Efficiently merging r-indexes. In Proc. 31st Data Compression
Conference (DCC), pages 203–212, 2021. doi:10.1109/DCC50243.2021.00028.

60 Nicola Prezza, Nadia Pisanti, Marinella Sciortino, and Giovanna Rosone. Variable-order
reference-free variant discovery with the Burrows–Wheeler Transform. BMC Bioinformatics,
21-S(8):260, 2020. doi:10.1186/S12859-020-03586-3.

61 Yoshihiro Shibuya and Matteo Comin. Better quality score compression through sequence-
based quality smoothing. BMC Bioinformatics, 20-S(9):302:1–302:11, 2019. doi:10.1186/
s12859-019-2883-5.

62 Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549–56, 2012. doi:10.1101/gr.126953.
111.

63 Jouni Sirén. Burrows–Wheeler Transform for Terabases. In Proc. 16th Data Compression
Conference (DCC), pages 211–220, 2016. doi:10.1109/DCC.2016.17.

64 Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard Durbin. Haplotype-
aware graph indexes. Bioinformatics, 36(2):400–407, 2020. doi:10.1093/BIOINFORMATICS/
BTZ575.

Manzini’s Festschrift

https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1186/s13015-023-00245-z
https://doi.org/10.1016/J.TCS.2017.03.039
https://doi.org/10.1186/S13015-017-0117-9
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.4230/LIPIcs.ESA.2023.83
https://doi.org/10.4230/LIPIcs.ESA.2023.83
https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.1145/2493175.2493180
https://doi.org/10.1145/2699665
https://doi.org/10.1145/2699665
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1007/978-3-642-03784-9_9
https://doi.org/10.1109/DCC55655.2023.00014
https://doi.org/10.1109/DCC55655.2023.00014
https://doi.org/10.1109/DCC50243.2021.00028
https://doi.org/10.1186/S12859-020-03586-3
https://doi.org/10.1186/s12859-019-2883-5
https://doi.org/10.1186/s12859-019-2883-5
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.1109/DCC.2016.17
https://doi.org/10.1093/BIOINFORMATICS/BTZ575
https://doi.org/10.1093/BIOINFORMATICS/BTZ575

7:28 Algorithms for Computing Very Large BWTs: A Short Survey

65 Clare Turnbull, Richard H. Scott, Ellen Thomas, Louise Jones, Nirupa Murugaesu, Freya Board-
man Pretty, Dina Halai, Emma Baple, Clare Craig, Angela Hamblin, Shirley Henderson,
Christine Patch, Amanda O’Neill, Andrew Devereau, Katherine Smith, Antonio Rueda Martin,
Alona Sosinsky, Ellen M. McDonagh, Razvan Sultana, Michael Mueller, Damian Smedley,
Adam Toms, Lisa Dinh, Tom Fowler, Mark Bale, Tim Hubbard, Augusto Rendon, Sue Hill,
and Mark J. Caulfield. The 100 000 genomes project: bringing whole genome sequencing to
the nhs. BMJ, 361, 2018. doi:10.1136/bmj.k1687.

https://doi.org/10.1136/bmj.k1687

	1 Introduction
	2 Preliminaries
	3 Disk-based strategies
	3.1 bwt-disk [Ferragina et al., 2012]
	3.2 BCR and BCRext [Bauer et al., 2013]
	3.3 eGSA [Louza et al., 2017]
	3.4 eGap [Egidi et al., 2019]
	3.5 BWT+LCP [Bonizzoni et al., 2021]

	4 Strategies exploiting compressibility
	4.1 Big-BWT [Boucher et al., 2019]
	4.2 grlBWT [Díaz-Domínguez and Navarro, 2023]

	5 Future directions
	6 Final Remarks

